
The End of Moore’s Law and the Rise of The Data Processor
Niv Dayan

Pliops
Ramat Gan, Israel
nivd@pliops.com

Moshe Twitto
Pliops

Ramat Gan, Israel
moshet@pliops.com

Yuval Rochman
Pliops

Ramat Gan, Israel
yuvalr@pliops.com

Uri Beitler
Pliops

Ramat Gan, Israel
urib@pliops.com

Itai Ben Zion
Pliops

Ramat Gan, Israel
itaib@pliops.com

Edward Bortnikov
Pliops

Ramat Gan, Israel
ebortnik@pliops.com

Shmuel Dashevsky
Pliops

Ramat Gan, Israel
shmueld@pliops.com

Ofer Frishman
Pliops

Ramat Gan, Israel
oferf@pliops.com

Evgeni Ginzburg
Pliops

Ramat Gan, Israel
evgenig@pliops.com

Igal Maly
Pliops

Ramat Gan, Israel
igalm@pliops.com

Avraham (Poza) Meir
Pliops

Ramat Gan, Israel
pozam@pliops.com

Mark Mokryn
Pliops

Ramat Gan, Israel
markm@pliops.com

Iddo Naiss
Pliops

Ramat Gan, Israel
iddon@pliops.com

Noam Rabinovich
Pliops

Ramat Gan, Israel
noamr@pliops.com

ABSTRACT
With the end of Moore’s Law, database architects are turning to
hardware accelerators to offload computationally intensive tasks
from the CPU. In this paper, we show that accelerators can facilitate
far more than just computation: they enable algorithms and data
structures that lavishly expand computation in order to optimize
for disparate cost metrics. We introduce the Pliops Extreme Data
Processor (XDP), a novel storage engine implemented from the
ground up using customized hardware. At its core, XDP consists
of an accelerated hash table to index the data in storage using less
memory and fewer storage accesses for queries than the best alter-
native. XDP also employs an accelerated compressor, a capacitor,
and a lock-free RAID sub-system to minimize storage space and
recovery time while minimizing performance penalties. As a result,
XDP overcomes cost contentions that have so far been inescapable.

PVLDB Reference Format:
Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion,
Edward Bortnikov, Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg,
Igal Maly, Avraham (Poza) Meir, Mark Mokryn, Iddo Naiss, and Noam
Rabinovich. The End of Moore’s Law and the Rise of The Data Processor.
PVLDB, 14(12): 2932 - 2944, 2021.
doi:10.14778/3476311.3476373

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476373

1 INTRODUCTION
A storage engine is the software component that lays out data on a
storage device on behalf of a database system. For decades, storage
engines have benefited from Moore’s law, which has accurately
predicted that computer chips would double in speed every two or
so years on account of a doubling in transistor density [50]. Over
the past decade, however, Moore’s law has stagnated [37]. This
means that storage engine designers can no longer rely on CPU
advances to alleviate computational overheads.

More recently, the rise of SSDs brought a thousandfold improve-
ment in storage bandwidth. Hence, CPU overheads are no longer
negligible relative to storage access. In addition, SSDs have idiosyn-
crasies that must be carefully managed [2]: writes are slower than
reads, and random writes are particularly slow (as they lead to in-
ternal garbage-collection). Furthermore, writes wear out the device.
It has therefore become important to avoid random writes, and
to economize the use of writes in general. These trends pose new
challenges for modern storage engines and their users [11, 34].
Challenge 1: Data Structure Trade-Offs. In order to optimize
computation and storagewrites, recent storage engines [3, 46, 48, 51,
52] employ an index+log architecture, which is in turn inspired by
Log-Structured File Systems [49]. Index+log flushes all application
writes to a log in storage and maps each entry to its location in the
log using an in-memory index, typically a hash table. Compared
to more traditional storage engines based on B-tree [10, 15, 44] or
LSM-tree [5, 6, 27, 33, 45], index+log exhibits lower write costs and

2932

https://doi.org/10.14778/3476311.3476373
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476373


is less compute-heavy due to the hash table access. However, it
requires a hefty memory footprint for the index. To reduce memory
footprint, some variants map fingerprints instead of keys in the
index, but this introduces false positives and thus redundant storage
I/Os for queries [13]. The deeper problem is that any data structure
design choice that prioritizes certain performance metrics tends to
also penalize others [8].
Challenge 2: Compression. Compression has become painful to
manage due to the recent hardware trends. On one hand, it improves
storage bandwidth, lifetimes and utilization as fewer bits in the SSD
are written for any unit of application data [56]. On the other hand,
it can be a heavy CPU bottleneck [38].
Challenge 3: Resilience. Similarly painful cost contentions have
emerged with respect to resilience. (1) The various RAID designs,
which stripe data along with error correction codes across SSDs,
must hold mutexes at a considerable CPU cost to provide atom-
icity. (2) Recovering a failed SSD using RAID entails overwriting
a whole new SSD at considerable write cost and degradation to
the overall storage bandwidth, even if some parts of the original
SSD were empty or comprised of invalid data. (3) With respect to
safe-guarding against power failure, write-ahead logging (WAL)
and double-write buffering both impose runtime penalties by con-
tributing to SSD write-amplification and CPU usage [32].
Hardware Accelerators.With Moore’s law slowing down, hard-
ware accelerators such as FPGAs, ASIC and GPUs have become
attractive means of alleviating CPU bottlenecks. Such accelerators
exhibit intrinsic parallelism, and they are cheaper and more energy-
efficient than commodity CPUs. However, they require more ef-
fort and know-how to program. They can be used to speed up
a variety of compute-intensive database operations [29], includ-
ing selection [43], projection [42], aggregation [26], etc. Dedicated
compression accelerators are also becoming common-place [1]. We
observe that until today, accelerators have been applied mostly as
bionic limbs that offload specific compute-heavy tasks from the
CPU. In this paper, we argue that accelerators can have a more
profound impact on storage engine design.
Insight 1: Using Compute to Solve Non-Compute Problems.
Trade-offs in storage engines and in computer science in general
are often intrinsic and inescapable. Optimizing for one metric (e.g.,
memory or I/O) usually requires a sacrifice on another (e.g., com-
putation). Our insight is that hardware accelerators offer a way out.
They make it possible to design algorithms that lavishly expand
computation while in exchange guaranteeing a smaller overhead on
other competing metrics than ever before. While such algorithms
would have been prohibitively expensive on commodity CPU, care-
fully crafted hardware accelerators make them viable. We show that
this design philosophy addresses a host of storage engine problems,
including the challenges above.
Insight 2: A Unified Box. The number of physcial interfaces on a
motherboard is limited. This, in turn, limits the number of devices
(e.g., accelerators, NVRAM, SSDs, etc.) that can be plugged in. More-
over, with a greater number of devices plugged in, the overheads
of CPU orchestration, data movement, and system administration
increase. Our second insight is that by encapsulating as much func-
tionality as possible within one device, we can increase the number
of tasks offloaded from the CPU while simultaneously scaling their

orchestration and administration overheads. The unified whole
becomes more useful than the sum of parts that it replaces.
The Pliops Extreme Data Processor (XDP).We introduce XDP,
a novel storage engine designed from the ground up lend itself to
hardware acceleration. XDP consists of a thin software component
in the host and a hardware device connected to the host through a
PCIe port. XDP is interoperable with any commodity SSDs, which
it visualizes as a RAID sub-system. XDP addresses each of the
above-mentioned challenges using customized hardware.
Contribution 1:AlleviatingData StructureContentions.XDP
implements an index+log architecture. While index+log offers good
SSD write performance and longevity, its core problem, as men-
tioned above, is a high memory footprint for the index. XDP tackles
this problem in three ways. (1) It succinctly encodes the difference
between fingerprints within a hash bucket instead of storing the
actual fingerprints. This not only saves memory but also eliminates
false positives to keep average and tail latency for queries low.
(2) XDP partially sorts data in storage to reduce the size of pointers.
(3) XDP uses a dense hash bucket format to keep overflow chains
rare. While these techniques are computationally costly, we show
that hardware acceleration makes them viable. The outcome is that
XDP requires 10x less memory than popular index+log systems
used in industry [52], all while outperforming them by eliminating
false positives from queries.

