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ABSTRACT
Right-sizing resources for query execution is important for cost-
efficient performance, but estimating how performance is affected
by resource allocations, upfront, before query execution is difficult.
We demonstrate AutoExecutor, a predictive system that uses ma-
chine learning models to predict query run times as a function of
the number of allocated executors, that limits the maximum allowed
parallelism, for Spark SQL queries running on Azure Synapse.
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1 INTRODUCTION
Resource optimization in cloud-based analytical query processing is
a challenging problem. This is because while on one hand modern
cloud analytics platforms make it possible to allocate resources in
a fine-grained per-query basis (e.g., Azure Data Lake [9], Azure
Synapse [7], AWS Athena [6], Google BigQuery [8]), on the other
hand, it is still very difficult to anticipate the relationship between
resource allocation and query performance. Sub-optimal resource
allocation can lead to poor performance, higher costs, and ineffi-
cient cluster utilization. Given the complexity of the problem, prior
work has leveraged machine learning to build models from the
past seen workloads [13, 16, 18], especially with the presence of
massive workloads on the cloud [14]. Unfortunately, most of the
early efforts considered queries as black box without considering
their shape and characteristics, and thus risking either overfitting
or overgeneralization. Our recent work on SQL Server [12] and Cos-
mos workloads [20] overcomes this problem by leveraging query
plan characteristics to learn more accurate and robust resource
models that improve not just the query performance, but also the
data movement, cluster throughout, and query wait times. We fur-
ther introduced an explainable approach that visually represents
a query’s run time as a function of given resources [17], called
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Figure 1: Performance Characteristic Curve for an example
TPC-DS query (q94) as a function of the number of allo-
cated executors from Actual runs, Sparklens estimate (post-
execution), and AutoExecutor prediction (pre-execution).

the Performance Characteristic Curve (PCC), to make resource
allocation decisions even more transparent to the users.

In this paper, we continue our investigation on resource opti-
mization beyond SQL Server and Cosmos, and apply it to Spark
workloads. Our goal is to model the resource-performance behav-
ior of Spark SQL queries and put that in context with two newer
trends in the Spark community, namely the dynamic resource allo-
cation [10] and post-execution analysis tools such as Sparklens [4].
Specifically, given a Spark SQL query, we want to predict the op-
timal degree of parallelism, or the number of executors, which we
found to be the most sensitive resource parameter for a given Spark
environment such as Azure HDInsight [5] or Azure Synapse [3].
Our predictive approach complements the dynamic allocation fea-
ture [10] in Spark, that adapts the executor count during the course
of query processing, since relying solely on dynamic allocation
leads to problems such as a time lag to build up the resources from
the start of the query execution, resource overshoot due to the ex-
ponential resource build up, and several auto-scale requests during
the resource build up. Thus, in addition to the dynamic behavior, it
is still crucial to have a good starting point for resource allocation.

Figure 1 shows three PCCs for an example TPC-DS query run-
ning on a Spark pool in Azure Synapse [3]. The ‘Actual’ PCC is
obtained by running the query with different executor counts. The
‘Sparklens’ PCC is obtained by running Sparklens [4], a popular tool
that estimates the PCC from a single run of a query, in this case run
with 16 executors. Sparklens can only simulate PCCs for the exact
same query, whereas production workloads often contain recurring
queries [15] that get executed over newer datasets or with differ-
ent parameters and that could have very different PCCs over time.
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Furthermore, we want to predict the PCC upfront, before query exe-
cution, so that users can choose the optimal configuration for that
query according to their cost-performance optimization objective.
Therefore, we need a predictive approach to resource allocation at
the beginning of a Spark query. The third PCC in Figure 1 is from
our system, AutoExecutor, that we propose to demonstrate. AutoEx-
ecutor is a predictive resource allocator for Spark SQL queries. It
predicts the PCC for an incoming query before execution for differ-
ent executor counts (thus determining the parallelism achieved by
the query). For this example, it predicted the PCC well, although it
had not seen the same query beforehand.

AutoExecutor solves multiple problems at the same time, in-
cluding relieving the user from analyzing query executions and
tuning resources, adapting to changes in workload characteristics,
especially the inputs sizes in recurring queries, improving query
performance by more aggressive resource allocation upfront when
more resource-intensive parts of the query plans are executed any-
ways, freeing up redundant resources for other applications in the
same cluster to make progress, reducing auto-scaling overheads
by helping make few scaling up or down requests, helping analyze
the VM requirements by looking at the predictions for each query
in the workload, even forecasting the changing resource require-
ments based on changes in workload, and better explaining the
resource-performance trade-off via a feature-based approach.

2 AUTOEXECUTOR OVERVIEW
We now describe how we model the PCC and how we built an
integrated research prototype on Azure Synapse Spark pools [3].

