
The Cosmos Big Data Platform at Microsoft: Over a Decade of
Progress and a Decade to Look Forward

Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael Rys, Ed Triou, Dexin Zhu,
Lucky Katahanas, Chakrapani Bhat Talapady, Joshua Rowe, Fan Zhang, Rich Draves, Marc Friedman,

Ivan Santa Maria Filho, Amrish Kumar∗
Microsoft

firstname.lastname@microsoft.com

ABSTRACT
The twenty-first century has been dominated by the need for large
scale data processing, marking the birth of big data platforms such
as Cosmos. This paper describes the evolution of the exabyte-scale
Cosmos big data platform at Microsoft; our journey right from
scale and reliability all the way to efficiency and usability, and our
next steps towards improving security, compliance, and support for
heterogeneous analytics scenarios. We discuss how the evolution
of Cosmos parallels the evolution of the big data field, and how the
changes in the Cosmos workloads over time parallel the changing
requirements of users across industry.

PVLDB Reference Format:
Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael
Rys, Ed Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady,
Joshua Rowe, Fan Zhang, Rich Draves, Marc Friedman, Ivan Santa Maria
Filho, Amrish Kumar. The Cosmos Big Data Platform at Microsoft: Over a
Decade of Progress and a Decade to Look Forward. PVLDB, 14(12): 3148 -
3161, 2021.
doi:10.14778/3476311.3476390

1 INTRODUCTION
The world is one big data problem.
— Andrew McAfee

The last decade was characterized by a data deluge [78] in large
enterprises: from web, to social media, to retail, to finance, to cloud
services, and increasingly even governments, there was an emer-
gence of massive amounts of data with the potential to transform
these businesses and governments by delivering deeper insights
and driving data-driven decisions. Unfortunately, prior tools for
data processing were found to not work for this scale and com-
plexity, leading to the development of several so-called big data
systems. At Microsoft, the big data system development started
with large-scale data extraction, processing, and analytics in Bing,
resulting in a compute and storage ecosystem called Cosmos. Over
the years, Cosmos grew into a mammoth data processing platform
to serve the fast-evolving needs for big data analytics across almost
all business units at Microsoft. Figure 1 illustrates this growth in

∗Equal Contribution from first three authors
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476390

terms of the number of servers, the total logical data before repli-
cation or compression, and the total number of batch SCOPE jobs.
Indeed, we can see a phenomenal growth of 12x, 188x, and 108x on
these three metrics over the course of the last ten years.

In this paper, we look at the tremendous progress in storing
and processing data at scale that has been made at Microsoft. We
trace all the way back to early efforts starting in the early 2000s and
describe how they lead to the Cosmos data processing platform that
has been the analytics backbone of the company for the last decade.
In particular, we highlight the technical journey that was driven
by constantly evolving user needs, starting from store reliability,
running compute over the stored data, developing a declarative
interface, the origins of the SCOPE language, details about SCOPE
input processing, including appends and metadata, job character-
ization and virtual clusters for concurrency, network challenges
seen and the corresponding optimizations, the origins of the SCOPE
query optimizer, and finally, the transactional support in Cosmos.

After the initial years of development, post 2010, the core Cosmos
architecture has remained relatively stable and has been serving a
broad spectrum of analytics needs across the whole of Microsoft,
including products such as Bing, Office, Windows, Xbox, and others.
We describe several aspects of this core architecture, including the
design for hyper-scale processing; compiler re-architecture to align
with the C# specification and semantics; supporting heterogeneous
workloads consisting of batch, streaming, machine learning, and in-
teractive analysis; high machine utilization exceeding 70% in most
cases and 90%+ in many cases as well; and a comprehensive devel-
oper experience including tools for visualization, debugging, replay,
etc., all integrated within the Visual Studio developer environment.
In recent times, Cosmos has further witnessed several technological
advances and has been extended to support several modern needs,
including the need for better efficiency and lower costs, adhering
to newer compliance requirements such as GDPR, embracing open-
source technologies both in the platform and the query processing
layer, and opening to external customers to serve similar analytics
needs outside of Microsoft. We describe these recent extensions
and discuss our experiences from them.

Looking forward, we expect Cosmos to remain a hotbed of in-
novation with numerous current and future directions to address
tomorrow’s analytical needs. Examples include continuing to ad-
dress the challenges around security and compliance; providing an
integrating ecosystem within Cosmos with more flexible resource
allocation and tailored users experiences; better integration with
the rest of the Azure ecosystem to support newer end-to-end sce-
narios; richer analytical models such as sequential and temporal
models for time series, graph models for connected data, and matrix

3148

https://doi.org/10.14778/3476311.3476390
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476390

(a) Number of servers in Cosmos clusters. (b) Data size before compression/replication. (c) Number of batch SCOPE jobs run per day.

Figure 1: The growth of Cosmos infrastructure and workload in the last decade.

models for linear algebra operations; supporting advanced analyti-
cal workloads that are a blend of data science, machine learning,
and traditional SQL processing; providing a Python language head
on top SCOPE; improving developer experience with better uni-
fication, interactivity, and recommendations; optimizing the new
class of small jobs that are now a significant portion of Cosmos
workloads; applying workload optimization to reduce the total cost
of ownership (TCO) for customers; and finally, leveraging the re-
cent advances in ML-for-systems for tuning difficult parameters
and reducing the cost of goods sold (COGS).

Despite the long development history, interestingly, Cosmos
remains very relevant to the modern big data trends in industry.
These include ideas such as “LakeHouse" [6] for better integration
between ETL and data warehousing, “Lake Engine" [22] for ad-
vanced query processing on the data lake itself, “Data Cloud" [75]
for democratizing the scale and flexibility of data processing, and
“Systems-for-ML" for bringing decades of data processing technolo-
gies to the machine learning domain. Therefore, we put Cosmos in
context with these newer industry trends.

In summary, efficiently storing and analyzing big data is a prob-
lem most large enterprises have faced for the last two decades.
Cosmos is the Microsoft solution for managing big data, but many
other companies have built their own internal systems. Most no-
tably, Google built Map Reduce [21] and the Google File System [25]
before moving to Colossus and Google Dataflow [43]. Other com-
panies have built their internal solutions on top of open-source
Hadoop [30], such as Facebook with its Hive-based solution [77],
as well as LinkedIn [76] and Twitter [44] [46]. Many of these in-
ternal solutions have been later offered as big data services to ex-
ternal customers, such as Microsoft Azure Data Lake [50], Google
Dataflow [27], and Amazon Athena [3]. Our goal in this paper is
to share the rich history of Cosmos, describe how the system and
workloads have evolved over the years, reflect on the various design
decisions, describe the next set of transformations we see in the big
data space, and contrast traditional big data systems like Cosmos
with the latest data processing trends in industry. To the best of
our knowledge, this is the first paper discussing both historical
evolution and modern relevance of a production big data system.

The rest of the paper is organized as follows. Section 2 traces
back the origins of Cosmos between 2002-2010, Section 3 describes
the core architecture between 2011-2020, Section 4 describes chal-
lenges and opportunities we see in 2021 and going forward, finally
Section 5 puts Cosmos in context with modern industry trends.

2 THE ORIGINS: 2002-2010
Those who don’t learn history are doomed to repeat
it. — George Santayana

In this section, we delve into the early origins of Cosmos and
describe the various design choices made along the way, in response
to both the customer needs and the operational challenges.

2.1 Storage Efforts
The origins of Cosmos can be traced back to early 2002, with the
need for a reliable and efficient data store. Early efforts included
the XPRESS library for fast compression using LZ77 [89] and op-
tionally adding a Hoffman or other encoding pass, the Lock Free
(LF) library for various components in the store, such as config
manager, object pool, allocator, releaser, etc., and the Replicated
State Library (RSL) [55] as a Paxos [10] implementation to support
dynamic replica set reconfiguration, including dynamic sizing and
cluster healing. These ideas evolved into Cosmos store in 2004 and
the original goal was to achieve a cost efficient, high available, and
high reliable storage solution for user mailboxes in Hotmail.

Cosmos was later incubated in Bing in 2005, then called Live
Search, where the initial code for several components was added,
including extent node (EN) to manage data on a single machine and
communicate with other machines (built on top of NTFS), Cosmos
storage manager (CSM) to keep metadata about streams and extents
in a Paxos-protected ring with seven replicas that keep all meta-
data in RAM, Clientlib interface to call EN and CSM, and Cosmos
Web Service (CWS), to browse directories and streams. The original
design had many JBOD (Just a Bunch of Disks) ENs, 100MB extents
(soon 250MB) compressed and stored in triplicate in different failure
domains, multiple CSM volumes all using the same ENs, a Clientlib,
and the ability to run a distributed computation. There was no
distributed computation framework though, and users had to write
it all by themselves. A distributed CSM was supposed to hide vol-
umes of distributed storage from users but was not in the initial
implementation. Initial customers were Books, Boeing Blueprints,
and Search Logs. In 2007, the CSM, EN, and Clientlib components of
Cosmos were forked into an internal codebase called Red Dog [23],
which later became Azure Storage [12, 17].

2.2 Compute Efforts
In 2006, a Nebula Algebra was developed to run computations on
Cosmos store. The algebra consisted of stages, which had code to
execute, along with inputs and outputs. For example, a join would
have two inputs and one output. A job hooked together the inputs
and outputs of stages to read/write from Cosmos store. Each stage

3149

could have a variable number of vertices, which ran the stage’s
code single-threaded on a particular machine. There was fan-in for
each input and fan-out for each output, mapping the M vertices
from one stage to the N vertices of the next stage. Intermediate
outputs were written as distinctively named files on the machine
where a vertex ran. Users could write an algebra file describing
the stages, and the system could run the distributed job described
by the algebra file. Later, Microsoft developed Dryad [34], which
was a more robust method of managing execution trees that could
retry subtrees on failures, and so the Cosmos team switched to
using Dryad to execute the Nebula algebra. However, authoring
the algebra file was still not easy.