XDP also has a hardware-accelerated indexing layer drawing
from [19, 21–23, 39] to support richer storage engine operations
(e.g., range reads), but we leave its description to a future article.
Contribution 2: Removing Compression Contentions. XDP
compresses data as it arrives using ZSTD, a compute-heavy algo-
rithm that achieves top-of-the-line compression rates. Our hard-
ware implementation prevents ZSTD from burdening the CPU
while still dramatically reducing SSD writes and space utilization.
Contribution 3: Penalty-Free Resilience. XDP takes exclusive
control of the storage devices and only issues large sequential writes.
This allows us to implement a customized RAID sub-system that
does not hold mutexes, resulting in substantially lower CPU over-
heads. Furthermore, our RAID sub-system recovers a failed SSD
using XDP’s mapping of the underlying data to only copy valid data
to a replacement SSD while ignoring empty space or invalid data.
This, compounded with the fact that data is smaller due to compres-
sion, implies quicker and less obtrusive recovery after an SSD fails.
In addition, XDP streamlines new data to a capacitor-backed mem-
ory module to support durable commits without issuing double
writes to storage (e.g., WAL).
Contribution 4: Seamless Integration. XDP can expose a key-
value interface or a block device interface to applications running
on top. While the key-value interface gives better performance, the
block device interface allows applications to seamlessly integrate
with XDP without having to reformat their data. As XDP is lean
and hardware accelerated, it does not amplify CPU overheads or
memory footprint as a rich layer of indirection normally would.

2 HIGH-LEVEL OVERVIEW
This section presents XDP’s high-level index+log architecture, shown
in Figure 1. For now, we leave out details on how and where each

2933



Figure 1: Logical system overview and write/read paths.

of the components in the figure is implemented, focusing instead
on their functions and highlighting some important properties.

Application data arrives in the form of key-value entries. XDP
compresses and inserts them into an in-memory arrival buffer (Ar-
row 1). When this buffer reaches capacity, XDP sorts its constituent
entries based on the hash of their keys and flushes them to storage
as a contiguous area called a block cluster (Arrow 2). For every entry
in a new block cluster, XDP maintains a mapping entry within the
in-memory index, and as we show later, sorting data within a block
cluster allows to reduce the index size. The block cluster size is
configurable, though we treat it as 2GB in this paper.
Index Design. Some index+log designs store the full key of every
data entry in their index along with a pointer to its location in
storage [3, 51]. This requires a lot of memory. Other designs store
a smaller fingerprint, which is a hash digest of a key, instead of
storing the key itself [4, 13]. This, however, leads to redundant
storage accesses during reads on account of coincidentallymatching
fingerprints that belong to other keys, i.e., false positives.

To eliminate false positives while driving memory footprint far-
ther down, we devise a novel structure called Delta Hash Table
(DHT). DHT encodes only the first bit that differentiates between
the fingerprints of entries that collide within the hash table. For ex-
ample, consider three 5-bit fingerprints 10000, 00010 and 00000 that
fall into the same hash table slot. DHT only materializes enough
information to signify that the first fingerprint differs from the
other two in terms of its first bit (underlined) while the remaining
two fingerprints differ in terms of their fourth bit (overlined). XDP
encodes these fingerprint deltas as a succinct trie, which occupies
much less space than the full fingerprints. Moreover, since it differ-
entiates between all colliding fingerprints, no false positives can
take place. To drive memory footprint even lower, DHT employs
a novel and highly dense bucket format. It also exploits the fact
that block clusters are sorted to index them using smaller address
pointers. A DHT bucket must be parsed bit-by-bit, and so it is com-
putationally expensive to access. Our parallel customized hardware
implementation, however, makes it viable. Section 4 describes DHT
and how it implements the XDP index in detail.
Index Maintenance. As entries in the arrival buffer get flushed
to storage (Arrow 2), XDP checks whether each of them has a
previous version in storage (Arrows 3 and 4). We refer to this as a
fetch-existing-entry operation (fee-op), and it involves one index
access and one storage read I/O. If an older version of the entry
exists, we change its mapping address within the index to point
to the new version. If the entry is new, however, we insert a new
mapping entry to the index. This further reduces the index size (i.e.,
relative to other designs that continue to index obsolete versions
of entries until garbage-collection [13, 25]).

XDP performs fee-ops asynchronously, and so they do not con-
tribute to write latency. Note that fee-ops are not unique to XDP;
all fingerprint-based index+log designs use them for index mainte-
nance and for garbage-collection bookkeeping (as described below).
Some designs, like XDP, perform fee-ops on the write path [52].
Other designs perform them during garbage-collection [13, 25]. The
overhead in terms of read I/Os is the same.
Garbage-Collection (GC). The garbage-collector identifies and
reclaims block clusters with mostly invalid data by relocating any
remaining valid data. The reclaimed space can be used to store
new application data. Many index+log designs perform circular GC,
whereby the block cluster that was written the longest time ago is
reclaimed [13]. The rationale is that the oldest block cluster is likely
to contain the least amount of valid data. This approach, however, is
known to perform poorly in the presence of non-uniformly updated
data. The reason is that colder data winds up mixing with hot data
on the same block clusters and has to be reclaimed at a significant
overhead yet without yielding much space in return [52].

To alleviate this problem, XDP employs counters to keep track
of the exact amount of valid data (measured in bytes) at each block
cluster so that the one with the least amount of valid data can
always be chosen as a reclamation victim. These counters are main-
tained via fee-ops, which access outdated versions of entries and
can thus identify the block cluster containing them and subtract
every outdated entry’s size from the correct counter (Arrow 5).
Furthermore, XDP maintains a separate GC buffer to rewrite data
to storage as a result of GC (Arrows 6 and 7). This broadly separates
cold and hot data and thus reduces write-amplification. As entries
are migrated during GC, their corresponding pointers within the
index are updated to reflect their new locations (Arrow 8).
Read Path. An application read first checks if the arrival buffer
contains the target entry (Arrow A). If not, it checks the index
(Arrow B) and then the appropriate storage location (Arrow C).

3 PHYSICAL SYSTEM OVERVIEW
We now elaborate on XDP’s physical architecture. As shown in
Figure 2, each of the components previously illustrated in Figure 1
consists of multiple physical substructures, each of which resides
on the host or on embedded SRAM, DRAM, or flash modules.

The XDP device contains customized hardware that operates on
all the substructures shown in Figure 2 to offload work from the
host CPU. Figure 3 outlines some of the more notable hardware
operations and ranks them based on their computational intensity.
We proceed to elaborate on these substructures and operations
roughly in the order that data flows through the system.
PCIe Channel. The XDP device connects to the host through a
PCIe channel. This is the core system bottleneck as all reads and
writes pass through it. To keep this channel consistently saturated,
XDP materializes as many parallel hardware engines as needed for
each of the operations shown in Figure 3 to ensure that none of
them is a bottleneck relative to the channel’s bandwidth.
Fast Commits Using SRAM. As application data arrives, it is first
placed within the Welcome-Buff, a small internal capacitor-backed
SRAM module. SRAM is extremely fast, and so it allows XDP to
make new data persistent and acknowledge to the host that it had
been committed extremely quickly.

2934



Figure 2: The different XDP physical substructures and where they reside.

Figure 3: Accelerated XDP operations.
Compression. XDP compresses the value of every data entry us-
ing ZSTD, a compute-intensive compression algorithm known to
achieve high compression rates [28]. ZSTD is often passed over in
favor of less compute-heavy algorithms to reduce CPU pressure
(e.g., LZ4 [14] or Snappy [31]). Our customized hardware, however,
implements multiple parallel ZSTD engines to prevent bottlenecks
and thus to achieve a high compression rate while still operating
at channel bandwidth. Compression expands the underlying SSDs’
storage capacity by a factor of the compression ratio (i.e., the original
data size divided by the compressed data size).
Identifying Entries. XDP identifies every entry in the system
using a 16B hash digest, referred to as an hkey. An hkey is generated
based on the entry’s user key, referred to as its ukey. 16B hkeys are
large enough to make the probability of any two hkeys colliding for
different ukeys negligible. To generate hkeys, XDP uses murmur
hash [7] as it is simple to implement on customized hardware [36],
and it is adept at creating uniformly random hash keys.
Buffering in DRAM. New entries are eventually moved from
the Welcome-Buff to an append-only capacitor-backed 2GB buffer
called Seq-Buff in DRAM. To support queries for entries within Seq-
Buff, the hkey of each of these entries is added to a hash table called
Hash-Buff that maps the location of each entry within Seq-Buff.
Bucket-Sort. The Hash-Buff bucket-sorts [17] entries based on
their hkeys. It consists of multiple buckets, and it inserts mapping
entries into these buckets based on the most significant bits of their
hkeys. Within each bucket, it truncates common hkey prefixes and
sorts mapping entries based on the remaining bits of their hkeys.
An important property of bucket-sort is that its run-time is linear
when applied over uniformly distributed data [18] (i.e., as opposed
to, say, merge-sort, which is more robust for non-uniform data but
also more expensive). This allows XDP to sort incoming data with
minimal computational pressure on the customized processor.
Flushing to Storage. XDP in fact contains multiple pairs of Seq-
Buff and Hash-Buff. Once one pair fills up with data, it is sealed
and all subsequent arriving data goes into the next pair. A block
cluster is then created from the sealed pair by copying entries from
Seq-Buff in the sorted order of hkeys in Hash-Buff to another buffer
called Sorted-Buff. At the end, Sorted-Buff is flushed as a sorted
block cluster to storage, and the three buffers are cleared.
Structure in Storage. Figure 4 illustrates the layout of a block
cluster (BC). A BC begins with one 4KB page containing metadata
such as the number of data entries within the BC. It is followed by
a physical to logical mapping (P2L). P2L is an array of fixed-sized

