
Demo of Marius: A System for Large-scale Graph Embeddings
Anze Xie

Department of Computer Sciences,
UW-Madison

axie7@wisc.edu

Anders Carlsson
Department of Computer Sciences,

UW-Madison
awcarlsson@wisc.edu

Jason Mohoney
Department of Computer Sciences,

UW-Madison
mohoney2@wisc.edu

Roger Waleffe
Department of Computer Sciences,

UW-Madison
waleffe@wisc.edu

Shanan Peters
Department of Geoscience,

UW-Madison
peters@geology.wisc.edu

Theodoros Rekatsinas
Department of Computer Sciences,

UW-Madison
rekatsinas@wisc.edu

Shivaram Venkataraman
Department of Computer Sciences,

UW-Madison
shivaram@cs.wisc.edu

ABSTRACT
Graph embeddings have emerged as the de facto representation
for modern machine learning over graph data structures. The goal
of graph embedding models is to convert high-dimensional sparse
graphs into low-dimensional, dense and continuous vector spaces
that preserve the graph structure properties. However, learning a
graph embedding model is a resource intensive process, and exist-
ing solutions rely on expensive distributed computation to scale
training to instances that do not fit in GPU memory. This demon-
stration showcases Marius: a new open-source engine for learning
graph embedding models over billion-edge graphs on a single ma-
chine. Marius is built around a recently-introduced architecture for
machine learning over graphs that utilizes pipelining and a novel
data replacement policy to maximize GPU utilization and exploit
the entire memory hierarchy (including disk, CPU, and GPU mem-
ory) to scale to large instances. The audience will experience how to
develop, train, and deploy graph embedding models using Marius’
configuration-driven programming model. Moreover, the audience
will have the opportunity to explore Marius’ deployments on ap-
plications including link-prediction on WikiKG90M and reasoning
queries on a paleobiology knowledge graph. Marius is available as
open source software at https://marius-project.org.

PVLDB Reference Format:
Anze Xie, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters,
Theodoros Rekatsinas, and Shivaram Venkataraman. Demo of Marius: A
System for Large-scale Graph Embeddings. PVLDB, 14(12): 2759-2762, 2021.
doi:10.14778/3476311.3476338

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://marius-project.org/.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476338

Scandinavia

Sweden

Norway

Denmark

has_part

has_p
art

?

has_part

has_p
art borders

bo
rd
er
s

Figure 1: A sample knowledge graph.

1 INTRODUCTION
Generating machine learning models on graph structured data is
an important problem that has applications across many domains
ranging from social networking [14] to reasoning over knowledge
bases [8] to drug discovery [3]. For example, consider a knowledge
graph where nodes are entities and the edge types indicate the
relationship between them. A data scientist might want to use
such a graph to predict links between entities based on the graph
structure (see example in Figure 1).

A major step in learning models over graphs is to convert them
into continuous vector representations, or embeddings, while en-
suring that the structural properties of the graph are maintained.
Learning such embeddings is a resource-intensive process; not only
are graph access patterns are irregular, but the storage required for
the embedding vectors can also be high (100s of GB) [9]. Hence,
efficient access and storage of these vectors is a unique challenge for
scalable graph embedding systems. While existing work in PyTorch
BigGraph [9] and DGL-KE [15] have proposed using distributed
training, this often leads to wasted resources with low utilization.
To address this challenge, we recently introduced Marius [10], a
scalable graph embedding learning system. The goal of this demon-
stration is to showcase the Marius engine.
The Marius Engine We design Marius to make efficient use of
system resources to scale graph learning on a single machine. To
handle the aforementioned challenges, we design a pipelined train-
ing approach in Marius. Graph embeddings are maintained on local
disks and we pipeline the steps of reading data from disk to CPU

2759

https://marius-project.org
https://doi.org/10.14778/3476311.3476338
https://marius-project.org/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476338

memory, moving data from CPU to GPU memory, and comput-
ing updates to the embeddings on the GPU, to improve resource
utilization.