2.3 Declarative Language
The Search team developed P*SQL, meaning Perl-SQL, which gen-
erated a Nebula Algebra file from a SQL-like script with embedded
Perl fragments. The compiler grepped the script for "SELECT",
"FROM", etc., and everything in between was assumed to be Perl.
The Search team used it to mine its logs to find most frequent
queries and responses people clicked on. The earnings helped Cos-
mos pay for itself in a month. The purpose of Cosmos now changed
to running large, distributed jobs instead of just storing data reli-
ably. However, P*SQL was clunky. It just searched for keywords and
assumed the things in between were legal Perl. PSQLv2 smoothed
user experience, but users still struggled to work with the complex-
ities of Perl language. This led to the birth of FSQL, which had F
expressions and supported nested tables.

In 2007, Microsoft invented DiscoSQL[66], which was like P*SQL
but used C# snippets instead of Perl snippets, and it had a GUI that
allowed dragging-and-dropping stages together into an algebra
instead of requiring a script. By default, each statement used the
previous statement’s output as its input. Alternatively, statements
could be assigned to variable names, and those variables could be
used as inputs to multiple later statements. Input streams were bi-
nary, but “extractors" interpreted them as a list of records of known
types; “processors", “reducers", and “combiners" took lists of records
and produced lists of records. Unlike MapReduce [21], combiners
took two input lists of records and produced one output list of
records. “Outputters" took a list of records and translated them
into binary streams. Schemas were embedded in the extractor code
rather than the inputs or the metadata store. Cosmos eventually
standardized on DiscoSQL, which was later renamed SCOPE and
has remained the primary language of Cosmos since then.

2.4 SCOPE Beginnings
Structured ComputationsOptimized for Parallel Execution, or SCOPE,
was initially a grep-for-select language just like P*SQL, but with
C# fragments instead of Perl fragments. It had both a GUI and a
script language. However, development in 2007 and 2008 centered
on just the script language (not the GUI), giving it a well-defined
syntax. The design philosophy of SCOPE was SQL clauses with C#
expressions. Although SQL is not case sensitive, SCOPE was made
case sensitive with all uppercase keywords, to not conflict with C#
("AS" is in SQL while “as" is in C# and SCOPE had to support both).
DiscoSQL already supported user-defined extractors, processors,
reducers, combiners, and outputters. SELECT was added to SCOPE

as syntactic sugar. All types of joins were implemented as internal
combiners. Aggregate functions were implemented on top of reduc-
ers. DefaultTextExtractor and DefaultTextOutputter made reading
and writing tab-separated and comma-separated Cosmos streams
easy. Users loved the C# “yield" statement, so that was used for
user-defined operators to report rows. If an expression had an error,
raising an error would fail the job, which is often too expensive.
Nullable types were added to SCOPE, allowing users to report null
for an erroneous expression, rather than fail the entire job.

The SCOPE language was designed to have a tokenization pass
(lexer) and a parsing pass (grammar). The grammar took a list of
tokens as input, never had to retokenize (tokenizing is expensive).
Tokenization depends on whitespace, but grammar does not. To-
kens remembered the following whitespace (comments count as
whitespace), and their position in the script. The token positions,
and following whitespace, could be used by error messages to point
at where errors were and what the surrounding text was. Compi-
lation figured out how statements were hooked together and split
statements into operations. Optimization rearranged the operations
for improved execution speed, e.g., filtering was done as early as
possible. Internal operations, and even user-defined operations,
could annotate whether various transformations (like pushing fil-
ters earlier) were legal. C# code was generated to implement each
operation. Operations were grouped into stages that could execute
single-threaded on a single machine. The output of compilation
was C# code and a Nebula algebra file that described how stages
are hooked together, and the number of vertices for each stage.

Later, SCOPE started having a dedicated editor that would parse
the SCOPE script and give intellisense suggestions. An experimental
feature annotated the compiled script with line numbers from the
text so that a debugger in Visual Studio could report what line
number in the UDO in a script was causing a problem. SCOPE can
also run over local files on the developer machine.

2.5 Extractors, Appends, & Structured Streams
SCOPE processes inputs using "extractors" that break a byte stream
into records with a well-defined schema. The schema contains C#-
nullable types. SCOPE extractors read whole extents, i.e., the chunks
into which a Cosmos stream is subdivided, and so records could
not span extent boundaries. There was an early bug in the Cosmos
data copying tool that would break the alignment of records along
extent boundaries. This failed customer jobs and inspired them to
design customer extractor UDOs. Users were further motivated to
share these custom UDOs with each other, and thus UDO sharing
quickly became an essential workflow in the Cosmos ecosystem.

Earlier, users would place the libraries into the Cosmos store
and then share the location, but this made it hard to keep the
libraries public while keeping the data private. In recent years, with
the addition of the metadata services (see section 3.9), customers
now can share the code objects using a common pattern. Even the
Cosmos team can provide commonly used user-defined operators
as built-in assemblies. Finally, inputs can either be extracted (each
extractor vertex gets a subset of the stream’s extents), or they can
be resourced (copied as files to every vertex of the job). Copying a
resource to so many vertices could overwhelm Cosmos, so a P2P file

3150

copy service called Databus was used to fan out resources rather
than having each vertex copy them directly.

Cosmos supports both fixed-offset and unknown-offset appends.
In fixed-offset appends, the offset to append at must be known, or
the append fails. Fixed-offset appends will succeed if the data at
that offset is already there and matches the data being appended.
Fixed-offset appends can guarantee no duplicates, but need a single
writer. On the other hand, unknown-offset append cannot avoid
doing duplicate appends, but they can be done in parallel. SCOPE
outputters use fixed-offset appends, each outputter writes its own
extents, and then extents are concatenated together into a final
output stream. This allows SCOPE to produce large, sorted outputs
in parallel, with no duplicates. Appends were limited to 4MB, but in
2010 large appends that could be up to 250MB were implemented.
They did repeat 4MB appends by offset and failed all of them if any
of them failed. Large appends fail more than normal appends, and
they are particularly sensitive to flaky networks.

Finally, SCOPE implemented "structured streams", which tracked
their own metadata in a stream’s final extent. Such streams could
use schema-aware compression. They were automatically affini-
tized into partitions, and extractors read whole partitions. Records
could span extents within a partition because the extractor would
read the extents within a partition sequentially.

2.6 Jobs & Virtual Clusters
SCOPE jobs could be classified as cooking jobs or ad-hoc queries.
Cooking jobs are massive, with the largest at the time being the
daily merging of all clicks and queries from Search. The Search team
put a lot of effort into extractors to interpret the heterogeneous
logs, join click logs with the query logs, and produce clean non-
duplicated outputs. The output of cooking jobs was about as big
as the input, but sorted, cleaned up, and without duplicates. On
the other hand, ad-hoc jobs typically spent 90% of their CPU in
massively parallel extractors. The extract vertices discard most of
the data, aggregate most of the rest, and then later vertices spend a
long time churning that remaining data to produce a final answer
as output. Most of the CPU went into parsing tab-separated-value
files and sorting the results. An example ad-hoc job is to query all
search queries and the links clicked on for the past three months.

Customers also found interesting ways to exploit SCOPE jobs.
For example, some jobs included replacements for the cosmos inter-
nal executables that executed them as resources. Others attempted
to read the internet, or the job vertices used more space, more
CPU, or wrote to disk directly. Still others included applications
for machine learning and model training. Given the unusual ways
customers were using Cosmos, it was challenging to test the impact
of code changes on production jobs. The solution was to implement
"playback" which allowed to recompile and re-run the jobs in pro-
duction environment [82]. We store the metadata for each SCOPE
job in a job repository so that we can verify backward compatibility
and detect performance regressions before deploying new code.

Initially, Cosmos clusters could only execute one job at a time.
This was fine for baking search query logs, but not acceptable for
numerous other scenarios. Therefore, virtual clusters (VCs) were
introduced to allow multiple concurrent jobs (still one job per VC).
VCs also functioned to hide volumes, and a way to hide one user’s

data from another. VCs were given a quota of a fixed number of
machines they could use to execute jobs. A quota of 15 machines
wouldn’t always be the same 15 machines, but only 15 machines at
a time could be executing a VC’s job. The VC Web Server (VCWS)
provided a VC-oriented interface to Cosmos.

2.7 Network Traffic & Optimizations
Early Cosmos cluster networks were woefully underpowered and
minimizing network utilization was a major focus. For example, to
make SCOPE practical, extractor input extents were sorted by the
machines they were on, extents were grouped into vertices, and
vertices were placed so that extractors read almost all the time from
their local machine. This avoided network traffic for extract, which
is where 90% of the data is read and discarded. Likewise, mirror-
ing was added to continuously copy data from one cluster/volume
to another cluster/volume. This was needed to migrate from old
clusters to new ones and rebalance volumes within a cluster. Mir-
roring used the same underlying mechanisms as cross-volume and
cross-cluster concatenate. Another network optimization was to
map the first extent to three random racks, but map later extents
with the same affinity GUID to the same racks. A vertex reading
several affinitized extents could be placed in one of those racks and
would not need cross-rack network to read any of its data. A vertex
joining two affinitized streams could join them by their affinitized
keys without reading cross-rack data. An “Affinity Service” kept
affinity groups in sync across clusters.

Cosmos store also experimented with 2x2 replication (two copies
in one cluster, two in another), but this proved insufficient for
availability during outages. Plain two-replica extents were also
supported, but they lost a trickle of data constantly. Replicas are
lost when servers die, or they need to be reimaged for repairs. Each
extent replica is kept in a separate failure domain, so correlated
hardware failures, such as power failures, do not cause the loss
of every extent replica. When one extent replica is lost, the CSM
creates a new replica to replace it, so data loss occurs when all
replicas are lost within the time window it takes for the CSM to
do this replication. In practice, we observe that these data loss
scenarios occur with two replicas, but not with three replicas.

Other efforts for making the Cosmos store more efficient include
Instalytics [74] for simultaneously partitioning on four different
dimensions with the same storage cost as three replicas, and improv-
ing tail latency for batch workloads in distributed file system [58].