Figure 4: Block Cluster Structure.
pairs sorted by hkey, where each pair consists of an hkey of one of
the data entries within the BC as well as the corresponding data
entry’s size. The metadata block and P2L are used during recovery
to quickly reconstruct the index without having to traverse the
whole data set. P2L is followed by a data area, whereon data entries
sorted by hkey are laid out contiguously across the remaining space
in the BC as slotted 4KB database pages.
Global and Local Indexes. As shown in Figure 2, the index con-
sists of three substructures. The Global Index is a hash table that
maps each entry to the ID of the block cluster that contains it. For
every BC, there is a Local Index, which maps the hkey of every entry
in the BC to the data page/s that contain the entry (an entry may
span one or more pages). The reason for having a separate local in-
dex for each BC (i.e. as opposed to mapping the full page address of
each entry from the Global Index) is to reduce memory footprint. A
local index takes advantage of the fact that data is sorted within its
BC to encode page address offsets as opposed to full page addresses.
The global and local indexes are both implemented using the novel
Delta Hash Table. As such, they do not contain the full hkeys of
constituent entries but only enough information to distinguish be-
tween hkeys that coincide in the same hash table slot. The third
substructure is an array of extension buckets, which may be utilized
if some of the buckets in the global or local indexes overflow. The
detailed index design is given in Section 4.
Using Host Memory. While the XDP device’s customized proces-
sor is in charge of operating on the local and global indexes, Figure 2
shows that there are two options for where to store these indexes:
on the XDP device’s internal DRAM or on the host’s memory. The
former option leads to lower latency as it keeps these structures
closer to the customized processor. On the other hand, since the
sizes of the global and local indexes depend on the number of entries
in the system, storing them on the host gives more flexibility with
respect to the maximum number of entries (or conversely, the min-
imum entry size) that the system can support. Users can configure
the system either way depending on their workload characteristics
and performance needs.
Garbage-Collection Bookkeeping. As discussed in Section 2,
XDP maintains a counter for each BC to facilitate GC victim selec-
tion. In addition, XDP maintains a validity map for each BC that
marks which of the entries on the BC are valid. These maps are
maintained through fee-ops, and they get accessed during garbage-
collection to determine which entries to reclaim. In fact, the validity
maps are also used to recover XDP from power failure (as described

2935



Figure 5: Inline vs. accelerator architecture.

shortly), and so they must be durable. The simplest way to imple-
ment them is as a capacitor-backed bitmap on the XDP device’s
internal DRAM, where the 𝑖th bit in a given map indicates whether
the entry at offset 𝑖 of a given block cluster is valid. An alternative
approach is to log the offsets of invalidated entries in storage and
to later reorganize them for efficient access (e.g., as an LSM-tree
of bitmaps [20]). The former approach performs better. However,
since the size of the validity maps depends on the number of entries
in the system, the latter approach gives more flexibility with respect
to the number of entries that the system can support, and it allows
for a lower-cost capacitor. The implementation can be tailored to
the needs of a particular application.
Garbage-Collection Merge-Sort. XDP requires all block clusters
to be sorted based on hkey in storage. This means that the garbage-
collector has to effectively merge-sort several BCs while also dis-
carding invalid entries from them. The XDP device contains a fixed
number of GC input buffers that can be sort-merged into an output
buffer. Since the number of input buffers is fixed, the output buffer
may not be full after the merge-sort if the input buffers do not con-
tain enough valid data. In this case, rather than wasting space by
writing the resulting BC partially empty, we transform the output
buffer into an input buffer and merge-sort it with several new GC
victims, which we read in from storage, into a new output buffer.
This process continues iteratively until we have a full output buffer.
Maintaining Block Cluster Uniformity. In addition to requir-
ing each BC to be sorted, XDP also requires all entries within each
BC to be uniformly randomly distributed in the hkey space. As
we will see later, this requirement is necessary to keep the mem-
ory overheads of the local indexes modest. BCs that contain new
data from the application naturally follow a uniformly random
distribution. However, BCs created during GC do not necessar-
ily maintain this property. For example, consider three uniformly
randomly distributed BCs that get garbage-collected but contain
more valid entries than can fit into the output buffer. In this case,
a simple merge-sort process would cause the new BC to skew to-
wards smaller hkey values. To correct for this effect, XDP fully
merge-sorts only a sub-set of the input buffers while carefully ran-
domly sampling valid entries from them to ensure that the hkey
distribution in the output buffer stays uniform.
Rate Limiter. While XDP is able to ingest and persist application
writes very quickly via its capacitor-backed SRAM module, its
write bandwidth is limited by also having to reclaim space for
these new writes via garbage-collection. In order to prevent drastic
performance slumps while GC is taking place, XDP limits the rate
at which writes are transmitted from the application. It does this
using a first-order control loop, which takes into account statistics
collected during run-time about the overheads of GC so that writes
can be evenly interspersed. This allows XDP to provide a stable
and predictable write bandwidth in time.

Figure 6: The XDP interfaces to the host and to storage.

Power Failure & Recovery. The XDP device contains a small
internal flash module to facilitate recovery. When power fails, the
capacitor-backed Welcome-Buff, Seq-Buff and validity maps are
flushed to this module. During recovery, the validity maps are first
restored. The metadata block and P2L for each BC are then read
in order to (1) reconstruct the BC’s local index, (2) check the BC’s
P2L against its GC bitmap to determine which entries are valid, (3),
insert valid entries into the global index, and (4) subtract the size
of the invalid entries from the BC’s GC counter. The Welcome-Buff
and Seq-Buff are then recovered from flash, and a Hash-Buff is
created for the Seq-Buff.
Inline vs. Accelerator Architecture. An important design con-
sideration is how to connect the XDP device to the host and to
the underlying SSDs. As shown in Figure 2, there are broadly two
options. With an inline architecture, the SSDs are connected di-
rectly to the XDP device. This option minimizes CPU orchestration
overheads for cross-device communication, and it occupies fewer
interconnect slots on the host machine. In the accelerator architec-
ture, the XDP device and the SSDs interact through the host. As
all communication between XDP and storage takes place through
battle-tested host-side drivers, this option allows to seamlessly
inter-operate with a greater diversity of storage devices. It also
entails lower setup overheads as it does not require creating cus-
tomized inter-connections among peripheral devices within the
host server. XDP supports both options to allow users to choose
between performance and flexibility.
Interfacing with Storage. Figure 6 zooms in on the accelerator
architecture, focusing on how XDP interacts with applications and
with storage. XDP is compatible with SSDs that expose either the
standard block device (BD) interface or the newer zoned namespace
(ZNS) interface, which offers better storage utilization to applica-
tions that only issue sequential writes (a beta version of XDP at
one point also employed the open-channel interface [47]).
RAID Sub-System. XDP implements a RAID5 sub-system to vir-
tualize the SSDs, striping block clusters across them for better
bandwidth along with distributed error correction codes. RAID5
is considered prohibitively expensive for systems that issue small
random writes, as each write entails a read-modify-write operation
across the stripe. Since XDP transforms all random writes into se-
quential ones, however, it obviates this problem. This allows us to
implement a lock-free RAID sub-system. Furthermore, in contrast
to standard RAID solutions, XDP exploits its awareness of the data
when an SSD fails to only recover non-empty and valid data within
each BC. This, coupled with the fact data is compressed, leads to
significantly faster and less obtrusive recovery when an SSD fails.
Interfacing with Applications. The left-hand side of Figure 6
shows that XDP can expose either a key-value (KV) interface or a
block device interface to applications running on top. Internally,
the block device interface treats each 4KB page as a key-value pair

2936



Figure 7: An entry’ 128-bit hkey maps the entry to a bucket,
an lslot within that bucket, and a fingerprint.