Further, Marius minimizes the amount of data read from disk
by using an approach inspired by database buffer management.
We split the vertex embeddings into partitions and maintain an
in-memory partition buffer that is used by the training pipeline.
Marius introduces a novel replacement scheme that uses knowledge
of the buffer size and the graph traversal order to minimize the
number of disk I/Os.

The above two design aspects enable Marius to learn graph
embeddings for billion-edge graphs using just a single GPU on a
single machine.
MariusDemonstration In this paper, we propose a demonstration
of Marius to showcase the usability and utility of our system for
data scientists. We plan to do this through three scenarios for the
conference attendees.

• Using Marius: We have developed two ways in which Mar-
ius can be deployed in graph learning pipelines. First, Marius
introduces a configuration-driven programming model, where
data scientists can directly train on popular models, loss func-
tions, and datasets without writing any code. In addition,
Marius can be used as a Python library that allows more
advanced use cases such as developing custom graph embed-
ding models. In the demonstration scenario, the audience
will learn how to use Marius via both the aforementioned
programming models.

• Training on real-world graphs: We plan to showcase how
Marius can be used to train embedding models on various
real-world graphs including knowledge bases, social graphs,
and biological and chemical networks. We will also show
how Marius can adapt to CPU or GPU based training based
on the hardware available and the dataset in hand.

• End-to-end Knowledge Retrieval: Finally, we also plan
to combine the above aspects to show how Marius can en-
able end-to-end knowledge retrieval for real-world scientific
tasks. We plan to use a knowledge graph induced from a
repository of scientific publications and will also show how
the embeddings trained using Marius can be used to power
reasoning over a paleobiology knowledge graph.

Audience Takeaways In summary, our demonstration will intro-
duce the audience to scalable graph embedding systems. From a
technical point of view, the audience will learn how pipelining and
Marius’ novel data replacement policy [10] can maximize GPU uti-
lization and thus enable learning graph embeddings for billion-edge
graphs with a single machine. From a practical point of view, the
audience will learn how to use the open-sourced Marius system
and experience how graph embeddings can be applied to a diverse
array of applications.

2 MARIUS OVERVIEW
We briefly review graph embeddings and then present an overview
of the architecture and programming interface of Marius.
Graph Embeddings A graph embedding is a 𝑑-dimensional vector
representation corresponding to each node (and/or edge-type) in a
graph [6]. Score functions, i.e., functions that capture the structural

properties of the graph are used to form the loss functions used for
training [1, 12, 13].

Graph embeddings are commonly used for link prediction, where
the similarity of two node vector representations is used to infer
the existence of a missing edge in a graph. For example, in the
knowledge graph in Figure 1 we can use the vector representation
of Sweden and the relation embedding for borders to predict the

existence of the edge Sweden borders−−−−−−−→ Denmark, marked with a
question mark in the figure.
The Marius Architecture The training of large scale graphs is
limited by data movement costs and CPU/GPU memory sizes [10].
To address the first limitation, Marius uses a pipelined architecture
(Figure 2) to minimize wait times for memory operations, and CPU-
GPU transfer. The second limitation is addressed by partitioning
embedding parameters on disk while buffering partitions in CPU
memory, and iterating over the partitions in an ordering which
minimizes the number of swaps to disk.

We next explain our design by outlining one iteration of training
in Figure 2. The Marius pipeline forms partial batches on the CPU
by loading edges and node embeddings from storage (Load) and
places the partial batch onto a queue, where a worker will transfer it
to the GPU (Transfer). A full batch is formed by loading the relation
embeddings on the GPU, and the forward and backward pass of the
model is computed to obtain gradient updates for the embeddings
(Compute). The relation embeddings are updated on the GPU, and
the node embedding parameters are placed on a queue for transfer
back to the CPU (Transfer). Once transfer is complete, the updates
will be applied to the underlying storage (Update).
TheMarius APIWe designed Marius’ API with two goals in mind:
1) enable out-of-the-box development and deployment of graph
embedding pipelines, and 2) seamless integration with Python code
that defines analytical pipelines using other popular machine learn-
ing libraries such as PyTorch.

