Assassin: an Automatic claSS

ificAtion system baSed on

algorithm SelectloN

Tianyu Mu
Harbin Institute of Technology
mutianyu@hit.edu.cn

Hongzhi Wang
Harbin Institute of Technology
Peng Cheng Laboratory(PCL)

Shenghe Zheng
Harbin Institute of Technology
1190300321 @stu.hit.edu.cn

wangzh@hit.edu.cn

Shaoqing Zhang
Harbin Institute of Technology
1190200721 @stu.hit.edu.cn

ABSTRACT

The increasing complexity of data analysis tasks makes it dependent
on human expertise and challenging for non-experts. One of the
major challenges faced in data analysis is the selection of the proper
algorithm for given tasks and data sets. Motivated by this, we de-
velop Assassin, aiming at helping users without enough expertise
to automatically select optimal algorithms for classification tasks.
By embedding meta-learning techniques and reinforced policy, our
system can automatically extract experiences from previous tasks
and train a meta-classifier to implement algorithm recommenda-
tions. Then we apply genetic search to explore hyperparameter
configuration for the selected algorithm. We demonstrate Assassin
with classification tasks from OpenML. The system chooses an
appropriate algorithm and optimal hyperparameter configuration
for them to achieve a high-level performance target. The Assassin
has a user-friendly interface that allows users to customize the
parameters during the search process.

PVLDB Reference Format:

Tianyu Mu, Hongzhi Wang, Shenghe Zheng, Shaoqing Zhang, Cheng
Liang, and Haoyun Tang. Assassin: an Automatic claSSificAtion system
baSed on algorithm SelectIoN . PVLDB, 14(12): 2751 - 2754, 2021.
doi:10.14778/3476311.3476336

1 INTRODUCTION

With explosive growth of digital information, the data captured
in real life becomes more complicated. As a result, the complexity
of data analysis tasks gradually increases according to application
scenarios. The term Automatic Statistician (also known as Auto-
matic Data Analysis) [9] is often used to describe systems with
the ability to automate the process of data analysis such as model
selection, data cleansing (or restoration) and producing predictions
with minimal human intervention. The algorithm(or model) em-
ployed to process the data is the heart of overall data analysis task,
either in the data pre-processing phase or in the data analysis phase.
Although many algorithms have been developed for the same type
of tasks (e.g., classification), one algorithm can hardly outperform

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476336

2751

Cheng Liang
Harbin Institute of Technology
1190301804 @stu.hit.edu.cn

Haoyun Tang
Harbin Institute of Technology
1190201526 @stu.hit.edu.cn

others in all aspects and scenarios [8]. Currently, most of such work
are accomplished by domain experts based on their experiences
and a series of experiments. Recently, data become too complex for
experts to design suitable analysis model. Thus, a system that can
leverage observed experiences to automatically select an appropri-
ate algorithm for the task is in demand.

While existing approaches [2, 4, 10] attempt to address the algo-
rithm selection problem, two major problems remain unresolved.
On the one hand, existing approaches fails to make sufficient use
of experiences, which are useful for new algorithm selection jobs.
On the other hand, hyperparameter configuration of the selected
algorithm is still inefficient due to the large search space.

To address above issues, we developed Assassin, an automatic
classification algorithm selection system. Our system focuses on
the following objectives. 1) Utilization of experiences. To ad-
dress the first problem, we represent the task as a feature vector
and model the algorithm selection experience as the mapping from
analysis task to its optimal process algorithm. A meta-learner is
trained with the knowledge to identify high-performing algorithms
for solving new tasks. 2) Efficiency of hyperparameter opti-
mization(HPO). To address the second problem, two mechanisms
are designed to narrow the search space, aiming at ensuring fast
convergence of the genetic search. We believe that limited time
should be prioritized to tune parameters with higher potential.
Before tuning, we measure the impact of each hyperparameter on
performance improvement and then prune the hyperparameter
search space based on it. Then we perform genetic search with
the hyperparameter configuration of the historical experience closest
to the new task. 3) Automation of the entire system. Assassin
employs a reinforcement policy and trains a network that automati-
cally selects the task features to be extracted and transforms them into
meta-data, which not only reduces human intervention but also
takes into account the complex correlations among features. To the
best of our knowledge, this is the first time that a reinforcement
learning strategy is used for automatic feature engineering.