2.8 Query Optimizer
In 2008, the cost-based query optimizer from T-SQL was ported
to optimize the plans for SCOPE queries. SCOPE could query all
streams matching a certain directory and stream name pattern and
treat them as if they were just one big stream. This was vital to
cooking jobs which had to read hundreds of streams written in
parallel for ingested data. It was also vital to ad-hoc jobs reading
weeks’ or months’ worth of cooked streams in date-structured
directories. Internal joins were limited to 1000x1000 results per
matching key. If both sides had over 1000 rows with the same key
value the job failed with an error, but it was fine if one side had 999
rows and the other had 1,000,000. This rule was to prevent small
inputs from causing exceedingly expensive jobs. Combines without

3151

a join key (cross product) were also disallowed for the same reason.
Over time, improvements in the SCOPE optimizer led to numerous
improvements in job execution. SCOPE switched to a grammar-
driven syntax and fully parsed C# expressions. Error messages
improved, user load grew orders of magnitude, some scripts were
thousands of lines long, and many scripts were machine generated.

2.9 Transactional Support
In 2009, a service called Baja was developed on top of the Cosmos
store file system to support ACID transactions. The Baja project
started by forking the partition layer of Azure Storage [12], a ser-
vice that itself had started as a fork of the Cosmos store. Baja added
support for distributed transactions and a distributed event proces-
sor. The initial use case for Baja was to reduce index update times
for Bing from minutes to seconds. This was particularly important
for updating the index for Bing News. The Baja solution was highly
scalable and cheap, so Bing was able to use it for many indexes
beyond News. One of the taglines was "the entire web in one table",
where the key is the URL. Baja supported tables of unlimited size
by implementing an LSM tree on top of Cosmos Structured Streams.
Baja used a custom format for the log but checkpointed the log
to standard Cosmos Structured Streams. A streaming SCOPE job
was then used to do compaction of separate Structured Streams
into a new Structured Stream. Baja was later used to support other
scenarios, outside of Bing indexing, across Microsoft. One major
scenario was Windows telemetry. After a successful run of ten
years, the Baja project evolved into a solution that runs on Bing
servers rather than Cosmos servers.

3 THE CORE DESIGN: 2011-2020
You can’t build a great building on a weak foundation.
— Gordon B. Hinckley

In this section, we describe the core Cosmos architecture that
has remained relatively stable over the last decade. We discuss the
scalable compute and storage design, the modern compiler archi-
tecture in SCOPE, support for a highly heterogenous workload, the
high machine utilization seen in Cosmos, and a relentless focus on
the end-to-end developer experience. We further describe recent ad-
vances, including efforts to improve operational efficiency, making
Cosmos GDPR compliant, bringing big data processing to exter-
nal customers via Azure Data Lake, designing a unified language
(U-SQL) for external customers, and bringing Spark to Cosmos.

3.1 Designing for Scale
Figure 2 shows the core Cosmos architecture. The Cosmos frontend
(CFE) layer is responsible for handling communication between the
Cosmos cluster and the clients 1 . Each CFE server runs a front-end
service, which performs authentication and authorization checks
and provides interfaces for job submission and cluster manage-
ment. If users are authorized to access data and submit jobs to the
Virtual Cluster, the request is sent to Cosmos JobQueue Service
(CJS) 2 . This service is responsible for scheduling a job on the
backend servers based on resource availability and job priority. It
also maintains the job’s status. Once the job priority is satisfied and
resources are available, the CJS sends the request to the SCOPE

compiler service 3 , which carries out job compilation and optimiza-
tion. During compilation, the SCOPE engine also communicates
with Store Metadata service to get more information about data 4 .

The SCOPE compiler generates code for each operator in the
SCOPE script and combines a series of operators into an execution
unit or stage. The job can have many different stages in the job
resulting in task parallelism. All the tasks in a single stage perform
the same computation. The tasks can be scheduled separately and
executed by a single back-end server on different partitions of the
data, resulting in data parallelism of the stage. The compilation
output of a script, therefore, consists of: (1) a graph definition file
that enumerates all stages and the data flow relationships among
them, (2) an unmanaged assembly, which contains the generated
code, and (3) a managed assembly, which contains user assembly
along with other system files. This package is then stored in Cosmos
store and later downloaded on backend servers for job execution.

Once the compilation succeeds, the CJS sends a request to the
YARN resource manager (RM) to schedule the SCOPE Job Man-
ager (JM) on the Cosmos backend servers 5 6 . There is a large
group of backend servers in the cluster that run a Node Manager
(NM) service that is responsible for executing tasks as well as JM.
SCOPE job execution is orchestrated by a JM, which is responsi-
ble for constructing the task graph using the definition sent by
the compiler and the stream metadata 7 . Once it constructs the
physical task graph it starts scheduling work across available re-
sources in the cluster. To scheduling the task, JM fetches the health
information of the servers 8 and requests RM to schedule task on
selected servers 9 . Once the tasks are scheduled 10 , created 11
and started 12 , the JM also continuously monitors the status of
each task, detects failures, and tries to recover from them without
requiring to rerun the entire job. The JM periodically checkpoints
its statistics to keep track of job execution progress. Task or vertex
running on NM can read or write data to local or remote servers 13 .

To ensure that all backend servers run normally, a resource
health monitoring service (RMON) maintains state information for
each server and continuously tracks their health via a heartbeat
mechanism. In case of server failures, the RMON notifies every
RM and JM in the cluster so that no new tasks are dispatched
to the affected servers. As mentioned earlier, the NM service on
each server is also responsible for managing containers that are
ready to execute any assigned task. At execution time, the JM
dispatches a request for resources to the RM to execute a task. The
RM is responsible for finding a worker for task execution in the
cluster. Once the RM sends a response to the JM with the worker
information, the JM submits the request to schedule the task to
the NM service running on the worker. Before executing the task
on the worker, the NM is responsible for setting up the required
execution environment which includes downloading required files
to execute the task. Once the required files are downloaded, the
NM launches the container to execute the task. The JM indicates
whether the output of the task execution should be written as temp
extents on the local server, or to the remote Cosmos store.

To avoid latency impact and to reduce the cost of operation, inter-
active queries follow different execution flow than batch/streaming
queries. Once users send the request to CFE to execute an interac-
tive query 1 , the request is directly sent to SCOPE compiler service

3152

Co
sm

os
 Fr

on
t E

nd

Cosmos JobQueue Service(CJS)

SCOPE Compiler
Service

Resource Health
Monitoring

Store Metadata
Service

Author

Resource Manger
(RM)

Node

Job
Manager

Node
Manager (NM)

10

11

Node..1

Node Manager
(NM)

Priority Queue

Heartbeat

Get Machine
Info

Heartbeat

Vertex

Extend Node

Node..n

Extend Node

Create
Start

Status

Remote Temp Data

Node Manager (NM)

Request
Containers

SCOPE Compiler Service

Schedule.
Launch, kill

Vertex Request
& get update

Shared Metadata
Service

2

3

4

5

1

6

Start
JM/Job
Status

7

8

9

12

13
13

2
3

4

Interactive
Query

Batch
Query

Cosmos
Store

Compilation
artifacts

Job Manger Service
Author

1

10

11

Figure 2: Cosmos Scope architecture in the last decade.

which carries out job compilation and optimization as explained
earlier 2 . After compilation, SCOPE compiler service sends the
job to Job Manger Service 3 that starts orchestrating vertices for
query execution 4 . Job Manager Service differs from JM in han-
dling execution of multiple interactive queries compared to only a
single query. On completion, the result are sent to users.

Cosmos runs on Autopilot [33] as the cluster management frame-
work. Autopilot exposes a virtual data center abstraction that typi-
cally maps one-to-one to a physical data center, although there are
exceptions. Within a virtual data center, Autopilot has the concept
of virtual clusters, which are limited to 40,000 servers each. In 2013,
multiple virtual clusters were stitched together to support Cosmos
clusters larger than 40,000 servers. At that time, we scaled the size
of Cosmos clusters up from 40,000 servers to 55,000 servers. Ini-
tially, virtual clusters that were stitched together were in same data
center, however, later, the same approach was also used to connect
virtual clusters in other data centers to that same Cosmos cluster.
This unlocked support for Cosmos clusters to span multiple data
centers. Today all Cosmos clusters span at least four data centers.

3.2 Compiler Architecture
An incoming SCOPE script goes through a series of transformations
before it is executed. Firstly, the compiler parses the SCOPE script,
unfolds views and macro directives, performs syntax and type
checking, and resolves names. If the SCOPE script contains user
define code like UDFs or UDOs in C#, Python, or Java, then the
appropriate compiler is invoked to compile relevant code. The result
of this step is an annotated abstract syntax tree, which is then
passed to the query optimizer, that generates efficient execution
plans. Below we describe the SCOPE compiler architecture in detail.

SCOPE is a declarative language, with C# and other language
integration. Beyond relational operators, the entire expression lan-
guage, the type system, extensibility model and even user references
are all in terms of C# and .Net assemblies. This was a great win
for Microsoft’s internal .Net users, especially in terms of express-
ibility, but posed great challenges for the original version of the
SCOPE compiler. As a result, the SCOPE compiler (as most compil-
ers) attempted to have its own grammar, rules, binder, expression
handling, and code-generation. Thus, a significant amount of de-
veloper effort was spent to match parity with the C# specification

(even 1.0 for that matter), align C# semantics with the behavior and
generation of the C# compiler itself, let alone trying to keep up with
the ever-evolving versions of .Net and C# language additions (e.g.,
LINQ, lambdas, anonymous types, named parameters, generics).

Later, to gain agility, the compiler needed a major re-architecture,
essentially splitting abstract syntax tree between two concepts: re-
lational (algebra) and scalar (expression) services. Central to this in-
vestment was leveraging the .Net C# compiler services, code-named
Roslyn [69], which was being actively developed in Community
Technology Preview. These are the same C# services, parser, and se-
mantic symbol binding that the C# compiler uses. This was a unique
usage pattern that Roslynwas not designed for; originally optimized
for a single app program on client-side. SCOPE was literally delegat-
ing to it for thousands of independent expression fragments, each
with their own scoping rules, precedence, and relational context.
Likewise, the Cosmos environments stretched Roslyn in terms of
performance, scalability, and cluster-level reliability.

Consequently, the SCOPE compiler now has a modern and more
natural integration with C#, not only from a user perspective but
from the code and architecture itself. The compiler completely
matches the C# specification and the actual C# compiler semantics
bug-for-bug, with much less effort. SCOPE is now able to keep up
with newer versions of .Net as well as C# language version at a
much faster pace than we would have ever imagined, freeing up the
team for other SCOPE language and programmability investments.

