Cosine: A Cloud-Cost Optimized
Self-Designing Key-Value Storage Engine

Subarna Chatterjee
Harvard University
subarna@seas.harvard.edu

Wilson Qin
Harvard University
wilson@seas.harvard.edu

ABSTRACT

We present a self-designing key-value storage engine, Cosine, which
can always take the shape of the close to “perfect” engine architec-
ture given an input workload, a cloud budget, a target performance,
and required cloud SLAs. By identifying and formalizing the first
principles of storage engine layouts and core key-value algorithms,
Cosine constructs a massive design space comprising of sextil-
lion (10%) possible storage engine designs over a diverse space of
hardware and cloud pricing policies for three cloud providers —
AWS, GCP, and Azure. Cosine spans across diverse designs such as
Log-Structured Merge-trees, B-trees, Log-Structured Hash-tables,
in-memory accelerators for filters and indexes as well as trillions of
hybrid designs that do not appear in the literature or industry but
emerge as valid combinations of the above. Cosine includes a uni-
fied distribution-aware I/O model and a learned concurrency-aware
CPU model that with high accuracy can calculate the performance
and cloud cost of any possible design on any workload and virtual
machines. Cosine can then search through that space in a matter of
seconds to find the best design and materializes the actual code of
the resulting storage engine design using a templated Rust imple-
mentation. We demonstrate that on average Cosine outperforms
state-of-the-art storage engines such as write-optimized RocksDB,
read-optimized WiredTiger, and very write-optimized FASTER by
53x, 25x, and 20x, respectively, for diverse workloads, data sizes, and
cloud budgets across all YCSB core workloads and many variants.

PVLDB Reference Format:

Subarna Chatterjee, Meena Jagadeesan, Wilson Qin, and Stratos Idreos.
Cosine: A Cloud-Cost Optimized Self-Designing Key-Value Storage Engine.
PVLDB, 15(1): 112 - 126, 2022.

doi:10.14778/3485450.3485461

1 REASONING ABOUT CLOUD COSTS

Application Diversity. Key-value stores [71, 72, 87] serve as the
storage backbone for a wide range of applications such as graph pro-
cessing in social media [27, 59], event log processing [42], web ap-
plications [119], and online transaction processing [98]. Relational

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485461

112

Meena Jagadeesan
Harvard University
mjagadeesan@seas.harvard.edu

Stratos Idreos
Harvard University
stratos@seas.harvard.edu

What is the optimal storage engine for any
combination of workloads, data, and cloud cost? empty range

+ insert

rmw +
get range + non-empty
blind update range + get
+ get

massive number of Wird
RocksDB unexplored designs
R

suopeuIquiod o|qissod 4o (9gv0 1)
SUOI||11X8s J0 A18413U8 8y} SISA0D BUISOD)

mazon

Q webservices™
Rg
06 § Microsoft e et
S : i different storage ty
O \Q‘D VMs of dlfferent @ (SSD, HDD, EB
capacity

Figure 1: Fixed-design systems capture only a small fraction
of the possible storage-engine design space on the cloud.

systems increasingly use key-value stores for core functionality
such as the catalog and indexing [72]. Machine Learning pipelines
deploy key-value stores for data exploration, storing features, and
maintaining debugging data [116, 117]. Bitcoin uses a key-value
engine as its primary node infrastructure [115].

Movement on the Cloud. With the growing diversity of applica-
tions and data sizes, key-value stores are increasingly deployed on
the cloud to take advantage of auto-scaling and on-demand pricing.
For instance, Amazon Web Services (AWS) cloud [23], the Google
Cloud Platform (GCP) [101], and Microsoft Azure [36] cloud pro-
vide support for widely used key-value stores such as MongoDB
[95], CouchDB [48], RocksDB [56], and Cassandra [25].

The Problem: Reasoning About Cloud Costs & Performance.
We show that existing key-value systems fail to scale in the face of
the combined challenge: growing application diversity and growing
data sizes, which in turn result in growing cloud budgets. The
source of the problem is in the inherent complexity of data system
design, opacity of cloud infrastructures, and the numerous metrics
and factors that affect performance and cloud cost. As a result,
organizations, systems administrators, and even expert data system

https://doi.org/10.14778/3485450.3485461
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485461

Storage Engine Template Distribution-Aware I/0O Model (Sec 3)

(Sec 2) .
P(existing in buffer)
infrequent

carly W] merges
-- stopping

buffer bloom filter

cold levels .
index

hot levels! size ratio

Layout Primitives

cold merge threshold hot merge threshold

probability

restructuring strategy

Bloom

A\

20 40 60 80 100
degree of fullness (%)

5

Workload + Budget +
Target Perf. + SLA Specs.

L1 L2 L3 L4 L5

@

Cosine Engine (Sec 6)

Search Algorithms (Sec 5)

file Concurrency-Aware CPU Model (Sec 4)

picking Empmca]ly learn proportion (¢ speedup Gct autual

Repeat for all

S[OpoW AdUSLINOU0I-()/] JO UOHEPI[OSUOD

/strate
4 & coefficient

E}r\ perlormance
Amdahl’s
@] aw

Algorithmic Abstractions

o @
Memory (layout primitive) +
Search space of configurations =
I]J eu Cost-Performance g
loud Provider and 5000 Fngine @
Hardware Space Design Space T Continuum
— > £
. g Pareto frontier g I
ok S 2
] 1 2 ==Y
) S0 %1001 2
5 LSM Run@
@
o £ b
Navigation through search space - i0l0_10010 E
S |73 B-treeRun | | &
=} = . @
g \
£/ Cooptimize /é \ﬂ?lmhl’ll)\\ ‘E Faul Cascading
EL and SLAJ (Votorance/backup | < _ Fence Pointers
) \ /DB / Restructuring Module (algorithm) oz
&l \ /
El N Wigraion/ -]
- — partial a
Bvaluate and rank 2 CE > hybrid
configurations optimal
& B ~_ KV OPERATIONS
L_u(get put, range, update, rmw

Figure 2: Cosine produces optimal key-value storage engines given a budget, a workload, and a target performance.

designers cannot predict how a specific combination of a key-value
store design, a cloud provider (their pricing policies and hardware),
and a specific workload (data and queries) will ultimately behave
in terms of end-to-end performance and cloud-cost requirements
[55, 58,93, 103]. This can lead to severe performance bottlenecks or
cost requirements that are exceptionally hard to get out of given the
time, effort, and risk involved in switching to a different system or
investing in building a new one. There are numerous manifestations
of this problem. We elaborate with two characteristic examples.

1. Choosing from Off-the-Shelf Key-Value Stores. State-of-the-
art key-value systems are designed for specific workloads. Appli-
cations in turn need to choose a system from the limited set of
options in terms of core design, more prominently systems that are
based on B-trees [4, 10, 12, 47] for read-heavy workloads or on Log-
Structured-Merge (LSM)-trees [9, 20, 25, 26, 108] for write-heavy
workloads or Log-Structured-Hash (LSH)-tables [43] for systems
with large memory. Utilizing such engines for any other workload
type does not guarantee good performance [79, 92, 97], as shown
in Figure 1. For example, Viber [17] had to switch from MongoDB
to Couchbase due to growing datasets [1, 102]; applications need to
make a hard choice between either being stuck with a sub-optimal
system or an expensive and risky transition [39].

2. The Choice of Cloud Provider and Hardware. 77% of orga-
nizations face challenges choosing an appropriate cloud provider
[112]. Even with a single cloud provider, it is imperative to choose
the correct hardware resources to maximize performance and avoid
paying extraneous costs. Currently, all these decisions are manu-
ally made based on past experience [96, 104, 111] and given the
complexity, this often leads to wrong choices with drastic negative
impact. For example, a 2022 study [54] illustrates how picking the
wrong VM can be a catastrophic mistake.

Cosine. We present Cosine: a cloud-cost optimized Self-designing
key-value storage engine, that has the ability to self-design and
instantiate holistic configurations given a workload, a cloud bud-
get, and optionally performance goals and a set of Service Level
Agreement (SLA) specifications. A configuration is composed of
the exact storage engine design in terms of the individual data
structures design (in-memory and on-disk) in the engine as well
as their algorithms and interactions, a cloud provider and specific
virtual machines. Figure 1 depicts the core Cosine concept and how

113

existing systems are “locked” into a small fraction of the possible
design space. Cosine is inspired by those systems and makes use of
their innovative designs but instead of being locked in any particu-
lar design it can mix and match fine-grained storage engine design
elements. This creates a space of sextillions (103®) of storage engine
configurations most of which do not exist in the industry or litera-
ture. Cosine automatically takes the perfect shape for the problem
at hand making it possible to scale across all three challenges: data
size, application (workload) diversity, and cloud budget.

Our contributions are as follows.

(1) We formalize the exhaustive search space of key-value stor-
age engine designs comprising of combinations of (a) data
structure designs (including LSM-trees, B-trees, LSH-tables,
and trillions of valid new designs which are hybrids of those)
and in-memory accelerators such as buffer, filters and in-
dexes, (b) hardware for storage (such as HDD, SSD, or EBS)
and computation (VMs), and (c) cloud providers (AWS, GCP,
Azure) for an input workload (Figure 2 part A, C).

We introduce a unified model that precisely estimates the
expected cost of executing a given workload with a given
engine design (Figure 2 part B). The model has two novel
parts: a) an analytical distribution-aware I/O model that
captures data movement across the exhaustive design space
of possible key-value storage engines, and b) a learned cost
model that captures CPU, query concurrency, and hardware
parallelism through a training phase that is kept at minimum
cost by selectively training for a few of the possible designs.
We show how for a given workload Cosine collapses the mas-
sive possible design space into a Pareto frontier of ranked
configurations that co-optimizes available cloud budget, re-
quired cloud SLAs, and required performance (Figure 2 part
C). This enables choosing the best configuration for the cur-
rent application, but it also facilitates interactive reasoning,
e.g., what if I can afford more budget. Cosine selectively
includes noise in the input workload so that the resulting
engines are robust to workload drifts.

Using a storage engine code template that allows structured
descriptions of Cosine’s data layout and algorithmic abstrac-
tions, the output of a search is a Rust implementation of the
target storage engine design (Figure 2 part D).

