
Efficient Streaming Subgraph Isomorphism with Graph Neural
Networks

Chi Thang Duong

EPFL

thang.duong@epfl.ch

Trung Dung Hoang

HUST

dungmin97@gmail.com

Hongzhi Yin
∗

The University of Queensland

h.yin1@uq.edu.au

Matthias Weidlich

Humboldt-Universität zu Berlin

matthias.weidlich@hu-berlin.de

Quoc Viet Hung Nguyen

Griffith University

quocviethung.nguyen@griffith.edu.au

Karl Aberer

EPFL

karl.aberer@epfl.ch

ABSTRACT
Queries to detect isomorphic subgraphs are important in graph-

based data management. While the problem of subgraph isomor-

phism search has received considerable attention for the static

setting of a single query, or a batch thereof, existing approaches do

not scale to a dynamic setting of a continuous stream of queries.

In this paper, we address the scalability challenges induced by a

stream of subgraph isomorphism queries by caching and re-use

of previous results. We first present a novel subgraph index based

on graph embeddings that serves as the foundation for efficient

stream processing. It enables not only effective caching and re-use

of results, but also speeds-up traditional algorithms for subgraph

isomorphism in case of cache misses. Moreover, we propose cache

management policies that incorporate notions of reusability of

query results. Experiments using real-world datasets demonstrate

the effectiveness of our approach in handling isomorphic subgraph

search for streams of queries.

PVLDB Reference Format:
Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich,

Quoc Viet Hung Nguyen, and Karl Aberer. Efficient Streaming Subgraph

Isomorphism with Graph Neural Networks. PVLDB, 14(5): 730 - 742, 2021.

doi:10.14778/3446095.3446097

1 INTRODUCTION
Graphs are a natural representation of relations between entities

in complex systems, such as social networks, chemical compounds,

or biological structures [10, 11, 20, 40, 41]. Hence, efficient man-

agement of graph-structured data is of crucial importance in di-

verse domains and subgraph isomorphism queries are an important

means to detect patterns in larger graphs [37, 42, 45]. Specifically,

given a query graph q (i.e., the pattern) and a data graph д, such a

query returns all mappings of nodes of q to nodes of д that preserve

the respective edges. Answering subgraph isomorphism queries

is useful, for instance, to analyze propagation patterns in social

networks or to query protein interactions in protein networks.

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.

doi:10.14778/3446095.3446097

Since the problem of subgraph isomorphism search is NP-Hard,

various heuristics to speed up the search have been proposed [8, 18,

42, 45]. These algorithms have in common that they are based on

measures of node similarity and subgraph similarity. The former

enables conclusions on nodes of the data graph that cannot be

mapped to nodes of the query graph and are, therefore, filtered.

The latter, in turn, is the first step of verifying whether a subgraph

of the data graph is isomorphic to the query graph.

In domains such as social networks, chemistry, or biology, sub-

graph isomorphism queries occur frequently. They are issued con-

currently by many users and systems. For instance, ChemSpider is

a search engine with an API that answers subgraph isomorphism

queries for molecular structures in a database of more than 77

million molecules [7]. Once a stream of queries is considered, the

aforementioned algorithms to subgraph isomorphism search be-

come infeasible. They employ notions of similarity for nodes and

subgraphs that are based on the actual structure of the graphs.

Since the respective structural comparison has a worst-case run-

time complexity ofO(N ! ·N 2) in the size of the graphs [8] for large

query graphs, or O(N k) for small query graphs with k nodes [30],

traditional approaches do not scale to a streaming setting.

For other data models, techniques to process a continuous stream

of queries are commonly addressed using caching strategies. Caching

is possible in these cases as the queries show a large overlap, which

enables re-use of previous results. Examples include techniques

to evaluate queries in web search engines [2, 26, 34] and to an-

swer resource requests in web applications [1, 12, 13]. In either

case, cached query results are re-used when answering subsequent

queries. However, this principle cannot be adopted directly for sub-

graph isomorphism queries, since it was shown empirically that

most existing techniques for structural indexing have an exponen-

tial runtime [22]. Hence, it is infeasible to index the data graph,

or parts thereof, as it would be required for efficient caching and

re-use of query results.

In this paper, we use embeddings as a foundation for the eval-

uation of subgraph isomorphism queries. An embedding maps a

graph to a numerical space, such that structurally-similar nodes

and subgraphs are close to each other [17, 33, 36]. Embeddings

support indexing naturally. Nodes and subgraphs are points in a

high-dimensional space, so that indices for space partitioning, e.g.,

R-tree [16] or kd-tree [9], may be leveraged. Based thereon, similar-

ity computation or nearest neighbor search are realized efficiently.

Using embeddings as the basis for subgraph isomorphism further

enables cache management based on diversity considerations. A

730

https://doi.org/10.14778/3446095.3446097
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446097

diversified cache is more effective since query graphs in a stream

are more likely to be similar to those cached already. However,

diversity-based caching for subgraph isomorphism is infeasible for

traditional structural indexing due to the computational overhead

induced by a structural comparison of query graphs and cached

graphs. Yet, using embeddings, the graph comparisons becomes

fast and accurate, so that our work is the first to propose such

diversity-based cache management for subgraph isomorphism.

To realize the above vision, we define the problem of streaming
subgraph isomorphism and propose a framework for it (§2). We then

instantiate this framework, making the following contributions:

• Graph indexing using embeddings (§3). As the basis for our
work, we propose an indexing mechanism based on node,

edge, and subgraph embeddings. While we incorporate state-

of-the-art techniques for graph representation learning, we

provide a theoretical justification for our mechanism by

showing that the embedding process is similar to Weisfeiler-

Lehman isomorphism testing [31].

• Query stream processing with a cache (§4). Using the indices,

we show how to answer a stream of subgraph isomorphism

queries while exploiting cached results. Specifically, upon

the arrival of a query, similar past queries are identified to

re-used their results. In the case of a cache miss, subgraph

embeddings are exploited to speed up traditional algorithms

for subgraph isomorphism (e.g., TurboISO [18]). In case of a

cache hit, we assess the overlap of the current query with the

cached ones and derive an answer from the cached results.

• Cache management (§5). As the cache size is limited, we

need to control cache admission and eviction. To this end,

we propose a policy that minimizes the number of cache

misses. Compared to traditional policies (LRU [44] or Greedy-

Dual [44]), it assesses the utility of a query result not only

based on processing time, but includes a notion of diversity.

We evaluate our approach using several real-world datasets in §6.

We show that our embedding-based index outperforms structural

indices by two orders of magnitude. When answering subgraph

isomorphism queries, our approach based on caching and re-use of

results leads to runtime improvements of at least 100% over state-

of-the-art algorithms such as MQO [37] and TurboISO [18]. We

review related work in §7 and conclude in §8.

2 MODEL AND APPROACH
2.1 Model
We target the problem of subgraph isomorphism search for undi-

rected, labelled graphs. Let д = (V , E) be a graph with a set of nodes

V and a set of edges E ⊆ V ×V . It is associated with a labeling func-

tion l : V → Σ that captures intrinsic properties of its nodes. If the

alphabet of labels Σ is defined asRk
, i.e., labels are k-dimensional

real vectors, we refer to (д, l) as an attributed graph.

Two attributed graphs (д1, l1) and (д2, l2) are isomorphic, if there
exists an edge-preserving bijective function f : V1 → V2 such

that: (1) ∀ v ∈ V1 : l1(v) = l2(f (v)), and (2) ∀ (v1,v2) ∈ E1 :

(f (v1), f (v2)) ∈ E2. If д1 is isomorphic to an induced subgraph д′
2

of д2, д1 is subgraph isomorphic to д2, written as д1 ⪯ д2. We call

the bijection between д1 and д
′
2
a mapping, and д1 is said to have

a mapping in д2. There may be several mappings of д1 in д2. We

Figure 1: Framework for streaming subgraph isomorphism.

write F (д1,д2) = { f1, f2, . . . , fk } for the set of all mappings. The

subgraph isomorphism problem is to find all mappings F (д1,д2) for
a given pair of graphs.

In graph-based datamanagement, a subgraph isomorphism query

is defined through a query graph q = (V ′, E ′) for which the sub-

graph isomorphism problem shall be solved regarding a data graph
д = (V , E). We target scenarios in which queries arrive continu-

ously. We therefore define a query stream as a sequence of queries,

Q = ⟨q1,q2, . . .⟩, arriving one after another. Each query arrives at

a particular point in time, denoted by qi .t , and the stream is totally

ordered by these time points, i.e., for any two queries qi and qj of
the stream, if i < j then qi .t < qj .t . We denote the finite prefix of

stream Q until index k as Q[k] = ⟨q1, . . . ,qk ⟩. In our setting, the

queries in the stream may overlap or repeat, so that results stored

for previous queries may be re-used.

Query processing incurs a latency, i.e., the time between the

arrival of a query and the time it is answered. Based thereon, we

capture the problem addressed in this paper, as follows:

Problem 1 (Streaming Subgraph Isomorphism).