3.3 Heterogeneity
The Cosmos stack is designed to support a wide heterogeneity in
workloads. Thanks to adoption across the whole of Microsoft, Cos-
mos needs to support workloads that are representative of multiple
industry segments, including search engine (Bing), operating sys-
tem (Windows), workplace productivity (Office), personal comput-
ing (Surface), gaming (Xbox), etc. To handle such diverse workloads,
the Cosmos approach has been to provide a one-size-fits-all experi-
ence, as illustrated using a block diagram in Figure 3. We discuss
the key heterogeneity characteristics below.

First, to make it easy for the customers to express their compu-
tations, Cosmos provides users a variety of programming language
support, including declarative languages such as SCOPE and Spark

3153

2
Storage &
Transactions

Cosmos Storage Foundation

Structured
Streams

Unstructured
Streams

External
CRUD

Storage
Access

External
Apps

Cluster
Access

Cosmos Front End
(Namespace mapping, Load Balancing, Security, User/Admin Tools/Portal)

Client
Access

Client ToolsDeveloper Environment

Data
Processing

YARN Resource Management

Batch

SCOPE

Interactive Streaming Spark

Queuing &
Job mgmt.

Cosmos Job Queue
(Job Life Cycle Management, Queue, VC Policy, Job Info)

Complex Event Processing

Batch

Approximate

Tables Publications/
Subscription

Parquet/
ORC

SCOPE Spark PythonC# Java Visual Studio Command Line

ML

R

Figure 3: The Cosmos block diagram.

SQL, imperative languages such C# and Java, and data science lan-
guages such as Python and R. Furthermore, users can express all the
above in simple data flow style computation and in the same job for
better readability and maintainability. Cosmos also exposes a rich
set of developer tools both in Visual Studio (coined ScopeStudio)
and command line. Second, to enable different business scenar-
ios, SCOPE supports different types of query processing, including
batch, interactive, approximate, streaming, machine learning, and
complex event processing. Third, SCOPE supports both structured
and unstructured data processing. Likewise, multiple data formats,
including both propriety and open-source such as Parquet, are sup-
ported. Cosmos further support other abstractions such as Tables
and publish/subscribe APIs. Finally, considering the diverse work-
load mix inside Microsoft, we have come to the realization that it is
not possible to fit every scenario using SCOPE. Therefore, we also
support Spark query processing engine. Overall, the one-size-fits-all
query processing experience in Cosmos covers diverse workloads,
data formats, programming languages, and backend engines.

In addition to data processing using SCOPE or Spark, Cosmos
also exposes storage access for CRUD (create, read, update, delete)
operations by external applications. Baja, for example, implemented
a log-structured file system on top of Cosmos to store many small
files with frequent updates. As a result, it could support several new
scenarios on Cosmos, including low latency storage, incremental
processing, high volume data ingress/egress, random reads/writes
with distributed transactions, and low latency event processing in
pub-sub applications (sub-second latency, exactly-once processing,
advanced load balancing, and fault tolerance). These are substan-
tially different than traditional workloads in Cosmos.

Finally, to illustrate the heterogeneity in Cosmos workloads,
Figures 4a—4c show the variance in the size of inputs processed,
the end-to-end latencies, and the number of tasks per SCOPE job.
We can see that the 50th and 90th percentiles vary by four orders of
magnitude for the size of inputs, by almost two orders for the job
latencies, and by more than two orders for the number of tasks, thus
demonstrating a significant variance in SCOPE jobs. Furthermore,
this variance could be up to an order of magnitude different on

different production clusters, each dominated by workloads from
different business units. The Cosmos infrastructure is designed to
handle such heterogeneity in workloads.

3.4 Cluster Utilization
Cosmos has managed to maintain high cluster utilization over the
years. To illustrate, Figure 5 shows the CPU utilization over the last
decade. We can see the utilization hovering between 60% and 90%,
with 70%+ in most of the years. There are several factors that have
contributed to this consistently high utilization.

First, SCOPE engine can aggressively schedule vertices in a
SCOPE job, even more than the maximum resources (called to-
kens [70]) allocated.This is done by leveraging unused resources
from other jobs and repurposing them to opportunistically allocate
vertices in more needy jobs [11]. In case a job requests its originally
allocated resources back, then opportunistically allocated vertices
are killed first. The SCOPE job manager also handles failures grace-
fully by retrying failed vertices multiple times and retrying them
recursively up the dependency chain in case of multiple failures.

Second, a RMON (resource monitor) service in Cosmos captures
the health information of every machine every ten seconds. Job
managers can then query RMON for task utilization on different
machines and push the load aggressively on those machines [11].
This means that there is no limit to the number of tasks that can run
on a machine if resources are available, in contrast to scheduling
a fixed number of containers per machine. RMON also has low
operational overhead with only one instance needed per cluster.

Third, the user-defined operators (UDOs) in SCOPE could be
CPU and memory-intensive. SCOPE allows such UDOs to borrow
resources from other vertices running on the same machine. How-
ever, this is done with certain safeguards in place, e.g., kill the
process beyond certain utilization, such as 20GB. Unfortunately,
CPU and memory cannot be reclaimed by the original vertices.

Finally, the SCOPE engine exploits massive cluster resources
for better performance. This includes better task and data paral-
lelism using cost-based query optimization in SCOPE. As a result,
expensive portions of the SCOPE job, can have large fan-outs, thus
creating many tasks that could boost cluster utilization. Likewise,
streaming SCOPE jobs have a large in-memory state to utilize the
spare memory and avoid spilling to disk.

3.5 Developer Experience
The SCOPE engine supports a diverse workload which includes
batch, interactive, streaming, and machine learning. Thus, the tar-
geted users include developers, data engineers, business analysts,
and data scientists. All of these play a critical role to influence an
organization’s big data strategy and technology choices and thus
having a unified and easy-to-use experience is important. Com-
mon activities for these SCOPE users involve cleansing data, data
aggregation and correlation, building process pipelines, tuning per-
formance and scale, performing analysis queries, and visualizing
results. Furthermore, in addition to authoring their code in the
SCOPE declarative language, users rely on SCOPE extensions in C#,
Python, and R to express their business logic, and therefore tools
that increase productivity for development, debugging and tuning
are important. SCOPE has support for state-of-the-art development

3154

(a) Variane in stream sizes. (b) Variance in job latency. (c) Variance in tasks per job.

Figure 4: The variance in the batch SCOPE jobs in Cosmos.

Figure 5: CPU utilization over the years in Cosmos.

tools in Visual Studio. This tool, called Scope Studio, provides a
comprehensive authoring, monitoring, and debugging experience
for all different kinds of workloads and language extensions. For au-
thoring SCOPE jobs, Scope Studio provides Intellisense [56], which
includes code completion to boost developer productivity. Once
authored, Scope Studio allows users to run a SCOPE job locally or
in a cluster. In both cases, they can see a visual representation of the
job execution graph, along with relevant statistics (vertex counts,
output row counts, latencies, etc.) as the execution progresses.

Bugs in SCOPE scripts are costly because they waste a lot of time
and money, and resolving them is challenging due to the complex
distributed execution environment and the difficulty in correlating
runtimes issues with the highly optimized user scripts. Therefore,
Scope Studio provides various features to make it easy to debug job
failures and performance issues. For instance, static code analysis
is a mature and powerful technique offering the first line of defense
for SCOPE users during deployment. We provide a rule-based static
code analysis tool, which is an analysis framework application
shipped with Visual Studio. Scope Studio also helps in analyzing
job execution, highlighting the bottlenecks, e.g., data skew, and
giving recommendations to resolve them. During job execution,
users can monitor the progress of the job, vertices, stages, as well
as see various execution metrics like number of rows, data size,
time taken, and memory consumed per vertex. Once the job has
finished executing, users can analyze the critical path of the job, run
what-if analysis for resource allocation, debug failed and successful
vertices locally, or replay the entire job execution locally. Cosmos
further stores telemetry from different services for future analysis
to support a variety of offline debugging tasks, using Helios [62]
to efficiently retrieve relevant logs for debugging failures. Another
pain point for developers was to specify and allocate resources used
for their queries. Autotoken [70] addresses this by predicting the
peak usage of recurring jobs and allowing Cosmos to allocate only
the required resources for users.

3.6 Efficiency Efforts
Cosmos has witnessed significant growth in usage over the years,
from the number of customers (starting from Bing to almost ev-
ery single business unit at Microsoft today), to the volume of data
processed (from petabytes to exabytes today), to the amount of
processing done (from tens of thousands of SCOPE jobs to hun-
dreds of thousands of jobs today, across hundreds of thousands of
machines). Even a single job can consume tens of petabytes of data
and produce similar volumes of data by running millions of tasks
in parallel. We considered several optimizations to handle this un-
precedented scale. First, we decoupled and disaggregated the query
processor from the storage and resource management components,
thereby allowing different components in the Cosmos stack to scale
independently [65]. Second, we scaled the data movement in the
SCOPE query processor with better distribution and quasilinear
complexity [20, 64, 86, 87]. This was crucial because data move-
ment is often the most expensive step, and hence the bottleneck, in
massive-scale data processing. Third, we introduced bubble sched-
uling [84] to divide the execution graph into sub-graphs called bub-
bles. Query operators within a bubble stream data between them.
Fourth, we identified opportunities for reusing common computa-
tions in SCOPE jobs and built mechanisms for doing that [36, 37, 73].
Fifth, newer operator fusion techniques were proposed to identify
interesting patterns in query plans and replace them with more
efficient super operator implementations [45]. Sixth, there were
opportunities for more aggressive data filtering [26, 40, 49] and
skipping by creating replicas with heterogenous partitioning and
sorting layouts [74]. And finally, SCOPE introduced sampling and
approximate query processing techniques in Cosmos [39, 41, 83].