4)

Example templates for diverse data structures
Design Abstractions of Template Type/Domain LSM B-Tree LSH A new
variants variants variants design
N 1. | Key size: Denotes the size of keys in the workload. unsigned int auto-configured from the sample workload
S
g 2. | Value size: Denotes the size of values in the workload. All values are accepted as string/slice .
e : size set to 1 GB auto-configured from the sample workload
5l 5 variable-length strings. max size setto 1 G
|2 - -
a § .§ 3 Size ratio (T): The maximum number of entries in a block (e.g. growth factor in UI}Slgn.ed integer | [2...32] [32,64, |[1000, 1001, ...] 2
Z f‘é '§ * | LSM trees or fanout of B-trees. function (func) ’ 128, 256, ..] (T is large)
=l &l % -
=| &| §| 4 Runs per hot level (K): At what capacity hot levels are compacted. ined int
5 § = Rule: should be less than size ratio. unsigned i (1.7T] [T-1] 7
z| S R Id level (Z): At what capacity cold levels are ¢ acted.
ol =) uns per cold level (Z): At what capacity cold levels are compacted. R .
E § = | 5 |Rule: should be less than size ratio. unsigned int (1Tl t 32
<
g 'g § 6. | Logical block size (B): Number of consecutive disk blocks. unsigned int [2048, 4096, ...]
| S
P
5 5 & | 7. |Buffer capacity (Mp): Denotes the amount of memory allocated to in-memory 64-bit floating point | [64MB, 128| [l MB,2 [64 MB, 128 h/w
‘g 3 buffer/memtables. Configurable w.r.t file size. function (func) MB, ...] MB, ...] MB, ...] dependent
Al a - - - ~
< | 8. Indexes(AIpp): Amount of memory allocated to indexes (fence pointers/hashtables). 64-bit ﬂ_oa"“g point | memory to memory for | memory for hfw
= function (func) cover L first level hash table dependent
S R ; .
9. | Bloom filter memory (Mpr): Denotes the bits/entry assigned to Bloom filters. 64-bit float | func(FPR) 10 bits/key func(FPR)
10. | Bloom filter design: Denotes the granularity of Bloom filters, e.g., one Bloom . fil
i filter instance per block or per file or per run. The default is file. block | file | run file e
4 © . " - -
ol 2| 3 Compaction/Restructuring algorithm: Full does level-to-level compaction; tial | full | hybrid full, . . .
; § 2 1 partial is file-to-file; and hybrid uses both full and partial at separate levels. partial | full | hybri partial partial partial hybrid
Ol &8 - - - N
é § % 2. :llubn-strategy.]?cnotes which run to be picked for compaction (only for partial/ first | last_full | fullest first, fullest, first fullest
=l als ybrid compaction). last_full
g = File picking strategy: Denotes which file to be picked for compaction (for partial/ oldest merged | dense_fp
< '§ 13. | hybrid compactior_l). For LSM-trees we set default to dense_fp as it empirically works oldest_flushed | dense fp | dense fp | choose_first (hot),
8 a the best. B-trees pick the first file found to be full. LSH-table restructures at the sparse_fp | choose_first choose_first
= £ granularity of runs. B B (cold)
E g = | 14. | Merge threshold: If a level is more than x% full, a compaction is triggered. 64-bit floating point [0.7..1] 0.5 0.75
v} =
g % I |15 Full compaction levels: Denotes how many levels will have full compaction (only unsigned integer | [1.L] L-Y (from
) 'E_—" é " | for hybrid compaction). The default is set to 2. function (func) - optimal config)
=3
j E = | 16. | No. of CPUs: Number of available cores to use in a VM. unsigned int Use all available cores
¢ 17. | No of threads: Denotes how many threads are used to process the workload. unsigned int Use | thread per CPU core

Table 1: Storage engine template in Cosine and example initializations for diverse storage engine designs.

(5) We demonstrate that the Cosine cost model captures diverse
workloads, hardware, and storage engine contexts with up
to 91% accuracy. We verify this using diverse state-of-the-
art key-value engines: RocksDB (LSM-tree), WiredTiger (B-
tree), and FASTER (LSH-table) as well as with numerous
hybrid/new designs with Cosine’s templated Rust engine.
We demonstrate that Cosine improves throughput by 53x,
25%, and 20x on average over RocksDB, WiredTiger, and
FASTER, over the diverse workloads of the YCSB benchmark
and varying cloud budgets and data sizes, while providing
a robust behavior that is within 2% of the optimal one even
when the workload fluctuates by more than 15%.

(©)

Online Demo and Technical Report. Cosine is part of the emerg-
ing space of instance optimized data systems [76]. We focus on
key-value stores and use fine-grained first principles that form a
massive design space which includes trillions of previously un-
known designs out of which we pick the best one for the problem
at hand. Given the massive space of possible configurations, to give
a better sense of Cosine’s potential, we also provide an interactive
demo at http://daslab.seas.harvard.edu/cosine/. One can use the
demo to perform what-if design questions and compare system de-
signs in terms of budget and performance, for arbitrary workloads
across the three major cloud providers and against state-of-the-art
systems. Interested readers can also find additional experiments,
proofs and model derivations in an online technical report [2].

114

2 BACKGROUND: LAYOUT PRIMITIVES

Cosine has its roots in the Data Calculator project [77] which struc-
tures a first-principle driven search of a wide design space of known
and unknown data structures. Unlike the Calculator that focuses
on a single data structure at a time, Cosine is about complete stor-
age engine configurations considering the interactions of many
data structures in a full engine, hardware space, as well as the
cloud provider space. To realize the end-goal of self-designing at
its core Cosine implements a storage engine template — a dictionary
of design abstractions to allow structured descriptions of arbitrary
key-value storage engine designs. The Cosine template has multiple
parts as shown in Table 1. We first presented the data layout part
in a vision paper [73] and we give a brief summary of that in this
section before continuing with the contributions of this paper.
The Cosine storage engine template spans trillions of possible
designs. They are all derived by combining elements from three
designs which span the extremes of performance from read to write
optimized: B-trees [64], LSM-trees [89], and LSH-tables [43]. The
layout primitives in Table 1 help describe key-value storage engines
based on the design of their core data structures, in-memory and
on-disk. For example, Mg, Mpr, Mpp define the memory allocated
to the buffer, Bloom filters, and fence pointers. The template pro-
vides a lot of flexibility, e.g., it is possible to choose between the
construction policies of the filters, e.g., reducing the false positive
rate (FPR), optimizing the number of internal hash functions, or
even controlling the granularity of filters per block, file, or run.

http://daslab.seas.harvard.edu/cosine/

Based on the memory footprint of filters and fence pointers, Co-
sine divides L disk-levels of a storage engine into L — Y hot and Y
cold levels. Data residing at hot levels are quickly accessed with
in-memory filters and fence pointers whereas cold levels have to
be accessed through cascading fence pointers on-disk. Other layout
primitives include the size ratio (T) denoting the factor by which
disk-levels grow in capacity, and merge thresholds (K and Z) de-
noting how greedily merges happen within a level (hot and cold).
In [73] it is explained how these few primitives can be enough by
showing there is another set of rules that help derive additional
layout design elements of an engine. For example, to figure out
exactly how many bits to give to each Bloom filter of each level and
run we use the equations from [51, 52]: this only requires knowing
Mpr. For brevity we do not explain these rules further as they are
not necessary for following the rest of the paper.

Describing Existing and New Storage Engines. Overall, these
primitives allow Cosine to take the shape of arbitrary and diverse
designs in terms of storage engine data layouts including LSM-Trees,
B-Trees, LSH-Tables and several hybrids in between. For example,
as shown in Table 1, the layout of LSM-tree based RocksDB is
described as T = 10,K = 1,Z = 1, Mgr = 10, and B-Tree based
WiredTiger as T = 32, K = 1, Z = 1, MgF = 0. For both engines, the
memory footprint of indexes, Mpp decides the number of hot and
cold levels of the tree. On the other hand, a storage engine such

as FASTER which is a flat data structure is described by setting

_ N.E
T= M_B
also implies that the merge thresholds are set to maximum such that

the level is never compacted,i.e. K =T — 1, Z =T — 1. As FASTER
uses in-memory hashtables, we allow Mpp to take that into account.

By default, FASTER creates hash-bucket entries amounting to 8%

enforcing the first level to never run out of capacity. This

of the keys, hence Mpp = % * (1+ %). Table 1 also includes an
example of a new design with a log-structured layout at the hot
levels and a B-tree at the cold levels.

Toward a Self-Designing System. On top of the basic data lay-
outs, for Cosine to achieve its end goal we need to be able to consider
additional critical storage engine design components such as the
ones shown at the bottom of Table 1 for hardware parallelism and
maintainance strategies. In addition, as shown in Figure 2, we need
a series of innovations beyond engine specifications such as be-
ing able to judge different designs (without implementing them
first) (Sec 3), consider the effect of query and hardware parallelism
on each design (Sec 4), search over the massive possible space
efficiently for the best (yet robust) design given a cloud budget,
workload, and SLAs (Sec 5), and finally materialize the code of the
resulting storage engine so that it is ready for deployment (Sec 6).

3 DISTRIBUTION-AWARE I/0 MODELING

Given a workload Cosine needs to evaluate the massive number
of possible storage engine designs in a practical way, i.e., without
actually running the workload with all possible designs, cloud
providers and VMs. For this to be possible Cosine needs to be able
to calculate the expected performance on a given hardware for any
candidate storage engine design. Sections 3 and 4 introduce the
Cosine model for I/O and CPU respectively which achieves this
with high accuracy. Then Section 5 uses the model to build the

Workload +
Performance

Cost-Model

Building Blocks
of Model

115

Symbols | Explanation Cost | Symbols | Explanation Cost
6, fraction of total lookups - 0. fraction of rmws O
6,.0, fraction of single-result lookups | o; A fraction of scans o
(1-6,)0, | fraction of no-result lookups on Dget get key distribution | —
[fraction of inserts ap Dput put key distribution | -
0, fraction of updates ou X queries in workload | —
on K(ZE i)+ v+ 1)z
oy (uniform) | Cp + Z,L;Y_l pi(Ele Cr',-) + Z%:max(l,L—Y) (Zil Cr,,')
L-Y- K L z
Pget [CS + X (zr:l Ci,i) * I max(LL-Y) (Zr:l Ci,i)] +
a1 (skew) 1 2 yLoY-1 (K oo L Z o2
(‘Pget)[('n +35 Pi (Zrzl r,i) + E i max(,L-Y) (ZrZI r,i)]
1 (vL-vy-1 EBTTNT/K+)) 1 EpTE-YI(1/Z+1)
. B (Ei:1 1 * 5l OL-v-1)
P i
1 L . L-Y-1 max(1,1+min(B-7,T)) Eg-T
tory Zicr-y minEp - T BT B)
ou IMgp_ (1 + %)+ IMpp_y 9p
Ow IMpp_o 9 * IMp o (91 + op)
os B (sLY Ep T+ s} IropBp T+ Ep - TL) + Ir_p max(0, Y — 1)
pi Probability of a false positive at a bloom filter at a run at hot level i
1 e Probability of not being in buffer for uniform key, skew special key,
Co, Gy, Cf
skew regular key
For a hot level, probability of not being in run r, level i or previous
i, C, ,{,,Cﬁt runs for uniform key, skew special key, skew regular key. For a cold
level, probability of not being in any node at level i or nodes in
previous levels for uniform key, skew special key, skew regular key

Table 2: Distribution-Aware I/0O Cost Model

search algorithm for the best design given a workload. We start by
describing the properties that the model should have.

1. Precision. The I/O cost estimates should be within a 1+ r factor
of the actual I/O, where r is a small error parameter, regardless of
data properties, data size, query patterns, and engine design.

2. Conservation. The model should generate only positive errors
that is only over-estimating of I/O costs. This property lowers the
chances of exceeding the desired cloud budget or breaching the
performance target as a result of estimation errors.

3. Consistency. If a storage engine design outperforms another
design in practice, this should be reflected in the model estimates.

Workload Characterization. Table 2 describes the notation used.
Cosine describes workloads as a set of operations over a universe of
key-value pairs, using (a) the distribution of the keys and workload
operations and (b) the proportion of each operation type: single-
result lookups, no-result lookups, range queries, inserts, blind up-
dates (updating the value of an entry regardless of its current value),
and read-modify-writes (rmws) (updating the value of an entry
based on the current value). This forms a workload feature vector.
Ideally, we would feed all information about a workload (i.e. the
exact sequence of operations and keys-value pairs) into the cost
model to get an exact estimate of I/O cost. However, such a strategy
would be intractable, since the space of workloads is enormous.
Thus, we introduce a low-dimensional “workload summary” to
strike a balance between tractability and precision.

