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ABSTRACT
Computing similarity between graphs is a fundamental and critical

problem in graph-based applications, and one of the most com-

monly used graph similarity measures is graph edit distance (GED),

defined as the minimum number of graph edit operations that

transform one graph to another. Existing GED solutions suffer from

severe performance issues due in particular to the NP-hardness of

exact GED computation. Recently, deep learning has shown early

promise for GED approximation with high accuracy and low com-

putational cost. However, existing methods treat GED as a global,

coarse-grained graph similarity value, while neglecting the type-

specific transformative impacts incurred by different types of graph

edit operations, including node insertion/deletion, node relabel-

ing, edge insertion/deletion, and edge relabeling. In this paper, we

propose a type-aware graph similarity learning and computation

framework, TaGSim (Type-awareGraph Similarity), that estimates

GED in a fine-grained approach w.r.t. different graph edit types.

Specifically, for each type of graph edit operations, TaGSim models

its unique transformative impacts upon graphs, and encodes them

into high-quality, type-aware graph embeddings, which are further

fed into type-aware neural networks for accurate GED estimation.

Extensive experiments on five real-world datasets demonstrate the

effectiveness and efficiency of TaGSim, which significantly outper-

forms state-of-the-art GED solutions.
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1 INTRODUCTION
In the modern network era, graphs have been ubiquitous in nu-

merous high-impact areas, including social media, bioinformatics,

artificial intelligence, and critical infrastructures [15]. At the core of

myriad graph-based applications lies a common and fundamental

problem of graph similarity computation, which demands efficient

discovery of highly similar graphs. Specifically, graph edit distance

(GED) defined by a minimum number of graph edit operations

between a pair of graphs has by far been the most well-studied
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graph similarity metric thanks to its generality and broad applica-

bility [3, 10, 35]. However, the exact GED computation has proven

to be NP-hard [8], and simply intractable even for small graphs in

practice [5].

Existing solutions for GED computation have focused primar-

ily on pruning unpromising search spaces, or filtering dissimilar

graph pairs based on GED lower bounds, before the exact GED

verification is triggered [10, 22, 26, 51]. These methods, however,

suffer from severe performance vulnerabilities especially in large

graph datasets: (1) Existing GED lower bounds demonstrate limited

filtering capabilities, and a large number of dissimilar graph pairs

fail to be identified and filtered, thus rendering a large amount of

fruitless computation; (2) The algorithms that evaluate such GED

lower-bounds tend to incur high-order polynomial, or even expo-

nential, computational costs, thus imposing another performance

barrier for GED computation [3, 4, 26, 35, 36, 51].

With the great success of deep learning techniques, some recent

works have treated GED computation as a learning problem, and

applied graph neural networks (GNN) for GED approximation [2,

11, 30]. Specifically, neural networks are trained to map a pair of

graphs to an approximate GED score with an objective to minimize

the discrepancy between the estimated GED and the ground-truth,

exact GED. Such learning-basedmethods have achieved higher GED

estimation accuracy than the traditional, search-based methods

and GED lower-bound based solutions [2]. In addition, once the

GNN models are trained a priori, they can enable efficient online

GED computation. Although the existing GNN-based solutions

have shown early promise for GED learning and computation, the

following technical limitations directly impair their usability and

performance especially for large graphs:

(1) Low Graph Embedding Quality. Existing approaches em-

bed each node of a graph into a vector w.r.t. node features

(e.g., node labels), and further aggregate node embeddings to

a global graph embedding vector, which, unfortunately, main-

tains rather limited structure and label information pertain-

ing to GED. This general-purpose, GED-agnostic embedding

mechanism is typically not optimized for graph similarity com-

putation, thus inevitably causing inaccurate GED estimation

results;

