
GraphScope: A One-Stop Large Graph Processing System

Jingbo Xu, Zhanning Bai, Wenfei Fan, Longbin Lai, Xue Li, Zhao Li, Zhengping Qian, Lei Wang,
Yanyan Wang, Wenyuan Yu, Jingren Zhou

Alibaba Group Ant Group University of Edinburgh Shenzhen Institute of Computing Sciences
graphscope@alibaba-inc.com

ABSTRACT

Due to diverse graph data and algorithms, programming and or-

chestration of complex computation pipelines have become the

major challenges to making use of graph applications for Web-scale

data analysis. GraphScope aims to provide a one-stop and efficient

solution for a wide range of graph computations at scale. It extends

previous systems by offering a unified and high-level programming

interface and allowing the seamless integration of specialized graph

engines in a general data-parallel computing environment.

As we will show in this demo,GraphScope enables developers to

write sequential graph programs in Python and provides automatic

parallel execution on a cluster. This further allows GraphScope

to seamlessly integrate with existing data processing systems in

PyData ecosystem. To validate GraphScope’s efficiency, we will

compare a complex, multi-staged processing pipeline for a real-

life fraud detection task with a manually assembled implementa-

tion comprising multiple systems. GraphScope achieves a 2.86×

speedup on a trillion-scale graph in real production at Alibaba.

PVLDB Reference Format:

Jingbo Xu, Zhanning Bai, Wenfei Fan, Longbin Lai, Xue Li, Zhao Li,

Zhengping Qian, Lei Wang, Yanyan Wang, Wenyuan Yu, Jingren Zhou .

GraphScope: A One-Stop Large Graph Processing System. PVLDB, 14(12):

2703 - 2706, 2021.

doi:10.14778/3476311.3476324

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://vldb.graphscope.app/.

1 INTRODUCTION

Distributed execution systems with high-level language support

(e.g., Koalas [7], Dask [2] and TensorFlow [9]) have been widely

adopted for web-scale data analysis in a wide range of applications,

such as e-commerce, on-line payments, and communication, largely

attributed to ease of programming and scalability. However, the

operator semantics provided by these systems is ill-suited to an

important class of applications that require deeper analysis of com-

plex interrelationships among data, where diverse analytics tools

involving various graph computations are often called for instead.

For example, in e-commerce platforms, some sellers and buyers

may conduct fraudulent transactions and reviews collaboratively in

order to inflate their ratings and rankings. Recent studies [5, 10]

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476324

Buyer

user_id,

gender,

prefers!
location

"
Seller
seller_id,

rating,

location"

Item
category,

price,

rating,

discount…

Buying

timestamp,

is_mobile…

V V

V

E

Known

Frauds

load

Is u1342

involved

in fraud?
Selling

discount,

pub_date…

E

Graph

learning

Pattern

identification

Vertex

classification

AliGraphGraph

construction

Distributed File System

Figure 1: Fraud detection on a transaction graph.

show that by integrating various graph-based algorithms, the fraud

detection task is able to better catch the collaborative nature of fraud

behaviors, and thus achieve higher efficacy. However, the task is

challenging to develop and deploy in real-life. Figure 1 illustrates a

simplified fraud detection task on graph, where entities like sellers,

buyers and items are represented as vertices, and relations like

transactions are represented as edges. From other sources, such as

customer complaints, some entities are marked with known fraud

labels (red vertices in Figure 1). The aim for the task is to determine

whether a given seller or buyer is involved in frauds based on

structural and attribute information of the graph.

The entire pipeline consists of the following four steps. First, the

graph is constructed in a data-parallel system from the external stor-

age (e.g., HDFS). Next, a label propagation algorithm is performed

in a graph analytics system (e.g., Apache Giraph) for identifying

a candidate set of vertices as possible fraudulent entities. Then, a

graph learning system (e.g., AliGraph [11]) is applied to conduct

𝑘-hop neighborhood sampling for each vertex, and the result is

fed into a deep learning framework (e.g., TensorFlow) to predict

whether an entity is fraudulent, based on a graph neural network

(GNN) model. Finally, experts may verify the results manually with

interactive graph traversal queries, which typically depends on a

graph database (e.g., JanusGraph). We can see that this pipeline

involves diverse types of graph computations (i.e., graph iterative

algorithms, graph traversal and graph sampling), as well as dif-

ferent types of computations in separate systems. Moreover, this

graph-related task involves non-graph computations (e.g., neural

networks), and has to co-work with other data processing systems.