Uniform Distribution. We let Dgye; and Dy, be distributions
over which keys are drawn for reads and writes respectively. In a
uniform distribution any possible key is equally likely to be drawn.
Hence, Dye; is uniform over the universe U of keys and Dpy; is
uniform over the keys that have been inserted/updated. We assume
querying keys are drawn i.i.d from these distributions.

Skewed Distribution. We use uniform distribution as a building
block. The intuition is to partition the key-space of a workload such

that (i) for any partition, the keys are uniformly distributed, and
(ii) the width of partitions may differ which controls the degree
and region of skew. Our definition of a skew distribution exactly
matches the definition in [40] and it creates a sharper truncation
between hot and cold keys for ease of analysis. For instance, a
Zipfian distribution consists of two distinct uniform distributions
with universes U; and Us,. U; contains a set of special keys that are
likely to be accessed more than the set of remaining regular keys
residing within Up. More precisely, for lookups, a special key is
accessed with probability pges from Uy and a regular key is drawn
from U, with probability 1 — pge;. The same definition holds for
writes, with the respective probabilities being ppy; and 1 — ppy:.

Other Distributions. The above methodology can be extended
to describe other distributions such as normal and exponential
distributions. Examples can be seen at the technical report [2]. The
core idea is that instead of having two partitions we have k, each
with its distinct universe spread across the key-space such that the

probability of accessing a special and regular key from any partition
iis £ o
Uil Uil
any partition add up to unity.

and respectively, and that the probabilities to access

Overview. The model is shown in Table 2. It shows how Cosine
estimates the cost of each type of key-value operation. This is a
unified model which means that it works across all possible stor-
age engine designs (LSM-trees, B-Trees, LSH-Tables and anything
in between) defined by the primitives of Cosine. For a workload of
 operations, we use the per-operation I/O cost and the proportion
of different type of operations in the workload to compute the total
I/O cost of the workload (see also definitions in Table 2):

[Ototal = X(9p0p+9r910'l+9r(1 —0;)on+0y0y,+6,,0,+0505) (1)

While we cannot provide the full details on how the model is derived
due to space restrictions, we instead provide in the rest of this
section the core intuitions that lead to the model construction using
examples for specific storage engine designs and operations. The
exact derivations for each operation are described in detail in [2].
A core insight is that for all designs supported by Cosine, the disk
part of the data layout is effectively built from arrays and pointers
connected in a hierarchical format. The cost-model leverages this
structure to decompose the I/O cost into inter-dependent per-level
quantities and embeds the fundamental read/write behavior of
each core design class (LSM-tree/B-tree/LSH-tables) within its cost
computation. This allows the resulting unified model to work for
any storage engine design possible within the possible space.

Intuition for Lookup Cost (o}, o). Let us assume an LSM-tree-
like design and a single-result lookup: when a key is found in the
buffer or the first few levels the query terminates and no data from
the lower levels is brought into memory. We call this effect early
stopping, shown in Figure 2 part B. Early stopping is not of much
relevance when the distribution of writes is uniform over a large
universe as the most recent copies of almost all keys live at the last
level. On the other hand, when the read distribution cycles through
a small number of keys, as in the case of skew distributions, those
keys are very likely to live in the buffer or at a high level, and early
stopping can significantly impact the single-result lookup estimate,
o7. The distribution-aware model precisely captures the impact of
early stopping on o7 as a function of Dy and Dye; through the

116

distribution-dependent quantities Cp and Cy;, which capture the
probability that an access to a given run is attempted. On the other
hand, Cosine’s models for the no-result lookup cost account for the
fact that early stopping does not occur for these queries.

Intuition for Write Cost (ap, Oy, Oy). Cosine captures the phe-
nomenon that with a high proportion of updates merges between
any two levels of the tree happen less frequently since an updates is
handled in place at the level or buffer it is found. We call this effect
infrequent merging, shown in Figure 2 part B. Infrequent merging
is less prominent when the distribution of writes is uniform over a
large universe, where almost all writes are insertions. On the other
hand, when the write distribution cycles through a small number of
keys many of the writes are updates, leading to infrequent merging.
The model is able to capture the impact of infrequent merging on
op as a function of Dpy through the distribution-dependent quan-
tities Q;, which estimate the expected number of writes to fill a run
in level i. Rmws are modeled as a composition of other operations,
e.g., for LSMs, the cost of an rmw is the summation of a lookup and
an insert whereas for B-trees or LSH it is same as an update.

Intuition for Range Cost (o5). For modeling range queries, key
distribution is not needed because the effect of early stopping does
not occur: range queries need to access every hot level. With a
selectivity of s, for hot levels, roughly s fraction of the entries at
each level will be touched using the in-memory fence pointers. For
internal nodes at cold levels, Cosine differentiates between the case
where the size ratio T equals to the block size B (T = B) and where
it does not (T < B) which impacts whether data at internal nodes
needs to be scanned as well. For the last cold level, Cosine’s models
account for touching all relevant leaf nodes.

Derivation of Lookup Cost o; for Skew. We give a sketch for one
of the derivations as an example: for a single-result lookup following
skew distribution when a design only has hot levels, i.e., Y = 0. We
can express the expected cost as o = pger X 015 + 01y X (1 = pget)
where oy, is the expected cost of a special key lookup and oy, is
the expected cost of a normal key lookup. Given that the skew
distributions are uniform over special keys, it suffices to consider a
generic special key k and its expected cost over the randomness of
Dypy;- The cost is the sum of the I/O cost of accessing the disk block
containing the key and the I/Os due to bloom filter false positives. If
the key is in the buffer or the block cache, the I/O cost is 0, otherwise
it is 1. We show that, C(} captures this cost. For the false-positive
incurred costs, by linearity of expectation, it suffices to compute
the probability that a block in a given run will be touched and then
add up the probabilities. The expression p,'Crl’i precisely captures
this cost for run r at level i, where p; is the probability of obtaining
a false positive and C;; is the probability that the actual key is
not in the current run or any previous runs (so the access has not
terminated yet). The argument is similar for oy,,.

Now, we provide intuition for the specific formulas for Cy and
Crl’i. To compute these quantities, we determine the distributions
over queried special keys as uniform over Uy N Kgpecial (Where
Kspecial is the set of keys in the data structure). This can be viewed
as the conditional distribution of U; conditioned on the key being
in Kspecial- Therefore, the probability that a key k is not in any of the

P[k€Kspecial,k is not in any runs up to a given run]
P[kEKspeciaI] ’

runs up to a given run s,

We now use the independence of keys across different runs and
condition on the data structure being full. We add “weights” to des-
ignate that runs are likely to be a certain fraction full “on average”.
The numerator can be expressed as,

(H up toP[k is not in the run]
current run

arunratlevel i > 1, the first term is (1 — %) (1 — a5 x

([—[;;11(1 - ah’l)K) (1= abhr. Similarly, the second term is

iI\K— L-Y-1
1= (1=t (M
captures the probability that k appears in a given run at level i. The
calculation of a*! can be obtained from skew properties of Dpy¢.

) X (1 — P[k is in a later run]). For

(1- ah’l)K), In these expressions, ab!

4 CONCURRENCY-AWARE CPU MODELING

In addition to I/Os, performance of storage engines is significantly
affected by CPU costs and hardware parallelism. Writing analytical
models, as we did for I/O in the previous section, that capture in-
memory and hardware effects is extremely complicated and error
prone, even for a single design, as we have found in our prior
work [82]. The challenge is that there are many factors that affect
CPU performance and are tightly connected compared to the single
factor of I/O when data comes from disk. Cosine uses learning in a
hardware-conscious way, as shown in Figure 2, part B.

Utilizing Amdahl’s Law. Amdahl’s Law [24, 67, 68] theoretically
reasons about how much speedup we can achieve for a given num-
ber of cores. Every program has a sequential component and a
parallelizable component and with more cores, it is only the run-
time of the parallelizable component that improves. If ¢ proportion
of a program is parallelizable and it takes T time units to execute it
with 1 core, then for 5 cores, the speedup g is as follows:

T 1

T gre T 14017

@)

Learning ¢. Cosine takes the value of 7 directly from the hardware

where the engine is to be deployed. On the other hand, ¢ is learned
as it relies on many interconnected factors. While the possible
designs are too many, we observed that ¢ has similar values across
designs that share core design elements and so Cosine only needs to
learn ¢ for four drastically distinct design classes (LSM, LSH, B-Tree,
and Hybrid: LSM-like hot levels and B-tree-like cold levels). The
process is seen in Algorithm 1. For each class of design r and for each
operation type in g, we benchmark (using the Rust code template
discussed in Section 6) the speedup as we increase the number of
queries executed in parallel and CPU cores used (one per query).
This is done for all distinct VM types v for each cloud provider. The
observed speedup g is fed to Equation 2 to generate multiple values
of ¢ (¢q,r,0,D.c) for different VMs, numbers of total queries, and data
size, to aggregate and derive a robust ¢ for this combination of q
and r. Then, for any workload W to run with a design of class r, we
calculate ¢ as a weighted average of the ¢ of each operation type
in W. Then, the end-to-end latency and throughput of running W
on a given VM, while maximizing utilization of 1 cores, are given
by combining Equations 1 and 2:

IOtotal #operations in W

10PS ®)

1
latency = X —, throughput =
g

latency

117

Algorithm 1 Algorithm for learning ¢
Input: S, Output: ¢,SI‘, // value of ¢ for op q on class r for s;

1: R: {LSM, BTree, LSH, Hybrid}

2: ¥ : {lookup, insert,blind update, rmw, range}

3: for each provider s; € S do

4 for each design class r € R do

5 for each op type g € y do

6 3| @ r=NULL

7: —‘é for each VM v of distinct type do

8 5 for data D € [1M..100M] do

9 £ | populate Cosine with D on layout r
10: =z E| for op count oc € [1M..10M] do
11: kS "é _ force [1.2°FY] do
12: £ 2| 18 setcasquery parallelism
13: % j\; & é T(c); run oc ops of type g on ¢ cores
LS R
15: £ B | é get $g,r,v,D,c using Eq (2)
16: 3 s 3

q)q,r = ‘I'q,r U {¢q,r,v,D,c}
¢;‘; » = average of values in ®g, ,
18: function getPhiForWorkload(W, r, s;)

si Za.ll op types inW
W,r ~ ~o=1

17:

0! X proportion of o in W

where IOPS is a cloud-provider specific constant (Sec 5). All steps
for learning happen independently so that there are no modeling
errors due side-effects of one process on another.

Training Cost. ¢ depends on the hardware. Training only for four
design classes as opposed to for every possible design reduces
the cost by several orders of magnitude for Cosine. For each VM,
learning can still take several hours though. To reduce the cost
further, we observe that VMs overlap in hardware properties and
thus we only need to train for a small subset of VMs (AWS alone
has more than 100 VMs). For example, m5zn.large and m5n.large
are AWS instances with a similar configuration (2 vCPUs, 8 GB
memory, EBS-only storage, 25 Gbps network bandwidth) with the
only difference in EBS bandwidth [18]. Such differences translate
to marginal impact on ¢ at the third or fourth places of decimal,
which plays a negligible role in the cost-performance optimization.
We curate a list of distinct VM types and Cosine ships already with
trained ¢ values for those while similar VMs use these ¢ values [2].