Given a data graph, the problem of streaming subgraph isomorphism

is to solve the subgraph isomorphism problem for all queries of a query
stream, while minimizing the processing latency.

2.2 Approach
To address the problem of streaming subgraph isomorphism, we

propose a framework that exploits caching strategies. Our idea is

to re-use query results for a large number of the queries in the

query stream, thereby minimizing the processing latency. However,

a realization of this idea raises several research questions: (Q1) how
to index nodes, edges, and subgraphs for efficient caching and re-

use of query results? (Q2) how to answer queries based on cached

results? (Q3) how to manage the result cache? The interplay of these
questions is shown in the illustration of our framework in Fig. 1.

Below, we summarize our techniques to instantiate this framework.

We present a novel method for graph indexing, which speeds

up the search for isomorphic subgraphs. The index is based on

embeddings of nodes, edges, and subgraphs, in which similar nodes,

edges, and subgraphs have similar index values. While the sub-

graph index enables us to identify re-usable query results in a swift

731

manner, the node and edge indices accelerate traditional algorithms

for subgraph isomorphism by pruning the search space.

Our indices serve as a foundation for a novel evaluation algo-

rithm for streaming subgraph isomorphism. It exploits cached re-

sults whenever possible. In case of a cache miss, our node and edge

indices speed up any existing branch-and-bound algorithm used to

solve the subgraph isomorphism problem.

In the light of a limited cache size, we further present policies for

cache management. Specifically, we propose to store only a fixed

amount of results per query to enable uniform retrieval. To guide

cache admission and eviction, we adapt the Landlord algorithm

to the setting of streams of subgraph isomorphism queries, which

results in a high ratio of cache hits.

3 GRAPH INDEXING
This section introduces indices for nodes, edges, and subgraphs

based on graph embeddings. To this end, we first give further back-

ground on embeddings (§3.1). We then introduce approaches to

learn node and edge embeddings (§3.2) and subgraph embeddings

(§3.3). Based there, we define the respective indices (§3.4).

3.1 Background on Embeddings
Embeddings are a model to represent concepts in some numeric

space. Yet, this representation shall be such that semantically related

concepts have close representations, i.e., their geometric relation

in the embedding space encodes their semantic relation. Compared

to symbolic representations that consider each concept as indepen-

dent, embeddings enable conclusions on the relation of the concepts

based on their representations. Moreover, embeddings are succinct

in the sense that with a d-dimensional embedding space (d is called

the embedding size) where the domain of each dimension has size

k , kd concepts can uniquely be described.

In our setting, the embeddings of nodes in a graph that are

structurally similar are vectors that are close to each other. Similarly,

subgraphs of similar structure are assigned close vectors.

3.2 Node and Edge Embeddings
When computing embeddings for nodes, there are two kinds of

semantic information to consider: The labels assigned to nodes

and their connections to other nodes. Assuming that semantically

similar nodes are assigned similar labels, the respective representa-

tion can be incorporated directly in a node embedding. Yet, labels

commonly capture external knowledge, not the graph structure.

Therefore, we follow the idea of message passing neural networks

to enrich the node embeddings with structural information.

Note that we use embeddings as a means to index nodes, edges,

and subgraphs. This is different from traditional graph indexing [5,

25] that relies on subgraphs such as paths, triangles, and cliques

as reference points in graph comparison. Our approach avoids the

need to detect such subgraphs to construct the respective indices.

Message-passing framework. In a Message Passing Neural Net-

work (MPNN) [14], a node representation is created by combining

the representation of its own properties with those of its neigh-

bors, through message-based interactions. A message sent from one

node to its neighbors is constructed based on the node’s current

representation. Since messages are exchanged only between nodes

connected by edges, the graph structure is incorporated. Message

passing happens in several rounds, each involving three steps [11]:

Sending: A nodeu constructs a message in i-th round based on its

representation z
(i)
u . The node sends the message to a set of selected

neighbors using a parameterized function f
(i)
s :m

(i)
u = f

(i)
s (z

(i)
u).

Receiving:Once a nodev receivedmessages from all its neighbors,

denoted by N (v), in a round, it aggregates them using a parameter-

ized function f
(i)
a : z

(i)
N (v) = f

(i)
a ({m

(i)
u ,∀ u ∈ N (v)}).

Updating: A node updates its representation, combining its cur-

rent representation with the aggregated messages:

z
(i+1)
v = f

(i)
u (z

(i)
N (v), z

(i)
u) (1)

An MPNN can be formulated as a function f (д, l), where д is a

graph and l is a labeling function. The function f represents the

combination of the above functions used in the sending, receiving,

and updating steps of all rounds and returns a set of node embed-

dings {zu } for each node in the graph. Note that the parameters of

f need to be learned before the model can be used, though.

Example 1. Given the graph on the left of Fig. 2, an embedding for
node B is created using a 1-layer MPNN as: z(1)B = f

(0)
u (z

(0)

N (B), z
(0)

B)

where z(0)N (B) = f
(0)
a ({ f

(0)
s (z

(0)

C), f
(0)
s (z

(0)

A)}) is the embedding of the
neighborhood of B. In its basic form, function fs of the sending step
is parameterized by a matrixWs , i.e., fs (z) =Wsz. The aggregation
function in the receiving step derives the mean of the node embeddings,
i.e., fa (N (v)) = 1/|N (v)|

˝
u ∈N (v) zu . Function fu of the updating

step is parameterized by a matrixWa , before applying a non-linearity,
i.e., fu (zN (v), zv) = σ (zN (v) + zv)Wa . Based thereon, the node
embedding of B is computed:

z
(1)

B = fu ({m
(0)
u | u ∈ N (B)}, z

(0)

B) = σ ((z
(0)

A Ws+z
(0)

C Ws)/2+z
(0)

B)Wa

Anode-centric view.AnMPNNmay also be viewed from a node’s

perspective. Then, the operations to compute the embedding for

a node u induce a k-layer tree, rooted at u. The embedding of u is

based on the nodes at the i-th layer of the tree, which are neighbors

of u within distance i in the graph. Information at the leaves of the

tree is given by the labels of the respective nodes, which is then

aggregated to the root: The i-th layer employs the parameterized

function fi to aggregate the results of the i+1-th layer.

Node u and its neighbors within distance k induce a subgraph,

called the receptive field of u. The higher the number of rounds

of message passing, the larger the receptive field. The embedding

of u represents a summarization of its receptive field, in terms of

both structure (as message passing follows the graph structure) and

node labels (as messages are constructed initially from node labels).

Example 2. The node-centric view is illustrated in Fig. 2. Given the
graph on the left and using a 2-layer MPNN, the embedding of node
B is constructed by aggregating the embeddings of nodes C and A in
the first layer. These embeddings are, in turn, constructed from the
embeddings of their neighbors. This process is captured by a 2-layer
tree rooted at B.

MPNN and isomorphism testing. The use of MPNN in our set-

ting is theoretically well-grounded, as it is related to the Weisfeiler-

Lehman (WL) isomorphism test [31]. The WL algorithm also pro-

ceeds in rounds and, in the k-th iteration, constructs a node labeling

732

lk : V → Σ by considering the labels assigned to nodes and their

neighbors in the previous iteration. That is, the label of a node v at

the k-th iteration is derived as:

l
(k)
v = h {l

(k−1)
u | u ∈ N (v)}, l

(k−1)
v (2)

where h is a hash function that maps to a new label, not used in

previous iterations. Running the above procedure on two graphs

simultaneously, we can test if they are isomorphic: If in any it-

eration, the constructed node labels differs, the graphs are not

isomorphic [31]. This process is illustrated in Fig. 2.

Example 3. In Fig. 2, right side, labels are visualized by a pattern.
In the first iteration, we construct the label of node C by hashing the
set containing its own label and the labels of its neighbors. The same
is done for node A. The results are used in the 2nd iteration to derive
the label for node B.

The formulations of the MPNN in Eq. 1 and the WL algorithm

in Eq. 2 are similar. Their relationship is formalized as follows.

Theorem 1 (Weisfeiler-Lehman Testing & MPNN). Given a
labeled graph (д, l), let l (k) be the node labeling obtained using the
WL algorithm after k iterations and z(k) be the embeddings obtained
by a k-layer MPNN. Then, with suitable initial embeddings z(0) and
parameterized functions of the MPNN, for all nodes u,v of д, if l (k)u =

l
(k)
v then z(k)u = z

(k)
v .

The above result follows directly from Theorem 1 in [31]. It

shows that the MPNN-based formulation is as strong as the WL

isomorphism test, which provides a theoretical basis for applying

MPNN in our framework for streaming subgraph isomorphism.

However, the WL algorithm and the MPNN differ in how they

represent node labels. The labels derived with theWL algorithm are

symbolic representations, i.e., unrelated symbols. The embeddings

obtained with the MPNN capture semantic relations, so that an

assessment of their similarity is meaningful. In Fig. 2, we distinguish

both representations by color gradients and patterns, respectively.