To summarize, Assassin has following features: 1) Full automa-
tion. Our system automates the whole process of algorithm selec-
tion and HPO. Users only need to upload the data set of classifi-
cation task, and the optimal algorithm and its hyperparameters
will be provided without human efforts. 2) High precision. Exper-
imental results show that Assassin can select a higher performance
algorithm for a user task, which demonstrates that our system is
effective. 3) Friendly to users. Whatever experts or non-expert

https://doi.org/10.14778/3476311.3476336
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476336

Experience
Extraction
(EE) module

All datasets of
previous tasks

|

|

} Algorithm, Experience

I

| 2 o

! 6™ 5% o om

} Optimal meta- e Lo e

| feature list Meta-learner(RF) training |,

| ||

| Ac ||

\ -2 N

| - N < |

|i| Optimal algorithm 2 I }

| o |

| and hyperparameter Sy Ll

|i| settings for each = ||
: : \

¥ dataset i Experience &

Online Working (OW) module

= Optimal
User Interface (UI) module algorithm and
" "New tasks :
! hyperparameter
; configurations

Hyperparameter configuration of most similar historical task for initializing first population

Selected ;

algorith

Final Algorithm

i Trained meta-learner for autonomous

Algorithm Selection (AS)

Figure 1: The Assassin workflow. With the training based on the experiences extracted from previous tasks, our system can
select the algorithm online. Optionally, if users has enough time, the model can be re-trained and some parameters such as

algorithm lists can be specified.

users can get started quickly through the graphical interface. Spe-
cially, we set up the customization mode to facilitate users to modify
the parameter settings of system.

2 SYSTEM OVERVIEW

The goal of our system is to select an algorithm with a tuned hy-
perparameter configuration to gain maximal performance for a
given data analysis task. To achieve this goal, we develop automatic
algorithm selection strategy based on historical experiences and
search space pruning algorithm for HPO.

System Architecture As shown in Figure 1, Assassin consists
of following 3 modules, in which EE module accomplishes the
experience extraction, and OW is in charge of algorithm selection
and HPO. Besides, we develop user interface module for interaction.
Then we will introduce these modules and the workflow of our
system.

Experience Extraction (EE) module. Since the prior experi-
ences are crucial for guiding algorithm selection, we develop EE
module to capture the experiences. In this module, we represent
a data analysis task as a meta-feature! vector and model the al-
gorithm selection experiences as the mapping from analysis task
to its optimal algorithm. Thus, the selected meta-features for rep-
resenting the tasks are crucial to the effectiveness of experiences
to the future algorithm selection tasks. We design AMS algorithm
employing reinforced policy to select proper features. Such policy
can quantify the importance of each meta-feature and the bene-
fits of different combinations of meta-features through continuous
exploration to maximize the representation ability of the selected
features. Then the meta-learner is trained on the extracted experi-
ences. The details of the feature selection algorithm AMS will be
introduced in Section 3.1.

! Meta-feature is the characterizations of a task and considered to be a crucial source
of meta-data. Each task ¢; € T is described as a meta-feature vector m(¢;) =
(mj1, mjz...,m; ;) of j meta-features.

Online Working (OW) module. To select proper algorithm
and determine its effective hyperparameter configuration, we de-
velop this module. Algorithm selection and HPO are executed in
order, which has gradually become a rising trend [10, 11]. Firstly,
this module calls meta-learning-based AS algorithm, which uses
the trained meta-learner in EE module to select a high-performance
algorithm for the task given by users. Secondly, we perform genetic
search for the algorithm selected in last step. Specifically, we design
two HPO search space pruning strategies to increase the conver-
gence speed. The AS and HPO algorithms adopted in our system
will be introduced in Section 3.2 and Section 3.3, respectively.