Figure 8: DHT consists of fixed-size buckets, each of which
consists of variable-size lslots.

where the key is the page address. The KV interface allows for better
performance as less data tends to flows between the host and the
XDP device. However, the block device interface allows applications
to quickly migrate to XDP without having to reformat their data.
This is especially useful for any application that issues random
write I/Os to the SSD (e.g., MariaDB). XDP internally converts
these random writes into sequential writes. This improves storage
performance, utilization and longevity without the CPU overheads
that such a rich layer of indirection would normally involve.

4 THE DELTA HASH TABLE
This section describes the Delta Hash Table (DHT), which is used
by XDP to map each key to the location of the matching entry in
storage. Nevertheless, DHT has broader applicability as a generic
accelerated hash table. DHT addresses the following two challenges,
which are intrinsic to the design of hash tables.
Challenge 1: Entry Representation. Hash tables exhibit an in-
nate trade-off between memory and performance dictated by how
entries are represented. Some designs represent each entry using its
full key. This takes up a lot of memory, especially if keys are large.
Other designs instead use fingerprints, which take up less space
but lead to false positives and thus to redundant storage accesses.
DHT introduces a new approach that uniquely identifies entries by
encoding the differences (i.e., deltas) among their fingerprints. This
requires even less memory than with full fingerprints while also
eliminating false positives for queries to existing entries.
Challenge 2: Bucket Sizing. Hash tables exhibit yet another in-
trinsic performance vs. memory trade-off dictated by the bucket
size. With smaller buckets, the variability in the number of entries
mapped to each bucket causes many buckets to remain underuti-
lized and others to overflow. This leads to poor memory-utilization.
On the other hand, with larger buckets, there are more entries
on average in each bucket, and so more entries need to be com-
pared against during queries. This leads to higher data movement
and processing overheads. With DHT, the small delta encodings
allow us to squeeze more entries into buckets and thus achieve
good memory utilization and modest data movement overheads at
the same time. Furthermore, we use customized processors to tilt
the balance towards larger buckets to improve memory utilization
without incurring computational bottlenecks.

Figure 9: A delta trie distinguishes between entries based on
the most significant bits that differ in their fingerprints.

Overview. DHT consists of 2𝑖 contiguous, fixed-size buckets. Each
bucket comprises 2𝑗 variable-size adjacent logical slots (lslots). An
entry is mapped to a bucket based on the first 𝑖 bits of its hkey
and to an lslot within that bucket based on the subsequent 𝑗 bits of
its hkey. All succeeding bits within the hkey comprise the entry’s
fingerprint, as shown in Figure 7.

Figure 8 illustrates a DHT instance where 𝑖 and 𝑗 are both set
to two. Hence, there are four buckets, each of which contains four
lslots. The lslots are illustrated in gray, and the number on top of
each lslot indicates the number of entries that have been mapped
to it. For example, an entry for which the first four hkey bits are
0111 belongs to the last lslot within Bucket 01. White areas in the
figure indicate un-utilized space.

Within a bucket, a query or a put/delete (PD) operation searches
for the matching lslot by traversing the lslots serially. A PD opera-
tion that changes the size of an lslot must also rewrite all subsequent
lslots within the bucket to keep them adjacent to the lslot whose
size changed. As we later show, DHT works best when there are
few entries per lslot and tens of lslots per bucket on average.

To accommodate bucket overflows, each bucket has an extension
pointer. In Figure 8, for example, Bucket 11 had overflown causing
its last lslot to be stored in an extension bucket. Each extension
bucket also has an extension pointer to support chaining.

4.1 LSlot Structure
Delta Trie. Figure 9 illustrates the logical structure of an lslot
containing five entries. The left-hand side of the figure shows the
first six bits of these entries’ fingerprints, while the right-hand side
illustrates a binary delta trie that encodes the differences between
these entries’ fingerprints. Each leaf node in the trie corresponds
to one of the five entries, while an internal node corresponds to the
index (idx) of the first fingerprint bit that differentiates between
some two sets of entries. For example, the root node v1 indicates
that the bit at index zero is the first that differentiates between the
fingerprints of entries in the left sub-tree (e4, e1 and e2) and the
right sub-tree (e3 and e5). As another example, the node v4 indicates
that the bit at index five is the first that differentiates between the
fingerprints of entries e3 and e5. As shown in the figure, the delta
trie effectively sorts the entries based on their fingerprints.
Lslot Encoding. Figure 10 illustrates an lslot’s physical encoding
and how it evolves starting from an empty state as we insert the
five entries previously shown in Figure 9. As shown in Figure 10, an
lslot consists of four fields. The tenancy field encodes the number
of entries in the lslot. The structure field encodes the delta trie’s

2937



Figure 10: An lslot is a physical encoding of a delta trie. In
this example, we add five entries to an initially empty lslot
to illuminate how the encoding evolves.

topology, meaning how nodes are connected. The indices field en-
codes the contents of each of the trie’s internal nodes, namely the
index of the most significant bit that differentiates between the
fingerprints of entries at that internal node’s left-hand sub-tree vs.
its right-hand sub-tree. Lastly, the payloads field gives the payload
of each of the entries sorted by fingerprint (in the case of XDP, the
payloads encode information about the location of each data entry
in storage). We now elaborate on each of these fields.
Tenancy Field. The tenancy field is unary encoded. For example,
lslot sizes of 0, 1, 2 and 3 are encoded as 0, 10, 110, 1110, respectively.
We use unary encoding because the probability distribution of en-
tries per lslot is approximately Poisson. Unary leads to the optimal
(i.e., as small as possible) average code length for this distribution.
For an lslot with 𝑙 entries, the tenancy field takes up 𝑙 + 1 bits.
Structure Field. The structure field captures the topology of the
delta trie by encoding whether the children of each internal node
are internal or leaf nodes. A given internal node is represented as
11 if its two children are also internal nodes, 10 if the left-child
is an internal node while the right-child is a leaf node, 01 if the
left-child is a leaf node while the right-child is an internal node,
and 00 if both children are leaf nodes. The representations for the
different internal nodes are laid out in a depth-first leftwards order.
For example, the bottommost structure field in Figure 10 encodes
the trie topology in Figure 9 as 11 01 00 00 where 11 corresponds
to v1, 01 to v2, 00 to v3, and 00 to v4.

As shown in Figure 10, with zero or one entry in an lslot, the
structure field is vacant as the delta trie has no internal nodes. We
also observe that with two or more entries in an lslot, the last two
bits of the structure field are always set to 00. This is because the
children of the last internal node visited in a depth-first traversal
are always both leaf nodes. We exploit this property to save space
by always truncating these two bits as they are implicit. Figure 10
illustrates this by crossing out the last two structure bits from all
lslots with two or more entries. Overall, for an lslot with 𝑙 ≥ 2
entries, the structure field occupies 2 · (𝑙 − 2) bits.
Indices Field. For each internal node in the delta trie, the indices
field contains the index of the first bit that differentiates between
fingerprints of entries in the left-hand sub-tree and the right-hand
sub-tree. Each of the indices is unary encoded, and they are laid out
in a depth-first leftwards order. For example, the bottommost indices
field in Figure 10 is 0 10 110 111110 because the first differentiating
bit is at index zero for v1, one for v2, two for v3, and five for v4.

Since the indices strictly increase as we descend the trie, we can
in fact encode only the difference between each internal node’s
index and its parent’s index to save space. Using this optimization,
the bottommost indices field in Figure 10 becomes 0 0 0 11110.
Figure 10 crosses out the bits saved by using this optimization.

To analyze the size of the indices field, note that the first bit
index differentiating between any parts of two uniformly randomly
independent hashes is geometrically distributed with a mean of
two. Unary encoding is optimal for this distribution and leads to an
average code length of two bits per entry. Hence, for an lslot with
𝑙 ≥ 1 entries, the average indices field size is at most (𝑙 − 1) · 2 bits.
For an empty lslot, the indices field is vacant.
Payloads Field. The payloads field contains a payload for each
of an lslot’s entries. The payloads are laid out contiguously in the
order of their corresponding fingerprints as shown in Figure 10.
In XDP, the payloads contain information about the locations of
entries in storage (as described in detail in Section 4.4). However,
they can assume other types of data for different applications.