WL vs. MPNN. Theorem 1 shows that WL and the MPNN have

the same strength to detect graph isomorphism. However, WL

requires defining a hash function to compress a multiset to a label

as shown in Fig. 4. This is problematic, once isomorphism shall be

detected for graphs with unseen properties. Consider Fig. 4, where a

query graph comprises two multisets (1,23) and (3,12) that have not

yet been encountered. WL cannot compress the label and, hence,

cannot conduct the isomorphism test effectively. This issue could

be addressed in three ways: 1) assuming knowledge of all graphs,

a multi-graph WL algorithm is employed to construct all required

hash functions; 2) new labels are assigned to new multisets, which

are then added in the featurization; or 3) hash functions are removed

and the comparison is performed directly on the multiset. While

the first solution is not realistic, the second one incurs many zero

values in the embeddings, so that comparison becomes imprecise.

The third solution incurs significant overhead in terms of processing

time to measure the similarity of multisets. The MPNN, in turn,

can handle new query graphs seamlessly. Intuitively, it compares

multisets, but relies on the embeddings as succinct representations

of fixed size, which renders this comparison more efficient. We later

confirm empirically that WL is computationally more expensive

than the MPNN regarding new queries.

Parameter learning. To learn the parameters of the MPNN, a loss

function needs to be defined. As mentioned, a node embedding

represents a summarization of its receptive field. Hence, we define

a loss function that rewards if similar embeddings are assigned to

similar nodes, i.e., those that are close in the graph:

L(zv) = −loд(σ (z
T
v zu)) −QEun∼Pn (v)loд(σ (−z

T
v zun))

where v is called a positive sample such as u’s neighbor, un is a

negative sample obtained from a negative sampling distribution Pn ,
andQ is the number of negative samples. The above function strives

for similar representations for similar nodes u,v by maximizing

zTv zu , while minimizing zTv zun fosters different representations for

dissimilar nodes v,un . We observe that adding a supervised loss

function to reconstruct the node labels to the unsupervised loss

can also improve the model’s performance.

Edge embeddings. As usual, we construct edge embeddings by

averaging the embeddings of the adjacent nodes. We later show that

edge embeddings are more discriminative than node embeddings as

they enable better pruning of candidates for subgraph isomorphism.

3.3 Subgraph Embeddings
For subgraph embeddings to be meaningful, similar subgraphs shall

have close embeddings and the labels of nodes shall be incorporated.

Moreover, when considering the problem of streaming subgraph

isomorphism, we need to cater for large differences in the sizes of

the assessed graphs. Given a small query graph, there are potentially

very many isomorphic subgraphs in a large data graph [37]. An

embedding shall support a test for isomorphism that is independent

of the specific locations of these subgraphs.

Truncatedmessage-passing for subgraph embedding.Our ap-
proach to embed subgraphs of a labeled graph (д, l) (the data graph,
in our setting) builds on the function Z = f (д, l) that returns em-

beddings for all nodes in д. This model, learned on the whole graph,

captures the graph’s structure in a comprehensive manner. Hence,

for a labeled subgraph (s, l ′), we can project themodel on the respec-

tive nodes and their labels, which yields an embedding Z ′ = f (s, l ′).
Such a projection is akin to truncated message passing, in which

solely the nodes in s send messages to neighboring nodes that are

also in s . Note though that the parameters of the functions used for

sending, receiving, and updating are taken from the MPNN learned

to embed the individual nodes.

Example 4. Fig. 5 illustrates truncatedmessage passing for a graph
of four nodes, A-D, which is a subgraph of the one in Fig. 2. Messages
are exchanged only within the subgraph, but not with node E. Hence,
the tree of operations, rooted at B, does not include E.

The above process yields embeddings for all nodes in a subgraph.

Since each embedding summarizes the node’s receptive field, i.e.,

the subgraph, it is a candidate to represent the whole subgraph.

Against this background, we follow a compositional approach and

average the node embeddings to represent the subgraph.

We additionally propose an approach to construct subgraph

embeddings from edge embeddings. A compositional approach

is adopted by averaging edge embeddings to represent the sub-

graph. This is equivalent to a degree-weighted combination of node

embeddings because: zs =
1

|Es |
˝
(u ,v)∈Es z(u ,v) =

2˝
u∈Vs deд(u)˝

(u ,v)∈Es
zu+zv

2
= 2˝

u∈Vs deд(u)
˝
u ∈Vs deд(u)zu =

˝
u∈Vs deд(u)zu˝
u∈Vs deд(u)

.

733

Figure 2: Message-passing neural network (color gradients represent embeddings)
vs. Weisfeiler-Lehman algorithm (patterns illustrate symbolic representations).

Figure 3: Different, but isomorphic,
graph yields equivalent embeddings.

Figure 4: Embedding generation process by WL.

B

ECA

D

B

C A

B D B D CA

Figure 5: Illustration of truncated message passing.

We later show empirically that edge embeddings lead to better sub-

graph embeddings, as cache management becomes more effective.

Transferringmodels. Themodel learned to embed the nodes (and,

hence, subgraphs) of one graph, may also be transferred to another

graph. In our context, it enables us to apply the model learned for

the data graph д also to a query graph q. Specifically, we derive
the node embeddings Zq = f (q, Lq) of the query graph, which are

then aggregated to obtain an embedding for the whole query graph

using the above process. This way, subgraph embeddings of the

data graph and the embedding of the query graph are constructed

using the same model. Hence, a subgraph of the data graph that is

isomorphic to the query graph has an equivalent embedding.

Example 5. Fig. 3 illustrates the application of the earlier model
to a new graph. Intuitively, the model defines ‘rules’ to combine em-
beddings at different layers. Applying the model to isomorphic graphs,
see Fig. 2 and 3, yields equivalent embeddings.

3.4 Indexing Embeddings
Similarity computation. To assess the structural similarity of

two nodes, or subgraphs, we compute the cosine similarity of their

embeddings. This choice is motivated by the locality property of

the cosine similarity: It emphasizes the immediate neighborhood

of the nodes, independent of their global location in the graph [6].

Indexing high-dimensional embeddings. In our context, the

relative similarity of embeddings is more important than their

absolute similarity. When answering streams of subgraph isomor-

phism queries, it is important to find nearest neighbors in the high-

dimensional embedding space. Since we approach the problem of

subgraph isomorphism based on embeddings, we can rely on a

large body of work on indexing for fast nearest neighbor search

in numeric spaces. Specific examples include R-trees [16] and kd-

trees [9], which have been shown to be efficient and scalable.

Note that these indexing techniques can be applied to cosine

similarity by normalizing each embedding to have a length of one.

In this case, the cosine similarity corresponds to the dot product

between two embeddings, which is negatively correlated with their

Euclidean distance. Moreover, several variants of R-trees and kd-

trees that can handle high-dimensional embeddings have been

proposed [21, 32, 39]. In our experiments, we later adopt an im-

proved version of the kd-tree [39] and also observe that a relatively

small embedding size is sufficient to achieve good performance.

4 QUERY STREAM PROCESSING
This section introduces our approach to answer a stream of sub-

graph isomorphism queries. Our idea is to cache and re-use the

results of past queries to derive a full or a partial answer to the

current query. To identify suitable past queries, we leverage the

subgraph indices introduced above. Specifically, for each answered

queryw , the embedding zw is indexed. Given a new query q with

embedding zq , identify those past queriesw , for which the distance

between the embeddings zw and zq is below a threshold τ . Depend-
ing on whether at least one such queryw is identified, we refer to

the situation as a cache miss or a cache hit, respectively. For either

case, we describe our approach in the remainder of this section.

4.1 Handling Cache Misses
In case of a cache miss, we resort to traditional algorithms for

subgraph isomorphism. These algorithms follow a backtracking

strategy, which explores solutions incrementally, abandoning those

that turn out to be invalid. Alg. 1 illustrates this generic process for

a given query graph q and a data graph д. Here, a crucial step is to

filter candidate structures to map to those of the query graph (line 4).

In the worst case, filtering is invoked an exponential number of

times, in the size of the data graph, since it relies on the current

partial mapping. Hence, the filter step needs to be efficient.

Common subgraph isomorphism algorithmsmatch a query graph

and a data graph based on their nodes. In that case, Ω in line 1 con-

tains the nodes of the data graph and s ′ is the data graph node that

matches the query graph node s according to the filter strategy in

line 4. Depending on the specific algorithm, the filter leverages a

node’s label and degree (Ullmann’s algorithm [42]) or its connec-

tions (VF2 [8] and QuickSI [38]). Yet, simple, efficient strategies

based on a node’s label or degree, tend to be of limited effectiveness.

734

Algorithm 1: Generic search for subgraph isomorphism.

Input :Query graph q; data graph д.
Output :All isomorphic subgraphs of q in д.

1 M = ∅; Ω = EnumerateStructures(д);
2 while |M | <> |q | do
3 s ← GetN extStructure(q);
4 for s ′ ∈ F il terCandidates(s ,M , Ω) do
5 M ← Combine(M , s ′);
6 if M is valid then R ← R ∪ {M };
7 M ← Backtrack ();

8 return R

Algorithm 2: Embedding-based candidate filtering.

Input :Query graph q; data graph structures Ω; model f ; threshold k .
Output :Matching candidates for every structure in q .