Changes in Pricing Policy or VM Specifications. Cloud providers
frequently update their pricing models [99] but this does not re-
quire any retraining as Cosine only needs to pull the new prices.
Cloud providers may also add new VMs types [83]. If a new VM
offers distinct hardware properties than all VMs Cosine has trained
for in the past, then Cosine has to train on this VM and make it
part of its learned ¢ library but this is a one time operation. When
training does need to happen, Cosine can train in parallel for every
distinct VM; this saves time, not cloud cost.

5 SEARCHING FOR THE BEST DESIGN

We now use the models of the previous two sections to describe
how Cosine searches for the best storage engine design given a
workload W, a desired cloud budget b, and optionally performance
requirements (latency/throughput) pr. The output is a storage en-
gine design (expressed in the primitives of Table 2), specific VM
and cloud provider choices, along with the expected cloud cost and
performance to run W with the resulting engine and VMs.

Hardware Space. The hardware on which a storage engine is
deployed drives the cloud cost and performance. For any input
workload-budget combination, Cosine constructs the space of pos-
sible hardware configurations (VMs and storage) for the set of all
cloud providers S, as shown to the left of Figure 2 part C. Cosine uses
a range of cloud costs C = [cpyin, ¢max] such that the input budget
b falls within that range - we explain in a few paragraphs why we
need that range. VMs are discretely priced per time unit and hence,
there cannot exist a unique hardware configuration for each ¢ € C.
To prevent including redundant configurations in the hardware
space, Cosine incrementally adds resources to generate hardware
configurations that have a distinct combination of VMs and storage
and keeping only these costs in C. For each cloud provider s;, com-
puting resources are combinations of VM instances of k; distinct
types. Every VM v; j, indicating the 7™ VM instance of s;, contains
UZ}em GB of memory and UEJI.)U
externally to VMs and determine the number of I/O operations
per second, U%SPS . For any ¢ € C, there are multiple deterministic

vCPU cores. Storage can be attached

possibilities of combining storage and compute resources and that
varies with the pricing policy of each cloud provider, Amazon [3],
Azure [11] and Google Cloud [8]. The unification of all of these
possibilities for all cloud costs in C makes up the hardware space.

Storage Engine Design Space. For each VM in the candidate hard-
ware space, a storage engine design space is constructed. A storage
engine design is mathematically represented using the data layout
primitives from Table 1 as Q: (T, K, Z, M, Mg, Mpp,) where
denotes the number of physical cores (7 € {1..01.(5;)[}}). Given the
input workload W, the distinct possibilities of allocating memory
across buffers, bloom filters, and fence pointers using the pricing
QX/IV;;}\C/IBFX Mpp Then, the design
space over all cloud providers for cost range C is,

W.,S.C _ AW W.si,C
Q = QTXKXZXr] X USiESQMBxMBFxMFp @

Performance Space. For every candidate storage engine design

policy of s; for every cost in C, is

Q € QW€ Cosine computes the expected latency for W using the
models of Sections 3 and 4. This results in the performance space P.

The Overall Search Space. A massive space of configurations,
AZ,"IQ,P is generated. It consists of ordered triples (T, ¢, p) where
T denotes a configuration comprising of a storage engine design,
a hardware, and a cloud provider combination that yields perfor-

mance p in terms of latency and needs cloud cost ¢ to run W.

The Cardinality of the Search Space. Given the number of dis-
tinct VM types k; offered by provider s;, for all ¢ € C, this leads to
a set, Hs, of VM combinations. Every combination is of the form
< A1, Ai1 5 Ak, >, where A; j determines the number of in-
stances of VM type j that can be purchased. Therefore, for a total
of m; combinations under a single provider, we have, Hy, = {<
Ai At ’Ai,ki >4}, 1 < q < mj. For each VM, T, K, Z, and
possess an integral domain space, whereas the domain space of
memory allocated across buffers, bloom filters, and fence pointers
is non-integral. For navigating through the memory space, Cosine
uses “memory hopping” setting Mp to a small value and then incre-
menting it by a fixed amount equal to € fraction of the total memory
M. Therefore, the cardinality of storage engine designs possible
within a single VM is [QW-55¢| = Tx K x Z x 1 x % The cardinality
of designs over k; VM types that can be purchased with a given c is

118

(TXKXZx %)ki. If m; distinct configurations result from differ-
ent cost values in C, the cardinality of all possible configurations
with provider s; is m; X (T X K X Z x5 X %)ki. For example, with
$50K monthly budget only for one provider (AWS) and only with 6
distinct VMs, and even if we statically assign the highest degrees
of parallelism to 7, we have m; = 74612, T X K X Z X é = 30752
(€ = 0.2). This leads to a total design space 74612x(30752°).

Cost-Performance Optimization. Cosine needs to solve two op-

timization problems to find the best storage engine design that
minimizes cloud cost and latency I.

argmin (c), argmin (p) 5
(Tep) €Al p such that p<i (Te,p) €AY, p such that c<b

Range of Cloud Budgets and Interactive Design. We cannot

be certain that any combination of desired performance require-
ment pr and budget b is possible, i.e., that indeed there exists a
storage engine design, a set of VMs and a cloud provider that can
achieve performance pr with b on W. Thus, Cosine searches simul-
tanously not only for the best configuration for b and pr but also
for neighboring values of b and pr. This is why we need the cloud
range defined in the Hardware Space paragraph. By default, we
set this range from $1-$500,000 per month, but it is also exposed
as a knob. This range covers the monthly budgets of diverse real-
life applications, e.g., early- to mid-stage tech startups [19, 57, 86].
If b does not fall within this range, Cosine updates the range to
$1-$(b+500,000). If the desired performance cannot be achieved,
both the fastest configuration with the desired budget and the
cheapest configuration with the desired performance are included
in the result. Furthermore, Cosine enables a what-if design pro-
cess where designers can search and explore alternative storage
engine designs and budget/performance balances in an interactive
way with instance system responses. Interested readers may visit
https://cloud-demo-2021.github.io/ to interact with Cosine directly.

Cost-Performance Continuum. To enable all of the above, for
every design search session Cosine collapses the engine design
space on the cost-performance plane (given W, b). This transforms
the trilateral tradeoff among engine designs, hardware and cloud
cost, into a cost-performance Pareto frontier. This is a continuum 1)
with an optimal configuration at every point, and 2) where a higher
cloud cost maps to better or at least the same performance. The
process of generating the Pareto frontier is shown in Algorithm 2.
We provide a stepwise description below.

Step 1: Partially-Pruned Configurations for Each Provider.
We first construct the performance space of each provider s; for
a single cloud cost ¢ in C at a time. For each storage engine con-
figuration in A € Hg;, Cosine shards the workload and data using
off-the-shelf sharding algorithms [53] across all VMs of the config-
uration proportionally to their memory capacity. For each distinct
VM type v; j within h, Cosine generates the intra-VM design space
specific to its workload shard by spanning through all combinations
of T, K, Z, n, and using memory hopping for Mp, Mpr, and Mpp.
Further, for each possible value of Mp, Cosine splits the residual
memory between Mpr, and Mpp to maximize as many hot levels
as possible for the design. Once all designs specific to the VM type
are generated, Cosine uses the I/O model to predict the I/O cost of
these designs. Next, it looks up the learned coefficients (obtained

https://cloud-demo-2021.github.io/

Algorithm 2 The Cost-Performance Optimization

Input: D, W, S Output: Cost-performance continuum (F)
1: budget™™ = co, budget™* = 0
2: foralls; € Sdo // for every cloud provider
3: Generate Hy;
4 coststorage = getStorageCost(s;, D,
5 for all configurations A € Hs;, do

) // storage cost of config

ki
6: My = Z vf“?m, Yvi,j € A // total memory of the configuration

costeompute = Z Ai,j x monthly_price(v;,j) // compute cost of config

costgra = getSLACost(D si, A) // SLA cost of config, shown in [2]
costp j = costecompute + COStstorage + cOstsLA // cost to afford the config

10: budget™® = min(budget™™, cost A i)
11 budget™® = max(budget™®*, costy ;)

Ap jovtmem
12: Shard W into (W1, Wy, - - , W, |) s.t. #ops in Wj o }M—AJ

Add 10% noise to W using noise model [2] // for robustness
for all VM types v; jin A and 4;,; > 0 do

Mp =eM, latency’"m =00

while T € [2..B;]do

31:
32:

build tuple Fp ; j: (Q, vi,j, Wj, Iatency‘;“ijf)
Epni=FpiVUFj

searching through several VM configs. Each config may have instances of different VM types

=
.S
B .
17 @J while K € [1..T - 1] do / nav1gatlpg thrqugh the
18 “é while Z € [1..T — 1] do | Storage engine design space
19: b while Mg < M do
20; 2| ||z | SetQ:(T,K ZMps Mpr, Mpp,otY)
21: S % -:: Get no. of levels L usmg [74]
22 e 2| & | Findmin(Y) st Z5Y (MG + ML) < (M- Mp)
2 = &: 10,,, = get I0s usmg Equation (1) // /0 model
24: ; 5 %D 3| ©| Find design class D of Q and get ¢ of W on D
25: 8 E _S Compute speedup gyl ; with Equation (2)
26: 'cé 2 § latenc bkl 1 fi /
: = Yu; = 1OPS,, * go, S atency from I/Os
Q
27 b5 if latency,, . < Iatencymm then
28: ﬁ latency{j““ = latency,, .
29: &0 update optlmal design for v; j with Q
30: 3 Increment Mg by e. M
=)
£
e
o
k3l
o0

33 latencyy ; = max(latencyvi,) Vuij € A

. " // constructing the cost-perf
| Fs, = Fs, U (Fpilatencyy i, costa,) mapping for each provider
35: F=FUF,

36: for ¢ € [budget™?, budget™®*] and all s; € S do

/ tructing the Paret
37: Find Fyp ; s.t. argmincostmg(latencyl\’ i) :|/ constructing the rareto

from Algorithm 1 of concurrency model) specific to the design class
of each design and the operations in W. Using these coefficients,
Cosine computes the overall ¢ of workload W, derives the speedup
using Equation 2, and computes the predicted end-to-end latency
using Equation 3. Once all designs specific to v; j are evaluated,
Cosine ranks them and picks the one with the minimum end-to-end
latency for this VM. Cosine repeats this across the VM types of h
and for all configurations within Hy;. At this step, we have partially
pruned inferior configurations within intra-VM design space but
we neither have a (i) continuum yet as every cloud cost may still
map to multiple performance points emanating from different con-
figurations nor (ii) a Pareto frontier because all performance points
are locally optimized for a certain cloud cost, i.e., increasing cloud
cost does not necessarily map to equal or better performance.

Navigating the Non-Integral Domain Space of Memory. With
memory hopping Cosine considers designs around the non-integral
memory space of a VM, left and right of the best Mp value so far
(by a fixed amount equal to € fraction of the total memory M) using
binary search. Cosine examines the expected performance of the

119

new Mp values (and derived MpF, and Mpp) with the previously
obtained values of T, K, and Z of the best design so far. Then, the
memory allocation with the best resulting performance is chosen.
With smaller e the width of the adjacent hop regions shrinks at
the cost of increasing the number of different buffer values to be
checked. Cosine exposes € as a tuning parameter and adopts a
default value of 0.1 which we find provides consistently a good
balance among search time and quality of results (shown in [2]).