Efficiency improvements in the storage layer focused on im-
proving the compression of data. We introduced a stronger default
compression algorithm for data on-write that reduced data at rest
by 30%. We also introduced recompression of data at rest, which al-
lowed us to opportunistically consume spare CPU cycles to do more
CPU-intensive compression that would otherwise incur higher la-
tencies to do on-write. Finally, there were approaches to evaluate
the amount of telemetry loss that could be tolerated [29].

3.7 Compliance Efforts
The General Data Protection Regulation (GDPR) is a European law
that created new requirements for data retention and updatability in
Cosmos. The granularity at which data needs to be deleted for GDPR
meant that we had to add such deletion support to our Cosmos
interface. To support GDPR in Cosmos, an append-only file system,

3155

we added support for Bulk-Updatable Structured Streams (BUSS)
which enabled customers to delete or update individual rows in
their structured data. In 2018, because of the GDPR changes, we
also saw a radical shift in the storage workload for Cosmos. GDPR
changed the cost equation for Cosmos customers to store data, and
we observed many customers electing to delete large portions of
their cold Cosmos data. Deleting older data that was infrequently
accessed increased average IOPS per byte at rest in Cosmos clusters.
This meant supporting the same amount of network traffic and disk
I/O with fewer hard drives, fewer servers, and fewer network links.

3.8 Azure Data Lake
By 2014, more and more external Microsoft customers were looking
for offerings to process their own big data workloads. At that time,
Microsoft offered HDInsight, a managed cluster form factor for the
Hadoop eco-system. Since Cosmos was an easy-to-use platform
as a service (PaaS) that had been successfully scaled to exabytes
of data, we started developing external services called Azure Data
Lake Analytics (ADLA) and Azure Data Lake Storage (ADLS) [65].

Azure Data Lake Storage (ADLS) [65] was a new software stack
designed to support batch processing scenarios of Cosmos as well
as other open-source workloads like Spark and HBase. Security and
integration with Azure were key considerations in the ADLS design
in a way that they had not been in Cosmos. The ADLS architecture
added the Hekaton-based RSLHK metadata service to process high
numbers of transactions needed for real-time applications. While
migrating Cosmos storage onto ADLS, we kept the Cosmos EN and
CSM but shifted many responsibilities of the CSM to the new PSM
and Alki metadata services. This migration paved the way for many
of the security and compliance improvements we are currently
making in Cosmos. It also connected the Cosmos data lake to the
Azure services allowing for seamless integration with Azure. For
example, Cosmos customers can now access their Cosmos data
from HDInsight, Azure Machine Learning, or an Azure VM. They
can also use Azure Data Factory and Azure Event Grid to build
complex workflows across cloud services.

Around the same time that we migrated the storage layer of Cos-
mos to the ADLS stack, we also migrated the resource management
layer to YARN [80]. This migration, discussed at length in [18],
enabled support for open-source engines other than SCOPE inside
of Cosmos clusters. Over the past year, Cosmos users have started
to use Spark inside Cosmos clusters. We expect the Cosmos work-
load to shift towards more open-source workloads in the future
as Azure Synapse [57] makes the user experience for using open
source frameworks on Cosmos easier through notebooks.

3.9 U-SQL
Considering the internal success of the SCOPE engine due to ease
of use, scale, efficiency, and performance, and increased customer
demand for a big data processing and analytics platform as a service,
we decided tomake it available to external customers. Since external
customers expected a language closer to the familiar SQL, we "SQL-
ified" the SCOPE language, and called the resulting language U-SQL
[68]. U-SQL preserved SCOPE’s strengths such as dataflow scripting,
its tight C# integration for scalar expressions and functions as well
as user-defined operators (UDOs), and kept the underlying runtime,

optimizer, and execution framework of the SCOPE engine. However,
U-SQL also introduced several new capabilities as described below.

U-SQL added a highly flexible fileset feature to read from and
write to a large set of files. It also introduced SQL features that
SCOPE (and even many SQL dialects) did not support at the time,
such as PIVOT/UNPIVOT, complex data types such as MAP, UNION
BY NAME to simplify unions of rowsets with partially overlap-
ping schemas, handling of flexible rowset schemas (e.g., SELECT
*.Remove(col11, col450, col555) FROM @rowset), etc. The ad-
dition of a meta-data service provided common database containers
for logical objects such as tables, views, and computational objects
such as table-valued functions, procedures, and a rich assembly
management system that provides rich management capabilities
for the user extensions (including support for user-code debug-
ging) [53] not just in .NET/C# but also Python, R, and Java/Scala.
Furthermore, U-SQL included predefined assemblies that provided
built-in capabilities such as cognitive services for text and image
analysis, JSON/XML support, and support for open-source struc-
tured data formats such as Parquet and ORC.

We released U-SQL as part of Azure Data Lake Analytics [50]
in 2015 [51, 68]. The documentation [54] and the U-SQL release
notes [52] provide a lot more details on its capabilities.

3.10 Spark Support in Cosmos
Cosmos customers were increasingly demanding open-source an-
alytic engines such as Apache Spark [85]. This was motivated by
market trends and the innovations in these engines, particularly
the notebooks and libraries for data science and machine learning.
Given the benefits of the Cosmos platform in terms of low cost, high
scale, and the existing exabyte-sized data estate, we decided that it
would make more sense to bring the open-source experience to Cos-
mos than to build out a completely different processing stack. The
resource management and execution framework in Cosmos that is
based on YARN is now processing both the SCOPE jobs as well as
providing the resources and scheduling of Spark jobs and manag-
ing the Spark clusters that are being created for the Synapse Spark
pools. Of course, we also need to provide interoperability between
the most frequently used data formats. Therefore, as mentioned in
the previous section, SCOPE has added support for Parquet and
ORC, and we have now also added support for reading SCOPE’s
structured stream format in Spark by implementing a Spark data
source connector. Furthermore, we extended SCOPE’s meta-data
service to be shared between SCOPE and Spark. This means that
users can create a managed table in SCOPE that is backed by Par-
quet and read the same table in Spark, for example using SparkSQL.
Since Cosmos customers possess a large set of .NET knowledge and
libraries that they may want to reuse in Spark, support for .NET
for Apache Spark [24] is now also included.

The Magpie [35] project explored automatically choosing the
most efficient analytics engine for different tasks including Spark,
SCOPE, and Azure SQL Data Warehouse. As part of this work, we
looked at which jobs perform better on the Spark engine vs the
SCOPE engine in Cosmos environments. We found that generally
jobs with input sizes below 72 million rows perform better on Spark,
while jobs with larger input sizes perform better on SCOPE.

3156

4 LOOKING AHEAD: 2021 AND BEYOND
The greatest adventure is what lies ahead.
— J.R.R.Tolkien

In this section we describe our current work and planned future
work to address the next set of challenges we see on the horizon
for Cosmos. We expect our future efforts to focus on addressing
fundamentals, efficiency, and the ways in which machine learning
is changing the data systems landscape. The latter comes from both
directions: “systems for ML” and “ML for systems”. Our vision for
ML support in Cosmos is to meet data scientists in their current
programming languages and tooling ecosystem. On the other side
of this coin, there has been a surge of recent literature on applying
ML to improve data-intensive systems. Testing and productionizing
these kinds of optimizations in a stable and debuggable way at scale
is an important challenge for Cosmos going forward. Below we
describe our work in progress to begin tackling these problems.

4.1 Security and Compliance
In the early days of Cosmos, the assumption was that all users are
trusted. Users could read each other’s data and execute arbitrary
code on our backend servers. Over time, as the big data field has
matured, we see high prioritization of security and compliance in
big data systems [2, 8]. Recent efforts in Cosmos towards these ends
include encrypting all data at rest, executing user-defined functions
in secure containers, integrating Azure Active Directory for two-
factor authentication, and moving to just-in-time (JIT) access for
debugging production incidents. A challenge when enabling com-
pliance and security in Cosmos is that we need to ensure that we
maintain the efficiency of the system. We cannot increase the total
cost of ownership or regress the performance of customer jobs.

Data encryption is crucial to our security efforts; however, we see
several challenges with encryption at rest. These include maintain-
ing the current compression ratios on encrypted data, encrypting
existing data in the background invisible to customers, and sharing
encrypted data between customers in a seamless way. Furthermore,
we recompress data at rest in Cosmos for major efficiency advan-
tages. However, this required us to build a new service that could
be trusted to decrypt, recompress, and re-encrypt the data at rest.
Finally, encrypted data is typically incompressible, and so we need
to compress before encrypting, and that may mean compressing
in different parts of the stack than before to ensure the data is en-
crypted end to end. We want to encrypt data as early as possible
to reduce the number of places that decrypted data is around, and
we also want to compress data as early as possible to minimize the
amount of physical data we are moving around.

In summary, Security, compliance, and data governance have
become major priorities for enterprise data lakes [2]. Ensuring se-
curity and compliance while also preserving high efficiency will be
an ongoing focus for Cosmos over the next several years. The emer-
gence of the cloud has created a new set of systems that Cosmos
needs to integrate with, from moving data easily between cloud
services to allowing cloud pipelines to coordinate via events.

4.2 Integrated with Azure Services
The traditional Cosmos approach has been to provide a one-size-
fits-all experience, via an integrated ecosystem around a common

SCOPE processing engine. However, this also complicates the sys-
tem making it unpredictable, less performant, and unreliable. Con-
sidering the diverse workload mix inside Microsoft and the limita-
tions seen in the SCOPE engine, we have come to the realization
that it is not possible to fit all scenarios using SCOPE. Naturally,
this means that we need to level up the integration of Cosmos with
various other Azure services to enable newer end-to-end customer
scenarios. To start with, we plan to invest in the integration of the
SCOPE engine with various other data sources from which it can
read and write data. While today SCOPE only supports persistent
stores like ADLS and Cosmos, we plan to integrate with low la-
tency stores and queuing services like Event Hub and/or Kafka.
We also plan to integrate SCOPE with interactive engines like SQL
on-demand and SQL DW to enable scenarios like dash-boarding,
federated query execution, and reference data lookup.