With the combination of different systems come the following

drawbacks. First, existing graph processing systems are often de-

signed for a specific type of computation with potentially very

different programming abstractions and runtime. This gives rise to

a lot of programming challenges, e.g., managing the heterogene-

ity of data representation and complexity of resource scheduling.

2703

Second, many systems (e.g., Apache Giraph) require a deep un-

derstanding of low-level programming abstractions, which makes

graph computations accessible to only graph expertise. Last but

not least, inter-operating with other systems (e.g., Spark) usually

involves excessive data transformation and movement, which may

significantly deteriorate the performance of the overall execution.

In this paper, we showhowGraphScope system tackles the above

challenges. We will demonstrate the following unique features.

(1) A unified high-level programming interface designed for a wide

variety of graph computations, including graph traversal, pattern

matching, iterative algorithms, and graph sampling (for GNN). The

interface is embedded in Python so as to allow GraphScope to

seamlessly integrate with other systems.

(2) A full-fledged system, GraphScope, that can automatically com-

pile sequential graph programs into distributed computations.

(3) A distributed in-memory store, Vineyard, that provides efficient

data transfer across multiple systems.

GraphScope outperforms state-of-the-art systems that are de-

signed for different types of graph queries. It runs 2.86× faster

than a manually assembled pipeline with complex, multi-staged

processing on large graphs in a real-life application at Alibaba.

2 PROGRAMMING WITH GRAPHSCOPE

In this section we highlight some particularly useful and distinctive

aspects of the GraphScope programming interface. In Figure 2, we

sketch the codes of the fraud-detection case discussed in Section 1 as

a running example. On top is a unified Python interface to embrace

the Python ecosystem. For example, in line 4 of Figure 2, we use

PySpark for data loading, and the code in line 19-22 introduces a

TensorFlow procedure of a graph neural network to do classification.

The graph computation, as the core of GraphScope, is supported

by extending Gremlin (with its Python library) as detailed below.

2.1 Gremlin

Gremlin [1] is a widely used graph traversal language that allows

high-level and declarative programming for various graph opera-

tions, including graph traversal, pattern matching, and sampling.

In Gremlin, data is represented as streams of traversers. At the

minimum, a traverser consists of three parts: a reference to the

current location (vertex, edge or property), the path history, and

(optionally) an application state called sack. A traverser is the basic

data processing unit in a Gremlin computation.

A Gremlin query consists of a series of operators, each of which

takes traverser streams as input, conducts computation as in-

structed, and outputs traverser streams. For instance, Gremlin offers

familiar relational operators (as line 27 in Figure 2 shows), including

projection (select), filters (has), grouping (group), and top-K

(limit), together with dynamic control-flow constructs such as

conditional (where) and loop (repeat) statements.

2.2 GraphScope Extensions of Gremlin

It is easy to use Gremlin to express a variety of graph computations

such as graph traversal, pattern matching and sampling. However,

it is a pain to do so for another useful type of graph operation: the

iterative computation. This is mostly because Gremlin does not

1 # Build the graph

2 graph = sess.g().add_vertices(...).add_edges(...)

3 # Load the known labels

4 known_fraud = load_from('oss://.../fraud_score.tsv')

5 graph = graph.add_column('label', known_fraud)

6 # Call LPA algorithm

7 g = sess.gremlin(graph).traversal_source()

8 g.V().process(

9 V().property('$lpa_score', expr('label'))

10 .repeat(

11 V().scatter('$lpa_score').by(out())

12 .gather('$tmp', sum)

13 .property('$new_score', expr('$tmp/IN_DEGREE'))

14 .where(expr('abs(new_score-lpa_score)>1e-10'))

15 .property('$lpa_score', expr('$new_score'))

16).until(count().is(0))

17).withProperty('$lpa_score', 'lpa_score')

18 # Load a GraphSage Model for prediction

19 from graphscope.learning.models import GraphSage

20 model = GraphSage('oss://../some_model')

21 sampler = g.sample(...).toTensorFlowDataset()

22 scores = model.predict(feed=sampler, config=...)