Step 2: Generating Continuum for Each Provider. Cosine fur-
ther prunes configurations by iterating over all performance points
for all c € C and s; € S. We partition the resulting mapping from
Step 1 into as many equal-sized disjoint partitions as the number
of cores of the machine where we run the cost-performance opti-
mization. We prune redundant configurations within each partition
to generate sub-continuums where a configuration A mapped to
cloud cost ¢ is pruned if (i) there is at least one configuration A’
at ¢ that is better than A or (ii) Cosine has already seen a better
configuration A’ that offers a lower latency at a lower cost ¢’ in
which case it augments A’ as a valid configuration at c. After this
process finishes for all cloud costs within every partition, Cosine
examines the junction points of each partition to ensure Pareto
optimality. Let the current state of the cost-performance mapping
be denoted as A partitioned into k partitions A1, Ag, - - - Ay, then
we ensure that for any two consecutive partition A; and Aj4q, the
best (or the rightmost) latency point of A; is greater than or equal
to the worst (or the leftmost) latency point of A;41, i.e.,

(6)

If this condition fails, (i) we identify all points in Aj41 that have
latency worse than that of the best latency point of A; and (ii) update
these points to miny.ea, f(c) thereby guaranteeing the property
of increased (or at least equal) performance with increased cost.
We repeat this step for each pair of consecutive partitions for each
provider. Thus, we obtain three different continuums which are
Pareto frontiers (one for each provider) where each cloud cost maps
to exactly one performance point.

minycep, f(¢) = maxyeep,,, f(c),V0 <i<k-1

Step 3: Generating Continuum Across Providers. Cosine it-
erates once again over all the cloud costs in C and ranks these
configurations at each cost to generate a single cost-performance
continuum optimized across all providers, as also indicated in Fig-
ure 2 part C. At this point, we keep all three configurations from
different providers and do not prune any as it helps probing the
continuum for provider-specific questions that may arise as part of
Cosine’s what-if interactive reasoning.

Cloud Service Level Agreements. Cosine takes as an optional
input Cloud SLA requirements. SLAs are provisioning and mon-
itoring services that guarantee a threshold level of cloud service
quality [45, 66, 78]. Cosine supports five SLA features - (i) DB mi-
gration [28, 32, 63], (ii) operational and tooling support [31, 34, 60],
(iii) backup [13-15], (iv) reliability [29, 33, 61], and (v) availability
[30, 35, 62]. SLAs are mathematically quantified and exposed as
computable pricing models. If any SLA is required, then every cloud
cost ¢ € C is co-optimized for purchasing of hardware and SLAs.
As seen in Algorithm 2, Cosine ensures that (a) the combined price
of hardware and SLAs never exceeds ¢ and (b) all resource-SLA
permutations are considered.

Algorithm 3 Mapping layout to algo abstractions

Input: Q, W,s; Output: initialized primitives
1: if Q — Mpgpg! = 0 then
2 if Q > Y > 0 then // Bloom filters + cold levels
3 class = “Hybrid”
4 else
5: | class = “LSM” // Bloom filters + no cold levels
6 elseif Q — T > Bthen "] 1 o tage that
7 l class = “LSH” :|mere is only 1 level
s: else
9 class = “BTree”
. ¢ = getPhiForWorkload(W, class, s;)
. set algo primitives based on class and ¢

Robustness. The actual workload may vary from the input work-
load W. To ensure robust designs Cosine adds “noise” by changing
the proportion of operations in W and by adding missing opera-
tions. This is set by default to 10% of noise which we find to give
consistent results across numerous diverse workloads [2].

Result: Navigating the Pareto Frontier. Creating the continuum
takes on average 40-50 seconds on our test machine (Sec. 7) for
all three cloud providers. Once the continuum is constructed, Co-
sine can instantly navigate it using a binary-search to generate the
optimal configuration Typtimal (storage engine design, VMs, and
provider) for the available cloud budget and to also suggest neigh-
boring configurations with attractive budget-performance balances.
Finally, the continuum enables what-if capability: designers can
interactively query Cosine to get the optimal configuration for any
budget or performance point (given W).

6 RUST CODE TEMPLATE

Once the search process terminates, Cosine uses the resulting design
to setup the code for the target storage engine. Cloud logistics
have to be addressed a priori, e.g., creating and setting up cloud
contracts. Cosine includes a templated key-value engine which
consists of Rust library crates for every component of the storage
engine template in Table 1. Each crate containerizes the structure
and capacity of a storage component and also offers its own set
of Rust Traits that define how it can be created or accessed for
reads and writes, garbage collection, capacity checks, and inter-crate
interactions. Cosine also maintains a wrapper crate for the entire
storage engine the traits of which directly link to that of the buffer
and the main tree. By using the values of the layout primitives in
the target design Cosine initializes the code template.

In addition to the layout primitives, Cosine’s engine template
contains a set of algorithmic abstractions. Each algorithmic abstrac-
tion not only indicates a core functionality of the storage engine
but also controls the granularity at which the functionality is in-
duced within the engine. Table 1 shows all such primitives and
their definitions. For example, <restructuring strategy> de-
notes how data is restructured (B-trees), merged (LSH-tables), or
compacted (LSM-trees) across diverse designs. Based on the re-
sulting engine design from the search process, Cosine determines
which algorithmic primitives are the best fit. For instance, the ab-
sence of Bloom filters (Mpr = 0) means that the design is not in the
LSM class. If the class is LSM, merging starts from the first run of a
level and so Cosine sets run_strategy = full whereas in B-trees,

120

run and level are synonymous as merges happen at the granular-
ity of files (run_strategy = none, file_picking_strategy =
choose_first). Similarly, for concurrency, Cosine uses the learned
coefficient (¢) of the workload on the chosen design class to set
the degrees of parallelism to the point where Equation 2 converges
or speedup does not improve by adding more cores. Algorithm 3
shows the primary rules to setup the template given a data layout.

7 EXPERIMENTAL EVALUATION

We now demonstrate the self-designing ability of Cosine. First, we
verify Cosine’s cost model with diverse storage engine designs,
workloads and cloud budgets. Then, we show that Cosine scales
with data, workload diversity, and cloud budget, outperforming
state-of-the-art engines by up to an order of magnitude.

Baselines. We compare Cosine against three state-of-the-art stor-
age engines of diverse designs, RocksDB (LSM-tree) [56], WiredTiger
(B-tree) [120], and FASTER (LSH-table) [43]. We set each of these
baselines to their default configuration. As RocksDB does not sup-
port the existence of cold levels, we allocate as much memory for
fence pointers as needed to cover to all disk-resident blocks. We
use the default size ratio (T = 10) and the Bloom filter policy with
10 bits per key. For WiredTiger, we set the size of the leaf nodes
and the internal nodes to the default of 32KB and 4KB, respectively.
We use the default fanout of 32 (T = 32). For FASTER, we assign
the default memory to accommodate ﬁ keys in the hashtable. For
all baselines, we allocate 1 GB to the in-memory buffer.

Workloads. We extend the standard key-value benchmark, YCSB
[46]; we cover all core YCSB workloads A-F, but we also test with
several variations with different distributions such as, uniform,
zipfian, and normal corresponding to diverse real-life applications
such as graph processing in social media [27, 59], web applications
[119] and event log processing [42]. We include the workloads
which are known to be favorable for the baselines, i.e., write-heavy
workloads which favor FASTER [43], range query heavy workloads
which favor WiredTiger [82], and mixed workloads which favor
RocksDB [56]. We experiment with 100M records each of length
1024 bytes (128 for integer keys & 896 for values).

Cloud Pricing. We use 7 VMs from each cloud provider: r5 from
AWS, n1-highmem from GCP, and E2-64 v3 from Azure. The VMs
have diverse CPU and memory properties with hourly rates ranging
from $0.09 to $4.36 in AWS, $0.07 to $3.57 in GCP, and $0.07 to
$2.50 in Azure. For SSD storage, we set $0.1 per GB-month for AWS
(beyond 75 GB which is a free slab) and $0.24 per GB-month for
GCP with maximum allowed throughput set at 15K IOPS and 30K
IOPS, respectively. Azure employs flat storage prices for different
storage slabs from $5.28 to $259.05 for storage slabs ranging from
32 GB (120 IOPS) to 2 TB (7500 IOPS), respectively. We use the
publicly available quotations of the three cloud providers [3, 8, 11].

Hardware. For computing Cosine’s storage engine configurations,
we use a machine with Core i5 processor and 16GB DDR4 RAM.

7.1 Verifying the Accuracy of Cosine’s Models

Cosine’s potential as a self-designing storage engine depends on
the accuracy of its cost models across the entire space of storage
engine designs, hardware, data, operations, and cloud budgets.

: — actual ---- Cosine Model 0O Worst-case X Distribution-aware 0O Actual
Workload | Zipfian | Normal ! (color-codes w.r:t the engine) XOO RocksDB XO0 WiredTiger XOO FASTER
ID p_put|p_get 1 g || 3l RN &----Z-----B G- >EI< rrrrrr B - BF----- a 3fa----- PR P PR a G- B~ -] [T B-----0] [E =N
1. 0.8 | 0.8 [2m 11000 : . lookup, zip 3 R L *X;\é b'llnd—update, e read—niodlfy—wrlte, s g
2. 0.5 | 0.8 |3M [10000 : ?2 ANt R insert, zipf 24 zipf P A Jiormal . range, normal
3. |02 [08 [sm]i0000' 2 B P A
4 |05 |05 |sM|1000] & "
5. 0.2 0.2 |5M| 100 ['
P - ot 0 0
AR ! 12 3 4 5 1 2 3 4 5 1 2 3 4 5 > 3 4 12 3 4 5
(A) Distribution ! Workloads Workloads Workloads ‘Workloads Workloads

parameters used for (B)

(B) 75 combinations with existing designs (5 workloads x 5 operations x 3 storage engines)

Figure 3: Accurately capturing the cost of running diverse operations on existing storage engine designs.

--% Cosine Model —¢-Cosine engine — uniform —— skew ~— Cosine Model —&— Storage Engine - -Accuracy = CC(?S]HICE Mf)del
—= Cosine Engine
20 2.0 2.0 z 02 F100 -osme Bngme
5 " . %] lookup-intensive
2154 lookup 154 lookup s 200 {8 -2 “®lss | E, |(YCSBB)
A 104 g E
2 1.0 L 53 "]
§“ b X3 o x x x X g 5019 100 (ii) RocksDB »50§ £, '
= 054—o000—9 05p—0—0—< < 3 0 (@)
g [5< -
=z -~ o] mixed
5 2 TlvesBA)
0.0 04 Fo 2 (
0.10-] 00259 z T f;g_ 8
i & 100 2
inse i | | R =
[005, msert mnsert g % ,B-.@,,m,.&.wﬁ.ﬂw g g B EE D > (ii)
5 . W D JURR, . B . 75 @
0,054 X % g (iii) WiredTiger (iv) FASTER [7°¥& 0
50 RO S ™ = = z 30 insert-intensive
ERE L
e x| |88 201 £ g, |esBa
d 1 Sh &, 201 variant)
T B K] S El
0.00% T q{\;_ié—é? 0.00, — i 2 00004 T T :2 7 < =T
4 8 10 16 2 4 6 8 1 2 4 8 16 64 |5 = (ii)
Size ratio (T) Merge threshold (K, Z) Buffer (MB) = 0 : : i o

K =172, Z=T1, buffer = 64 MB T = 10, buffer = 64 MB T=10K=527=5
(A) 60 combinations (30 new designs x 2 operations)

-
2 4 8

10 50 100
Budget ($/month)

©

— T T T
24 8 12 %0
Query parallelism

T
12
Query parallelism

Figure 4: Accurately predicting I/0, CPU, and cloud cost with query and h/w parallelism for diverse new and existing designs.

