
Full Encryption: An end to end encryption mechanism in
GaussDB

Jinwei Zhu
Kun Cheng

Huawei Technologies Co., Ltd
Beijing, China

zhujinwei@huawei.com
chengkun12@huawei.com

Jiayang Liu
Liang Guo

Huawei Technologies Co., Ltd
Shenzhen, China

liujiayang1@huawei.com
blue.guo@huawei.com

ABSTRACT
In this paper, we present a novel mechanism called Full Encryption
(FE) in GaussDB. FE-in-GaussDB provides column-level encryption
for sensitive data, and secures the asset from any malicious cloud
administrator or information leakage attack. It ensures not only
the security of operations on ciphertext data, but also the efficiency
of query execution, by combining the advantages of cryptography
algorithms (i.e. softwaremode) and Trusted Execution Environment
(i.e. hardware mode). With this, FE-in-GaussDB supports full-scene
query processing including the matching, the comparison and other
rich computing functionalities. We demonstrate the prototype of
FE-in-GaussDB and an experimental performance evaluation to
prove its availability and effectiveness.

PVLDB Reference Format:
Jinwei Zhu, Kun Cheng, Jiayang Liu, and Liang Guo. Full Encryption: An
end to end encryption mechanism in GaussDB. PVLDB, 14(12): 2811-2814,
2021.
doi:10.14778/3476311.3476351

1 INTRODUCTION
Cloud databases are facing more diversified and severer threats
than ever due to the open environment and the blurry network
boundary. Although most cloud database systems have adopted
various protection mechanisms, such as the data encryption, the au-
thentication, and the audit systems, etc., these defense mechanisms
share one single assumption: the database users must trust the
cloud infrastructure and the privileged users (e.g., administrator).
However, those could also go rogue, making the user’s sensitive
data at great risk.

Under such a situation, several end-to-end defense mechanisms
have been proposed and adopted in database systems, such as fully
homomorphic encryption and property-preserving encryption [5].
Among them, the always encrypted Azure database [1] allows data
owners to protect their assets at the column granularity, and utilize
the Trusted Execution Environment (TEE) to safely and securely
conduct complex operations against ciphertext data. Thus, even the
privileged users or infrastructure providers cannot compromise the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476351

tenants’ sensitive data. However, such a protection idea is yet chal-
lenging for the database design and implementation, and several
researches have been proposed [1, 6–8].

In this paper, we present a novel security mechanism called
Full Encryption in GaussDB (FE-in-GaussDB), providing the data
confidentiality both on premise and in the cloud. Our solution
combines the advantages of both software and hardware modes,
and proposes a fusion strategy to freely switch among them. The
software mode mainly focuses on the data encryption scheme and
the index maintenance, while another one leverages the hardware
TEE to securely conduct various operations against ciphertext data.
With the above efforts, FE-in-GaussDB supports full-scene SQL
query processing. Our main contributions are as follows.

• We explore a novel database design pattern which integrates
the existing data encryption scheme together with the confi-
dential computing by leveraging TEE.

• We carefully design and implement FE-in-GaussDB to make
it transparent to the database users and applications.

• We show how FE-in-GaussDB achieves the balance between
security and performance through the functional partition-
ing among the execution models.

Meanwhile, FE-in-GaussDB has been partially released into
the openGauss community [4], which is an open-source database
engine. In the following demonstration, Section 2 provides an
overview of our design considerations, Section 3 describes the key
design of FE-in-GaussDB, and Section 4 demonstrates the potential
use cases and a comprehensive performance evaluation.

2 OVERVIEW

2.1 Threat Model
FE-in-GaussDB aims to protect the data confidentiality and integrity
from the malicious access and leakage. We consider an adversary
stronger than the ’honest-but-curious’ [3] one. The adversary could
view or tamper with the memory or disk information, as well as
all external and internal communication data of database engine at
any time. However, the adversary cannot view the memory data
in TEE because of the isolation guarantee provided by the chip.
In addition, the side channel attack, the access/behavior pattern
attack, and the background knowledge attack are not considered
in this work. Overall, our threat model is similar to the ones in
other researches [1, 8]. The goal of FE-in-GaussDB is to provide
the following guarantees:

2811

https://doi.org/10.14778/3476311.3476351
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476351


• Correctness, if both the cloud server and the client faithfully
follow the specification, the client gets the correct output for
the input query, and the result can be verified by the client
if necessary.