4.2 Memory Analysis
Equation 1 upper bounds the average size of an lslot with 𝑙 entries,
derived by adding up the sizes of the tenancy, structure and indices
fields. We disregard the payloads field in this analysis as its size
depends on particular application use-cases and is therefore not
intrinsic to the DHT design. We observe from Equation 1 that the
lslot size per entry (i.e., 𝑙𝑠𝑙𝑜𝑡_𝑠𝑖𝑧𝑒 (𝑙)

𝑙
) strictly increases with respect

to the number of entries 𝑙 as there are more entries to have to
differentiate between. DHT is therefore space-optimal when every
lslot contains one entry on average. XDP therefore strives to allocate
each instance of DHT such that there is one entry per lslot.

𝑙𝑠𝑙𝑜𝑡_𝑠𝑖𝑧𝑒 (𝑙) ≤
{︄
𝑙 + 1 bits 0 ≤ 𝑙 ≤ 1
5 · (𝑙 − 1) bits 2 ≤ 𝑙

(1)

Average LSlot Size. To reason about the average lslot size, we
first observe that the structure of our “entries into lslots” problem
is analogous to the classic “balls into bins” problem in probability
theory. It follows that the number of entries that fall into a given
lslot approximately follows a Poisson distribution for which the
mean parameter 𝜆 is equal to the number of entries divided by
the number of lslots [40]. Equation 2 derives the average size of
an lslot by taking a weighted Poisson average over the lslot size
from Equation 1. We use 𝜆 = 1 for this analysis to reflect the case
where there is one entry per lslot on average. The result is that the
tenancy, structure and indices fields cumulatively occupy slightly
less than three bits per entry on average.

average lslot size ≤
∞∑︂
𝑙=0

Poisson(𝑙, 1) · 𝑙𝑠𝑙𝑜𝑡_𝑠𝑖𝑧𝑒 (𝑙) ≈ 3 bits (2)

Overprovisioning Buckets.Occupancy variability across buckets
is inevitable in a hash table. Too much of it can compromise space-
utilization due to bucket overflows, which necessitate the use of
extension buckets. To mitigate this problem, we use large buckets,
and we over-provision the bucket size to be slightly larger than the
average content size per bucket. The goal is to prevent buckets with
slightly more content than average from overflowing. On the x-axis
in Figure 11, we vary the number of extra bits per entry assigned

2938



Figure 11: With larger and slightly over-provisioned buck-
ets, DHT prevents most bucket overflows.

to each bucket from zero to two. On the y-axis, we measure the
resulting percentage of bucket overflows. We repeat this for three
configurations with 16, 32 and 64 lslots per bucket, and where there
is one entry per lslot on average in each configuration. We observe
that the larger the buckets, the more rapidly the percentage of
overflows drops with respect to the number of extra bits per entry.
The statistical intuition is that with larger buckets, the standard
deviation is smaller relative to the mean bucket occupancy.

While all configurations in Figure 11 are a part of the DHT design
space, we tend favor configurations with larger buckets and less
extra space per bucket, for example 64 lslots per bucket and one
extra bit per entry. Note that on a CPU, a DHT configuration with
64 lslots per bucket is less viable. Such large buckets are expensive
to process on a CPU, not least due to the complex DHT bucket
structure, which has to be parsed bit by bit. A customized processor,
however, eliminates such computational bottlenecks and thereby
allows to optimize for disparate metrics such as memory.
Total Memory Overhead. With one over-provisioned bit per en-
try used to mitigate bucket overflows and with three bits per entry
on average used for the tenancy, structure, and indices fields, the
total memory overhead of DHT is a modest four bits per entry.

4.3 Efficient LSlot Decoding
In order to parse a bucket efficiently using the customized processor,
it is crucial to scan it in one pass and to only use simple primitive
data types to maintain state. We meet both requirements using
Algorithm 1. Algorithm 1 is used for parsing a single lslot, though
its logic can be applied iterativly to parse a whole bucket. It takes a
fingerprint as a parameter and returns the leaf offset of thematching
entry in the lslot. The returned leaf offset can then be used to
access the corresponding entry’s payload. Algorithm 1 is the core
component of get, put and delete operations in DHT.
Decoding in One Pass. To make an lslot decodable in one pass,
we interleave the structure and indices fields, as shown in Figure 12
for the bottommost row from Figure 10. By virtue of interleaving,
Algorithm 1 can process an lslot in one pass by first decoding the
tenancy field (Line 2) and then decoding the interleaved structure
and indices fields for one internal node in each iteration (Lines 7-8).
As the unary encodings are self-delimiting while the tenancy field
tells us how many internal and leaf nodes to expect, Algorithm 1
infers precisely where each field begins and ends.

By extension, a bucket parser on top can exploit the self-delimiting
nature of an lslot to tell precisely where each lslot within a bucket
begins and ends. In this way, a query targeting lslot number𝑞within

Figure 12: The structure and indices fields within an lslot are
interleaved to support parsing in one pass.
1 Function getLSlotOffset(string fingerprint):
2 int size = parseNextUnaryCode()
3 if size == 0 then return -1 end
4 int skip = 0, offset = 0, index = -1
5 bool foundTargetOffset = false
6 for 𝑖 = 0; 𝑖 < size −1; 𝑖++ do
7 string structure = (i == size – 2) ? ‘00’ : parseTwoStructureBits()
8 int indexDelta = parseNextUnaryCode()
9 if skip == 0 and !found then
10 index += indexDelta + 1
11 if fingerprint[index] == ‘1’ then
12 if structure == ‘11’ or structure == ‘10’ then
13 skip++
14 else if structure == ‘01’ then
15 offset++
16 else if structure == ‘00’ then
17 offset++
18 found = true
19 else if fingerprint[index] == ‘0’ then
20 if structure == ‘01’ or structure == ‘00’ then
21 found = true
22 else if skip > 0 and !found then
23 skip−−
24 if structure == ‘11’ then
25 skip += 2
26 else if structure == ‘01’ or structure == ‘10’ then
27 offset++
28 skip++
29 else if structure == ‘00’ then
30 offset += 2
31 return offset
Algorithm 1: An lslot is decoded in one pass and using
primitive variables to lend itself to acceleration.

a bucket parses and ignores the first 𝑞 − 1 lslots while invoking
Algorithm 1 on the 𝑞th lslot.
Primitive State Maintenance. Figure 13 illustrates how Algo-
rithm 1 processes the lslot encoding in Figure 12. The algorithm
traverses the internal nodes in the depth-first leftwards order with
which they are encoded in the lslot. We refer to this as the physical
path, and it is illustrated in dashed red arrows. The logical path,
shown in dotted blue arrows in Figure 13, shows the path from the
root to the target leaf node. Each iteration of the algorithm parses
one internal node along the physical path. The objective is to mean-
while also efficiently keep track of progress along the logical path.
Algorithm 1 achieves this using four primitive variables. (1) The
offset variable counts the number of leaf nodes encountered along
the physical path before finding the target leaf. (2) The skip variable
counts the number of consecutive incoming internal nodes along
the physical path that are not part of the logical path. (3) The index
variable is the differentiating fingerprint index of the current or
previous internal node visited along the logical path. (4) The found
variable indicates whether we have found the correct leaf node and
can therefore ignore all subsequent nodes on the physical path.
Query Example. The right-hand side of Figure 13 illustrates Al-
gorithm 1 in action by showing how its state evolves as it runs. At
Node v1, the logical path turns right since the target fingerprint’s

2939



Figure 13: A query physically traverses an lslot’s internal
nodes depth-first while keeping track of the logical path
from the root to target leaf using four primitive variables.

bit at index zero is set to one (Line 11). Since the left child of v1 is
an internal node, however, the skip variable is incremented (Lines
12-13). The next Node, v2, is not on the logical path as evidenced
by skip variable being greater than zero (Line 22). Since one of
v2’s children is a leaf node and the other is an internal node, we
increment both the offset and skip variables (Lines 26-28). The next
Node, v3, is also not on the logical path. As both of v3’s children are
leaf nodes, we add two to the offset variable (Lines 29-30). The next
Node, v4, is on the logical path since the skip variable is back to zero
(Line 9). The logical path turns right since the target fingerprint’s
bit at index five is set to one (Line 11). Since both children of v4 are
leaf nodes, we increment the offset variable by one to count the left
child, and we then set the found variable to true as the right child
is our target (Lines 16-18). At this point, the offset variable’s value
is four, which corresponds to the target leaf’s position in the lslot.
Modifiers. A put(key, payload) operation invokes Algorithm 1
to find the closest key within the target lslot. It then retrieves
the full hkey using a fee-op so that it can be compared with the
new key’s hkey. If they are the same, we infer that the put is an
update and change the payload of the existing entry within the
lslot. Otherwise, the put is an insert and so we (1) find the most
significant differentiating fingerprint bit among the two entries’
fingerprints, (2) add an internal node to the lslot to differentiate
between the entries based on this bit, and (3) add the new entry’s
payload to the lslot at the offset matching the new leaf for the entry.