1 for s ′ ∈ Ω do
2 zs′ ← f (s ′, L) ; // Conducted offline
3 Z ← Z ∪ {zs′ } ;

4 C← ∅;

5 for s ← GetN extStructure(q) do
6 zs ← f (s , L′); // Conducted online
7 Cs ← kNNSearch(zs , Z , k);
8 C← C ∪ {Cs }

9 return C

Advanced strategies to filter candidates for subgraph isomor-

phism work on the level of subgraphs, not on the level of nodes.

While they are commonly very selective, they also suffer from a

high computational overhead. For instance, QuickSI [38] constructs

minimum spanning trees and GADDI [45] is based on shortest path

computation. These algorithms need to enumerate particular struc-

tures in both, the query and the data graph, which are then used

for similarity computation [38, 45]. This enumeration is expensive,

as it essentially solves another graph isomorphism problem.

Embedding-based pruning.We propose to filter candidate struc-

tures using their embeddings. Specifically, using the model f , sub-
graph embeddings of structures of interest in the data graph are

created (Ω in Alg. 2-line 1). Note that these embeddings are com-

puted offline. For each structure s identified in the query graph

(Alg. 2-line 3), we also construct an embedding. Based thereon, we

identify candidate structures inд for s by extracting k nearest neigh-

bors of zs . Alg. 2 summarizes this idea. First, subgraph embeddings

of д are computed offline (line 1-line 3). Then, for each structure of

interest in q (line 5), the embedding zs is computed online (line 6).

It is used for a k-nearest neighbor search over the embeddings Z of

subgraphs of д (line 7) to obtain candidate structures.

Selecting subgraphs.When searching for isomorphic subgraphs,

pruning of candidate structures is based on different kinds of sub-

graphs, e.g., nodes [8], trees [38], or paths [45]. Smaller and simpler

subgraphs are easier to enumerate, whereas they are less selective.

In our setting, we use 2-node subgraphs (i.e., edges) as the basis for a

pruning strategy. Edges are easy to enumerate while being more dis-

criminative than nodes. Although it is possible to use 3- or 4-node

subgraphs, the exponential growth of the respective subgraphs for

the datasets later used in our experiments, induces severe compu-

tational challenges (e.g. the numbers of 3- or 4-node subgraphs in

Wordnet dataset are more than 3M and 155M, respectively).

The above strategy based on embeddings is orthogonal to other

filtermechanisms. Note that, we later show experimentally that, this

Algorithm 3: Approach to query stream processing.

Input :Data graph д; query graph q = (Vq , Eq) with embedding zq ;
cached query embeddings Z ; neighbors threshold k ; overlap
threshold ω .

Output :Node mapping M for д and q .
1 R ← kNNSearch(zq , Z , k); bestW , bestMap← ∅;
2 forw ∈ R do
3 map← mcs(w , q) ; // Max common subgraph
4 if |map | = |Vq | = |w | then // Case 1
5 return projectMapping(q,w ,map, д);

6 if |map | > |bestMap | then
7 bestW ← w ;

8 bestMap← map;

9 if |bestMap | = |Vq | < |w |) then // Case 2
10 return projectMapping(q,w , bestMap, д);

11 if |bestMap | ≥ |Vq | − ω then // Case 3
12 M ← projectMapping(q, bestW , bestMap, д);
13 return subgraphIsomorphismInitMap(q, д,M)

14 else return subgraphIsomorphism(q, д) ; // Case 4

way, adding our strategy to any subgraph isomorphism algorithm

reduces the number of candidates to consider significantly.

4.2 Handling Cache Hits
Whether the cached results of a past query can be reused for the

current query depends on their overlap. Traditionally, the overlap

between the query graph q and a cached query graph w is deter-

mined by their maximum common subgraph (MCS). The larger the

MCS, the better can the results ofw be reused for q [29]. Yet, MCS

algorithms run in exponential time in the size of the graphs [19].

Hence, the computation of the MCS of the query graph q with every
cached query graph induces a significant performance penalty.

To speed up this process, we propose to limit the MCS computa-

tion to promising cached queriesw , i.e., those that are structurally

similar to q. To this end, we use the subgraph indices introduced in

§3. Specifically, we employ the embeddings of the query graph q
and the cached query graphs to find the k nearest neighbors to q.
While the kNN search can be done efficiently using our index, the

MCS problem needs to be solved solely for k pairs of graphs.

The above steps are the first ones in our general approach to

query stream processing, as formalized in Alg. 3. Once promising

cached queries have been identified by kNN search (line 1), the MCS

is computed for each of them and the query graph (line 3). Based

on the MCS node mapping, we then assess the level of reusability

of the cached results in terms of four cases:

Case 1: When there is an exact match of q and a cached queryw ,

we return the mapping cached forw after projecting it from q tow
andw to д, to obtain a mapping from q to д (line 4).

Case 2: If q is isomorphic with a subgraph of a cached queryw
(line 9), we proceed similarly to the first case and construct the

result through projection of the cached mapping.

Case 3: A cached queryw is said to have a some overlap with the

query q = (Vq , Eq), if their MCS has at least size |Vq | − ω, where ω
is an overlap threshold (line 11). The threshold avoids the re-use

of results with a very small overlap, which would not pay-off due

to the implied overhead. If the overlap is sufficiently large, the

cached mapping, after it has been projected from q tow andw to

д, is only a subset of the mapping between q and д. However, this
partial mapping is useful in the construction of the actual result.

735

Since common algorithms for subgraph isomorphism construct a

mapping by establishing correspondence between nodes, one at a

time, they can incorporate the partial mapping derived from the

cached result as a starting point for the search.

Case 4: If no promising cached queries can be identified (line 14),

we observe a cache miss and resort to the procedure described in

§4.1, i.e., Alg. 1 with embedding-based filtering (Alg. 2).

In our experiments, we observe that a small value of ω leads to

minor differences between a cached query and the current query. In

some cases, the difference is a single node, which is not meaningful.

A largeω reduces the size of the overlap, which increases the time to

detect subgraph isomorphism. In our experiments, we observed that

setting ω to be 10% of |Vq | strikes a good balance of this trade-off.

5 CACHE MANAGEMENT
Since a cache has limited size, cache admission and eviction shall

be managed such that the number of cache misses is reduced and

there is a large overlap between the current and past queries. In this

section, we first discuss our general approach to cache management,

before we turn to the specific policy.

5.1 General Approach
Cache management in our context resembles the problem of online

file caching [44], defined by a cache of fixed size and a sequence

of requests to files with assigned retrieval costs. If a file is not in

the cache, it is retrieved for the assigned cost, while other files are

evicted to make space for it. While such an approach seems useful

also for the problem of streaming subgraph isomorphism, there are

additional requirements that render existing solutions for online

caching to perform poorly in our context.

Cache requirements for streaming subgraph isomorphism.
Traditional online caching assumes that every request needs to be

answered. However, we may shed queries from cache management,

if the incurred delay becomes too large. This provides an additional

degree of freedom for a caching policy. Also, in our context, a query

may be answered partially by a cached result, see §4.2. Hence, a

cache management policy shall consider partial cache hits.

Existing online caching algorithms. While various algorithms

for online caching have been proposed in the literature, most of

which can be described in the framework of the Landlord algo-
rithm [35]. The algorithm assigns a credit to each query to denote

the cost of answering it. Keeping the query in the cache, this answer

cost is saved. Upon the arrival of a new query that does not match

any query in the cache, the credit is decreased for all cached queries.

Queries without any remaining credit are evicted. On the other

hand, when a query is reused, its credit is increased.

The Landlord algorithm does not satisfy the above requirements:

It requires every query to be put into cache and incorporates solely

complete cache hits. Online caching algorithms such as Greedy-

Dual and LRU are instances of the Landlord algorithm, so that they

suffer from the same shortcomings [35].

5.2 Query Utility
The above requirements motivate our design of a new policy for

cache management, which we coin the Screening Landlord (SL)

strategy. It adapts the Landlord algorithm and relies on the utility

of queries to decide on cache admission or eviction. Here, the utility

is both, time-based, to incorporate the effort to answer the query,

and diversity-based, to reflect the query re-usability.

Time-based utility. Three aspects influence the time saved by

keeping a query in the cache. First, the answer time is the time

needed to answer the query and add its results to the cache, which

corresponds to runtime for the fourth case in Alg. 2. The answer

time for a query q, denoted by a(q), is saved in case of cache hit.

Second, the reuse time is the time needed to access and reuse the

cached result for a queryw to answer a query q, denoted by r (q,w).
It captures the overhead induced by the cache, i.e., the runtime

of the first three cases in Alg. 2. Note that the reuse time varies

depending on the size of the overlap of the current query and a

cached query. The larger the overlap, the smaller the reuse time.

Given a query stream Q , the answer time and reuse time are

aggregated per cached queryw as follows:

µt (w) = Σq∈Q ,mcs(q,w)≥ |Vq |−ω [a(q) − r (q,w)] (3)

Here, the condition mcs(q,w) ≥ |Vq | −ω ensures that only the first

three cases of Alg. 2 are considered.