23 # Add "fraud" score back to graph

24 graph = graph.add_column('score', scores)

25 # Interactive explorations on the result graph

26 g = sess.gremlin(graph).traversal_source()

27 g.V().has('id', 'u1324').out('buy').where(__.in('buy').

count().is(gt(10000))).order().by('score', desc)

Figure 2: The GraphScope extension on Gremlin.

provide a mechanism to maintain states on the vertices that are

necessary for iterative computation. To address the issue, we extend

Gremlin with a new process step and several other operators

that allow the users to easily program both the vertex-centric [6]

and graph-centric [3] algorithms for iterative computation.

In line 8-17 of Figure 2, we illustrate a vertex-centric algorithm

(as a process step) for label propagation (LPA) composed via the

extended operators. In this algorithm, a $lpa_score initialized

by known labels will be assigned to each vertex. The extended step

property(K,V) (line 9,13,15) creates or updates a specified run-

time property beginning with the ł$ž identifier. Inspired by Flink1,

we introduce scatter() and gather() steps to simulate the

message passing and aggregation in a vertex-centric algorithm.

Specifically, scatter() is used to send the specified value to all

vertices given by the following by() modulator, and gather()

is for aggregating the received values via an aggregate function

and saving the result in a runtime property. In line 12, a built-in

sum operator is used to sum $lpa_score of its incoming neigh-

bors and save the result in $tmp; and then $new_score can be

further calculated. Besides, we also introduce expr(String) as

a syntactic sugar that users could rely on to make their arithmetic

expression or logic expression more succinct. When an iteration

finishes, the iterative algorithms require łredoingž the computation

from a certain set of vertices. While Gremlin does not natively

provide such operators, we extend the source operator V() within

process (line 11) to give the traversal machine a hint to reset the

traversal with all vertices as sources. The computation terminates

if no vertex changes its $lpa_score (line 16). Finally, selected

properties can be added to the graph via a withProperty step.

In addition to the vertex-centric model, we also support the

graph-centric PIE model as proposed by GRAPE [3] by calling

1See https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/gelly/iterative_
graph_processing.html.

2704

Distributed in-memory store (vineyard)
Client

Worker
pod

Worker
pod

Worker
pod

Worker
pod

Worker
pod

!

!

A Kubernetes cluster

GraphScope RuntimeSpark
Runtime

Tensorflow
Runtime

…

Python
program

g.V(2)…

Figure 3: The GraphScope system architecture.

a user-defined algorithm in the process step. More specifically,

developers only need to provide two functions: (1) PEval, a function

for partial evaluation: for a given query, it computes its partial

answer on a local fragment of the graph, and exchanges the status

of those border nodes with other workers via messages. and (2)

IncEval, an incremental function that computes changes to the old

output by treating messages from other fragments as updates. With

this, developers can access a global view of the graph and parallelize

exiting single-machine graph algorithms such that it runs across

multiple processors and machines, with minor changes.

3 SYSTEM ARCHITECTURE

The system architecture of GraphScope is shown in Figure 3. Its

applications may contain multiple types of workloads, each handled

by a different distributed framework, e.g., Spark (for relational op-

erations), the GraphScope runtime (for graph algorithms), and Ten-

sorFlow (for neural networks computations). All the computations

(regardless of what framework) read inputs from and write outputs

to a shared distributed in-memory store provided by GraphScope.

GraphScope Execution Overview. The execution flow of a com-

putation in each framework typically contains the following steps.

Step 1. A Python application runs on a client machine, connected

to a Kubernetes cluster. When a certain computation is triggered

(possibly by a function call that relies on the outputs), the corre-

sponding expression object is handed over to the framework.