User Interface (UI) module In this module, we provide graph-
ical interface for users, as shown in Section 4. The GUI permits
user to upload local data sets and set parameters by themselves.
Our system provides two modes for users: 1) Customization mode
allows users modify some settings, such as candidate algorithm list,
running time limit, the number of tasks as experience and meta-
feature list generated by DQN. This mode is suitable for experts. 2)
Automation mode only requires users to upload the data set and the
analysis task, and our system analyzes the data set based on the
default setting and automatic algorithms. This mode is suitable for
non-expert users. In this module, we also provide the interface for
data analysis performance evaluation and statistical information of
data.

The workflow is summarized as follows. First of all, Assassin em-
ploys EE module for extracting experience from previous tasks and
training the meta-learner for next step. Then OW module invokes
AS algorithm to select an optimal algorithm for tasks uploaded
through Ul module by users. At last, HPO is executed to search the
optimal hyperparameter configuration for the algorithm selected
by AS.

2752

3 TECHNIQUES

In this section, we give the details of the core algorithms in our
system.

3.1 Automatic Meta-feature Selection (AMS)

AMS algorithm aims to automatically choose proper meta-features
to represent tasks. Unfortunately, the connection between meta-
features is complex, and it is hard to quantify the effect of different
combination of meta-features. Consider that reinforcement learning
achieves high performance on multiple candidate selection prob-
lem [6]. Such approach is suitable for our automatic meta-feature
selection demand.

Based on above discussions, we develop a reinforcement learning
algorithm for the meta-feature selection. Given a collection of candi-
date meta-features MF(|MF| = m), the state s is the meta-feature
selected from MF. Each action a selects a specific meta-feature
mf € MF. The eventually selected meta-features form an optimal
meta-feature list My;g; (Mjis; © MF, |Mjisilmax = n,n < m). The
reward r, of an action a is the probability of selecting the opti-
mal algorithm by performing a. The Q table update function is as
follows.

Q(ss a) — Q(S, a) + a[r + ymaxarQ(s', al) - Q(S, a)] (1)

The Deep Q-Network updates the correlations among meta-
features according to Equation 1. Under the state s, the agent selects
action a with a maximum cumulative reward r according to Q-value
calculated by a neural network, and then enters state s”. The Q-value
should be updated right now. y and « denote the discount factor
and learning rate, respectively. The difference between the true
and the estimated Q-value is ¢[R(s, a) + ymaxy Q(s’,a’) — Q(s, a)].
The value of a determines the speed of learning, and the value of y
means the importance of the future rewards. The Q-value reflects
correlation and influence between all meta-features, and the final
list consists of those with higher Q-values.

After selecting k meta-features representing the tasks, each task
tj € To1q is described with a meta-feature vector My; = (m}, mi‘)
Then for each ¢}, the meta-feature vector and its optimal algorithm
are collected as meta-data E. Assuming that we have totally n
previous tasks and k selected meta-features, the finally meta-data is
described as B, (k+1)- The k + 1" variable represents its optimal
algorithm. Meta-data is regarded as the experiences and the basis of
meta-learner training. The trained meta-learner £Enx(k+1) is trained
based on the meta-data for AS algorithm in OW module.

We select Random Forest (RF) model as the meta-learner, which
is blessed with following advantages. 1) We use some complex
meta-features to represent the tasks. RF is sensitive to the internal
influences among these meta-features when training. 2) Experimen-
tal results in [3] show that RF is more adept at selecting an optimal
algorithm based on task features.

3.2 Algorithm Selection (AS)

AS aims to select an optimal algorithm for the data analysis tasks.
It is based on the meta-learner from AMS algorithm.

AS is divided into following 2 steps. Firstly, AS calculates the
meta-feature vector M; for user-uploaded task t. Then, the trained

2753

meta-learner £Enx(k+) gelects a high-performance algorithm A* =
LEM,) according to the meta-vector.