2.1 PCC model
AutoExecutor leverages the PCC model [17] with the assumption
that query run time decreases monotonically with increasing paral-
lelism, i.e., they have a power-law relationship. While this broadly
holds true for Spark, there could be cases with specific query char-
acteristics or other query processors where run time may increase
with parallelism. However, such cases are typically not interest-
ing from a cost-efficient performance perspective, neither for the
customer nor for the service provider. Similar to Sparklens [4] we
aim to produce a PCC, though predictively at compile-time, that
flattens out beyond a certain parallelism depending on the given
query. To model the flattening of the curve, we extend our prior
PCC model [17] by imposing a constraint on the minimum value,
𝑚, of the predicted run time, 𝑡𝑝 (𝑛), for 𝑛 executors as follows.

𝑡𝑝 (𝑛) =𝑚𝑎𝑥 (𝑏 × 𝑛𝑎,𝑚) (1)

where 𝑎, 𝑏,𝑚 are scalar constants that depend on the given query.
Our experiments with TPC-DS indicate that the PCC model may

also be used with the total number of executor cores, 𝑐 = 𝑒𝑐 × 𝑛,
where 𝑒𝑐 is the number of cores per executor and 𝑛 is the number
of executors. Figure 2 shows the PCC from run times of a TPC-DS
query, obtained by varying 𝑒𝑐 and 𝑛, with the x-axis showing the to-
tal executor cores, 𝑐 . For example, the points at 𝑐 = 32 are obtained
from (𝑛, 𝑒𝑐 ) = (8, 4) and (16, 2). In this example, the points from the
different 𝑒𝑐 series (legend entries) line up well for the same value
of 𝑐 on the curve. While there may be cases where a particular
factorization of 𝑐 into (𝑛, 𝑒𝑐 ) may be advantageous than others,
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Figure 2: PCC (actual runs) for an example query (q94) as
a function of the number of total executor cores (𝑐), with
different numbers of cores per executor (𝑒𝑐 , legend entries).
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Figure 3: AutoExecutor System Architecture.

modeling the PCC as a function of 𝑐 is a good first-order approxi-
mation. It also simplifies the modeling considerably by reducing
the configuration space from two dimensions to one dimension. To
model this, we can simply replace 𝑛 with 𝑐 in Equation 1.

2.2 Spark Integration
AutoExecutor learns how to correlate PCCs with query characteris-
tics by observing behavior from past executions. We automate this
learning process by using machine learning models that map the
characteristics of a Spark SQL query to PCC parameters (𝑎, 𝑏,𝑚).

AutoExecutor uses Peregrine workload optimization framework
for Spark [14, 19]. Figure 3 shows an overview of the system archi-
tecture. Operations above the dashed line happen online whereas
the rest are executed offline. Step 1 collects anonymized plans and
metrics. Step 2 analyzes the query plan telemetry and Step 3
creates a denormalized workload table. Step 4 extracts features for
the PCC model from the workload table. We currently use operator
counts, total operators, estimated total input cardinality and total
input bytes, number of input sources, and plan depth as features
for the model. These are available at query compilation and opti-
mization time. We also need PCC parameters as data labels for the
training. These can be obtained by fitting Equation 1, either to ac-
tual query run times with different executor counts, or to estimates
from simulators such as Sparklens. Step 5 trains the model and
stores it in a database in ONNX format. When a new query is sub-
mitted to the system, Step 6 injects an additional Spark optimizer
rule to look up the database for the ONNX model, scores it using
feature values for the query, and determines the optimal executor
count from the predicted PCC for running the query.

3 EVALUATION
To evaluate the accuracy of AutoExecutor, we performed 5-fold
cross validations (with train/test splits of 80%/20%), repeated 10
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Figure 4: Sum of absolute errors relative to the sum of run
times of test queries with different executor counts, for
Sparklens (S) and AutoExecutor (AE) predictions. Error bars
show ±1 standard deviation with repeated cross-validation.

times, over TPC-DS (scale factor = 100) queries and with 𝑒𝑐 = 4.
We obtained Sparklens estimates for each query from the event
logs of a single run of the query after running it with 𝑛 = 16. For
AutoExecutor, we used a Random Forest model and used parameters
from the fitted PCC model (Equation 1) on Sparklens estimates on
the training queries as labels for model training. To obtain ground
truth values for each query for different values of𝑛, we took average
application times over several runs after discarding outliers.

Figure 4 shows total errors compared to total actual run times
(ground truth values) over all test queries belonging to that valida-
tion fold, for two scenarios. (1) Time prediction: for 𝑛 =1, 3, 8, 16,
32, 48, the errors are the absolute differences of Sparklens (S) and
AutoExecutor (AE) time predictions from actual run times for that 𝑛.
(2) Configuration selection: 𝑛𝑚𝑖𝑛 is the minimum 𝑛 estimated from
Sparklens and AutoExecutor predictions to have the lowest run
time for the query over the above set of values for 𝑛, and the errors
are the differences of the actual run times at 𝑛𝑚𝑖𝑛 (𝑆), 𝑛𝑚𝑖𝑛 (𝐴𝐸)
from the actual minimum run times for the query.