The main API objects are shown in Table 1. The MariusConfig
object is used to set all program parameters: the dataset, storage, ex-
ecution hardware, model, hyperparameters, pipeline configuration
etc. The MariusConfig object is used to create a MariusDataSet
and a MariusModel, the former providing a batching interface to
the dataset, and the latter describing the model computation. The
MariusModel is an abstract class that can be extended to implement
custom models. The MariusTrainerwill then train to the specified
number of epochs using the pipeline, and the MariusEvaluator
can be used to run an evaluation task on the trained embeddings.

For out-of-the-box deployment Marius adopts a configuration-
based programming paradigm. There are currently over 90 config-
urable parameters divided into nine main sections, including model,
storage, training, pipelining and evaluation (Figure 3).

We have also included detailed documentation for all of these
fields, allowing users to exert a high degree of control to tweak
their training process as they see fit. Also, to ease manual efforts, all
configurable parameters are automatically set to the recommended
defaults if not explicitly defined in the configuration file. The use
of configuration based programming allows users to run Marius
without ever having to write a line of code. This no-code paradigm
dramatically expands the potential user base, allowing researchers
with little programming experience to effectively use Marius.

2760

Node
Embedding
Parameters

Compute
Relation

Embedding
Parameters

CPU Memory GPU Memory

Edges

Transfer

TransferLoad

Update

Legend
Queue

 Batch

 Data flow

 Stage

Figure 2: Marius training pipeline: Node embedding parameters are loaded from storage to form a partial batch which is
transferred to the GPU. A full batch is formed by loading the parameters residing in GPU memory and the forward and
backward pass is computed. Gradient updates are transferred back to CPU memory and applied to storage.

Figure 3: Marius con-
figuration file.

Figure 4: Creating a custom embed-
ding model with Marius.

Table 1: Main components of the Marius API.

API Object Example Usage Description
MariusConfig config = marius.Config(file) Adictionary of theMarius con-

figuration options.
MariusDataSet train_set = marius.DataSet(config) Maintains training state and

provides a batching interface
to the data set.

MariusModel model = marius.Model(config) Defines the computation of
the model and is extensible to
custom models.

MariusTrainer trainer = marius.Trainer(train_set,
model)

Manages execution of the
training process.

For advanced users, Marius can be imported as a Python library.
While Marius is implemented in C++, the bindings we developed
can be used seamlessly alongside popular machine learning libraries
such as PyTorch. Developers can use this API to write scripts that
define the entire embedding training process. Users can also im-
plement their own additional custom models in Python and use
them for the training process after setting associated model decoder
parameter (Figure 4).

3 DEMONSTRATION SCENARIOS
Our demonstration has into three parts: 1) teach the audience to
develop Marius programs, 2) showcase large scale graph learning
over Marius, and 3) demonstrate the utility of learned graph em-
beddings in downstream applications related to knowledge graph
reasoning.

3.1 Developing Marius Programs
The first part of our demonstration will expose the audience to
the core elements of Marius’ API: the config-based and the Python-
based programming schemes. Specifically, the audience will learn: 1)
how to develop and deploy Marius pipelines using Marius’ no-code

paradigm, 2) how to use the Python API to define custom models,
and 3) about the data converters supported by Marius different
formats including TSV, CSV, and Parquet.

In this part, we will focus on the WordNet [5] graph and guide
the users around a sample config file. We will discuss the main
parts of the file and demonstrate changing a few of the customiz-
able parameters, highlighting frequently used variables such as the
device type, the embedding dimension, and the decoder. We will
also showcase the ease of using Marius to train graph embeddings,
issue nearest neighbor queries and evaluate the training output
over the WordNet graph from the command line with the config
file just created by users.