3.3 Hyperparameter Optimization (HPO)

HPO algorithm aims to search optimal hyperparameter configura-
tions that can maximize the performance of the algorithm selected
by AS. Some hyperparameters with a wide range of values make
the HPO space very complicated. Considering the variation and
evolution mechanisms of Genetic Algorithm(GA) can approximate
optimal solution with time constraints [7], we design the GA-based
HPO algorithm. In the beginning, we encode hyperparameter con-
figurations to binary sequences and initializes the original popu-
lation. Then after crossover and mutation, we select the batch of
individuals high performance for next generation. For each subse-
quent generation, the hyperparameter configuration is returned as
the result if the termination condition has been reached. Otherwise,
the above steps will be executed iteratively.

However, GA still has some drawbacks that lead to slow con-
vergence in the case of large scale hyperparameter space [10]. To
tackle this problem, we propose two search space pruning strate-
gies before GA. Experimental results in [5] also illustrate that such
pruning strategies significantly speed up convergence when tuning
for SVM and the optimal hyperparameter combination was found
within almost 10 generations. We then discuss these two pruning
strategies.

Potential Priority. Since not all hyperparameters are useful for
the final tuning results [1], we first reduce the dimension of hy-
perparameters for acceleration. “Potential” evaluation are based
on the performance improvement after tuning. According to the
Occam’s razor principle, we only select the hyperparameters that
brings a relatively large effect improvement for tuning. Let A and
Dyq1 denote an algorithm with n hyperparameters Ay, A2, ...A, and
validation data set, respectively. Given a performance improvement
evaluation function I(A),, Dyg), the pruning can be formulated
as Equation (2) .

Aiise = {Aili € [1,n] sl(ﬂki,ﬂval) > 6}
0=03 max I(Ay, Dyar) @)
i€[1,n] '

Fast-forward Initialization. We use L1 distance of the meta-feature
vectors to measure the distance between tasks, and choose the
hyperparameter configuration for the historical task that is closest
to user task as the initialization of GA. For the optimization of target
task Treqw using the genetic algorithm(GA), we give the following
definition describing the change in performance during the iterative
process.

Definition 1 k-neighborhood: For a GA algorithm with hyperpa-
rameter space A and a given original hyperparameter Ao, GAK (1¢)
represents the hyperparameter 1 € A after k generations of GA.
Thus the k-neighborhood of Ay is as follows.

N(2o, k) = {AIP{GA* (o) = A} > 0} (3)

For a target task 7p¢+v and a task 77 in observed experiences, the
number of generation k and a given bound p, we assume that:

P{Jaccard(N(Az;, k), N(Az, . k)) > p} oc sim(T1, Tnew) (4)

ew’

where sim(71, Tnew) denotes the similarity between tasks. Az
represents the optimal hyperparameter configuration for Tpe4y, so
N(Az,,.,.k) is a small neighborhood filled with values that can
reach the optimal solution after k generations. To accelerate the
convergence of GA, our goal is to find an original hyperparameter

Ao where:
Ao = arg max P{Jaccard(N (Ao, k), N(Ag. .k)) > u}

= arg max sim(71, Tnew) = arg min dis(71, Tnew) ©)

We demonstrate these two strategies on algorithm Random For-
est with all training data sets. By performing Potential Priority
strategy, the hyperparameters to be tuned are *-K’, °-I’, *-depth’2.
Experimental results show that after tuning the three hyperparam-
eters separately, the performance improvement is 3.8%, 1.5% and
4.9% respectively and the ’-depth’ has the greatest “potential”. With
Fast-forward Initialization strategy, GA reaches convergence in
less than 15 generations. The experimental results show that our
pruning strategy effectively improve the speed of convergence.

4 DEMONSTRATIONS

@

(b) Customization Mode

(a) Automation Mode

Figure 2: System Interfaces

We plan to demonstrate both two algorithm selection modes
with the visualization of each step, and show how Assassin works
with various data sets.

Data sources. We demonstrate the whole algorithm selection
and hyperparameter optimization process with two open classifica-
tion data sets from OpenML.

(1) Thyroid disease data. (OpenML CC-18) The data comes from
thyroid disease records, with totally 29 classification attributes and
3772 instances. This is an imbalanced binary classification data set
as shown in Figure 2(a).