Step 2. The framework compiles the expression into a distributed

execution plan and generates the codes for running. Because this

aspect is similar to [3, 8, 9, 11], we do not elaborate on it further.

Step 3. The plan is submitted to a centralized, framework-specific

łjob managerž (JM), which orchestrates the execution of a dis-

tributed computation on the cluster, and is responsible for jobs

such as scheduling resources and distributing the computation

across a cluster of containerized workers.

Step 4. Each worker executes a fragment of the distributed compu-

tation, and reports progress to the JM via heartbeat signal.

Step 5. When all workers complete, the JM will terminate, and

return control back to the user application.

Step 6. The triggered function call returns a local (Python) object

encapsulating the outputs of the execution, which can be used

as inputs to subsequent expressions in the user program, to be

executed following the above Steps 2-5.

GraphScope is a complex system that requires the interactions

of a wide variety of systems. We highlight two novel components.

Distributed In-Memory Store (Vineyard). GraphScope allows

the entire computation (pipeline) to stay in memory. Disk I/O is

only needed at the very beginning (to load the input) and at the

very end (to write the result). All the intermediate results (possibly

across multiple frameworks) are maintained in a shared distributed

in-memory store, called Vineyard. Vineyard provides high-level

data (PyData) abstractions, such as Graph, Array, Tensor, and

DataFrame, as the storage interface, which not only simplifies

programming, but also allows efficient data exchange between two

computations on the same machine. This is achieved by mapping or

transforming the metadata of the data objects, which avoids costly

copying of their payloads. Given that multiple stages in a data-

parallel pipeline typically share a common data partitioning scheme,

such a łzero-copyž abstraction significantly improves performance

for the overall execution. Vineyard makes it possible to orchestrate

a workflow across many systems, while existing works like Spark,

require more integration effort for other frameworks.

Dataflow Engine (Gaia). GraphScope compiles a wide range of

graph computations expressed by (extended) Gremlin into dis-

tributed execution plans, and runs them on a new dataflow engine,

calledGaia. Unlike existing graph systems built on a dataflowmodel

such as GraphX [4], Gaia [8] employs a number of technologies to

enable and combine a set of graph-specific optimizations in one

carefully designed coherent framework. Moreover, by integrating

with Vineyard (which provides streams between steps), the exe-

cution of Gaia can be overlapped with downstream computations

(even in a different framework). For example, a pipeline execution

from GNN sampling (in Gaia) to training (in TensorFlow).

4 DEMONSTRATION

The demonstration consists of two parts. (1) We walk through

GraphScope to demonstrate its main features; and (2) we also

demonstrate how GraphScope is applied in various scenarios.

A walk through. We visualize and demonstrate how GraphScope

processes large-scale graph computation as shown in Figure 4.

(1) Deployment. GraphScope is natively built and deployed on Ku-

bernetes. As displayed in Figure 4(1), GraphScope follows the stan-

dard Kubernetes procedure to deploy and launch. Users can use the

CLIs provided by kubectl or helm. Alternatively, GraphScope

can be launched with a few clicks in a web-based app manager

like kubeapps. Users are able to customize the configurations

during the deployment, including how many worker pods are used,

whether to mount a volume for the data input and output, etc.

(2) Jupyter Notebook interface. Figure 4(2) shows the main interface

of GraphScope. It is a managed Jupyter Notebook container that

serves as the IDE, with a cluster of containerized workers serving

in the background to process queries. Jupyter Notebook is the de-

facto standard Python development environment for data scientists.

Thus writing code to process large graphs is easy in GraphScope,

since all the graph computing abilities provided by GraphScope can

be easily accessed directly within the Notebook.

(3) Loading a graph. GraphScope supports property graphs in

which the edges/vertices are labelled and have many properties.

With Vineyard, GraphScope can load graph from various sources,

2705

> helm install graphsco

> kubectl create -f gra

or

or

1

2

3

4

5

6

Figure 4: Demonstration overview

e.g., local file systems, NFS, Amazon S3 and Aliyun OSS, etc. Fig-

ure 4(3) shows that graph data in a dataframe can be generated

from other PyData libraries and loaded in parallel via Vineyard.