4.3 Richer Analytical Models
As mentioned earlier, SCOPE supports complex and diverse work-
loads. SCOPE enables users to express business logic using SQL-like
declarative relational language. Still, users often fall back to custom
user code, i.e., user defined operators (UDO) or user define functions
(UDF), in case they are not able to express the business logic in the
high-level declarative language. In fact, around 90% of recurring
jobs consist of at least one UDO inside it. This reflects the fact that
the relational analytical model is not enough for users to express
their business logic. Therefore, going forward we will be investing
in adding a sequential analytical model and a temporal analytical
model to support stateful operations of time-series analysis in the
SCOPE language. Likewise, we need to add native support for graph
and matrix operations in the SCOPE engine. MadLINQ [63] was
an effort in this direction which introduced primitive scalable and
efficient matrix computation in SCOPE. Similarly, there is initial
work on supporting temporal queries in SCOPE [13–15].

4.4 Advanced Workloads
We have witnessed the rise of the data science community in recent
years. Interestingly, in the enterprise setting, this new community
of developers wants to apply newer libraries and algorithms for
model learning while still operating on massive amounts of existing
data. Furthermore, there is often a heavy tail of these data scientists
who don’t need heavy models or deep learning and SCOPE turns
out to be a scalable and low-cost solution for their regression or
classification tasks using popular libraries such as scikit-learn [61].
This is especially true for data that is partitioned andwhere multiple
models can be trained in parallel, something that SCOPE is good at.
For deep learning or other scenarios that need hardware offloading,
we integrate with Azure Machine Learning (AML) to make the
data processed in Cosmos available in AML via the Azure Data
Lake Store (ADLS). The challenge, however, is to keep up with the
rapidly updating machine learning libraries in Python. To carry on
the momentum, we plan to continue our investments in supporting
standardized machine learning frameworks for the above advanced
workload scenarios.

Advanced workloads put pressure on various parts of the system,
including different compute and store requirements from different
workload scenarios, processing inputs from disparate data sources,

3157

which could be data lake, SQL Server, or others, different resource
allocation needs for high and low priorityworkloads, andworkloads
in newer regions, different user experiences that could include
Notebooks or integration in newer IDEs such as VSCode, unlocking
open-source workloads beyond Spark, making data science and
machine learning easy, and providing data provenance applications.
Putting all these together is key to taking the Cosmos integrated
ecosystem to the next level of business and user expectations.

In the past Microsoft has looked into some of these advanced
workloads for scalably processing queries on videos [47, 48], effi-
cient data cleaning algorithms [4], efficiently searching over large
text collections for Bing [67], at scale mapping IP address to geo-
graphical location [19] to mention a few.

4.5 Python Language Head
Python is the topmost programming language according to IEEE,
the most popular language on Stack Overflow, and the second most
popular language on GitHub. Furthermore, Python is becoming
one of the most popular languages not only for data science but
also among data engineers, and traditional developers. Despite the
popularity, scaling Python to large datasets with good performance
remains a challenge. This is in stark contrast to the world of data-
base technologies, where for decades we invested in scalability,
query optimization, and query processing. The work we will be do-
ing in SCOPE will help bring together the ease of use and versatility
of Python environments with highly performant query processing
in the SCOPE engine. As a part of this work, we plan to expose the
popular Python Dataframe API by mapping it to SCOPE operators
under the hood. This will enable pushing large chunks of compu-
tation down to the scalable and efficient SCOPE engine, bringing
the best of Python and scale to customers. Magpie [35] is an initial
effort in this direction that exposes Pandas APIs to users while
pushing expensive computation to scalable database engines.

4.6 Development Experience
Our goal is to have a seamless authoring, debugging, execution,
and monitoring experience for data engineers and data scientists
irrespective of the environment (local or cloud) on which analytical
queries are executed. Traditionally, we have focused only on the
standard development experience (offline authoring, debugging,
and monitoring) and made little investments around the experience
required to address the needs of data scientists and data engineers
which is more along the lines of interactive development. As a next
step, we would focus on interactive development in the language
of choice, blending between cluster and local execution, recom-
mending performance improvements while developing the script,
identical development experience irrespective of the event to in-
sight latency (batch, interactive, ML), and language support to make
integration with other services seamless.

4.7 Small Job Optimization
Cosmos needs to support workloads that are representative of mul-
tiple industry segments, Bing, operating system (Windows), work-
place productivity (Office), personal computing (Surface), gaming
(Xbox), etc. Thus, Cosmos workloads are also complex and diverse.
Furthermore, there is a continuous push from customers to enable

them to domore data processing with the same amount of resources.
Historically, SCOPE optimizer did an excellent job at optimizing
large SCOPE jobs. However, recent analysis shows that 40% of the
SCOPE workload now consists of jobs that run in less than 2 min-
utes. Therefore, we plan to invest in SCOPE (compiler, optimizer,
code generation, operators, communication channel, and scheduler)
to bring down latency for this class of small queries from 2 minutes
to less than 30 seconds. This will be in addition to the continued
investment in improving the large query segment of SCOPE to
further bring down processing hours and query latencies.

4.8 Workload Optimization
The rise of managed data services like Cosmos has made it ex-
tremely difficult for users to manage their workloads, given the
lack of control as well as expertise on a sophisticated data pro-
cessing stack. At the same time, improving operational efficiency
and reducing costs have become paramount in modern cloud en-
vironments to make the infrastructure viable. Consequently, we
are building several features to analyze and optimize end-to-end
customer workloads. An example is to right-size the resource allo-
cation for SCOPE jobs, both in terms of the degree of parallelism
(maximum concurrent containers) as well the memory used in each
of the containers [7, 70, 72]. Another example is to insert check-
points such that the cost to restart failed jobs is minimized. Another
example is to help customers detect the right physical layouts for
their input files [60] or to collect statistics [59] on those files to
create better query plans over those inputs. Or, using past work-
loads for better scheduling decisions [9, 16, 28, 31]. All of these are
hard for customers to figure out, given the complexity and scale of
the workloads. Therefore, we are investing in a common workload
optimization platform that could be leveraged across customers to
optimize their overall workload and to save costs.

4.9 ML-for-Systems
Applyingmachine learning (ML) techniques to optimize data-intensive
systems has received significant attention in recent years [32, 42, 79].
We have investigated the use of machine learning for auto-tuning
many layers of the Cosmos software stack. For example, the SCOPE
query optimizer estimates are often far from ideal, and so we ap-
plied machine learning to learn fine-grained models [38] to improve
estimates such as cardinality [81] and cost models [72], and oth-
ers. Likewise, we also apply ML to tune the underlying platform,
including things such as YARN parameters, power provisioning,
and server resource ratios in Cosmos [88]. And finally, there are
efforts to improve incident management in Cosmos by predicting
the causes of slowdown in recurring jobs in case of an incident [71].
All the above examples have shown great potential to improve the
current state by leveraging and learning from large volumes of past
workloads, and therefore we will continue to invest in them.

5 THE MODERN ANALYTICS LANDSCAPE
It’s always nice to see familiar faces.
— Kyle Walker

The modern data analytics landscape is evolving rapidly [1, 8].
Even the expectations from a data lake are quickly going beyond
daily batch jobs and multi-minute ad-hoc queries, which were some

3158

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Modern SCOPE
Compiler
Structured Streams

SCOPE Job Manager
Bonus Tokens in SCOPE
Extent Affinity
Hot Data Rebalancing

Interactive SCOPE
SCOPE Studio
SCOPE ML

Native Runtime Operators
Apollo Job Manger
Batch Commit
Cross-Datacenter Clusters

StreamSCOPE

SCOPE Workload
Optimization
U-SQL

Python and R
Metadata Service
SCOPE Tables

YARN Resource Manger
Parquet and ORC

GDPR compliance
(Delete and Updates,
Privacy annotations)
Migration to ADLS
Metadata Stack

Spark on Cosmos,
Common Metadata
Service across engines

Temporal Analytical
Model
Encryption of Data at
Rest

2005 2006 2007 2008 20092004

Cosmos Store

Cosmos Incubation in Bing

P-SQL/Disco SQL
Nebula/Dryad

SCOPE

Cost-based
SCOPE optimizer
Temp Store
Logical Clusters

Data Compression

Figure 6: Major Cosmos timelines over the years.

of the original scenarios in Cosmos. Below we discuss and reflect
on some of the newer industry trends and relate them to Cosmos.
From SQL to NoSQL, and all the way back. We have witnessed
the rise and fall of NoSQL systems over the last couple of decades.
The need for massive scale-out, flexible schemas, and arbitrary
user code lead to this new breed of systems. And indeed, close
integration with C# and the ability to express complex business
logic using a variety of user defined operators were some of the key
reasons for the popularity of SCOPE and Cosmos. At the same time,
there has been a continuous shift in this new breed of systems to-
wards more declarative semantics. For SCOPE, this meant building
a sophisticated compiler using Roslyn, introducing newer opera-
tors such as temporal operators, and explicitly SQL-ifying SCOPE
into U-SQL for external customers. This paralleled development in
other systems such as Hadoop and Spark that evolved into Hive
and Spark SQL as their popular declarative query interfaces. Thus,
while the NoSQL movement was instrumental in rallying a large
developer audience, not necessarily database experts, for scalable
data processing, the eventual shift towards declarative interfaces
leads to better developer productivity, system performance, and
maintainability of enterprise codebases.
From Hadoop to Spark ecosystem. Big data processing systems
tend to build an ecosystem for supporting awide variety of analytics
applications. These systems incur large investments and so users
want to get the most out of them. Furthermore, it is impractical
to move large volumes of data around into different systems for
different applications. In the open-source community, it startedwith
the Hadoop ecosystem to support a plethora of data processing
capabilities on top of a common Hadoop Distributed File System.
Over time, Spark has developed a similar ecosystem with better
interactivity and developer productivity. The Cosmos ecosystem
has seen a similar journey where it grew into a one stop shop for
all analytical processing needs within Microsoft.
SCOPE versus Spark SQL. SCOPE has been the query processing
workhorse in Cosmos, however, increasingly Spark has become
highly attractive due to better performance over interactive queries,
better developer productivity with Notebooks, and more compre-
hensive features for building data science applications. As a result,
we have concluded that no one system fits all scenarios, and Cos-
mos now offers Spark along with SCOPE. Interestingly, SCOPE still
offers lower operational costs due to better cluster utilization and
scale-out, as well as tighter C# integration, which is a big advantage
for Microsoft developers. As a result, SCOPE has a niche for exabyte
scale data ingress, cooking, and transformations.