(2) Type-oblivious GED Learning. Existing approaches model

GED as a global graph similarity score for graphs. The fact

is that, GED is collectively determined by graph edit opera-

tions of six different types, including node insertion/deletion,
edge insertion/deletion, and node/edge relabeling, each of which

has disparate transformative impacts on graphs (e.g., changing
node/edge information, or altering graph connectivity), and

thus should be modeled and learned individually. The existing

type-oblivious approaches often lead to coarse-grained, inaccu-

rate GED estimation;
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(3) No Edge Label Support. Existing GNN-based approaches are

confined to graphs without edge labels [2, 30], and thus can-

not support edge relabeling operations, a critical constituent

in the GED definition. Additionally, their graph embedding

mechanisms fail to incorporate edge labels as well, rendering

incomplete GED modelling and inaccurate GED approximation

in practice;

(4) High Training Cost. Training GNN-based models requires

a large number of graph pairs with their ground-truth GEDs

as the training data, which are extremely expensive to obtain

due to the NP-hardness of the exact GED computation. For

the large graph datasets, this expensive training cost is simply

unacceptable.

To systemically address these limitations, we propose in this

paper a new concept of type-aware GED learning and computa-

tion for node/edge-labeled graphs: Instead of modelling GED as a

global graph similarity score, we investigate for each type of graph

edit operations its unique transformative impacts on graphs, and

design a fine-grained, type-aware embedding and GED learning

framework, TaGSim (Type-aware Graph Similarity Learning and

Computation) for accurate and efficient GED computation. In the

first stage of TaGSim, we extract within the localized neighbor-

hood of nodes/edges of graphs the salient information pertaining

to the transformative impacts incurred by each graph edit type,

including the edge relabeling operations that are omitted in existing

GNN-based solutions, and encode them into type-aware graph em-

beddings. In the second stage of TaGSim, we feed the type-aware

graph embeddings to the corresponding neural tensor networks

(NTNs) and fully connected neural networks (NNs) in order to learn

and estimate individually the number of operations for each graph

edit type. After the number of each constituent edit type in GED is

estimated, we aggregate them as the final estimated GED score. In

sum, TaGSim enables type-aware GED learning and computation

on node- and edge-labeled graphs, and supports the complete set

of graph edit types in a fine-grained, type-aware approach, thereby

resulting in highly accurate and efficient GED estimation for real-

world, large graphs.

To train TaGSim cost-effectively, we design a graph pair genera-

tor that can produce a series of graph pairs with pre-determined,

type-aware GED vectors without recourse to costly, exact GED

computation. The graph pair generator can efficiently produce as

much training data as possible that help train TaGSim in sufficient

configurations for type-aware GED learning. In contrast to existing

GNN methods that require costly pair-wise GED computation for

the ground-truth GEDs, our graph-pair generator can significantly

reduce the training cost for TaGSim.

To the best of our knowledge, TaGSim is the first end-to-end,

type-aware GED learning and computation framework that sup-

ports all different types of graph edit operations for GED. TaGSim
is more efficient and accurate for GED computation than state-

of-the-art solutions, including the up-to-date GNN-based method,

SimGNN [2]. The contributions of TaGSim are summarized below,

(1) We propose the idea of type-aware GED learning and computa-

tion, where each type of graph edit operations is modeled and

learned individually based on high-quality, type-aware graph

embeddings (Section 4.1);

(2) We develop an end-to-end GED learning and computation

framework, TaGSim, which supports the complete set of graph

edit operations allowed in GED, and enables type-aware GED

learning and computation (Section 4.2);

(3) We design an efficient and cost-effective graph-pair generator

that can produce training samples without recourse to costly

GED computation. This can significantly lower the training bar-

rier for GNN-based models in GED learning and computation

(Section 4.3);

(4) We perform experimental studies on five real-world datasets,

and the results demonstrate significant advantages of TaGSim,

in terms of both GED estimation effectiveness and efficiency,

compared with eight existing GED computation methods (Sec-

tion 5).

The remainder of the paper is organized as follows: In Section 2

we brief related work for GED computation. In Section 3, we in-

troduce key definitions and preliminary concepts for TaGSim. In

Section 4, we discuss the technical details of TaGSim. We report

our experimental results and key findings in Section 5, followed by

concluding remarks in Section 6.