Next, we will demonstrate the extensibility of Marius by diving
into more advanced use cases with the Python API. In our example,
we will teach the audience how to define their own custom graph
embedding model in Python. We will focus on implementing the
popular TransE model [1] from scratch, initializing Marius through
Python with this custom model and training for the desired number
of epochs.

Finally, we will highlight the data converters that Marius is
equipped with. We will show an example of downloading and con-
verting one of the 31 popular datasets that the system comes in-
cluded with out of the box. In our inference example, we will show
how the postprocessing methods can transform embeddings to
formats such as PyTorch tensors. This step facilitates using these
embeddings in downstream PyTorch models. We will showcase
the ease of using postprocessed embeddings for link prediction in
WordNet graph.

3.2 Large Scale Graph Learning over Marius
The second part of the demonstrationwill showcase howMarius can
be applied over large-scale real-world graphs to support standard
graph learning tasks, i.e., link prediction and node classification over
these graphs. For this part we will use two datasets from the Large-
Scale Graph ML Competition at the 2021 KDD cup [7]. Specifically,
we will use 1) WikiKG90M, a knowledge graph with 87 million
nodes and 504 million edges that occupies 139 GB with embedding
size of 400; 2) MAG240M, an academic graph for classifying papers
in different subject areas with 244 million nodes and 1.7 billion
edges that occupies 390 GB with embedding size of 400.

For both graphs, the audience will assume the role of advanced
Marius users and will learn to optimize training throughput by
configuring Marius training pipeline to use the entire memory
hierarchy efficiently.

2761

Basilosaurus
cetoides

Cetacea

Mammalia

taxonomy

taxonomy

geologic age

Mississippi, USAJackson Group
 Yazoo Formation

Tullos Member Louisiana, USA

Birket Qarun Formation Fayum, Egypt

}
}

}

fossil occurrence
geochronology

37.8 Myr

23.03 Myr

41.2 Myr

47.8 Myr

marine

ecology

Paleo-

environment

Simplified Knowledge Base

Textual Mentions
Fossils from an extinct toothed (Archaeocete) whale, Basilosaurus cetoides, were found in a surface exposure of the
Pachuta Marl Member of the late Eocene Yazoo Clay near the Matherville community in Wayne County, Mississippi.

The Yazoo Clay Formation makes up the upper half of the Jackson Group in the central Gulf Coastal Plain,
representing deposition during the TAGC4.3 marine transgression.

st
ra

tig
ra

ph
y

ecology

Figure 5: A sample of the paleobiology text corpus and the
corresponding knowledge graph we will use to demonstrate
Marius over scientific data applications.

Finally, we will demonstrate how the embeddings trained by
Marius can be used to perform the benchmark link prediction and
node classification tasks of the KDD 2021 cup for the above two
data sets [7]. For WikiKG90M, the task is to perform link prediction
(knowledge graph completion), while for MAG240M the task is to
predict the primary subject areas of nodes corresponding to arXiv
papers (multi-class classification). For this last part, we will demon-
strate these tasks on pre-conputed Marius embeddings of the two
graphs with standard models such as TransE [1] and Dismult [13].

3.3 Marius Models in Science: Species
The third part of the demonstration will showcase how Marius’
ability scale to large-scale inputs can enable unique types of analysis.
We will demonstrate how Marius can be used to jointly embed a
text corpus and a knowledge graph (treating the co-occurrence of
important terms in the text as a mode of the input graph) to enable
discovery of and reasoning about new relational facts.

We will showcase the application of Marius in paleobiology—a
joint project in collaboration with colleagues in the Department
of Geoscience. The goal of this project is to jointly analyze a text
corpus of scientific publications and a corresponding knowledge
graph[2, 4, 11]. An illustrative example of this corpus and knowl-
edge graph is shown in Figure 5. The corpus we consider is con-
structed by combining scientific publications collected by the xDD 1

and COSMOS 2 platforms at the University of Wisconsin-Madison
and the Paleobiology Database 3.