• Security, the database protects the data confidentiality, which
leaves little chance for the adversary to get sensitive knowl-
edge from the input, the storage or the output.

2.2 Combination of Software and Hardware
Modes

FE-in-GaussDB combines both software and hardware security fea-
tures to achieve the flexibility. The software mode includes the
data encryption and index schemes for efficient equality and range
comparison operations against ciphertext data, running in the Rich
Execution Environment (REE, i.e. the non-secure world). The hard-
ware mode leverages the hardware TEE (i.e. the secure world) pro-
vided by the chip to securely handle the decryption and complex
computation on the ciphertext data, such as the string searching
operation and the aggregation function. To achieve this, numerous
efforts have been made, including:

• Modify the optimizer to determine whether the request is rel-
evant to the cipher fields, and whether it should be processed
within TEE;

• Build a two-level cipher index. The upper layer uses a label
to represent different ranges. The lower layer leverages TEE
to keep sequential storage;

• Both data definition language (DDL) operations and data ma-
nipulation language (DML) statements with equality query
class are directly processed in database engine without ac-
cessing TEE;

• Both modes benefit from the same client encryption driver
and client parser module.

2.3 SecGear: A Virtual TEE
TEE is an isolated subsystem of the main computing platform,
where code and sensitive data can be loaded and executed securely
without being affected by the rest of the system. It has become a
fundamental building block of security, which is also adopted by
many database systems [1, 6–8]. However, since the TEE implemen-
tation varies among different Instruction Set Architectures (ISAs),
all the above databases are tightly coupled with either Intel SGX or
ARM TrustZone, which makes them less portable.

FE-in-GaussDB supports both SGX and TrustZone by leveraging
secGear [2], which is an open-source libOS Software Development
Kit (SDK). SecGear provides a uniformed set of interfaces for the
trusted applications to access underlying hardware TEE resources
on different platforms. Thus, FE-in-GaussDB, built on top of secGear,
can be easily deployed on both Intel x86 servers and ARM aarch64
platforms. As far as we know, GaussDB is the first database system
that can provide Full Encryption mechanism on both Intel SGX and
ARM TrustZone.

3 ARCHITECTURE
As shown in Figure 1, the architecture of FE-in-GaussDB provides
two execution modes, i.e. the software and hardware modes. The
query processing in GaussDB chooses the proper execution mode

Figure 1: The adaptive architecture of FE-in-GaussDB.

based on the functional partitioning and the cost evaluation of both
modes. The grayed components shown in Figure 1 is considered
to be untrustworthy, while all other components are trustworthy
because they either resides in the database users side or are designed
to be trusted, e.g., the TEE implementation. The sensitive data is
stored encrypted at column granularity in GaussDB server, together
with the corresponding key encrypted.

With a careful design in GaussDB, our Full Encryption solution
can protect the data all the time during transmission, computation
and storage. FE-in-GaussDB provides the following features:

(1) a comprehensive set of DDL to manage key metadata, in-
cluding Client Master Key (CMK) and Column Encryption
Key (CEK);

(2) two data encryption approaches at the data column granu-
larity, i.e. Deterministic (DET) encryption, and Randomized
(RND) encryption, where DET means that the same plain-
text results in same ciphertext, while RND outputs different
ciphertext even with same plaintext.;

(3) the support for select, update, insert and delete queries with
ciphertext data;