Diversity-based utility. Traditional instances of the Landlord al-

gorithm such as LRU or Recache consider only time and frequency

when determining the utility of cached results [35, 44]. However,

we strive for caching results of queries that can be reused for many

other queries, so that we propose to incorporate a notion of reusabil-

ity. Intuitively, it is not useful to have many ‘similar’ queries in the

cache, as a diverse set of queries increases the chance that results

may be reused for a new query. Therefore, we define a notion of

diversity-based utility based on the average embedding distance

between a queryw and a set C of cached queries:

µd (q) =
1

|C |
Σw ∈Cdist(z,zw) (4)

The above notion of utility, for the first time, incorporates the

diversity of query graphs in cache management. Such an approach

would be extremely hard to realize for traditional, structure-based

indexing: Measuring dis/similarity between query graphs based

on structural properties is computationally expensive and hence,

not suited for cache management. Only once embeddings are used,

cache management that is guided by the diversity considerations

becomes feasible. We later demonstrate empirically that cache di-

versity is indeed beneficial. It increases the number of cache hits

and reduces the answering time significantly.

Combined utility. We combine the above notions to define the

overall utility of a query. While both aspects of utility are important,

we have to acknowledge that they differ in their normalization

factors. Hence, to obtain a meaningful combination, the overall

utility is defined by their product, µ(q) = µt (q)µd (q).

5.3 Utility-based Cache Management
Using the above notions, we present the Screening Landlord al-

gorithm for cache management. Unlike the traditional Landlord

algorithm, it includes screening step that employs two bounds to

decide whether a new query q shall be admitted to the cache.

First, there is an upper bound for the time to process q, given
as a user-defined threshold. If processing q takes longer than this

threshold, the query is not considered for admission to the cache.

This way, the overhead of caching is limited for challenging queries.

736

Algorithm 4: The Screening Landlord algorithm.

1 Proc screeningLandlord(query q , cache C , threshold t):
2 µd (q) ← 1

|C |
˝
w∈C dist (zq , zw);

3 ∆← minw∈C µ(w);
4 τ ← ∆

µd (q)
;

5 Try:
6 s ← current time;

7 process q using Alg. 3;

8 a(q) ← current time − s ;

9 Catch current time − s ≥ t : return ;

10 if a(q) ≥ τ then Add q to cache ;

11 Proc OnInsert(query q):
12 if Cache is full then
13 Evictw with minimum utility;

14 forw ∈ C do µ(w) ← µ(w) − ∆ ;

15 Add q to cache with utility µ(q);

16 Proc OnCacheHit(cached queryw , query q):
17 µ(w) ← µ(w) + a(w) − r (q,w)

Second, there is also a lower bound for the time to process q. It
is derived dynamically from the minimum overall utility of cached

queries and the distance-based utility of q. Specifically, the bound
is the ratio of these values. Intuitively, it defines after which answer

time of q, there is a break-even point, i.e., the overall utility of q is

higher than the minimum utility of a query currently in the cache.

With this general intuition, Alg. 4 formalizes our Screening Land-

lord algorithm. For a new query q, we compute its distance-based

utility µd (q) based on the subgraph embeddings of q and the queries
in the cache C (line 2). We then extract the minimum utility of

cached queries (line 3), before determining the lower bound for the

answer time of q (line 4). That is, the lower bound τ is set based

on the incoming queries and the current cache. Next, query q is

processed using Alg. 3, while monitoring the runtime and aborting

cache management based on a user-defined threshold (lines 5-8). If

query processing finishes before the timeout, the query is admitted

to the cache (line 10). This ensures that the lowest utility in the

cache does not decrease as we process more queries.

When a query shall be added to the cache, space may need to be

made by evicting the cached query with minimum utility (line 13).

Following the Landlord algorithm, once a query is evicted, we

decrease the utility of every cached query by the minimum utility

value (line 14). This way, we ensure that the cache is not saturated.

Without this mechanism, the utility would never decrease, which

would prevent any new admission to the cache.

While processing the query q with Alg. 3, we may reuse the

result of a cached queryw . In this case, we update the utility ofw
according to Eq. 3 (line 17). To obtain the reuse cost of a cached

query w regarding a query q, we measure the runtime to handle

cached results, i.e., the first three cases (lines 3-14) of Alg. 3.

5.4 Further Considerations
Handling cache cold start. Initially, as the cache is empty, no

results can be reused and query processing is slow due to the sub-

graph isomorphism search over the complete data graph. Therefore,

we propose to populate the cache pro-actively in an offline phase

with results from random subgraphs. That is, we randomly select k
diverse nodes in the data graph that are far from each other. Starting

with each of these node, we construct an ego-network which serves

Table 1: Statistics of the datasets.
Dataset |V | |E | #Labels Avg. degree

Yeast 3’101 12’519 71 8.07

Human 4’674 86’282 90 36.92

Wordnet 82’670 127’124 5 3.08

Cora 2’708 5’278 7 3.90

Citeseer 3’327 4’600 6 2.77

Pubmed 19’717 44’324 3 4.5

as a subgraph query for which the results are added to the cache.

As the actual query stream is processed, we expect these surrogate

queries to be evicted from the cache. We confirm the benefits of

populating the cache in this manner with a dedicated experiment.

Minimizing distance computation overhead. To compute the

distance from the new query to the cached queries (line 2 in Alg. 4),

all cached queries need to be traversed. To reduce the induced

overhead, we limit this computation to the k nearest neighbors of

the query. While this yields solely an approximation of the cache

diversity, in practice, the estimates are sufficiently accurate to make

correct decisions about cache eviction and admission.

Result cardinality. Since each query may have a different number

of matching subgraphs, the time to store the query results varies

between queries. We therefore propose to store solely the first k
matching subgraphs, which is akin to displaying the first k results in

information retrieval systems. After examining these initial results,

a users may decide whether the complete query answer shall be

derived. If so, the former results are leveraged, similar to the third

case of our approach to query stream processing in Alg. 3.

6 EVALUATION
In this section, we report on comprehensive evaluation experi-

ments, including experimental setup (§6.1), node embedding (§6.2),

subgraph embedding (§6.3), subgraph isomorphism (§6.4), cache

management (§6.5), and end-to-end comparison (§6.6).

6.1 Experimental setup
Datasets. We used six standard real-world benchmark datasets for

subgraph isomorphism: Yeast, Human, Wordnet, Cora, Citeseer,

and Pubmed. The first three datasets originate from [28, 37]. Yeast

is a protein-protein-interaction (PPI) network with a small average

degree, but a large number of labels. Human is also a PPI network,

but with a large node degree. Wordnet is a graph capturing relations

between English words. It has a small number of labels and a small

node degree. The last three datasets were used in [24, 43] and denote

citation networks. Nodes of these datasets are attributed. Statistics

of the datasets are given in Table 1.

Baselines.We compare our approach against several baselines.

VF2[8]: is the traditional subgraph isomorphism search algorithm.

It is an instance of the generic candidate filtering in Alg. 1, using

only labels and the nodes’ degrees as filtering criteria.

TurboISO[18]: is the state-of-the-art technique for single-query
subgraph isomorphism search. It performs candidate search by

constructing candidate regions which can be match with the query

graphs. During the subgraph search, only candidates in the regions

are considered, which reduces the running time significantly.

MQO[37]: is a state-of-the-art technique for multi-query sub-

graph isomorphism search. It processes queries in batches. For the

737

queries in the same batch, common structures are identified. As

a matching subgraph for a common structure can be used for all

queries in the batch, this reduces the set of candidate nodes.

For graph indexing, we compare our embedding-based approach

with structure-based indices such as GGSX [5] and CTIndex [25].

GGSX uses paths with bounded length as features to compare sub-

graphs. CTIndex identifies both paths and cycles of interest to create

graph fingerprints. Both methods can be seen as manual feature

engineering based on the graph structure, whereas our embedding-

based approach derives features automatically.

For cache management, we compare our policy with LRU [44]

and Recache [3], which are both instances of the Landlord algorithm.

Recache manages a cache based on processing times, while LRU

incorporates the last access time.

Query streams. Our setting of streaming subgraph isomorphism

belongs to the class of multi-query subgraph problems. For such

problems, it is a common evaluation strategy to generate queries

randomly with parameters that control their overlap and repetition.

Specifically, to generate query streams, we follow the generation

process from [28, 37]. Given a number of subgraph familiesm, we

randomly selectm nodes from the data graph of each dataset. For

each node, a core subgraph containing n nodes is derived by a ran-

dom walk. Note that our generation process creates larger queries

than those reported in [28, 37], as this process measured the graph

size by the number of edges. Hence, we derive a more challenging

query workload. We then create query streams by inserting, in each

of them, a core subgraph, before iteratively adding other subgraphs.

With probabilities a,b, c , we add a subgraph previously seen in the

stream, in its original form (a), with nodes added (b), or with nodes

removed (c). With probability d , we add a new core subgraph. This

way, we simulate query streams of different characteristics.

Metrics. As our main metric, we measure the average processing

time over the whole query stream. To compare approaches to cache

management, we also assess the average hit rate.