Then the graph data is managed in Vineyard across the cluster.

(4) Programming in Gremlin and Python. GraphScope extends

Gremlin and provides a unified programming interface in Python.

In addition, GraphScope embodies a set of built-in algorithms for

graph analytics and graph learning, enabling users to easily process

their graph tasks. Better still,GraphScope supports łplug-and-playž

sequential algorithms following PIE model or vertex-centric

algorithms in GAS model. Figure 4(4) demonstrates how to use a

built-in algorithm and compose algorithm with code completion.

(5) Interactive queries with visualization. For interactive queries,

GraphScope supports analyzing large-scale graphs in an ex-

ploratory manner. As shown in Figure 4(5), interactive queries

expand a panel in the notebook with visualization of the result

graph. Users can further inspect the properties of the vertices/edges.

(6) System monitor and performance report. The audience is invited

to customize the configurations of GraphScope, and observe its

scalability by varying the number of worker pods, datasets and com-

putation tasks. As shown in Figure 4(6), users can easily monitor the

status of the cluster, including the real-time progress, the resources

usage, the performance and communication of each worker, etc.

Scenarios. In addition to the fraud-detection task in Section 1,

GraphScope can be applied to various graph-related tasks. Next,

we briefly demonstrate 3 scenarios based on real-life applications.

(1) Cybersecurity monitoring. Trojans are often controlled by their

holders with malicious domains and IPs. We build a bipartite graph

where domains and IPs are treated as vertices, and there is an edge

(𝑢, 𝑣) if domain 𝑢 is resolved from IP 𝑣 . Given a known malicious

domain, the resolved IPs are potentially malicious, as they are con-

trolled with high possibility by the Trojan holders, and vice versa.

This can be easily expressed in Gremlin supported by GraphScope.

(2) Recommendation in e-commerce. Recommendation services are

developed to predict a user’s interest for certain items. Given a

transaction graph like in Figure 1, we first conduct graph algorithms

like common neighbors to compute the potential links, and then

run a GNNmodel to learn the representation for each user and item.

Finally some items are recommended to a target user by assessing

the representation similarities of user-item pairs.

(3) Node classification on citation graph. This task aims to predict

the research topics of some unlabeled papers in a citation graph.

We first write in Gremlin to extract a sub-graph with entities satis-

fying certain conditions. We then conduct iterative algorithms (e.g.,

𝑘-core and triangle counting) to generate the structural feature for

each node. Combining both structural and semantic features for

paper node, we finally run a GNNmodel to classify the paper topics.

REFERENCES
[1] Gremlin Apache Tinkerpop. 2015. https://tinkerpop.apache.org/gremlin.html
[2] Dask Development Team. 2016. https://dask.org
[3] Wenfei Fan, Jingbo Xu, Yinghui Wu, Wenyuan Yu, Jiaxin Jiang, Zeyu Zheng,

Bohan Zhang, Yang Cao, and Chao Tian. 2017. Parallelizing Sequential Graph
Computations. In Proceedings of the 2017 ACM SIGMOD. 495ś510.

[4] Apache Spark GraphX. 2014. https://spark.apache.org/graphx/
[5] Chen Liang, Ziqi Liu, Bin Liu, Jun Zhou, Xiaolong Li, Shuang Yang, and Yuan

Qi. 2019. Uncovering insurance fraud conspiracy with network learning. In
Proceedings of the 42nd International ACM SIGIR. 1181ś1184.

[6] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD. 135ś146.

[7] Koalas Project. 2020. https://github.com/databricks/koalas
[8] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang

Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. 2021. GAIA:
A System for Interactive Analysis on Distributed Graphs Using a High-Level
Language. In NSDI 21. USENIX Association.

[9] Google Tensorflow. 2016. http://tensorflow.org
[10] Haobo Wang, Zhao Li, Jiaming Huang, Pengrui Hui, Weiwei Liu, Tianlei Hu,

and Gang Chen. 2020. Collaboration based multi-label propagation for fraud
detection. In IJCAI.

[11] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.
Proceedings of the VLDB Endowment 12, 12 (2019), 2094ś2105.

2706