Lake-first and cloud-first. Data lakes and data warehousing are
increasingly more tightly coupled for an end-to-end experience,
including data ingestion, preparation, analysis, reporting, interac-
tive querying, and exploration. This has been coined LakeHouse by
Databricks [5, 6], while Dremio [22] positions as a lake engine that
can provide the above processing on top of the lake. Snowflake [75],
on the other hand, has built a cloud-native data warehousing archi-
tecture, that decouples store and compute and provides unlimited
scaling capabilities similar to a data lake. Cosmos provides a similar
storage disaggregation (ADLS) that can scale independently, and it
supports warehousing either through an interactive engine, called
iSCOPE, or through integration with Microsoft’s warehousing and
reporting tools such as Azure Synapse SQL and PowerBI.
Workflow orchestrators, low-code/no-code. Data analytics is
now accompanied by workflow orchestration tools to help stitch to-
gether, monitor, and maintain end-to-end workflows (e.g., Airflow,
Luigi, Dagster, Prefect, Metaflow, Dask). Along similar lines, sev-
eral workflow engines have been built by Cosmos customer teams
for their needs (e.g., Xflow, Sangam). Azure Data Factory, which
has become the standard for workflow orchestration on Azure, is
now also integrated with Cosmos. There is a further push for low-
code/no-code solutions for business analysts and several internal
tools, such as Aether, provide a low-code and no-code experience.

6 CONCLUSION
In this paper, we discuss the past, present, and future of Cosmos, the
exabyte-scale big data processing platform at Microsoft. Figure 6
summarizes our journey by showing the major timelines in the past
16 years, starting all the way to an early version of Cosmos store,
to developments in SCOPE and cost-based query optimization, to
support for newer workloads via SCOPE ML and StreamSCOPE, to
addressing modern-day challenges such as GDPR, compliance, and
compatibility with open-source software. Starting all the way from
the origins, we saw how customer needs in Cosmos have changed
over time, how the core architecture got stabilized over numerous
iterations, what newer advancements and workload types kept
coming, how we still have a long way and newer challenges ahead
of us, and how Cosmos continues to be relevant and competitive in
the modern data analytics parlance.

ACKNOWLEDGEMENTS
We would like to thank everyone who have helped build Cosmos
over the years, and all who continue to build it today.

3159

REFERENCES
[1] Daniel Abadi, Rakesh Agrawal, Anastasia Ailamaki, Magdalena Balazinska,

Philip A Bernstein, Michael J Carey, Surajit Chaudhuri, Jeffrey Dean, AnHai
Doan, Michael J Franklin, et al. 2016. The Beckman report on database research.
Commun. ACM 59, 2 (2016), 92–99.

[2] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Gowdal,
Matteo Interlandi, Alekh Jindal, Kostantinos Karanasos, Subru Krishnan, Brian
Kroth, et al. 2019. Cloudy with high chance of DBMS: A 10-year prediction for
Enterprise-Grade ML. arXiv preprint arXiv:1909.00084 (2019).

[3] Amazon. 2017. Amazon Athena. https://docs.amazonaws.cn/en_us/athena/latest/
APIReference/athena-api.pdf.

[4] Arvind Arasu, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Raghav Kaushik,
and Vivek Narasayya. 2012. Experiences with using data cleaning technology
for bing services. Data Engineering Bulletin (2012).

[5] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul
Murthy, Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak,
et al. 2020. Delta lake: high-performance ACID table storage over cloud object
stores. Proceedings of the VLDB Endowment 13, 12 (2020), 3411–3424.

[6] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. [n.d.]. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. ([n. d.]).

[7] Malay Bag, Alekh Jindal, and Hiren Patel. 2020. Towards Plan-aware Resource
Allocation in Serverless Query Processing. In 12th {USENIX} Workshop on Hot
Topics in Cloud Computing (HotCloud 20).

[8] Peter Bailis, Juliana Freire, Magda Balazinska, Raghu Ramakrishnan, Joseph M
Hellerstein, Xin Luna Dong, and Michael Stonebraker. 2020. Winds from seattle:
database research directions. Proceedings of the VLDB Endowment 13, 12 (2020),
3516–3516.

[9] Peter Bodík, Ishai Menache, Joseph Naor, and Jonathan Yaniv. 2014. Deadline-
aware scheduling of big-data processing jobs. In Proceedings of the 26th ACM
symposium on Parallelism in algorithms and architectures. 211–213.

[10] W.J. Bolosky, D. Bradshaw, R.B. Haagens, N.P. Kusters, and P. Li. 2011. Paxos
replicated state machines as the basis of a high-performance data store. In
2011 In Proc. NSDI’11, USENIX Conference on Networked Systems Design and
Implementation. 141–154.

[11] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14). 285–300.

[12] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.
2011. Windows Azure Storage: a highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. 143–157.

[13] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014. Trill: A high-
performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment 8, 4 (2014), 401–412.

[14] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, and James F Ter-
williger. 2015. Trill: Engineering a Library for Diverse Analytics. IEEE Data Eng.
Bull. 38, 4 (2015), 51–60.

[15] Badrish Chandramouli, Jonathan Goldstein, and Songyun Duan. 2012. Tempo-
ral analytics on big data for web advertising. In 2012 IEEE 28th international
conference on data engineering. IEEE, 90–101.

[16] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and
Gregory R Ganger. 2020. Unearthing inter-job dependencies for better cluster
scheduling. In 14th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 20). 1205–1223.

[17] Gavin Clarke. 2008. Microsoft’s Red-Dog cloud turns Azure. Retrieved January
22, 2021 from https://www.theregister.com/2008/10/27/microsoft_amazon/

[18] Carlo Curino, Subru Krishnan, Konstantinos Karanasos, Sriram Rao, Giovanni M
Fumarola, Botong Huang, Kishore Chaliparambil, Arun Suresh, Young Chen,
Solom Heddaya, et al. 2019. Hydra: a federated resource manager for data-center
scale analytics. In 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19). 177–192.

[19] Ovidiu Dan, Vaibhav Parikh, and Brian D Davison. 2016. Improving IP geoloca-
tion using query logs. In Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining. 347–356.

[20] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. Clusterjoin: A similarity
joins framework using map-reduce. Proceedings of the VLDB Endowment 7, 12
(2014), 1059–1070.

[21] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data processing
on large clusters. (2004).

[22] Dremio. 2021. Dremio. https://www.dremio.com/data-lake/.
[23] Mary Jo Foley. 2009. Red Dog: Five questions with Microsoft mystery man Dave

Cutler. Retrieved January 22, 2021 from https://www.zdnet.com/article/red-dog-
five-questions-with-microsoft-mystery-man-dave-cutler/

[24] .NET Foundation. 2020. .NET for Apache Spark. https://github.com/dotnet/spark.
[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[26] Christos Gkantsidis, Dimitrios Vytiniotis, Orion Hodson, Dushyanth Narayanan,
Florin Dinu, and Antony Rowstron. 2013. Rhea: automatic filtering for unstruc-
tured cloud storage. In 10th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13). 343–355.

[27] Google. 2015. Google Cloud Dataflow. https://cloud.google.com/dataflow/.
[28] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. {GRAPHENE}: Packing and dependency-aware scheduling for
data-parallel clusters. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). 81–97.

[29] Jayant Gupchup, Yasaman Hosseinkashi, Pavel Dmitriev, Daniel Schneider, Ross
Cutler, Andrei Jefremov, and Martin Ellis. 2018. Trustworthy Experimentation
Under Telemetry Loss. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management. 387–396.

[30] Apache Hadoop. 2005. https://hadoop.apache.org.
[31] Yuxiong He, Jie Liu, and Hongyang Sun. 2011. Scheduling functionally heteroge-

neous systems with utilization balancing. In 2011 IEEE International Parallel &
Distributed Processing Symposium. IEEE, 1187–1198.

[32] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics.. In Cidr, Vol. 11. 261–272.

[33] Michael Isard. 2007. Autopilot: automatic data center management. ACM SIGOPS
Operating Systems Review 41, 2 (2007), 60–67.

[34] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. 59–72.

[35] Alekh Jindal, K Venkatesh Emani, Maureen Daum, Olga Poppe, Brandon Haynes,
Anna Pavlenko, Ayushi Gupta, Karthik Ramachandra, Carlo Curino, Andreas
Mueller, et al. [n.d.]. Magpie: Python at Speed and Scale using Cloud Backends.
([n. d.]).

[36] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. Select-
ing subexpressions to materialize at datacenter scale. Proceedings of the VLDB
Endowment 11, 7 (2018), 800–812.

[37] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc
Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Com-
putation reuse in analytics job service at microsoft. In Proceedings of the 2018
International Conference on Management of Data. 191–203.

[38] Alekh Jindal, Shi Qiao, Rathijit Sen, and Hiren Patel. 2021. Microlearner: A
fine-grained Learning Optimizer for Big Data Workloads at Microsoft. In ICDE.

[39] Srikanth Kandula, Kukjin Lee, Surajit Chaudhuri, and Marc Friedman. 2019.
Experiences with approximating queries in Microsoft’s production big-data
clusters. Proceedings of the VLDB Endowment 12, 12 (2019), 2131–2142.

[40] S. Kandula, L. Orr, and S. Chaudhuri. 2019. Pushing Data-Induced Predicates
Through Joins in Big-Data Clusters. In Proceedings of the VLDB Endowment, 13(3).
252–265.

[41] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily approximating
complex adhoc queries in bigdata clusters. In Proceedings of the 2016 international
conference on management of data. 631–646.

[42] Tim Kraska, Mohammad Alizadeh, Alex Beutel, H Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. Sagedb: A
learned database system. In CIDR.

[43] SPT Krishnan and Jose L Ugia Gonzalez. 2015. Google cloud dataflow. In Building
Your Next Big Thing with Google Cloud Platform. Springer, 255–275.

[44] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryaboy. 2012.
The Unified Logging Infrastructure for Data Analytics at Twitter. Proceedings of
the VLDB Endowment 5, 12 (2012).