2 RELATEDWORKS
GED-based Graph Similarity Computation. There exist numer-

ous graph proximity measures that quantify the similarity between

graphs, including graph edit distance (GED) [7, 37] and maximum

common subgraph (MCS) [13], while GED has arguably been the

most general and widely used one. Given a pair of graphs G and

G′, GED is the minimum number of graph edit operations that

transform G into G′, or vice versa. GED is a metric, and the exact

GED computation is NP-hard [8]. As a result, many techniques have

been proposed for GED approximation. Following the filter-and-
verification paradigm, some algorithms exploit count-based GED

lower bounds, GED(G,G′), to identify and filter dissimilar graph-

pairs [22, 26, 43, 45, 51]: If GED(G,G′) is sufficiently large, G and

G′ are guaranteed dissimilar because GED(G,G′) ≤ GED(G,G′).
The combinatorial or heuristic search-based methods take advan-

tage of A* strategies for search space exploration and unpromising

subspace pruning [10, 14, 18, 33, 34, 38, 41]. These methods are

typically efficient for small graphs. However, existing GED lower

bounds are often loose, and the performance of search-based meth-

ods tends to deteriorate significantly on large graphs. Recently,

deep learning techniques have been considered for GED approxi-

mation [2, 11, 30, 44]. For instance, graph neural networks (GNN)

are used to extract embeddings from graphs, which are further fed

into deep learning models for GED estimation. Compared with the

search-based methods, GNN-based solutions achieve higher GED

estimation accuracy, and their efficacy is not severely affected by

graph sizes.

Graph Neural Networks. Recent years have seen great success

of deep learning in numerous high-impact areas, including graphs

and networks. Among various deep learning models, graph neu-

ral networks are primarily designed to learn graph representa-

tions by transforming, propagating, and aggregating node features,

and have achieved outstanding performance in graph classifica-

tion [24, 27, 42, 46], graph representation learning [31, 47], and link
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Figure 1: Given a graph G with the node label set ΣV = {Y
(yellow), G(green), R (red)} and the edge label set ΣE = {S
(single-bond), D (double-bond)}, we transform G to another
graph G′ based on the following graph edit operations: (1)
relabel node 𝑣2 from label𝐺 to label 𝑌 ; (2) delete edge (𝑣1, 𝑣3);
(3) insert node 𝑣6 with label 𝑌 ; (4) insert edge (𝑣3, 𝑣6) with
label 𝑆 ; (5) relabel edge (𝑣3, 𝑣5) from label 𝑆 to label 𝐷 . As a
result, 𝐺𝐸𝐷 (G,G′) = 5.

prediction [9, 50]. The core operation of GNN is information ag-

gregation among graph nodes [1, 19, 46]. Concretely, given a node

𝑢, in each layer of GNN, 𝑢’s own feature is aggregated with those

of its neighboring nodes for an updated new feature of 𝑢. A linear

or non-linear transformation is usually applied on the aggregated

features. After several layers of computation, the resultant node

features can be used for downstream applications. There are various

aggregation mechanisms in GNN models: Spectral methods con-

sider information aggregation as spectral convolutions on graphs,

and the aggregation is defined on graph spectral filters [6, 11, 24];

Spatial methods perform aggregation on groups of spatially close

neighbors [42]. GNNs have also been used for graph similarity com-

putation. SimGNN [2] uses graph convolutional network (GCN)

for node feature aggregation, and considers the graph attention

mechanism to readout graph embeddings from the aggregated node

features; GHashing [30] constructs indices based on graph embed-

dings for similarity search. Note that the hyper-parameters of GNN

that are related to information aggregation and linear/non-linear

transformation need to be learned in the model training process,

which is typically costly. In this paper, we propose graph aggrega-
tion layer (GAL) to extract type-aware graph embeddings, which

are parameter-free.