The whole architecture is transparent to the users and appli-
cations. By specifying the definitions of the columns that need
to be encrypted, the client encryption driver encrypts the data
automatically and sends them to server in ciphertext format. For pa-
rameterized query with plaintext parameters, we can get plaintext
results from our execution engine. Specifically, upon each input
query, the driver is designed to 1) parse the statement, 2) deduce
the relation between the parameters and the encrypted column,
3) extract the encryption metadata including the encryption algo-
rithm type and CEKs from the server, 4) encrypt the parameters
to generate ciphertext query, which is sent to the database engine.
Finally, the driver decrypts the query results returned from the
database. The CEKs are stored in ciphertext format in GaussDB
catalog. Upon each encryption/decryption requirement, the data-
base returns ciphertext CEKs and the CMK metadata to the driver,
including key ids, namespaces and so on. Since each user holds their
own CMKs and CEKs, FE-in-GaussDB needs to authenticate the
request to protect the users’ keys from being tempered or leaked.

Although both x86 and ARM chips provide TEE, their design
and implementation varies (e.g., the programming model and data

2812



Figure 2: Ordered index of FE-in-GaussDB.

access patterns), which causes troubles for the cross-platform de-
velopment of trusted applications. Thus, the trusted functions of
FE are built on secGear to retain the maintainability and portability.
Once the hardware execution model is chosen, a trusted channel
embedded in the SSL connection will be established between the
driver and TEE to transmit the CEKs with the ECDH key exchange.
Otherwise, if the software execution mode is preferred, FE will
directly invoke cryptography algorithm without dealing with key
information.

3.1 Key Management
The keys are the most important information in our solution. To
protect the keys, FE-in-GaussDB has implemented a three-layer
key management system(see Figure Figure 1), where each layer
performs its own functions to secure the high-intensity key.

The bottom layer is the CEK. CEKs are used to encrypt different
data of column attributes with random salt values, which guarantees
the encryption isolation between various attributes. If one CEK is
leaked, only the associated attribute could be affected.

The second layer is the CMK. Different users use their unique
CMKs to encrypt their own CEKs, and these CMKs will never
leave the users’ trusted environments. Thus, even if one’s data is
maliciously accessed by others, they cannot decipher the ciphertext
data encrypted by the data owner.

The top layer is the device key (DK). Different DKs are used to
protect different CMKs. This greatly increases the difficulty of the
key attack against devices.

3.2 Index
3.2.1 Equality index. An equality index is implemented on DET
columns, which are in ciphertext format, by building a standard
B+-Tree index. So the equality index has nothing to do with data
plaintext and can support most of the index types, such as composite
index and unique index. By using equality index, we can easily carry
out equality operations, such as join, grouping and point lookups on
DET columns without touching TEE, which has been open sourced
in openGauss community. If a stronger security are required, we
can build equality index within TEE on RND columns.

3.2.2 Ordered index. An ordered index can be implemented on
both DET and RND columns by adopting B+-Tree index. This index
can support sequential operations such as range queries and sorting.
Furthermore, the data is split into different ranges, and the buckets
are in order within each range, which improves the efficiency of
searching without disclosing the overall order of data, as shown

Evaluation Operators

Database Engine

DB Storage

Encrypted

Data

Evaluation Agent
Data Management

Secure Channel

Key Management

Index

REE/Non-Secure World TEE/Secure World

Lib_secgear_u

EulerOS TZ Module iTrustee-OS

Trusted-firmware/Secure Monitor

Lib_secgear_t

Figure 3: The hardware mode of FE-in-GaussDB.

in Figure Figure 2. FE-in-GaussDB can also process range queries
and sorting in TEE by arranging the buckets according to their
corresponding plaintext order.

3.2.3 Confidentiality. We use AES-CBC algorithm to do DET or
RND encryption on the sensitive data. What’s more, we use the
HMAC algorithm to ensure the integrity of the ciphertext, where the
actual ciphertext is the concatenation of the DET or RND ciphertext
and its HMAC result. Here, DET-AES-CBC mode is confidential
under a weak condition.

Generally, there are two kinds of attacks on DET-AES-CBC. The
first one is called the length extension attack. Since encryption
is done in column-level, we can limit the number of blocks in
most cases when refer to this column. The second one is remarked
as inference attack. Because of deterministic, users can extract
information via frequency attack or statistical analysis. By turning
to RND or switching to TEE when complex queries are required,
users can avoid disclose the information. Though DET or RND is
called on sensitive data, a trusted channel between client and server
is still needed.