(2) Glass identification database data. The data comes from the
analysis of glass composition, with totally 9 classification attributes
and 137K instances as shown in Figure 2(b).

2The algorithm is implemented by WEKA. *-K’ denotes number of attributes to ran-
domly investigate. -I" denotes number of trees in the random forest. ’-depth’ denotes
the maximum depth of the tree.

2754

We also permit users to input their own data set in the specific
format. The data should be uploaded in a classification data set
format, with each row as a tuple, where the last attribute represents
the class of this tuple. In our system, 80% of the data set is used as
the training set and 20% as the test set.

Demo scenarios. Assassin first allows users to choose algorithm
selection mode. After that, the data set is uploaded to Assassin. We
use an example to illustrate the demonstration of these two modes,
respectively.

Automation mode. This mode is designed with automation
as the primary goal. As shown in Figure 2 (a), after uploading
data set and choosing target attribute(which column represents
the class label, first or last), our system automatically invokes the
experience-based trained meta-classifier. The optimal algorithm
(LMT here) is selected. Then users can click “next” for HPO and data
set information visualization. Finally, Assassin gives a performance
measure for recommended algorithm with metrics shown in Figure
2 (a).

Customization mode. In this mode, users can modify default pa-
rameters. After uploading data set, users can determine candidate
algorithm list, meta-feature list manually selected or regenerated
using DQN, time limit, or experience tasks number. As shown in
Figure 2 (b), we limit the algorithm list to ‘AdaBoost, Classification-
ViaRegression, Logistic, NaiveBayes, RandomForest’” and choose
to retrain the DQN (middle picture shows retrained results). This
mode allows users to retrain our system and give an optimal algo-
rithm with user’s setting. After modifying the parameters, Assassin
runs the same process as Automation mode.

ACKNOWLEDGMENTS

This paper was supported by NSFC grant U1866602. Hongzhi Wang
and Tianyu Mu contributed to the work equally and should be
regarded as co-first authors. Hongzhi Wang is the corresponding
author.

REFERENCES

[1] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, Feb (2012), 281-305.

[2] Noy Cohen-Shapira and et.al. Rokach. 2019. AutoGRD: Model Recommendation

Through Graphical Dataset Representation. In Proceedings of the 28th ACM CIKM.

821-830.

Tri Doan and Jugal Kalita. 2015. Selecting machine learning algorithms using

regression models. In 2015 ICDMW. IEEE, 1498-1505.

Matthias et.al. Feurer. 2019. Auto-sklearn: efficient and robust automated machine

learning. In Automated Machine Learning. Springer, Cham, 113-134.

Taciana AF Gomes and et.al. Prudéncio. 2012. Combining meta-learning and

search techniques to select parameters for support vector machines. Neurocom-

puting (2012).

Volodymyr Mnih, Koray Kavukcuoglu, et al. 2015. Human-level control through

deep reinforcement learning. nature 518, 7540 (2015), 529-533.

[7] Naoki Mori, Masayuki Takeda, and Keinosuke Matsumoto. 2005. A comparison
study between genetic algorithms and bayesian optimize algorithms by novel
indices. In Proceedings of the 7th annual conference on Genetic and evolutionary
computation. 1485-1492.

[8] Cullen Schaffer. 1994. Cross-validation, stacking and bi-level stacking: Meta-
methods for classification learning. In Selecting Models from Data. Springer,
51-59.

[9] et.al. Steinruecken. 2019. The automatic statistician. In Automated Machine
Learning. Springer, Cham, 161-173.

[10] Chunnan Wang, Hongzhi Wang, Tianyu Mu, Jianzhong Li, and Hong Gao. 2020.
Auto-Model: Utilizing Research Papers and HPO Techniques to Deal with the
CASH problem. In 2020 IEEE 36th ICDE. IEEE, 1906-1909.

[11] Anatoly Yakovlev and et.al Moghadam. 2020. Oracle automl: a fast and predictive
automl pipeline. Proceedings of the VLDB Endowment 13, 12 (2020), 3166-3180.

B3

[4

[5

G