Implementation and environment.We implemented our model

for graph indexing in Python and used Pytorch for offline training.

The online query evaluation was implemented in C++.

Our experiments were conducted on aworkstationwith a 2.4GHz

CPU and 24GB RAM. We report average results over 20 experimen-

tal runs. Unless stated otherwise, we use a default setting of a query

size of 10, a cache size of 20, a timeout of 100ms, a query stream of

1000 queries and an embedding size of eight.

6.2 Effectiveness of Embeddings in Pruning
To evaluate the benefit of using embeddings in pruning matching

candidates for subgraph isomorphism, we construct a subgraph of

size 20 for every node in the data graph. Hence, for every node

and edge of a subgraph, we know their correct mappings. Then,

we construct embeddings for all the nodes and rank the nodes of

the data graph by their distance to each node of the subgraph. We

repeat the same process for the edges. We measure the percentage

of the reduction of candidate nodes and edges achieved by filtering

based on embeddings. Fig. 6-A shows that using the embeddings,

we are able to filter more than 70% of node candidates and 99% of

edge candidates, which highlights the suitability of embeddings

in this context. We also observe that edge embeddings are more

discriminative than node embeddings, which shows the benefit of

using subgraphs (even with only 2 nodes) as pruning criteria.

yeast
human word. cora cite.

pubmed
0

25

50

75

100

%
 o

f e
xc

lu
de

d
no

de
s node emb edge emb

yeast
human word. cora cite.

pubmed
0

100

200

300

Ti
m

e
(m

s)

w/o emb
w/ node emb
w/ edge emb

Figure 6: Effects of using embeddings.

We further enhance TurboISO with node and edge embeddings

as a candidate filtering strategy (see Alg. 1). In Alg. 1, the more

candidate structures are identified for each structure in the query

graph, the more branches need to be considered in the search. We

therefore evaluate the effectiveness of using embeddings by the

total time required to find the matching subgraph in the data graph.

Fig. 6-B shows that by adding embeddings as a filter strategy, we

reduce the answering time for all datasets, e.g., from 219ms to

178ms to 157ms for the Wordnet dataset by using node and edge

embeddings respectively. The observed benefits are relatively small

for the Human dataset. The reason being the high label diversity

of the dataset. If filtering based on labels is already very effective,

further filtering with embeddings becomes negligible. Given the

effectiveness of edge embeddings, in the following experiments, we

construct subgraph embeddings using edge embeddings.

6.3 Evaluation of Subgraph Embeddings
Subgraph similarity vs. embedding distance. Next, we evalu-
ate whether the embeddings of structurally-similar subgraphs are

indeed close in the embedding space. To measure subgraph similar-

ity, we use two metrics which are the size of the maximum common

subgraph (MCS) and the subgraph edit distance. We create a pair

of subgraphs with edit distance k by first constructing a two-hop

ego graph д from a randomly-selected node in the data graph. We

then remove 1 ≤ k ≤ 7 edges randomly, so that the subgraph is

still connected, to obtain a subgraph д′. As for the size of the MCS,

for each dataset, we randomly extract subgraphs of size 15 from

the data graph. We then select 5000 pairs of subgraphs randomly

and compute the size of its maximum common subgraph. For each

pair, we then construct their subgraph embeddings to measure their

embedding distance. Our hypothesis is that there is a correlation

between the MCS size, edit distances and the embedding distances.

Fig. 7 confirms this hypothesis. When the MCS size increases, the

subgraph embedding distance increases as well. This observation

is consistent over all datasets. The Pearson’s correlation values in

Table 2 confirm that there is a strong correlation between the MCS

size and edit distances and the embedding distances. Hence, the

subgraph embeddings indeed reflect the structural similarity.

Table 2: Pearson’s correlation coefficients.

Yeast Human Wordnet Cora Citeseer Pubmed

MCS size -0.95 -0.93 -0.96 -0.88 -0.87 -0.95

Edit distance 0.99 0.98 0.97 0.99 0.99 0.98

738

2 4 6 8
Maximum common subgraph size

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 e
m

b.
 d

is
ta

nc
e

Yeast
Citeseer

Human
Pubmed

Cora
Wordnet

Figure 7: Embed. distance.

yeast
humanword. cora cite.

pubmed
0

10

20

Ti
m

e
(m

s)

with emb
w/o emb

Figure 8: Search time.

Search performance. To analyze the benefits of using subgraph

embeddings for searching similar subgraphs, for each data graph,

we create 20 random families of 50 subgraphs. Then, for each query,

we use one subgraph to search for the others. We compare our

approach of using subgraph embeddingswith a traditional approach

to search for similar subgraphs based on the graph structure.

Fig. 8 shows a large difference in the observed search times.

There is a consistent improvement, over all datasets, when using

embeddings, with the difference being at least 8ms. For instance,

with subgraph embeddings, we can achieve a speedup of up to

25× on the Wordnet dataset. The reason being that searching for

similar subgraphs is significantly faster in the embedding space.

Structure-based approaches, in turn, require a costly exploration of

the actual graph structure. Note that this experiment uses no cache.

Effectiveness of indexing. We compare our embedding-based

index to structural indices, such as CTIndex or GGSX in terms

of time required to create an index for a subgraph. Note that for

our approach, this is the time required to construct a subgraph

embedding after we already train the model (training time will be

investigated in §6.4). In this experiment, we set the subgraph size

to 15. The experimental results are shown in Table 3. There is a re-

markable difference in the efficiency of structure-based approaches

and our embedding-based index. CTIndex requires at least 17ms to

create an index and on large datasets, such as Human, it would take

1.2s. GGSX performs significantly better than CTIndex with the

indexing time staying below 4ms for most datasets. However, our

method is an order of magnitude faster and constructs an index in

around 0.02ms. These performance results illustrate another benefit

of using embeddings. Note that in this experiment, we evaluate the

indexing component in isolation, without any caching. Hence, the

observed differences stem exclusively from the use of embeddings.

Table 3: Comparison on indexing time (ms).

Yeast Human Wordnet Cora Citeseer Pubmed

CTIndex (0.5kB) 86.63 1235.45 17.48 59.45 76.68 48.5

GGSX

Time 3.085 528.44 0.395 1.867 3.307 1.142

Space 14.01 232.8 0.25 1.18 1.46 0.57

Ours (0.5kB) 0.021 0.0195 0.0219 0.022 0.022 0.023

Turning to space requirements, we first note that we used a

fixed embedding size for both CTIndex and our embeddings with a

similar index size for a fair comparison. As such, CTIndex and our

index both require 0.5kB space. The index size of GGSX, in turn,

depends on the data graph, see Table 3, and ranges from 0.25kB to

232.8kB. We conclude that our index has comparable size to other

approaches, but can be constructed much quicker.

6.4 Parameterized Subgraph Isomorphism
WL vs. MPNN. We compare the quality of embeddings generated

by WL and our MPNN by measuring the correlation between their

embedding distance with the subgraph similarity. We randomly

extract arbitrary subgraphs from the data graph for each dataset.

This is likely to create subgraphs that are not observed in the data

graph as these subgraphs may not be induced subgraphs. Then,

for each pair from a randomly-selected set of subgraph pairs, we

measure the size of their MCS. Fig. 12 confirms our hypothesis

that WL would perform poorly on subgraphs that are observed in

the data graph. MPNN outperforms WL for all datasets, with large

differences emerging for the Yeast and Human datasets. This is

attributed to a high label diversity in both datasets (see Table 1), so

that the generated subgraphs are more likely to be different from

ones in the data graphs. As WL relies on statically determined hash

functions, unseen combinations of labels cannot be handled. For

the other datasets, the labels are more homogeneous, so that most

of the label combinations are already available in the data graphs.

As a result, WL is only slightly worse than MPNN.

yeasthumanword
. cora cite.pubme

d

−0.8

−0.6

−0.4

−0.2

0

C
or
re
la
tio
n

MPNN WL

Figure 12: WL vs. MPNN (lower is better).

To make WL able to handle unseen subgraphs, one may ignore

the hash functions and measure subgraph similarity based on their

multiset representations (see §3.2). We measure the total time re-

quired to compare the similarity for each pair of subgraphs gener-

ated as detailed above. Table 4 shows that comparing subgraphs

based on MPNN embeddings is significantly faster for all datasets,

though. Another interesting observation is that comparing using

the MPNN embedding is robust against changes in the subgraph

sizes. For the case of WL, larger subgraphs require more time for

comparison. The reason is that MPNN embeddings have a fixed size,

whereas WL uses a symbolic representation, whose size increases

with combinations of labels.

Table 4: Time required to compare 1000 subgraph pairs (ms).

Sub. size Yeast Human Wordnet Cora Citeseer Pubmed

WL

10 nodes 38.89 24.56 22.74 26.42 28.01 22.16

20 nodes 85.56 48.54 28.05 45.95 52.76 37.62

MPNN 1.02 1.02 1.03 1.01 1.01 1.02

Training time. To measure the training time, we report the time

to train one epoch of our model. The number of training epochs

can be considered as normalized training time independent of any

infrastructure. From Fig. 13, we observe that the training time per

epoch is very small. The longest training time is around 5s for the

Wordnet dataset. We further observed that the loss converges after

around 10 epochs. This means that the total training time to obtain

a good model is at most 60s. Hence, even with short training time,

we have already obtained a high-quality embedding model.