3.3 Expression Evaluation within TEE
Most components of the database engine are insensitive to whether
the data values are encrypted or not except for a subset of functions
that directly computing data values [1, 8]. Such a set of functions are
called “expression operators” in FE-in-GaussDB, which accept the
direct input arguments or column data to execute their unique com-
putation logic, such as mathematical functions, logical operations,
comparison operations, string searching, data type conversion, ag-
gregation functions (e.g., 𝑆𝑈𝑀 ,𝐴𝑉𝐺) and hash functions, etc. Thus,
those expression operators are implemented inside TEE as trusted
code or applications, which are used to compute the expression
outputs with the decrypted input values and column data.

Before the evaluation starts, one must securely send CEKs into
the database server’s TEE. It is done by the secure channel module
though ECDH key exchange embedded in SSL connection with
the client, during which the database engine serves as a gateway
which has no knowledge about the keys. As shown in Figure 3,
the complete evaluation process includes: 1) the database engine
reads and packs all column data, user-input arguments and the
demanded operation required by the query into TEE; 2) the data
management module checks the input data and deciphers it if the
corresponding plain data is not cached; 3) the data management
module sends plain-text data into the required evaluation operator
to get the output; 4) the data management module encrypts the

2813



SELECT Query INSERT Operation UPDATE Operation
Operations

0

10

20

30

40

50

60

70

80

90

100

110

La
te
nc
y P

er
ce
nt
ile

100.0 100.0 100.0
104.3 103.8 103.6

Plaintext Data
Ciphertext Data

Figure 4: Performance evaluation result.

evaluation outputs and send them back to the database engine; 5)
the database engine organizes the query result and sends it back.

4 DEMONSTRATION
In this section, we demonstrate our Full Encryption in three sce-
narios. The FE-in-GaussDB is deployed on a Taishan 2280 server
with dual Kunpeng 920 CPUs and 256 GiB DDR4 ram.

4.1 Scenario 1 - Storing Data in the Cloud
Suppose a user has lots of sensitive data, and these data is called
frequently. The user wants to reduce the cost by storing these
data in cloud, while still keeps the data confidential. Transparent
data encryption (TDE) is the traditional method adopted by cloud
service, while it can only protect the data at rest. During runtime,
there still have the possibility with information leakage. In contrast,
by using FE-in-GaussDB, the user can store the data in ciphertext
format in the cloud. It ensures that the data is encrypted during the
transmission and calculation.

Though we want the data to be encrypted all the time, FE-in-
GaussDB offers a comfortable performance degradation. To evaluate
the performance precisely, we create two tables named tb1 and tb2.
Each table contains the following 4 columns: column id with integer
type, column c1 with integer type, column c2 with float type and
column c3with string type. The only difference is that the column c1
in tb1 is encrypted. Rather than using simple point query tests, we
compare the latency of three common operations against ciphertext
and plaintext: 1) an 𝐼𝑁𝑆𝐸𝑅𝑇 statement which inserts 10,000 records
into both tables separately; 2) a 𝑆𝐸𝐿𝐸𝐶𝑇 query which requires all
the records if c1 equals to the given value; 3) an𝑈𝑃𝐷𝐴𝑇𝐸 operation
against c1 if its data equals to a random value.

Each test is executed 10 times, and the average latency is calcu-
lated as the result. Finally, the normalized data is presented in Fig-
ure 4. The result shows that the FE-in-GaussDB introduces less
than 5% overhead on the operation against ciphertext columns.