Step 1: State-of-the Art Engines. First, we show that Cosine can
accurately capture the I/Os of diverse engine designs for all core
key-value operations. For each operation we compare the actual
performance of each engine - we measure the mean incurred I/Os -
against the predicted I/Os by the Cosine model, using the initializa-
tions of Table 1 for each engine. We test with 100M entries, 10M
queries (for each operation type) and various skewed distributions
varying Dge; and Dpy; to represent zipfian and normal distribu-
tions as shown in Figure 3(A). Figure 3(B) shows that as we vary
workloads and distributions, (1) the shape of the predicted I/Os
matches that of the actual I/Os for all engines and distributions and
(2) the error is extremely small with an average accuracy of 89%,
86%, and 93% for RocksDB, WiredTiger, FASTER, respectively. For a
better understanding of the need for distribution-aware models, we
also compare against the worst case models we introduced [73] for
the data layout primitives. The Cosine model is drastically superior,
e.g., for zipfian lookups with pge; = 0.8 or normally distributed
rmws on FASTER or WiredTiger, most of the keys are in cache
or buffer thereby leading to less I/Os per operation, whereas, the
worst-case model still accounts at least 1 I/O for each lookup.

Step 2: New/Hybrid Engines. Next, we verify the model against
several new engine designs which are hybrids of Cosine’s core
design classes. We generate 30 new engine designs by varying one
design primitive at a time. To test the performance of these new
engines, we deploy the Rust implementation of the Cosine template.
Similar to the observations in Figure 3(B), Figure 4(A) shows an

121

average accuracy of 94% in predicting the performance of diverse
storage engines across two of the core key-value operations.

Step 3: Concurrency-Aware CPU Modeling. We now switch
from individual operations to full-fledged workloads and move on
from I/Os to end-to-end latency using also Cosine’s learned CPU
model. Figure 4(B) depicts results using YCSB A with 25% of each
operation: lookups, inserts, blind updates, and rmws, and as we vary
query parallelism and CPU cores. It shows results with all baselines
as well as with Cosine’s optimal auto-designed engine. The results
include both the actual runtimes and the predicted performance
by the Cosine model. For all degrees of parallelism in Figure 4(B)
and for all engine designs, Cosine’s prediction accuracy never falls
below 82% and achieves a maximum of 90%.

Step 4: Cloud Cost. We now demonstrate that Cosine can accu-
rately translate performance estimations to cloud cost. We use
Azure and compare the cloud cost and performance estimations of
Cosine with the actual monetary cost incurred and the throughput
achieved when running the codebase produced by Cosine on the
cloud. We use five VM types: Bl|s, Bls, Blms, A1_v2, and D1_v2
and a YCSB A workload variant. We run this experiment on a dis-
tributed setup with a cluster size of 3 VMs. Then, the cloud cost
varies from $11.4/month to $159.87/month [11, 16] for running the
same workload with the optimal configurations in each case. Figure
4(C) shows that the averaging over all budget points and YCSB
A variants, the predicted performance is accurate to up to 91%.
Depending on the availability of VMs, there can be a variability
of up to 15% on cloud-cost for the same performance (each VM is

— X~ RocksDB —©—WiredTiger =% — FASTER -8 Cosine on AWS -e- Cosine on GCP -~ Cosine on Azure [LSM class [T B-tree class] LSH class [Hybrid class

Configuration format: (T, K, Z), (M, n), (VM type, cloud provider)
YCSB A variant: blind-update- YCSB B variant: lookup-intensive
intensive (10% lookups, 20% (70% lookups, 25% inserts, 5%

YCSB A+D variant: insert-
intensive (70% inserts,

YCSB extended: mixed with range
YCSB extended.: mixed without range (10% lookups, 25% inserts, 5% rmws,
(25% lookups, 25% inserts, 25% 30% blind updates, 10% non-empty,

rmws, 70% blind updates) blind updates) 30% blind updates) rmws, 25% blind updates) 20% empty ranges)
1® 1©) (D) 1 (E)

c W
2 e eeeaa Y |
a 4 ; i |
2 A 'y l ’l/ |
= .] z/f e 1/ . x'x'x'x';:x' o *;;;Z;V] ' . B
3 ; N e ¥k [' kR K 1 Al HF | | o T
& 10* fosoooaabssEEEL o0 (60400 5EEEE bS : ‘ A/ooooott‘f@ﬁooooooo
=) OIS DM R o’ it | 0<><><><><><>é<><><><><><><>szs?
31034 L\ 4 1 exrtoexx xxxexxxxxexxex | 44 \ 1 xexx ex v b
) \ v / : . \ X (1509, (58429,
= 4 Ky N L 'S v (t5d.12xlarge, AWS)
= (32,1,1), (160,10), ~ (1054,1053,1053), (4.3.1), (64.4), . (64,1,1), (128,8), (15,14,14), (32,2), (15.1,14), (384,24), (64.1.1). (64,4), <25,24,24),(54,3z), (32,1,1), (128, 87******—*—’&**

(E20 V3, Azure) (32,16), (E32 v3, Azure) | | (g§ »z Ama) (ﬁd 4x14r1,e AWS)| | rSdlarge, AWS) (r5d.12xlarge, AWS) (r5d.2xlarge, AWS) (E64 v3, Azure) | [rSd4xlarge, AWS)

T T

YCSB F variant: rmw-intensive YCSB E: lange mtens:ve YCSB E: range-intensive

(10% lookups, 70% rmws, 20% (30% blind updates, 70% (30% blind updates, 20% non-empty Same as D with skewed Same as E with skewed

blind updates) non-empty range (R: 4096)) range, 50% empty ranges (R: 128)) distribution distribution

L | (B) 1© | @) K0} ————— (@)

2 10 / /
2 e s e s s A
§. 106 4 4 i K K
2 10°4 K) | fm‘eﬁ@‘ﬁ‘a’g | / |
ERW o ! ek WQOQQQQOOOOOOOOO) seeesssaoy
£ 10%1% [ovocooasres3E3ETS 00| 1 s 1 42 xxxxxxb(-x'x'x'x'x'x'x'x'x 7 \
Ty & i i 7 Toooooonessapssess
g 103 e e 3¢ ¢ 5 3¢ 36 XX 36 3¢ e 3 %% | 4 eeggggggggew& RE \ B f (11,1.2), (384,24),
] N N éeaaaeee%ooooooo LG, (128.9), \ \ (15d.12xlarge, AWS
E G2.0,1)\160,10). \(29 28,28), (138,24). 4TI (288), GoLT, (3842, (léi 1/31)A(zﬁ\i:;l (r3d4xlarge, AWS (grl) (644), (29, 2;1) (138,24), (64,1 }A) (G dprn T

(E20,3, Azure)_ (151 2xtarge, AWS) | | o5 4xlarge, AWSYrSd. 12xlarge, AWS) Hoex o (B8 3, Azure) (15 I2xlarge, AWS) (13 2xlarge, AWS)

T T T T T

20K 60K 100K

Budget ($/month)

100K 2()K 60K
Budget ($/month)

2()K

T

Budget ($/month)

T T T
60K | 100K ‘ 20K 60K 100K
Budget ($/month)

ZOK 60K
Budget ($/month)

100K

Figure 5: Cosine outperforms existing storage engine across diverse workloads and cloud budgets.

charged differently across different Azure data centers). To include
this variability, we plot with error bars the minimum and maximum
price of each VM type across 6 data centers in the United States.
Overall the results in this section show that the Cosine model
satisfies all quality properties: (1) precision as it maintains an aver-
age accuracy of 89% across storage engine designs, operations, and
distributions, (2) consistency as the shape of estimation matches
that of the actual curve in all experiments, and (3) conservation as
in almost all scenarios, we notice errors due to over-estimation and
not under-estimation. Cosine never exceeds the budget by more
than 15% or misses the performance target by more than 12%.

7.2 Outperforming State-of-the-art Engines

Next we demonstrate that given a workload and budget, Cosine
can search over a massive space of possible storage engine designs
to find and take the shape of the best design that significantly
outperforms state-of-the-art systems while also choosing the best
cloud provider and hardware (VM) for deployment to balance both
cloud cost and performance. Now that we have proven the accuracy
of the Cosine models, we use the models to generate the results
of these experiments as we would otherwise need a budget in the
order of 8 million dollars. We verify the cost-performance mapping
for each provider using their price calculators [5-7].

Scaling with diverse Workloads and Cloud Budgets. Figure 5
shows results from ten workloads. (A)-(C) and (F)-(H) are work-
loads with a one dominant query type whereas (D)-(E) and (I)-(J)
are mixed workloads with varied composition of operations, as
indicated on top of each graph. For each experiment, we vary the
budget in ($/month) and for each budget, we plot the throughput
for RocksDB, WiredTiger, FASTER, and Cosine (best design chosen
for each budget/workload). We also explicitly show some of the re-
sulting Cosine designs and the dominant class of the chosen Cosine

122

design at each point by color coding (e.g., B-tree based). The result-
ing cloud provider is indicated by the point used for each budget
and we set AWS as the default cloud provider for the baselines.
For all workloads in Figure 5, Cosine either outperforms or
matches RocksDB, WiredTiger, and FASTER. Cosine’s performance
gain grows with more budget because hardware and design are
not co-optimized in fixed engines while Cosine morphs to the best
design to co-optimize for the workload, budget, and available hard-
ware. For example, by capturing early-stopping and infrequent
merging within its distribution-aware cost model and by finding
out the optimal level of parallelism with its learned model, Cosine
is able to allocate memory across the buffer, bloom filters, and fence
pointers optimally. For instance, as the budget increases for mixed
workloads (5(D)), Cosine’s optimal configuration uses the same
memory footprint but switches the storage engine design from
B-tree-like to LSH-like and the cloud provider from AWS to Azure.
This is because (i) unlike B-trees, LSH-tables are fundamentally
read-write-optimized at the cost of high memory and (ii) memory
is cheaper in Azure, compared to AWS. Even with a reduced IOPS
rate in Azure, the LSH-Azure combination emerges as the optimal
one for higher budgets. Cosine also brings out observations that
enhance conventional wisdom. For instance, Cosine pickes B-tree
class of designs as the workload consists of range-intensive oper-
ations (5(G)). However, when the workload changes such that a
significant proportion of those operations are empty (5(H)), then Co-
sine chose the LSM-class of design by utilizing an in-memory range
filter (Rosetta [90]). Making such choices manually is extremely
complex and non-intuitive as conventional wisdom suggests that
LSM designs are not optimized for range queries.
Scaling With Data. We now show that Cosine scales better not
only with budget and workloads but also with data. In this ex-
periment, data grows from 1 to 100 billion entries; for every 10%

O LSM class O B-tree class [LSH class O Hybrid class
—H— Cosine —5—RocksDB —A—WiredTiger —X— FASTER

1 extended YCSB: mixed 7| extended YCSB: mixed with
without range (25% range (20% lookups, 50%
lookups, 25% inserts, 25% - inserts, 20% rmws, 10% range)
blind updates, 25% rmws)

—, &= B
Jo— s .