739

10 30 50
0

250

500

750

#c
ac

he
 h

its

10 30 50
0

250

500

750

10 30 50
Cache size

0

200

400

600

10 30 50
0

200

400

600

LRU Recache Ours

Figure 9: Cache size vs hits.

10 25 50 75 100
775
800
825
850
875
900
925

#c
ac

he
 h

its

Yeast

10 25 50 75 100
800
825
850
875
900
925

Human

10 25 50 75 100
Timeout (ms)

500
550
600
650
700
750
800

Cora

10 25 50 75 100
600
625
650
675
700
725 Citeseer

Ours Recahe LRU

Figure 10: Caching strategy vs hits.

0 500 1000
0

2000
4000
6000
8000

10000

C
um

m
ul

at
iv

e
an

sw
er

in
g

tim
e

(s
)

Yeast

0 500 1000
0

5000
10000
15000
20000
25000 Human

0 500 1000
Query sequence

0
3000
6000
9000

12000 Cora

0 500 1000
0

3000

6000

9000

12000
Citeseer

Ours Recache LRU W/o cache

Figure 11: Caching strategy vs time.

yeast
humanword. cora cite.

pubmed
0

1

2

3

4

5

Ti
m

e
(s

)

Figure 13: Training time.

4 8 16 32 64 128
Embedding size

200

400

600

800

#c
ac

he
 h

its

yeast
citeseer

human
pubmed

cora
wordnet

Figure 14: Robustness.

Sensitivity to number of parameters. Exploring the effect of the
number of parameters in our model, we vary the number of param-

eters by changing the embedding size, as they are closely related.

We measure the model’s performance by the number of cache hits.

Fig. 14 illustrates that a larger embedding size tends to lead to more

cache hits. Yet, the improvement becomes small after an embedding

size of 16. We conclude that our model is relatively robust against

the number of parameters, while having a small embedding size is

commonly sufficient to achieve good performance.

6.5 Effectiveness of Cache Management
Having evaluated the benefits of using embeddings without any

caching, the next set of experiments consider our caching policy.

Effects of cache size. We measure the number of cache hits for

different policies when varying the cache size from 10 to 50. Fig. 9

indicates that, as the cache size increases, all methods are able to ob-

tain more cache hits, as expected. In general, our cachemanagement

strategy outperforms both Recache and LRU, while Recache tends

to yield better results than LRU. For instance, using the Human

dataset with a cache size of 30, Recache improves over LRU with

the difference being 200 hits, while our technique adds further 180

cache hits. Recache performs better than LRU as it considers differ-

ences in the queries’ answer time. We conclude that our approach

of making the cache diverse through a diversity-based notion of

utility helps in achieving more cache hits.

Effects of timeout threshold. In this experiment, we analyze our

caching policy when varying the timeout threshold for a query

from 0.1 to 1 second. Similar to the above experiment, we compare

our approach with LRU and Recache and measure the number of

cache hits. The results in Fig. 10 show that our method performs

best. For instance, we observe an improvement of 14% and 31% on

the Cora dataset over Recache and LRU, respectively.

Evaluation for query streams. Next, we assess the effectiveness
of our caching policy when queries arrive as a stream. Fig. 11 con-

firms the observations made for the case of a single query. That is,

our policy consistently outperforms the baselines over all datasets.

Compared with using no caching at all, an LRU policy, and Recache,

our strategy leads to improvements of 74%, 42%, and 19%, respec-

tively, on the Human dataset at 900 queries. A key observation is

that the gap between our strategy and the baselines widens as we

process more queries. Hence, using our strategy becomes more

beneficial over time, due to increasing cache effectiveness.

10 15 20 25
0

20

40

60

Ti
m

e
(m

s)

10 15 20 25
0

20

40

60

10 15 20 25
0

20
40
60
80

10 15 20 25
0

25
50
75

100

10 15 20 25
Query size

0
100
200
300
400

10 15 20 25
0

500

1000

1500

VF2 TurboISO MQO Ours

Figure 15: Effects of query size.

6.6 End-to-end Comparison
After we evaluated the individual building blocks of our solution

to streaming subgraph isomorphism, we analyze its end-to-end

performance, also in comparison to other techniques.

Comparative analysis.We first compare our approach with tra-

ditional subgraph isomorphism techniques. Table 5 lists the overall

processing times observed for the different datasets. VF2, which is

the traditional approach to subgraph isomorphism, has the worst

performance. TurboISO, which employs more advanced methods

to filter candidate nodes leads to a smaller processing time. It of-

ten also performs better than MQO, which is a batch-processing

technique. However, across all datasets, our technique leads to

processing times that are significantly lower.

The results are interesting in particular in relation to MQO. The

latter constructs structural indices of queries in the same batch

and conducts the search directly on the graph structure. As such,

it is similar to our technique in terms of aiming at reuse through

indexing. Yet, by relying on embeddings, our approach requires

significantly less time to process a query on average.

Effects of query size. Finally, we analyze the impact of the query

size on techniques for subgraph isomorphism search. We vary the

740

Table 5: Comparison of different subgraph isomorphism
search techniques in terms of overall processing time.

Yeast Human Wordnet Cora Citeseer Pubmed

VF2 45.3 33.7 498.2 60.7 66.2 253.1

TurboISO 12.4 29.6 139.5 15.7 12.7 51.4

MQO 16.2 15.4 315.4 29.8 30.1 80.7

Ours 3.7 7.5 114.1 9.6 7.1 31.1

query size from 10 to 25 and measure the average processing time.

Here, our method shows better answering times than the baseline,

see Fig. 15. As expected, the response time increases as the query

size increases. However, for our method, the respective rate is

smaller or on par with the best baseline.

7 RELATEDWORK
Single-query subgraph isomorphism. Many approaches have

been developed to answer a single subgraph isomorphism query,

by leveraging structural equivalence between the query graph and

the data graph. The mapping is usually constructed iteratively,

preserving nodes’ connectivity. VF2 [8] is a traditional algorithm

that instantiates Alg. 1 and constructs a mapping by comparing the

labels and the nodes’ degrees. WaSQ [29] performs rewriting of the

query graph to match structures for which partial mappings are

known and the final mapping is derived from the partial one.

While our focus has been on streaming subgraph isomorphism,

our approach may also be used to answer a single query. The pre-

sented embeddings of nodes can be seen as an additional data

structure to support subgraph search. They serve a similar role as

node labels or node degrees employed by existing techniques to

filter the set of candidate nodes in the construction of a mapping.

Another way to speed up subgraph isomorphism is to identify

features as subgraph indices for comparison [4, 5, 22, 25]. CPI [4]

constructs a data structure called compact path index, which is

similar to a spanning tree,. GGSX [5] considers paths with bounded

lengths (suffix tree) as features. CTIndex [25] uses cycles to create

graph fingerprints. There are several problems with structure-based

indices, though. First, they are not efficient as identifying structure

or motifs in graphs is often a subgraph isomorphism problem in

itself. Second, they often require users to identify which structures

are relevant to the subgraph isomorphism problem. Our embedding-

based index avoids these issues as the embeddings can be learned

efficiently and capture the graph structure in an automatic manner.

Multiple-query subgraph isomorphism. The problem of an-

swering multiple subgraph isomorphism queries at the same time

enables the identification of common structures among the queries,

which provides an angle for optimization as exemplified for SPAQRL

queries over RDF graphs in [27]. This approach divides queries into

groups based on their edge labels, Jaccard similarity, and benefits for

batch optimization. Then, a common subgraph pattern is extracted

per group and the queries are rewritten to comprise the pattern and

optional constraints. A query engine that supports such optional

constraints is used to answer the original queries. MQO [37] tackles

the multi-query subgraph isomorphism search for general graphs.

MQO also groups query graphs that are structurally similar. How-

ever, MQO organizes them in a containment tree, called pattern

containment map (PCM), in which a directed edge connects queries,

where one is a subgraph of the other. Queries are then answered

in a top-down manner with respect to the PCM. This allows MQO

to use mappings of parent queries to derive answers for their child

queries. While MQO is close to our work in terms of striving for

reuse in subgraph isomorphism search, there are several important

differences. First, MQO is cache-oblivious, whereas our approach

heavily relies on caching. Caching makes it possible to reuse not

only immediate results (e.g., in the same batch of queries), but also

potentially all past results. Second, MQO is a batch processing al-

gorithm that processes one set of queries after another one. We

presented a proper stream processing algorithm. Applying MQO

over streams would require to partition the stream into batches,

which is not practical. Third, MQO exploits the structure of query

graphs in the same batch to identify similar queries, which is time-

consuming. By leveraging subgraph embeddings, our approach

handles query graphs more efficiently.