4.2 Scenario 2 - A Bank App Scenario
Personal data, such as bank account numbers, credit card num-
bers and personal phone numbers, is highly valuable and confi-
dential to any bank customer. Recently, more and more bank ap-
plications provide a function called ‘fast transfer’ or ‘transfer by
phone number’, which allows a remitter to transfer funds into a
payee’s account without entering the payee’s account number. So

the remitter enters the payee’s linked phone number, and the trans-
mission is done. In this scenario, the bank app invokes a query
like: 𝑆𝐸𝐿𝐸𝐶𝑇 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 𝐹𝑅𝑂𝑀 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑊𝐻𝐸𝑅𝐸 𝑛𝑎𝑚𝑒 =

‘𝐽𝑜ℎ𝑛𝑠𝑜𝑛′ 𝐴𝑁𝐷 𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 = ‘341 − 234 − 5678’. Directly call
this query may raise a critical risk, since 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 and
𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 are very sensitive. While using FE-in-GaussDB,
both 𝑎𝑐𝑐𝑜𝑢𝑛𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 and 𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 can be stored as en-
crypted, and such an equality operation against the encrypted col-
umn can be handled without deciphering the 𝑝ℎ𝑜𝑛𝑒_𝑛𝑢𝑚𝑏𝑒𝑟 data.
Actually the driver uses the user’s CEK to encrypt ‘13412345678’
to get a ciphertext string, and then replaces the plaintext with
this ciphertext. The converted query is finally sent to GaussDB,
which may be deployed on data center and return results without
touching the actual personal data. Moreover, the whole process is
user-friendly to bank apps.

4.3 Scenario 3 - E-Business
Currently, more and more e-business companies are benefit-
ing from the cloud services. For any on-line seller, their cus-
tomers’ mailing addresses are considered private and confiden-
tial. With FE-in-GaussDB, sellers can encrypt the addresses. When
sellers want to learn the detailed contact information within
a given city, they can issue a query as follows: 𝑆𝐸𝐿𝐸𝐶𝑇 ∗
𝐹𝑅𝑂𝑀 𝑐𝑢𝑠𝑡𝑜𝑟𝑚𝑒𝑟_𝑖𝑛𝑓 𝑜𝑊𝐻𝐸𝑅𝐸 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑆𝐼𝑀𝐼𝐿𝐴𝑅𝑇𝑂 ‘%𝐷𝑎𝑙𝑙𝑎𝑠%’.
After the optimizer in GaussDB make the decision and turn to hard-
ware mode, the GaussDB system first establishes a trusted channel
between the client and the TEE through ECDHkey exchange embed-
ded in the SSL connection. Then the converted query as explained
in Sec. 4.2 is sent to GaussDB engine. The ciphertext data is sent
into TEE and decrypted, then evaluated by the required operator.
Finally, the evaluation result is encrypted in TEE, and it is sent back
to the database engine in REE. Note that, if one directly executes
the given query at the database server, the execution fails.

REFERENCES
[1] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish Gupta,

Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg,
Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil Vaswani, Ramarath-
nam Venkatesan, and Mike Zwilling. 2020. Azure SQL Database Always Encrypted.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’20). ACM, New York, NY, USA, 1511–1525.

[2] Chenmaodong and Huawei Co. Ltd. [n.d.]. secGear. Retrieved Feb. 22, 2021 from
https://gitee.com/src-openeuler/secGear

[3] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, Alfred V. Aho (Ed.). ACM, 218–229.

[4] Huawei Co. Ltd. [n.d.]. openGauss. Retrieved Mar. 12, 2021 from https://opengauss.
org/en/

[5] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query Processing.
In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(Cascais, Portugal) (SOSP ’11). Association for Computing Machinery, New York,
NY, USA, 85–100.

[6] C. Priebe, K. Vaswani, and M. Costa. 2018. EnclaveDB: A Secure Database Using
SGX. In 2018 IEEE Symposium on Security and Privacy (SP). 264–278.

[7] Pedro S. Ribeiro, Nuno Santos, and Nuno O. Duarte. 2018. DBStore: A TrustZone-
backed Database Management System for Mobile Applications. In Proceedings
of the 15th International Joint Conference on e-Business and Telecommunications,
ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal, July 26-28, 2018, Pierangela
Samarati and Mohammad S. Obaidat (Eds.). SciTePress, 562–569.

[8] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Proc.
Priv. Enhancing Technol. 2019, 3 (2019), 370–388.

2814

https://gitee.com/src-openeuler/secGear
https://opengauss.org/en/
https://opengauss.org/en/