1034 Q_M Jo— e

2| (A.D)

g
;

Throughput (kops/s)
2
h

%X

(A.ii)

T T

1 0. . 100 1 10 100
Data growth (entries in billion) Data growth (entries in billion)

A Azure OAWS O GCP

= —r q

E 10004 (YCSB D variant) - 10 ©) — No SLA

) 0047~ 5 — + DB migration and
2 ASTER €O opimat|| 5 op. and tool support
2 100 1004 g — + backup and

3 Z 2 reliability

£ el || 5 25 — + availability

g (B) 10004 §5s availability

E 5

5 10 < Seosogs

2 =

& = co88e

£ 3}

g =

S 14 J

Z T 0 T T

0 10 20 30 40 20K 60K 100K
‘Workload variability (%) Budget ($/month)

Figure 6: Cosine scales (A); is robust (B); adapts to SLAs (C).
growth in data we increase the budget by $10K to accommodate
additional storage and computation requirements. We test for two
YCSB variants. Figure 6(A.i) shows that Cosine scales better by
up to 80X, 40X, and 7X compared to RocksDB, WiredTiger, and
FASTER respectively. This is because when searching for the opti-
mal engine, Cosine’s synthesis assumes that the underlying data
structures in the candidate designs are full. This allows Cosine to (i)
eliminate configurations that are likely to grow disproportionately
(or proportionately) for uniform (or skewed) workloads and (ii)
pick configurations that amortize the cost over large data. When
workloads have range queries as in Figure 6(A.ii), the benefit is
slightly smaller as a range query involves reading multiple pages
which dominate cost; Cosine still improves by 40x and 15x over
RocksDB and WiredTiger, respectively.

Overall, across all workloads, budgets and data sizes in Figures
5 and 6, Cosine improves on average by 53x, 25x, and 20x com-
pared to RocksDB, WiredTiger, and FASTER, respectively and for
many contexts the benefit can be be up to 100x. For certain points
across all figures, there are no numbers for RocksDB, WiredTiger,
or FASTER. This is due to insufficient budget. For example, with
AWS, RocksDB needs to always use at least $20K/month to maintain
good performance by keeping its bloom filters in memory (with 10
bits/entry). Similarly, FASTER needs at least $45K/month for good
performance to be able to hash about 8+h of the data in-memory

which requires 7400 GB of memory (% %64 % (1+ ﬁ) with
B = 2048) which is 21 VMs of type r5d.12xlarge in AWS. Instead,
Cosine is able to find a viable storage engine design for any budget.

Cosine is Robust. We now show that Cosine provides robust per-
formance if the expected workload varies from the actual workload.
Here Cosine expects a YCSB D variant workload with 50% lookups
and 50% inserts and is given a budget of $20K per month. The ac-
tual workload that arrives includes 10xV% new operations: 45%
lookups, 45% inserts, and 3.33xV % blind updates, 3.33xV % rmws,
and 3.33xV % range queries. We vary the actual workload by either
altering the proportion of operations (V) and track the performance
loss by testing against the optimal design that Cosine would create
if it was given the actual workload. Figure 6(B) shows that Cosine

123

can accommodate up to 40% of workload changes in composition
of operations. It has a negligible performance loss of 0.3%, whereas
RocksDB and WiredTiger incur a loss of 16x and 3x, respectively.
FASTER incurs a 100x loss due to range queries.

SLAs. Finally, Figure 6(C) shows that as we add SLA requirements,
Cosine utilizes the budget to maximize perfomance by coming up
with new engine designs and cloud configurations.

8 RELATED WORK

Cosine is part of an ongoing effort in the systems community to
design systems that learn and adapt: Learned systems [75, 84, 85],
adaptive indexing [74], and learned-tuning [100, 110] are all related
areas of research but orthogonal directions. First, Cosine offers
a drastically different methodology by exhaustively utilizing our
knowledge as system designers to craft an extensive design space for
the core design decisions of storage engines and uses both analytical
and learned cost models to rank those designs. This brings fast and
robust design space navigation to achieve self-designing properties.
Second, Cosine focuses specifically on key-value storage engines
[70, 105, 106, 114, 121, 124] and co-designs the whole self-designing
process with cloud cost policies and deployment.

Bourbon [49] is a modification of WiscKey [88] that replaces
the fence pointers in an LSM-tree based key-value store with a
learned model. Distributed key-value stores can also use learned
components for purposes such as caching hot key-value data closer
to the client for less network cost [118], and responsively adjusting
in-memory component tuning to changing workload conditions
[110, 122]. Learned components are orthogonal to Cosine which
offers a framework to model the whole key-value store engine space.
For example an LSM-tree system such as Bourbon that replaces an
existing component with a learned component that does the same
work is still an LSM-tree system with the same core properties.
Instead, Cosine’s first principles approach gives the ability to span
design classes and offers scalability in workload diversity. Learned
components can be integrated into the Cosine template and models
so that they can be considered as part of the engine design space.

Other Related Areas. In [2], we discuss the related areas of multi-
node cloud cluster management [21, 25, 37, 65, 81, 123], cloud re-
source pricing, utilization and guarantees [38, 69, 94, 113], and other
data management work in cost optimization [22, 44, 50, 107, 109].

9 LIMITATIONS & OPPORTUNITIES

Given the vast space of considerations with storage engines there
are several limitations and open topics we do not cover in this
paper but offer exciting areas for future work towards full blown
self-designing storage engines such as workload forecasting, dis-
tributed processing, on-the-fly adaptation, adoption of learned com-
ponents, and even extending to data models beyond the key-value
paradigm. For example, in the spirit of online database tuning [41]
online adaptivity for self-designing storage engines can utilize the
Cosine models to reevaluate the design periodically and then there
is the additional problem of transitioning the engine design with
minimum data movement. Our early results for online-adaptivity
show promising signs across diverse designs [80, 91].

ACKNOWLEDGMENTS. This work is partially funded by the
USA Department of Energy project DE-SC0020200.

REFERENCES

2014. Viber Replacing ~ MongoDB with ~ Couchbase.
https://www.youtube.com/watch?v=mMuMAjgXWIc.

2019. http://daslab.seas.harvard.edu/cosine/appendix.pdf. , Cosine Technical
Report pages.

2019. Amazon Web Services. https://aws.amazon.com/ec2/pricing/on-demand/.
2019. Aria Storage Engine. http://mariadb.com/kb/en/library/aria-storage-
engine.

2019. AWS Calculator. https://calculator.s3.amazonaws.com/index.html.

2019. Azure Calculator. https://azure.microsoft.com/en-us/pricing/.

2019. GCP Calculator. https://cloud.google.com/products/calculator;/.

2019. Google Cloud Pricing. https://cloud.google.com/compute/all-pricing.
2019. Influx. https://influxdata.com.

2019. InnoDB. https://dev.mysql.com/.
2019. Microsoft Azure.
us/pricing/details/virtual-machines/linux/.
2019. PostgreSQL. https://www.postgresql.org.

2020. AWS Backup pricing. https://aws.amazon.com/backup/pricing/.

https://azure.microsoft.com/en-

2020. Azure Backup pricing. https://azure.microsoft.com/en-
us/pricing/details/backup/.
2020. Cloud Storage for data archiving.

https://cloud.google.com/storage/archival.
2020. General purpose Azure VMs.
us/azure/virtual-machines/sizes-general.
2020. Viber. https://www.viber.com/en/.
2021. Amazon EC2 Instance Types. (2021).
2021. How much are startups spending for their top needs? T. C. Brand Studio
(2021).

2021. Riak KV. https://docs.riak.com/riak/kv/latest/index.html.

Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman,
and Harbinder Bhogan. 2010. Volley: Automated Data Placement for Geo-
distributed Cloud Services. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation (San Jose, California) (NSDI'10).
USENIX Association, Berkeley, CA, USA, 2-2.

Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Ma-
chine Learning. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1009-1024.

Amazon. 2020. Cloud Storage. https://aws.amazon.com/what-is-cloud-storage/
(2020).

G. Amdahl. 1967. Validity of the Single-Processor Approach to Achieving
Large-Scale Computing Capabilities. In AFIPS spring joint computer conference.
Apache. 2020. Cassandra. http://cassandra.apache.org (2020).

Apache. 2020. HBase. http://hbase.apache.org/ (2020).

Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: a Database Benchmark Based on the Facebook
Social Graph. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1185-1196.

https://docs.microsoft.com/en-

AWS. 2019. AWS Database Migration Service pricing.
https://aws.amazon.com/dms/pricing/.
AWS. 2019. CloudEndure Disaster Recovery.

https://aws.amazon.com/marketplace/pp/Amazon-Web-Services-
CloudEndure-Disaster-Recovery/B073V2KBXM.

AWS. 2019. Prior Version(s) of Amazon EC2 Service Level Agreement - Not
Currently In Effect. https://aws.amazon.com/ec2/sla/historical/.

AWS. 2019. What is DevOps? https://aws.amazon.com/devops/what-is-devops/.
Azure. 2019. Azure Database Migration Service pricing.
https://azure.microsoft.com/en-us/pricing/details/database-migration/.

Azure. 2019. Azure Site Recovery pricing. https://azure.microsoft.com/en-
us/pricing/details/site-recovery/.

Azure. 2019. Pricing for Azure DevOps. https://azure.microsoft.com/en-
us/pricing/details/devops/azure-devops-services/.

Azure. 2019. SLA for Virtual Machines. https://cloud.google.com/functions/sla.
Microsoft Azure. 2019. .

Nicholas Ball and Peter Pietzuch. 2013. Skyler: Dynamic, Workload-Aware Data
Sharding across Multiple Data Centres. (2013).

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011.
The Price Is Right: Towards Location-Independent Costs in Datacenters. ACM
HotNets.

F. Brazeal. 2017. Why Amazon DynamoDB isn’t for everyone.
https://read.acloud.guru/why-amazon-dynamodb-isnt-for-everyone-and-
how-to-decide-when-it-s-for-you-aefc52ea9476.

J. Bruck, J. Gao, and A. Jiang. 2006. Weighted Bloom Filter. In In Proceedings of
the International Symposium on InformationTheory (ISIT). 2304-2308.

Nicolas Bruno, Surajit Chaudhuri, and Gerhard Weikum. 2018. Database Tuning
Using Online Algorithms. In Encyclopedia of Database Systems, Second Edition,
Ling Liu and M. Tamer Ozsu (Eds.). Springer.

[42]

[43]

[44

[45]

[46

[47
[48
[49

[50

[51]

[52]

[53

[54
[55

[56
[57

[58]
[59]
[60]

[61]

[62

[63]

(64

[65]

[66]

[67]

[68

[69

[70

Zhao Cao, Shimin Chen, Feifei Li, Min Wang, and Xiaoyang Sean Wang. 2013.
LogKV: Exploiting Key-Value Stores for Log Processing. In Proceedings of the
Biennial Conference on Innovative Data Systems Research (CIDR).

B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter, and M.
Barnett. 2018. Faster: A Concurrent Key-Value Store with In-Place Updates. In
ACM SIGMOD.

Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS). 34-43.

M. Cooney. 2016. 10 best cloud SLA
https://www.networkworld.com/article/3053920/10-best-cloud-sla-
practices.html.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC). 143-154.

Couchbase. 2020. Online reference. http://www.couchbase.com/ (2020).
CouchDB. 2020. Online reference. http://couchdb.apache.org/ (2020).

Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. From WiscKey to
Bourbon: A Learned Index for Log-Structured Merge Trees. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 155-171.

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit
Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). ACM, New York,
NY, USA, 666-679.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal
Navigable Key-Value Store. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 79-94.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom
Filters and Adaptive Merging for LSM-Trees. ACM Transactions on Database
Systems (TODS) 43, 4 (2018), 16:1-16:48.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
ACM SIGOPS Operating Systems Review 41, 6 (2007), 205-220.