The audience will experience how Marius can help paleobiolo-
gists answer two types of reasoning queries: 1) Analogical reasoning
queries that seek to find a common relational system between two

entities; for example the query “Basilosaurus
geochronology
−−−−−−−−−−−−→ Eocene;

Pakicetus
geochronology
−−−−−−−−−−−−→ ?” seeks to find the geochronology of the

genus Pakicetus by using the known facts on the geochronology of
Basilosaurus as an example. 2) Relation extraction queries, where
new facts that are mentioned in the text, but are not explicit in
the knowledge graph, need to be answered. For instance, in the

1https://xdd.wisc.edu
2https://cosmos.wisc.edu
3https://paleobiodb.org

example of Figure 5 we use the Marius embeddings to extract the re-

lation “Basilosaurus cetoides fossil occurrence−−−−−−−−−−−−−→ Pachuta Marl Member
stratigraphy
−−−−−−−−−−→ Yazoo Formation” which is not explicit in the knowl-
edge graph. We will demonstrate a set of such queries to the audi-
ence over the paleobiology corpus corresponding to a part of the
Paleobiology Database.

ACKNOWLEDGMENTS
This work was supported by NSF under grant 1815538 and DARPA
under grant ASKE HR00111990013. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views, policies, or endorsements, either expressed or
implied, of DARPA or the U.S. Government. This work is also sup-
ported by the National Science Foundation grant CNS-1838733,
a Facebook faculty research award and by the Office of the Vice
Chancellor for Research and Graduate Education at UW-Madison
with funding from the Wisconsin Alumni Research Foundation.

REFERENCES
[1] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013), 2787–2795.

[2] KD Burke, JW Williams, MA Chandler, AM Haywood, DJ Lunt, and BL Otto-
Bliesner. 2018. Pliocene and Eocene provide best analogs for near-future climates.
Proceedings of the National Academy of Sciences 115, 52 (2018), 13288–13293.

[3] Hongming Chen, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas
Blaschke. 2018. The rise of deep learning in drug discovery. Drug Discovery
Today 23, 6 (2018), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039

[4] RA Close, Roger BJ Benson, EE Saupe, ME Clapham, and RJ Butler. 2020. The
spatial structure of Phanerozoic marine animal diversity. Science 368, 6489 (2020).

[5] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford
Books.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. CoRR abs/1607.00653 (2016). arXiv:1607.00653

[7] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure
Leskovec. 2021. OGB-LSC: A Large-Scale Challenge for Machine Learning on
Graphs. arXiv preprint arXiv:2103.09430 (2021).

[8] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. 2021.
A Survey on Knowledge Graphs: Representation, Acquisition and Applications.
arXiv:2002.00388

[9] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. arXiv preprint arXiv:1903.12287 (2019).

[10] Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, and Shivaram
Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single
Machine. In OSDI 2021.

[11] Carl J Reddin, Paulina S Nätscher, Ádám T Kocsis, Hans-Otto Pörtner, and Wolf-
gang Kiessling. 2020. Marine clade sensitivities to climate change conform across
timescales. Nature Climate Change 10, 3 (2020), 249–253.

[12] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume
Bouchard. 2016. Complex Embeddings for Simple Link Prediction. In Proceedings
of The 33rd International Conference on Machine Learning, Vol. 48. 2071–2080.

[13] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2014. Em-
bedding entities and relations for learning and inference in knowledge bases.
arXiv preprint arXiv:1412.6575 (2014).

[14] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD 2018. 974–983.

[15] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong,
Zheng Zhang, and George Karypis. 2020. DGL-KE: Training knowledge graph
embeddings at scale. arXiv preprint arXiv:2004.08532 (2020).

2762

https://doi.org/10.1016/j.drudis.2018.01.039
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/2002.00388