Similarly, a delete(key) operation invokes Algorithm 1 and re-
trieves the target entry to check if it exists. If so, the existing entry
is deleted from the lslot by removing its payload and replacing its
parent node with its sibling node in the delta trie.

4.4 DHT Instantiations
This section describes how XDP utilizes DHT.
Global Index. The Global Index (GI) is a DHT instance that maps
each data entry in the system to the ID of the block cluster (BC)
in which it resides. Fee-ops keep GI up-to-date as discussed in
Section 3. In terms of space, GI takes up ≈ 𝑌 − 27 bits per entry for
an underlying SSD storage capacity of 2𝑌 bytes. The reason is that
with each BC being 2GB (231 bytes), each block cluster ID takes up
𝑌 − 31 bits while each DHT entry has an additional overhead of 4
bits per entry as discussed in Section 4.2.

Figure 14: The local index encodes the page address deltas
between adjacent entries in a block cluster.

Local Index. The local index for each BC in the system is a static
instance of DHT that maps each entry in the given BC to the 4KB
flash page whereon the entry begins (an entry may cross one or
more page boundaries). A local index is created for a new BC right
before the BC is written to storage. At this point, all data entries
belonging to the BC are in memory (i.e., in the sorted-buff or the GC
output buffer) and so it is possible to create a DHT instance without
storage I/Os. XDP keeps a local index throughout its corresponding
BC’s existence and resets it when its BC gets garbage-collected.

As a payload for each entry in a local index, the simplest option
is to use a page address. Such addresses, however, would take up
at least log2 (31GB/4KB) = 19 bits per entry to uniquely identify all
pages within a BC. This would be a hefty toll. To save space, we
exploit the fact that entries in a BC are sorted by hkey. Since DHT
also effectively sorts entries by hkey, it means that adjacent entries
within DHT correspond to entries on either the same flash page or
on adjacent flash pages. As a payload for each entry, we therefore
encode the number of 4KB pages that the entry crosses in unary.
Thus, 0 means an entry is wholly contained within one page, 10
means it spans two pages, 110 means it spans three, on so on. Since
most entries are smaller than a 4KB page, the encoded deltas stay
small on average. In addition, we augment DHT to allow storing a
page address at the start of each bucket. We set this address to the
flash page whereon the first entry in the bucket begins.

Figure 14 Part (A) illustrates how the five entries e1 to e5 from our
running example may be laid out sorted by hkey across several flash
pages. Part (B) shows how the corresponding local index bucket
would be structured starting with page address X and proceeding
with lslots that store address deltas as payloads. To derive an entry’s
address with this design, we exploit the fact that a DHT query scans
the whole bucket up to the target entry. During this process, we
add the address at the start of the bucket to the sum of deltas up
to the target entry’s delta to derive the starting page address. For
instance, a query to e3 in Figure 14 deduces that the fourth payload
at Lslot 1 belongs to e3 and adds the initial bucket address 𝑋 to
all deltas before e3’s delta (0+0+110 in unary) to obtain the correct
starting page address of X+2. Since e3’s delta is 10, we know to read
both pages X+2 and X+3 to obtain the full entry.

As long as the average entry size is smaller than 4KB, the address
deltas occupy less than two bits per entry on average. By adding
the standard DHT mapping overhead of 4 bits per entry, the space
overhead of the local indexes is ≈ 6 bits per entry.

Hash-Buff. Hash-buff is an instance of DHT whereby the payload
of each entry comprises the entry’s full hkey as well as a pointer to
the corresponding data entry within seq-buff. Its memory footprint
is minor as the seq-buff spans at most 2GB.

2940



5 MEMORY & PERFORMANCE PROPERTIES
We now summarize XDP’s memory and performance properties.

Memory Footprint. By adding up the sizes of the global and local
indexes, the XDP system requires 𝑌 − 21 memory bits per entry to
manage 2𝑌 bytes of data. For 32TB, for instance, this amounts to
3 bytes per entry. This is a significant memory reduction relative
to existing index+log systems. BitCask [51] and ForestDB [3] store
the full keys of data entries in their indexes thus requiring orders of
magnitude more memory. Aerospike [52] uses 20 byte fingerprints
and stores other auxiliary metadata (e.g., time to live and time last
written) about each entry in its index leading to a total of 64B
per entry. FASTER [13] uses a chained hash table with 64 byte
buckets each storing 7 entries (6B pointer and 2B fingerprint), thus
leading to an overhead of ≈ 10 bytes per entry before the impact
of bucket overflows is considered. FAWN [4] uses a chained hash
table with 4 byte pointers and 2 byte fingerprints leading to a 6 byte
per entry overhead before the impact of overflows is considered.
FlashStore [24] uses a cuckoo hash table variant with 4B pointers
and 2B fingerprints leading to a 6-7 byte overhead. Hence, XDP at
least halves the memory footprint relative to existing index+log
architectures. It achieves this by (1) storing fingerprint deltas as
opposed to full fingerprints, (2) using large hash buckets to make
overflows rare, and (3) sorting each block cluster to allow encoding
address deltas as opposed to full addresses.

Query Cost to Existing Entry. XDP performs a query to an ex-
isting entry in strictly one storage I/O. The reason is that the global
and local indexes are DHT instances that encode the differences
across all coinciding fingerprint. Therefore, a query to an existing
entry cannot result in false positives. This is an improvement over
fingerprint-based index+log systems [4, 13, 24], which incur false
positives and thus exhibit higher average and tail latency.

Query Cost to Non-Existing Entry. In contrast to non-empty
queries, an empty query (i.e., to a non-existing entry) that lands on
a non-empty lslot within the Global Index always leads to one false
positive and thus one redundant storage I/O. XDP does not prevent
this I/O as DHT only encodes information about the differences be-
tween existing fingerprints and no information that allows filtering
out non-existing fingerprints. Assuming one entry per lslot on aver-
age, the fraction of empty lslots in the global index is Poisson(0, 1)
= 𝑒−1 (as per the classic “balls in bins” problemwith load factor one).
Hence, the probability of an empty query landing on a non-empty
lslot and thus incurring a false positive is 1− 𝑒−1 = 0.63. While this
rate is higher than with a fingerprint-based index, empty queries
are less common in our target workloads and their performance
is therefore less critical. For workloads with many empty queries,
XDP can support adding a few fingerprint bits to each payload in
the Global Index to reduce false positives.

Write-Amplification. XDP keeps track of the amount of live data
in each BC to allow GC to identify and reclaim the BC with the
least amount of live data left. Furthermore, XDP separates newly
written application data from garbage-collected data to prevent cold
data from constituting a constant dead-weight migration overhead.
In this way, XDP achieves a write-amplification akin to state-of-
the-art designs [52]. With 20% of storage space being used for
over-provisioning, write-amplification is ≈ 2.6 for workloads with

Figure 15: FIO benchmark with XDP RAID5 vs software
RAID0 on top of four SSDs and with varying queue depth.
XDP offers superior bandwidth and tail latency while at the
same time providing failure-protection.

uniformly random writes [53] and tends to be lower for workloads
with more sequential and/or skewed writes.
Space-Amplification.XDP compresses data as it arrives and stores
it contiguously in storage. Compression rates of x4 are typical in
our target workloads. Hence, XDP effectively enlarges the storage
capacity by the compression factor and yet without introducing
any CPU overheads by virtue of using customized hardware.