[45] Jyoti Leeka and Kaushik Rajan. 2019. Incorporating super-operators in big-data
query optimizers. Proceedings of the VLDB Endowment 13, 3 (2019), 348–361.

[46] Jimmy Lin and Dmitriy Ryaboy. 2013. Scaling big data mining infrastructure:
the twitter experience. Acm SIGKDD Explorations Newsletter 14, 2 (2013), 6–19.

[47] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Optasia: A relational
platform for efficient large-scale video analytics. In Proceedings of the Seventh
ACM Symposium on Cloud Computing. 57–70.

[48] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Visflow: a relational
platform for efficient large-scale video analytics. In ACM Symposium on Cloud
Computing (SoCC).

[49] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating machine learning inference with probabilistic predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data. 1493–1508.

[50] Microsoft. 2015. Azure Data Lake. https://azure.github.io/AzureDataLake/.
[51] Microsoft. 2016. U-SQL. http://usql.io.
[52] Microsoft. 2016. U-SQL Release Notes. https://github.com/Azure/AzureDataLake/

tree/master/docs/Release_Notes.

3160

https://docs.amazonaws.cn/en_us/athena/latest/APIReference/athena-api.pdf
https://docs.amazonaws.cn/en_us/athena/latest/APIReference/athena-api.pdf
https://www.theregister.com/2008/10/27/microsoft_amazon/
https://www.dremio.com/data-lake/
https://www.zdnet.com/article/red-dog-five-questions-with-microsoft-mystery-man-dave-cutler/
https://www.zdnet.com/article/red-dog-five-questions-with-microsoft-mystery-man-dave-cutler/
https://github.com/dotnet/spark
https://cloud.google.com/dataflow/
https://azure.github.io/AzureDataLake/
http://usql.io
https://github.com/Azure/AzureDataLake/tree/master/docs/Release_Notes
https://github.com/Azure/AzureDataLake/tree/master/docs/Release_Notes

[53] Microsoft. 2017. U-SQLData Definition Language. https://docs.microsoft.com/en-
us/u-sql/data-definition-language-ddl-statements.

[54] Microsoft. 2017. U-SQL Language Reference. https://docs.microsoft.com/en-
us/u-sql/.

[55] Microsoft. 2018. Azure RSL. https://github.com/Azure/RSL.
[56] Microsoft. 2018. IntelliSense. https://docs.microsoft.com/en-us/visualstudio/ide/

using-intellisense?view=vs-2019.
[57] Microsoft. 2021. Azure Synapse Analytics. https://azure.microsoft.com/en-

in/services/synapse-analytics/.
[58] Pulkit A Misra, María F Borge, Íñigo Goiri, Alvin R Lebeck, Willy Zwaenepoel,

and Ricardo Bianchini. 2019. Managing tail latency in datacenter-scale file
systems under production constraints. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–15.

[59] Azade Nazi, Bolin Ding, Vivek Narasayya, and Surajit Chaudhuri. 2018. Efficient
estimation of inclusion coefficient using hyperloglog sketches. Proceedings of
the VLDB Endowment 11, 10 (2018), 1097–1109.

[60] Rimma Nehme and Nicolas Bruno. 2011. Automated partitioning design in
parallel database systems. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data. 1137–1148.

[61] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[62] Rahul Potharaju, Terry Kim, Wentao Wu, Vidip Acharya, Steve Suh, Andrew
Fogarty, Apoorve Dave, Sinduja Ramanujam, Tomas Talius, Lev Novik, et al.
2020. Helios: hyperscale indexing for the cloud & edge. Proceedings of the VLDB
Endowment 13, 12 (2020), 3231–3244.

[63] Zhengping Qian, Xiuwei Chen, Nanxi Kang, Mingcheng Chen, Yuan Yu, Thomas
Moscibroda, and Zheng Zhang. 2012. MadLINQ: large-scale distributed matrix
computation for the cloud. In Proceedings of the 7th ACM european conference on
Computer Systems. 197–210.

[64] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman, Hiren Patel, and Jaliya
Ekanayake. 2019. Hyper dimension shuffle: Efficient data repartition at petabyte
scale in scope. Proceedings of the VLDB Endowment 12, 10 (2019), 1113–1125.

[65] Raghu Ramakrishnan, Baskar Sridharan, John R Douceur, Pavan Kasturi, Balaji
Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, MiticaManu, Spiro
Michaylov, Rogério Ramos, et al. 2017. Azure data lake store: a hyperscale
distributed file service for big data analytics. In Proceedings of the 2017 ACM
International Conference on Management of Data. 51–63.

[66] W.D. Ramsey and R.I. Chaiken. U.S. Patent 7,840,585, 2010. DISCOSQL: distributed
processing of structured queries.

[67] Knut Magne Risvik, Trishul Chilimbi, Henry Tan, Karthik Kalyanaraman, and
Chris Anderson. 2013. Maguro, a system for indexing and searching over very
large text collections. In Proceedings of the sixth ACM international conference on
Web search and data mining. 727–736.

[68] Michael Rys. 2015. Introducing U-SQL – A Language that makes Big Data
Processing Easy. https://devblogs.microsoft.com/visualstudio/introducing-u-sql-
a-language-that-makes-big-data-processing-easy/.

[69] Mehrdad Saadatmand. 2017. Towards Automating Integration Testing of. NET
Applications using Roslyn. In 2017 IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C). IEEE, 573–574.

[70] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. Autotoken: Predicting
peak parallelism for big data analytics at microsoft. Proceedings of the VLDB
Endowment 13, 12 (2020), 3326–3339.

[71] Liqun Shao, Yiwen Zhu, Siqi Liu, Abhiram Eswaran, Kristin Lieber, Janhavi
Mahajan, Minsoo Thigpen, Sudhir Darbha, Subru Krishnan, Soundar Srinivasan,
et al. 2019. Griffon: Reasoning about Job Anomalies with Unlabeled Data in Cloud-
based Platforms. In Proceedings of the ACM Symposium on Cloud Computing.
441–452.

[72] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost models for big data query processing: Learning, retrofitting, and our findings.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 99–113.

[73] Yasin N Silva, Paul-Ake Larson, and Jingren Zhou. 2012. Exploiting common
subexpressions for cloud query processing. In 2012 IEEE 28th International Con-
ference on Data Engineering. IEEE, 1337–1348.

[74] Muthian Sivathanu, Midhul Vuppalapati, Bhargav S Gulavani, Kaushik Rajan,
Jyoti Leeka, Jayashree Mohan, and Piyus Kedia. 2019. Instalytics: Cluster filesys-
tem co-design for big-data analytics. In 17th {USENIX} Conference on File and
Storage Technologies ({FAST} 19). 235–248.

[75] Snowflake. 2021. Snowflake Data Cloud. https://www.snowflake.com/.
[76] Roshan Sumbaly, Jay Kreps, and Sam Shah. 2013. The big data ecosystem at

linkedin. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1125–1134.

[77] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain,
Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. 2010. Data warehousing
and analytics infrastructure at facebook. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 1013–1020.

[78] New York Times. 2009. A Deluge of Data Shapes a New Era in Comput-
ing. https://cacm.acm.org/news/54396-a-deluge-of-data-shapes-a-new-era-in-
computing/fulltext.

[79] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). 1009–1024. https://db.cs.cmu.edu/papers/2017/p1009-
van-aken.pdf

[80] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. 2013. Apache hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing. 1–16.

[81] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[82] Ming-Chuan Wu, Jingren Zhou, Nicolas Bruno, Yu Zhang, and Jon Fowler. 2012.
Scope playback: self-validation in the cloud. In Proceedings of the Fifth Interna-
tional Workshop on Testing Database Systems. 1–6.

[83] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded sampling for
analytics on big sparse data. Proceedings of the VLDB Endowment 7, 13 (2014),
1508–1519.

[84] Zhicheng Yint, Jin Sun, Ming Li, Jaliya Ekanayake, Haibo Lin, Marc Friedman,
José A Blakeley, Clemens Szyperski, and Nikhil R Devanur. 2018. Bubble execu-
tion: resource-aware reliable analytics at cloud scale. Proceedings of the VLDB
Endowment 11, 7 (2018), 746–758.

[85] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.

[86] Jingren Zhou, Nicolas Bruno, and Wei Lin. 2012. Advanced partitioning tech-
niques for massively distributed computation. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data. 13–24.

[87] Jingren Zhou, Per-Ake Larson, and Ronnie Chaiken. 2010. Incorporating parti-
tioning and parallel plans into the SCOPE optimizer. In 2010 IEEE 26th Interna-
tional Conference on Data Engineering (ICDE 2010). IEEE, 1060–1071.

[88] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, Conor Power,
Abhishek Modi, Manoj Kumar, Deli Zhang, Kartheek Muthyala, Nick Jurgens,
Sarvesh Sakalanaga, Sudhir Darbha, Minu Iyer, Ankita Agarwal, and Carlo
Curino. [n.d.]. KEA: Tuning an Exabyte-Scale Data Infrastructure. In Proceedings
of the 2021 ACM SIGMOD International Conference on Management of data.

[89] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data compression.
In 1977 𝐼𝐸𝐸𝐸 𝑇 ransactions on information theory, 23(3). 337–343.

3161

https://docs.microsoft.com/en-us/u-sql/data-definition-language-ddl-statements
https://docs.microsoft.com/en-us/u-sql/data-definition-language-ddl-statements
https://docs.microsoft.com/en-us/u-sql/
https://docs.microsoft.com/en-us/u-sql/
https://github.com/Azure/RSL
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2019
https://azure.microsoft.com/en-in/services/synapse-analytics/
https://azure.microsoft.com/en-in/services/synapse-analytics/
https://devblogs.microsoft.com/visualstudio/introducing-u-sql-a-language-that-makes-big-data-processing-easy/
https://devblogs.microsoft.com/visualstudio/introducing-u-sql-a-language-that-makes-big-data-processing-easy/
https://www.snowflake.com/
https://cacm.acm.org/news/54396-a-deluge-of-data-shapes-a-new-era-in-computing/fulltext
https://cacm.acm.org/news/54396-a-deluge-of-data-shapes-a-new-era-in-computing/fulltext
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf
https://db.cs.cmu.edu/papers/2017/p1009-van-aken.pdf