Ditto. 2022. How do you choose the right VM size in Azure? Accubits (2022).
DSM. 2018. AWS and Azure: Offering Cloud and Confusion.
https://www.dsm.net/it-solutions-blog/aws-and-azure-offering-cloud-service-
and-pricing-confusion.

Facebook. 2020. RocksDB. https://github.com/facebook/rocksdb (2020).

V. Finkle. 2015. This Startup Let Us Snoop Through Its Finances. Here’s What
We Found. (2015).

N. Fisk. 2019. Opinion: Clearing up multi-cloud confusion.
https://www.cloudcomputing-news.net/news/2019/apr/12/opinion-clearing-
multi-cloud-confusion/.

W. Fokoue, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. 2015.
SQLGraph: An Efficient Relational-Based Property Graph Store. In In Proceedings
of the International Conference on Management of Data, SIGMOD.
GCP. 2019. DevOps. https://cloud.google.com/devops/.

GCP. 2019. Disaster Recovery Planning
https://cloud.google.com/solutions/dr-scenarios-planning-guide.
GCP. 2019. Google Cloud Functions Service Level Agreement (SLA).
https://cloud.google.com/functions/sla.

GCP. 2019. Pricing for Migrated
https://cloud.google.com/migrate/compute-engine/pricing.
Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Transactions
on Database Systems (TODS) 35, 3 (2010).

Bram Gruneir. 2017. Scalable SQL Made Easy: How CockroachDB Automates
Operations .

D. Hein. 2019. 5 Things to Look For in a Cloud Service Level Agree-
ment. https://solutionsreview.com/cloud-platforms/5-things-to-look-for-in-a-
cloud-service-level-agreement/.

J. L. Hennessy and D. A. Patterson. 2003. Computer Architecture: A Quantitative
Approach. Morgan Kauffman.

Mark D. Hill and Michael R. Marty. 2008. Amdahl’s Law in the Multicore Era.
Computer 41, 7 (July 2008), 33-38.

Darrell Hoy, Nicole Immorlica, and Brendan Lucier. 2016. On-Demand or
Spot? Selling the Cloud to Risk-Averse Customers. In Proceedings of the 12th
International Conference on Web and Internet Economics - Volume 10123 (Montreal,
Canada) (WINE 2016). Springer-Verlag New York, Inc., New York, NY, USA, 73—
86.

Haoyu Huang and Shahram Ghandeharizadeh. 2021. Nova-LSM: A Distributed,
Component-based LSM-tree Key-value Store. CoRR abs/2104.01305 (2021).
arXiv:2104.01305

practices.

Guide.

Workloads.

(71]

[72

[73

<
=t

(75

[76

[77

=
&

[79]

[80

[81

(82

(83

[84

(89]

[90

(91]

[92]
(93]

[94]

Kecheng Huang, Zhiping Jia, Zhaoyan Shen, Zili Shao, and Feng Chen. 2021.
Less is More: De-amplifying I/Os for Key-value Stores with a Log-assisted LSM-
tree. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
612-623.

S.Idreos and M. Callaghan. 2020. Key-Value Storage Engines. In ACM SIGMOD
Tutorial.

Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, and Zichen Zhu. 2019.
Design Continuums and the Path Toward Self-Designing Key-Value Stores that
Know and Learn. In Biennial Conference on Innovative Data Systems Research
(CIDR).

Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Cracking.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR).

Stratos Idreos and Tim Kraska. 2019. From Auto-tuning One Size Fits All to
Self-designed and Learned Data-intensive Systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data.

Stratos Idreos, Tim Kraska, and Umar Farooq Minhas. 2021. A Tutorial Workshop
on Learned Algorithms, Data Structures, and Instance-Optimized Systems. In
VLDB.

Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S Kester, and
Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost Synthesis
from First Principles and Learned Cost Models. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 535-550.

WIRED INSIDER. 2011. Service Level Agreements in the Cloud: Who
cares? https://www.wired.com/insights/2011/12/service-level-agreements-in-
the-cloud-who-cares/.

M. R. Jain. 2019. Why we choose Badger over RocksDB in Dgraph.
https://blog.dgraph.io/post/badger-over-rocksdb-in-dgraph/.

Varun Jain, James Lennon, and Harshita Gupta. 2019. LSM-Trees and B-Trees:
The Best of Both Worlds. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD °19). Association for
Computing Machinery, New York, NY, USA, 1829-1831.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide Web. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Computing (El Paso, Texas,
USA) (STOC °97). ACM, New York, NY, USA, 654-663.

Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Access Path
Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I
Probe?. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data. 715-730.

A. Kicinski and H. Souiri. 2019. Forecasting Future Amazon Web Services
Pricing. In ICEAA Professional Development & Training Workshop.

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In Biennial Conference on Innovative Data Systems
Research (CIDR).

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 489-504.

M. Lahn. 2019. How much does a server cost for app hosting? (2019).

J. Liang and Y. Chai. 2021. CruiseDB: An LSM-Tree Key-Value Store with
Both Better Tail Throughput and Tail Latency. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE Computer Society, Los Alamitos,
CA, USA, 1032-1043.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values
in SSD-conscious Storage. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST). 133-148.

Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques: a survey.
The VLDB Journal 29, 1 (Jul 2019), 393-418.

Sigiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,
and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range Filter
for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data (Portland, OR, USA) (SIGMOD °20). Association
for Computing Machinery, New York, NY, USA, 2071-2086.

Graham Lustiber. 2017. E-Tree: An Ever Evolving Tree for Evolving Workloads.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Student Research Competition. 13-15.

P. Malkowski. 2018. MyRocks Disk Full Edge
https://www.percona.com/blog/2018/09/20/myrocks-disk-full-edge-case/.
Metafilter. ~ 2010. The cloud might run me
https://ask.metafilter.com/148869/The-cloud-might-run-me-dry.

Jeffrey C. Mogul and Lucian Popa. 2012. What We Talk About when We Talk
About Cloud Network Performance. SIGCOMM Comput. Commun. Rev. 42, 5
(Sept. 2012), 44-48.

Case.

dry.

125

&

[97]

[98]

[99
[100]

=
o o
=

[103

[104

[105

[106

[107

=
S o
2%

[110

[111

[112

[113

[114

[115

[116]

[117

[118

MongoDB. 2020. Online reference. http://wwwmonﬁodbcom/ (2020).
NordicBackup. 2018. 10 Mistakes Companies Make When Choosing Cloud

Computing Providers. https://nordic-backup.com/blog/10-mistakes-choosing-
cloud-computing-providers/.

W. Oledzki. 2013. memcached is a
http://hoborglabs.com/en/blog/2013/memcached-php.

R. Padilha, E. Fynn, R. Soule, and F. Pedone. 2016. Callinicos: Robust Transac-
tional Storage for Distributed Data Structures. In In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC ’16).

C. Parlette. 2018. 7 Ways Cloud Services Pricing is Confusing. (2018).
Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management
Systems. In Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR).

Google Cloud Platform. 2019. .

D. D. Preez. 2014. Viber migrates from MongoDB to Couchbase halves number
of AWS servers. https://diginomica.com/viber-migrates-mongodb-couchbase-
halves-number-aws-servers.

J. Ralph. 2019. Which Cloud is Best - AWS s
https://www.wirehive.com/thoughts/which-cloud-is-best-aws-vs-gcp/.
RapidValue. 2018. How to Choose between Azure/AWS/GCP for Cloud Web De-
velopment? https://www.rapidvaluesolutions.com/comparison-criteria-choose-
azure-aws-gcp-cloud-web-development/.

Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD °20). Association for Computing Machinery, New York, NY,
USA, 893-908.

Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis.
2021. Constructing and Analyzing the LSM Compaction Design Space. In
Proceedings of the VLDB Endowment.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational Data-
base Management System. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 23-34.

SQLite4. 2020. Online reference. https://sqlite.org/src4/ (2020).

Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, MichaelStone-
braker, David J. DeWitt, Marco Serafini, and Ashraf Aboulnaga andTim Kraska.
2019. Choosing A Cloud DBMS: Architectures and Tradeoffs. In PVLDB, Vol. 12.
Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. 2019. IBTune: Individualized Buffer
Tuning for Large-Scale Cloud Databases. Proc. VLDB Endow. 12, 10, 1221-1234.
Twain Taylor. 2019. Oracle cloud digs in for a long hard battle against AWS.
http://techgenix.com/oracle-cloud/.

R. Tkatchuk. 2017. If the cloud is so great, why are so many businesses unsatis-
fied? https://www.cio.com/article/3163967/if-the-cloud-is-so-great-why-are-so-
many-businesses-unsatisfied.html.

Duong Tung Nguyen, Long Bao Le, and Vijay Bhargava. 2018. Price-based
Resource Allocation for Edge Computing: A Market Equilibrium Approach.
IEEE Transactions on Cloud Computing PP (06 2018), 1-1.

Tobias Vingon, A. Bernhardt, Ilia Petrov, and Andreas Koch. 2020. NKV in
Action: Accelerating KV-Stores on NAtive Computational Storage with NEar-
Data Processing. Proc. VLDB Endow. 13, 12 (Aug. 2020), 2981-2984.

Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui Zhang,
Qingchao Cai, Gang Chen, Wanzeng Fu, Beng Chin Ooi, and Pingcheng Ruan.
2018. ForkBase: An Efficient Storage Engine for Blockchain and Forkable Appli-
cations. arXiv:1802.04949 [cs.DB]

Abdul Wasay, Brian Hentschel, Yuze Liao, Sanyuan Chen, and Stratos Idreos.
2020. MotherNets: Rapid Deep Ensemble Learning. In Proceedings of Machine
Learning and Systems, 1. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2.
199-215.

Abdul Wasay and Stratos Idreos. 2021. More or Less: When and How to Build
Convolutional Neural Network Ensembles. .

Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered
Key-Value Store using Remote Learned Cache. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
117-135.

Z. Wei, G. Pierre, and C. H. Chi. 2011. CloudTPS: Scalable Transactions for
Web Applications in the Cloud. IEEE Transactions on Services Computing (2011),
525-539.

WiredTiger. 2020. Source Code. https://github.com/wiredtiger/wiredtiger (2020).
Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2019. Autoscaling
Tiered Cloud Storage in Anna. Proc. VLDB Endow. 12, 6 (Feb. 2019), 624-638.
Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and David H.C. Du. 2020.
AC-Key: Adaptive Caching for LSM-based Key-Value Stores. In 2020 USENIX
Annual Technical Conference (USENIX ATC 20). USENIX Association, 603-615.

weird creature.

GCP.

https://arxiv.org/abs/1802.04949

[123] Fan Yang, Youmin Chen, Youyou Lu, Qing Wang, and Jiwu Shu. 2021. Aria: for In-Memory Search Trees. In Proceedings of the 2020 ACM SIGMOD Interna-
Tolerating Skewed Workloads in Secure In-memory Key-value Stores. In 2021 tional Conference on Management of Data (Portland, OR, USA) (SIGMOD °20).
IEEE 37th International Conference on Data Engineering (ICDE). 1020-1031. Association for Computing Machinery, New York, NY, USA, 1601-1615.

[124] Huanchen Zhang, Xiaoxuan Liu, David G. Andersen, Michael Kaminsky, Kim-
berly Keeton, and Andrew Pavlo. 2020. Order-Preserving Key Compression

126