6 ENSURING FAST SEQUENTIAL READS
SSD Sequential vs. RandomReads.Onmodern SSDs, sequential
reads are known to be faster than random reads by as much as 40%
or more [12, 35]. Storage bandwidth tends to gradually improve as
we increase a read request’s size until leveling off at about eight
flash blocks per request (i.e., ≈ 32-128KB).
TheProblem: Losing Sequentiality.The XDP block device treats
each 4KB block as a key-value entry for which the logical block
address (LBA) is the key. It sorts these entries in block clusters
based on the hash keys (hkeys) of their LBAs. The outcome is that
blocks with adjacent LBAs are not physically adjacent in storage.
This means that the XDP block device as described so far would
translate sequential reads into slower random reads.
Reinforcing Sequentiality. We alleviate this problem by modi-
fying XDP’s block device such that small groups of blocks with
consecutive LBAs and written at the same time are laid out contigu-
ously in storage. We do this by truncating the least significant 𝑏 bits
from each LBA before deriving its hkey, and then appending the
truncated 𝑏 bits to the resulting hkey. This ensures that groups of
up to 2𝑏 blocks in the logical address space stay adjacent physically.
We typically set 𝑏 to 3 or 4. This optimization allows applications
running on top to saturate storage bandwidth.
Efficient Header Encoding. Within the global and local indexes,
we treat each group of sequentialized pages as a single entry iden-
tified by their common hash prefix. The payload for each header
contains additional information about whether each of the con-
stituent blocks in the group exists and if so where it resides. We
leave out the precise encoding but note that it contributes at most
two bits per entry to the overall memory footprint, a modest toll.

2941



Figure 16: MariaDB with and without XDP under a TPC-C transactional workload. XDP provides superior throughput (left),
lower average latency (middle), and lower latency variability (right).

Figure 17: TPC-C benchmark on MariaDB with XDP RAID5
vs. plainRAID0 on four SSDs. XDPperformance even during
recovery is significantly improved relative to the baseline
under normal operation.

7 EVALUATION
We evaluate the performance of multiple popular system bench-
marks on top of the XDP block device. The benchmarks include raw
block I/O in Section 7.1, the SQL database MariaDB in Section 7.2,
and the NoSQL database MongoDB in Section 7.3.

The testbed is a Dell R740 server with 512 GB RAM and a dual-
socket Intel Xeon Gold CPU with 40 cores and hyperthreading
enabled. The OS is Ubuntu Linux 18.04.4 LTS. Unless stated other-
wise, all experiments use industry-standard NVMe drives of 1.9TB
raw capacity based on TLC NAND flash. We also run experiments
with both RAID0 and RAID5, both of which stripe data across four
identical SSDs, but where the latter sacrifices one SSD’s worth of
storage bandwidth and capacity to provide failure protection.

7.1 Block I/O
The flexible I/O (FIO) [9] benchmark measures disk bandwidth
and tail I/O latency under customizable workloads. We focus on
a random I/O benchmark with 4KB blocks, 70% reads and 30%
writes. The data is synthetically generated and 3x-compressible.
We compare (1) FIO on top of XDP with RAID5 to (2) plain FIO on
top of RAID0. RAID5 gives the XDP baseline a harder time as it is
known to perform worse than RAID0. We vary the queue depth
(QD) from 4 to 64 to test scalability with load.

Figure 15 summarizes the results. Under light load, the two sys-
tems exhibit similar performance. However, as the load grows,
XDP’s throughput scales up to QD=32 (526 kIOPS) whereas the
baseline fails to scale beyond QD=4 (183 kIOPS). In terms of 99.99%
percentile latency, XDP RAID5 stays under 230us with QD=64 while
the baseline is as slow as 1.25ms. The reason is that XDP internally
transforms the random I/Os issued by FIO into compressed sequen-
tial I/Os to the underlying SSDs. As a result, XDP with RAID5
provides superior performance relative to RAID0 while at the same
time providing failure protection.

7.2 MariaDB
We now evaluate MariaDB [30] on top of XDP using the TPC-C
benchmark [54]. As a baseline, we use plain MariaDB with no ac-
celeration layer. Each experimental run lasts five hours. The data is
4x-compressible. The raw data volume before compression is 6.4TB.
Each experimental run comprises of eight database instances with
identical datasets running for five hours. Each database instance
serves 128 concurrent clients and employs a 50GB buffer pool.

Figure 16 depicts the results when all databases share a single
SSD. On the left-hand side, we observe that the XDP-accelerated
system delivers a 11.8x throughput increase (in queries per second,
or qps). The middle part shows a 7.3x tail latency reduction for the
99.9% percentile, while the right-hand side illustrates performance
stabilization in time. The reason for these performance characteris-
tics is that MariaDB’s storage engine, InnoDB, is based on a B-tree
with a node size of 32KB. The I/O pattern driven by TPC-C is largely
random, thus leading to random B-tree reads and writes to the un-
derlying SSDs. XDP speeds up the random writes by transforming
them into compressed sequential writes. Compression also shrinks
each B-tree read from 32KB down to 8-16B, thus enabling better
read throughput and latency.

We now turn to evaluate performance and reliability in a scaled-
up setting with four SSDs and a 4x larger dataset. We compare
MariaDB on top of XDP with RAID5 to plain MariaDB with RAID0.
Figure 17 depicts the results. Under normal operation, the XDP-
accelerated system is 2.5x faster than the baseline. The throughput
gain is smaller than in the single-SSD experiment for three reasons.
First, the execution is more I/O bound (the dataset grows whereas

2942



Figure 18: Write-intensive YCSB benchmarks on MongoDB with and without XDP. XDP provides improved performance even
while running on a slower QLC SSD (left) as well as while running against software ZSDT compression (right).

the cache size remains the same). Second, the I/O load is spread over
multiple SSDs thus making device access faster and the acceleration
comparatively less meaningful. Third, the RAID5 error correction
codes take a toll on writes.

We now detach one of the drives under RAID5 and keep the
TPC-C clients running. The system keeps functioning with less
than a 10% transient throughput loss. The drive rebuilds at a rate of
1TB/hour and completes in less than two hours. This demonstrates
that the RAID5 drive protection with XDP enables uninterrupted
service with minimum performance loss upon recovery.

7.3 MongoDB
We now study how XDP affects MongoDB [41]. Its storage engine,
WiredTiger [55], is a copy-on-write B-tree. While it transforms ran-
domwrites into sequential ones, it exhibits high write-amplification
under random writes as each randomly written entry, however
small, causes a large node (4K to 16K) to be rewritten.

In this experiment, we include a QLC SSD. While such SSDs
have a larger storage capacity than TLC SSDs, they are significantly
slower in terms of write speed. We compare two storage settings
for Mongo: (1) an XDP-accelerated 16TB QLC drive, and (2) a plain
4TB TLC drive with no acceleration layer. The QLC SSD gives XDP
a harder challenge due to its inferior performance.

We use the YCSB benchmark [16], a synthetic workload genera-
tor. We experiment with its two core workloads, YCSB-A (50% get
and 50% put) and YCSB-F (100% get-modify-put). Keys are sampled
from the dataset uniformly at random. The initial dataset size is 1TB.
The data is 4x-compressible. The primary key size is 16B, and the
value size is 1KB. We run 16 MongoDB instances, each serving 64
concurrent clients.

The left-hand side of Figure 18 shows that with XDP acceleration,
the overall throughput gain (in queries per second, or qps) is 2.6x
for YCSB-A and 2.2x for YCSB-F. The 99.9% tail latency gains are as
much as 3.5x lower for puts and 3.2x lower for gets. These results
are achieved despite the slower storage media. XDP achieves these
results by seamlessly compressing the data internally using ZSTD
and thus reducing the read and write volume.

Finally, we compare the effect of hardware compression versus
software compression over the same (TLC) media. We configure
the baseline MongoDB deployment to use software ZSTD com-
pression. The storage capacity savings are similar across the two
deployments. On the right-hand side of Figure 18, however, we ob-
serve that the performance gap is significant. The XDP-accelerated
MongoDB instance is 2.7x faster under YCSB-A (90K vs 33.3K qps)
and 2.6x faster under YCSB-F. We conclude from this experiment
that software-based storage engines must choose between perfor-
mance and compression. Hardware-accelerated storage such as
XDP, however, allows achieving the best of both worlds.

8 CONCLUSION
We introduced the Pliops Extreme Data Processor (XDP), a novel
storage engine that lends itself fully to hardware acceleration using
a customized processor. XDP seamlessly compresses application
data and logs it in storage. It leverages a novel hardware-accelerated
hash table to (1) index the data while requiring a 2x lower memory
footprint than the best alternative, (2) eliminating redundant stor-
age accesses due to false positives, and (3) making the recovery of
a failed SSD faster and less obtrusive. XDP demonstrates that hard-
ware acceleration can do far more than offloading computation from
the host CPU: it allows to also optimize for seemingly disparate
performance metrics including storage reads and writes, memory
footprint, and recovery time. In so doing, it allows overcoming cost
contentions that have traditionally been inescapable.