Orthogonal to our work is TurboFlux, a subgraph isomorphism

system for handling a streaming data graph [23]. Here, a standing

query is posed against a data graph for which the structure changes

over time. This is the mirrored case of our setting, in which the

data graph is static and a continuous stream of queries needs to be

evaluated. Another related problem is multi-data-graph subgraph

isomorphism search [46, 47], which finds mappings of a query, not

for one, but several data graphs. Our approach can be extended to

this setting by learning an embedding for each data graph.

Network representation learning.Techniques to construct graph
embeddings are shallow or deep. Shallow approaches [15, 36] start

from random embeddings and move them in a high-dimensional

space, such that a loss function based on the distance between the

embeddings is minimized. Deep approaches such as GNNs [14, 17,

24] start from the node features and perform message passing to

minimize a loss function while updating the embedding. This way,

the embedding of a node also incorporates its neighbors’ features.

While node and graph embeddings are well-studied problems, re-

search on subgraph embedding is still in its infancy. Approaches

such as subgraph2vec [33] are shallow. Hence, they cannot create

subgraph embeddings for graphs that are not known a priori, i.e.,

the queries in streaming subgraph isomorphism. To overcome this

limitation, we presented an approach based on truncated message-

passing, which is a first deep embedding technique for subgraphs.

8 CONCLUSION
In this paper, we proposed an approach to handle subgraph iso-

morphism search for streams of queries. Based on advances in sub-

graph representation learning, we proposed a novel graph indexing

technique. This index provides the foundation for our approach

to streaming graph isomorphism that exploits caching and reuse

of query results. Moreover, we presented a new policy for cache

management that assesses the utility of a query not only based on

processing time, but incorporates a notion of reusability. Experi-

ments with several real-world datasets confirm the efficiency of

our approach and the effectiveness of our design choices.

ACKNOWLEDGMENTS
This work was supported by ARC Discovery Early Career Re-

searcher Award (Grant No. DE200101465).

741

REFERENCES
[1] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan. 2003.

DBProxy: A dynamic data cache for Web applications. In ICDE. IEEE, 821–831.
[2] Aaron Archer, Kevin Aydin, Mohammad Hossein Bateni, Vahab Mirrokni, Aaron

Schild, Ray Yang, and Richard Zhuang. 2019. Cache-aware load balancing of data

center applications. 12, 6 (2019), 709–723.

[3] Tahir Azim, Manos Karpathiotakis, and Anastasia Ailamaki. 2017. Recache:

Reactive caching for fast analytics over heterogeneous data. VLDB 11, 3 (2017),

324–337.

[4] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. Efficient

subgraph matching by postponing cartesian products. In SIGMOD. 1199–1214.
[5] Vincenzo Bonnici, Alfredo Ferro, Rosalba Giugno, Alfredo Pulvirenti, and Dennis

Shasha. 2010. Enhancing graph database indexing by suffix tree structure. In

IAPR-PRIB. Springer, 195–203.
[6] Eduar Castrillo, Elizabeth León, and Jonatan Gómez. 2018. Dynamic Structural

Similarity on Graphs. arXiv preprint arXiv:1805.01419 (2018).
[7] ChemSpider. 2020. ChemSpider Data Sources. www.chemspider.com/

DataSources.aspx.

[8] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. TPAMI 26, 10 (2004),
1367–1372.

[9] Mark De Berg, Otfried Cheong, Marc Van Kreveld, and Mark Overmars. 2008.

Orthogonal range searching: Querying a database. Computational Geometry
(2008), 95–120.

[10] Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung

Nguyen, and Karl Aberer. 2019. On Node Features for Graph Neural Networks.

arXiv preprint arXiv:1911.08795 (2019).
[11] Chi Thang Duong, Hongzhi Yin, Dung Hoang, Minn Hung Nguyen, Matthias

Weidlich, Quoc Viet Hung Nguyen, and Karl Aberer. 2020. Graph Embeddings

for One-pass Processing of Heterogeneous Queries. In ICDE. 1994–1997.
[12] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd Mowry,

Christopher Olston, and Anthony Tomasic. 2008. Scalable query result caching

for web applications. VLDB 1, 1 (2008), 550–561.

[13] Shahram Ghandeharizadeh and Jason Yap. 2013. Cache augmented database

management systems. In DBSocial. 31–36.
[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In ICML. 1263–1272.
[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In KDD. 855–864.
[16] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In SIGMOD. 47–57.
[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS. 1024–1034.
[18] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013. Turboiso: towards

ultrafast and robust subgraph isomorphism search in large graph databases. In

SIGMOD. 337–348.
[19] Xiuzhen Huang, Jing Lai, and Steven F Jennings. 2006. Maximum common

subgraph: some upper bound and lower bound results. BMC bioinformatics 7, 4
(2006), S6.

[20] Thanh Trung Huynh, Chi Thang Duong, Thang Huynh Quyet, Quoc Viet Hung

Nguyen, Abdul Sattar, et al. 2019. Network Alignment by Representation Learning

on Structure and Attribute. In PRICAI. 698–711.
[21] Norio Katayama and Shin’ichi Satoh. 1997. The SR-tree: An index structure for

high-dimensional nearest neighbor queries. ACM Sigmod Record 26, 2 (1997),

369–380.

[22] Foteini Katsarou, Nikos Ntarmos, and Peter Triantafillou. 2015. Performance and

scalability of indexed subgraph query processing methods. VLDB 8, 12 (2015),

1566–1577.

[23] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong,

Hassan Chafi, Hyungyu Shin, and Geonhwa Jeong. 2018. Turboflux: A fast

continuous subgraph matching system for streaming graph data. In SIGMOD.
411–426.

[24] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. NIPS (2016).
[25] Karsten Klein, Nils Kriege, and Petra Mutzel. 2011. CT-index: Fingerprint-based

graph indexing combining cycles and trees. In ICDE. IEEE, 1115–1126.
[26] P-A Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MTCache: Transparent

mid-tier database caching in SQL server. In ICDE. IEEE, 177–188.
[27] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li. 2012.

Scalable multi-query optimization for SPARQL. In ICDE. IEEE, 666–677.
[28] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An

in-depth comparison of subgraph isomorphism algorithms in graph databases.

VLDB 6, 2 (2012), 133–144.

[29] Yongjiang Liang and Peixiang Zhao. 2019. Workload-Aware Subgraph Query

Caching and Processing in Large Graphs. In ICDE. IEEE, 1754–1757.
[30] Dániel Marx and Micha l Pilipczuk. 2014. Everything you always wanted to

know about the parameterized complexity of Subgraph Isomorphism. (2014).

[31] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:

Higher-order graph neural networks. In AAAI, Vol. 33. 4602–4609.
[32] Marius Muja and David G Lowe. 2009. Fast approximate nearest neighbors with

automatic algorithm configuration. VISAPP (1) 2, 331-340 (2009), 2.
[33] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and

Santhoshkumar Saminathan. 2016. subgraph2vec: Learning distributed represen-

tations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928
(2016).

[34] Rifat Ozcan, Ismail Sengor Altingovde, and Özgür Ulusoy. 2011. Cost-aware

strategies for query result caching in web search engines. TWEB 5, 2 (2011),

1–25.

[35] Georgios Paschos, George Iosifidis, and Giuseppe Caire. 2019. Cache Optimization

Models and Algorithms. arXiv preprint arXiv:1912.12339 (2019).
[36] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD. 701–710.
[37] Xuguang Ren and Junhu Wang. 2016. Multi-query optimization for subgraph

isomorphism search. VLDB 10, 3 (2016), 121–132.

[38] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming

verification hardness: an efficient algorithm for testing subgraph isomorphism.

VLDB 1, 1 (2008), 364–375.

[39] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image

descriptor matching. In CVPR. IEEE, 1–8.
[40] Huynh Thanh Trung, Nguyen Thanh Toan, Tong Van Vinh, Hoang Thanh Dat,

Duong Chi Thang, Nguyen Quoc Viet Hung, and Abdul Sattar. 2020. A compara-

tive study on network alignment techniques. ESWA 140 (2020), 112883.

[41] Huynh Thanh Trung, Tong Van Vinh, Nguyen Thanh Tam, Hongzhi Yin, Matthias

Weidlich, and Nguyen Quoc Viet Hung. 2020. Adaptive Network Alignment with

Unsupervised and Multi-order Convolutional Networks. In ICDE. 85–96.
[42] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the

ACM (JACM) 23, 1 (1976), 31–42.
[43] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2018. Deep graph infomax. ICLR (2018).

[44] Neal E Young. 2008. Online paging and caching. (2008).

[45] Shijie Zhang, Shirong Li, and Jiong Yang. 2009. GADDI: distance index based

subgraph matching in biological networks. In EDBT. 192–203.
[46] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. 2007. Graph indexing: Tree+

Delta>= Graph.. In VLDB, Vol. 7. 938–949.
[47] Yuanyuan Zhu, Lu Qin, Jeffrey Xu Yu, and Hong Cheng. 2019. Answering Top-k

Graph Similarity Queries in Graph Databases. TKDE (2019).

742

www.chemspider.com/DataSources.aspx
www.chemspider.com/DataSources.aspx