Time prediction errors were somewhat higher for AutoExecutor
than for Sparklens, but in contrast to Sparklens, AutoExecutor pre-
dictions were made before running the test queries. The errors were
∼25% or less on average for 𝑛 ≥ 16, but larger for smaller values of
𝑛. Approximating the PCC with a different function for low 𝑛 may
reduce these errors. Average values for 𝑛𝑚𝑖𝑛 (𝑆), 𝑛𝑚𝑖𝑛 (𝐴𝐸), and
actual 𝑛𝑚𝑖𝑛 were 33, 28, and 24 respectively, with average timing
sub-optimality of ∼5% from running with 𝑛𝑚𝑖𝑛 (𝑆) and 𝑛𝑚𝑖𝑛 (𝐴𝐸).

4 DEMONSTRATION
We will run the demonstration on Azure Synapse Spark [3] with
preloaded TPC-DS dataset. We will encourage the audience to mod-
ify the queries or to explore different executor selection scenarios.

4.1 Scenario 1: visualize the
resource-performance trade-off

The relationship between resources and performance is hard to
anticipate, and yet it is often important for both users and admin-
istrators to understand it. Synapse customers regularly use tools
like Sparklens to analyze a Spark SQL query post-execution and
estimate its performance for other executor counts. Likewise, inter-
nal Cosmos users at Microsoft have a similar tool built into Scope
Studio, the Visual Studio environment for SCOPE [11], to estimate
performance for other token counts (the unit of parallelism for

Figure 5: Visualizing performance-resource trade-off in an
Azure Synapse Notebook.

SCOPE jobs). In our demonstration, we will predict and show the
PCC for Spark SQL queries. The audience will be encouraged to
write their own queries over TPC-DS tables. AutoExecutor will
use the learned models to predict the PCC parameters for each
of those queries. With this information, the users can select the
optimal executor count within their cost budget. This scenario is
implemented in an interactive notebook as shown in Figure 5.

4.2 Scenario 2: automatic selection of an
important resource parameter

Spark provides users with high-level API such as Dataframes and
Koalas [2] that hide the complexities of distributed data processing.
However, given that different queries may work well with different
executor counts, it is tedious for users to identify and configure
them on a per-query basis. Therefore, in this scenario, we demon-
strate how AutoExecutor can automate setting the executor count,
an important resource parameter, for each incoming query. Au-
toExecutor does this by plugging an additional optimizer rule into
the Spark optimizer using the Spark extensions API [1]. This new
optimizer rule loads the ONNX model, predicts the PCC parame-
ters using compile-time features from the query plan, and requests
additional number of executors as required — all automatically
during query optimization. As a result, users get a handsfree job
submission experience where they no longer have to manually se-
lect and configure the number of executors for every query. We will
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Figure 6: Executor usage with AutoExecutor as seen on diag-
nostic panel of an Azure Synapse Spark pool.

further provide visualizations of executor allocation and utilization
as shown in Figure 6 for TPC-DS query 94. We can see that the allo-
cated executors (blue line) increase automatically from the default
value of 2 to 27 after we request the additional executors during
query optimization. This also leads to better overall performance.

4.3 Scenario 3: tuning executor count for
optimal query performance

Picking the “right” executor count is a challenge for Spark users.
Therefore, users either keep the default executor count configu-
ration of the cluster or supply a fixed value for all queries in the
application. Unfortunately, such a static approach is sub-optimal for
many Spark applications [21]. Therefore, in this scenario, we will
demonstrate how AutoExecutor can automatically select the opti-
mal executor count in the PCC before the performance flattens. This
value could be set during query optimization as described above,
or also during Spark application submission (e.g., by predicting the
PCCs of all queries in the application upfront).

Figure 6 shows the executor usage for TPC-DS query 94, with
executor count selected during query optimization by AutoExecu-
tor. This results in a run time of 1m14s and executor efficiency
of 76.62%. Alternatively, if AutoExecutor sets the executor count
during application submission, then we get a run time of 1m7s and
executor efficiency of 58.27%. In contrast, with dynamic allocation
(configured with a range of 2–38 executors), we get a run time of
1m30s and executor efficiency of 62.14%. Finally, default and static
allocation of 4 executors has the slowest run time of 3m15s and
highest executor efficiency of 83.7%. During the demonstration, we
will invite the audience to submit queries and show them the query
performance and resource efficiency trade-offs involved.

4.4 Scenario 4: adapting to changing data and
query characteristics

Production workloads are constantly evolving in terms of data and
query characteristics. Given the feature-based model, AutoExecutor
can adapt to such changes. We will demonstrate this scenario by
encouraging the audience to enter modified queries and datasets
and get the correspondingly adapted PCCs, without executing the
queries. Our approach can be used to forecast future resources based
on the expected data or query changes. The audience can select a
trend for data size or for query plan size, and AutoExecutor will
predict the growth in CPU core requirements over time.

4.5 Scenario 5: selecting cluster configurations
Spark’s dynamic allocation feature grows the executor count re-
quests exponentially and hence it suffers from asking too many
executors and having other applications wait for resources. Au-
toExecutor avoids this by predicting the right size and letting other
queries utilize the spare executors. Furthermore, given the PCCs
from one or more applications, AutoExecutor can assist in choosing
better VM configurations by combining the CPU core predictions
from the PCCs of all queries of all applications on the cluster. To-
wards the end of the demonstration session, we will show the
audience the recommended number of cores per node for the Spark
SQL queries that they have played with in their session.
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