ACKNOWLEDGMENTS
We thank the entire Pliops team, without whom this effort would
not have been possible.

REFERENCES
[1] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B

Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J Starke,
et al. 2020. Data Compression Accelerator on IBM POWER9 and z15 Processors:
Industrial Product. In ISCA.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse,
and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. ATC (2008).

2943



[3] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, Jin-Soo Kim, and
SeungryoulMaeng. 2016. ForestDB: A Fast Key-Value Storage System for Variable-
Length String Keys. TC 65, 3 (2016), 902–915. https://doi.org/10.1109/TC.2015.
2435779

[4] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast Array of Wimpy
Nodes. SOSP (2009). https://doi.org/10.1145/1629575.1629577

[5] Apache. [n.d.]. Cassandra. http://cassandra.apache.org ([n. d.]).
[6] Apache. [n.d.]. HBase. http://hbase.apache.org/ ([n. d.]).
[7] Austin Appleby. [n.d.]. Murmur Hash. https://github.com/aappleby/smhasher

([n. d.]).
[8] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica, Stratos

Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Meth-
ods: The RUM Conjecture. EDBT (2016).

[9] Jens Axboe. [n.d.]. Flexible I/O Tester. https://github.com/axboe/fio ([n. d.]).
[10] Rudolf Bayer and Edward M. McCreight. 1970. Organization and Maintenance

of Large Ordered Indexes. Proceedings of the ACM SIGFIDET Workshop on Data
Description and Access (1970).

[11] Matias Bjørling, Philippe Bonnet, Luc Bouganim, and Niv Dayan. 2013. The
Necessary Death of the Block Device Interface. CIDR (2013).

[12] Luc Bouganim, Björn THór Jónsson, and Philippe Bonnet. 2009. uFLIP: Under-
standing Flash IO Patterns. CIDR (2009).

[13] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. SIGMOD (2018). https://doi.org/10.1145/3183713.3196898

[14] Yann Collet. [n.d.]. LZ4. https://github.com/lz4/lz4 ([n. d.]).
[15] Douglas Comer. 1979. The Ubiquitous B-Tree. Comp. Surv. 11, 2 (1979), 121–137.

https://doi.org/10.1145/356770.356776
[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. SoCC (2010).
https://doi.org/10.1145/1807128.1807152

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.
Introduction to algorithms. MIT press.

[18] Edward Corwin and Antonette Logar. 2004. Sorting in linear time-variations on
the bucket sort. Journal of computing sciences in colleges 20, 1 (2004), 197–202.

[19] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. SIGMOD (2017). https://doi.org/10.1145/3035918.
3064054

[20] Niv Dayan, Philippe Bonnet, and Stratos Idreos. 2016. GeckoFTL: Scalable Flash
Translation Techniques For Very Large Flash Devices. SIGMOD (2016). https:
//doi.org/10.1145/2882903.2915219

[21] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for
LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous Merging.
SIGMOD (2018). https://doi.org/10.1145/3183713.3196927

[22] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the
Wacky Continuum. In SIGMOD.

[23] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for
LSM-Tree. In SIGMOD. 365–378.

[24] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: high throughput
persistent key-value store. PVLDB 3, 1-2 (2010), 1414–1425.

[25] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM space
skimpy key-value store on flash-based storage. SIGMOD (2011). https://doi.org/
10.1145/1989323.1989327

[26] Christopher Dennl, Daniel Ziener, and Jürgen Teich. 2013. Acceleration of SQL re-
strictions and aggregations through FPGA-based dynamic partial reconfiguration.
In FCCM.

[27] Facebook. [n.d.]. RocksDB. https://github.com/facebook/rocksdb ([n. d.]).
[28] Facebook. [n.d.]. ZSTD. https://github.com/facebook/zstd ([n. d.]).
[29] Jian Fang, Yvo TB Mulder, Jan Hidders, Jinho Lee, and H Peter Hofstee. 2020.

In-memory database acceleration on FPGAs: a survey. The VLDB Journal (2020).
[30] MariaDB Foundation. [n.d.]. MariaDB. https://mariadb.org/ ([n. d.]).
[31] Google. [n.d.]. Snappy. https://github.com/google/snappy ([n. d.]).
[32] Stavros Harizopoulos, Daniel J Abadi, Samuel Madden, and Michael Stonebraker.

2018. OLTP through the looking glass, and what we found there. In Making
Databases Work: the Pragmatic Wisdom of Michael Stonebraker.

[33] H. V. Jagadish, P. P. S. Narayan, Sridhar Seshadri, S. Sudarshan, and Rama Kan-
neganti. 1997. Incremental Organization for Data Recording and Warehousing.
VLDB (1997).

[34] Ryan Johnson and Ippokratis Pandis. 2013. The bionic DBMS is coming, but what
will it look like?. In CIDR.

[35] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting widely held SSD expec-
tations and rethinking system-level implications. ACM SIGMETRICS Performance
Evaluation Review 41, 1 (2013), 203–216.

[36] Kaan Kara and Gustavo Alonso. 2016. Fast and robust hashing for database
operators. FPL (2016). https://doi.org/10.1109/FPL.2016.7577353

[37] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, ButlerW
Lampson, Daniel Sanchez, and Tao B Schardl. 2020. There’s plenty of room at the
Top: What will drive computer performance after Moore’s law? Science (2020).

[38] Weiqiang Liu, Faqiang Mei, Chenghua Wang, Maire O’Neill, and Earl E Swartz-
lander. 2018. Data compression device based on modified LZ4 algorithm. IEEE
Transactions on Consumer Electronics (2018).

[39] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values in
SSD-conscious Storage. FAST (2016).

[40] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge
university press.

[41] MongoDB. [n.d.]. Online reference. http://www.mongodb.com/ ([n. d.]).
[42] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Data processing on

FPGAs. PVLDB (2009).
[43] Rene Mueller, Jens Teubner, and Gustavo Alonso. 2009. Streams on wires: a query

compiler for FPGAs. PVLDB (2009).
[44] Michael A. Olson, Keith Bostic, and Margo I. Seltzer. 1999. Berkeley DB. ATC

(1999).
[45] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
[46] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob

Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, and Others. 2010. The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM. SIGOPS Op. Sys. Rev. 43, 4 (2010), 92–105.

[47] Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pinar Tözün. 2020. Open-
Channel SSD (What is it Good For).. In CIDR.

[48] Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Donald
Kossmann. 2017. Fast Scans on Key-Value Stores. PVLDB 10, 11 (2017), 1526–1537.

[49] Mendel Rosenblum and John KOusterhout. 1992. The Design and Implementation
of a Log-Structured File System. TOCS 10, 1 (1992), 26–52. https://doi.org/10.
1145/146941.146943

[50] Robert R Schaller. 1997. Moore’s law: past, present and future. IEEE spectrum
(1997).

[51] Justin Sheehy and David Smith. 2010. Bitcask: A Log-Structured Hash Table for
Fast Key/Value Data. Basho White Paper (2010).

[52] V Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, Andrew Good-
ing, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic. 2016. Aerospike: Ar-
chitecture of a real-time operational dbms. Proceedings of the VLDB Endowment
(2016).

[53] Radu Stoica and Anastasia Ailamaki. 2013. Improving Flash Write Performance
by Using Update Frequency. PVLDB 6, 9 (2013), 733–744.

[54] TPC. [n.d.]. Specification of TPC-C benchmark. http://www.tpc.org/tpcc/ ([n. d.]).
[55] WiredTiger. [n.d.]. Source Code. https://github.com/wiredtiger/wiredtiger ([n. d.]).
[56] Aviad Zuck, Sivan Toledo, Dmitry Sotnikov, and Danny Harnik. 2014. Compres-

sion and SSDs: Where and how?. In 2nd Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads ({INFLOW} 14).

2944

https://doi.org/10.1109/TC.2015.2435779
https://doi.org/10.1109/TC.2015.2435779
https://doi.org/10.1145/1629575.1629577
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/2882903.2915219
https://doi.org/10.1145/2882903.2915219
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/1989323.1989327
https://doi.org/10.1145/1989323.1989327
https://doi.org/10.1109/FPL.2016.7577353
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943