3 PRELIMINARIES
In this paper, we consider simple, undirected, and labeled graphs for

similarity computation. A graph G is a 4-tuple (V, E, 𝑙, Σ), where
V is a node set; 𝐸 ⊆ V ×V is an edge set; the labeling function

𝑙 : V ∪ E → Σ assigns nodes/edges with labels from a node/edge

label set ΣV /ΣE , where ΣV ∪ ΣE = Σ. We can edit or transform G
based on the following types of graph edit operations:

• Node Relabeling (NR): replace the label of node 𝑢 ∈ V from

𝑙 (𝑢) to 𝑙 ′(𝑢), denoted as 𝑁𝑅(𝑢, 𝑙 (𝑢), 𝑙 ′(𝑢)), where 𝑙 (𝑢), 𝑙 ′(𝑢) ∈
ΣV ;

• Node Insertion/deletion (NID): insert or delete an isolated

node 𝑢 with label 𝑙 (𝑢) in or from G, denoted as 𝑁𝐼𝐷 (𝑢, 𝑙 (𝑢));
• Edge Relabeling (ER): replace the label of an edge (𝑢, 𝑣) ∈ E

from 𝑙 (𝑢, 𝑣) to 𝑙 ′(𝑢, 𝑣), denoted as 𝐸𝑅(𝑢, 𝑣, 𝑙 (𝑢, 𝑣), 𝑙 ′(𝑢, 𝑣)), where
𝑙 (𝑢, 𝑣), 𝑙 ′(𝑢, 𝑣) ∈ ΣE ;
• Edge Insertion/deletion(EID): insert or delete an edge (𝑢, 𝑣)

with label 𝑙 (𝑢, 𝑣) in or from G, denoted as 𝐸𝐼𝐷 (𝑢, 𝑣, 𝑙 (𝑢, 𝑣)).
Given a pair of graphs G and G′, we can transform G step-by-

step to G′, or vice versa, by a shortest sequence 𝑃 of graph edit

operations, termed as graph edit sequence, 𝑃 (G,G′). The graph edit
distance between G and G′, 𝐺𝐸𝐷 (G,G′), is defined as the number

of graph edit operations in 𝑃 (G,G′): 𝐺𝐸𝐷 (G,G′) = |𝑃 (G,G′) |.
Note that𝐺𝐸𝐷 (G,G′) is a metric [16], and computing𝐺𝐸𝐷 (G,G′)
is NP-hard [17]. It is worth mentioning that the order of graph edit

operations in 𝑃 (G,G′) is irrelevant to𝐺𝐸𝐷 (G,G′). To this end, we
define the type-aware graph edit vector as follows,

Definition 1. [Graph Edit Vector] Given graphs G and G′,
where G can be transformed to G′ following the graph edit sequence
𝑃 (G,G′), the graph edit vector (GEV) of G and G′ w.r.t. 𝑃 is a four-
dimensional vector whose dimensions represent the number of graph
edit operations in 𝑃 (G,G′) corresponding to the four graph edit types,
NR, NID, ER, or EID, respectively:

𝐺𝐸𝑉𝑃 (G,G′) = [#NR, #NID, #ER, #EID]⊤ (1)

Example 1. Consider G and G′ shown in Figure 1. We transform
G to G′ based on the graph edit sequence 𝑃 (G,G′) = (NR(𝑣2,𝐺,𝑌 ),
EID(𝑣1, 𝑣3, 𝑆), NID(𝑣6, 𝑌 ), EID(𝑣3, 𝑣6, 𝑆), ER(𝑣3, 𝑣5, 𝑆, 𝐷)). As a result,
𝐺𝐸𝐷 (G,G′) = 5, and the graph edit vector of G and G′ w.r.t. 𝑃 is
𝐺𝐸𝑉𝑃 (G,G′) = [1, 1, 1, 2]⊤. □

It suffices to compute 𝐺𝐸𝐷 (G,G′) by accumulating the four-

dimensional values of 𝐺𝐸𝑉𝑃 (G,G′). Consequently, the NP-hard
GED problem translates directly to the computation of type-aware

GEV. As the identification of graph edit sequence, 𝑃 (G,G′), is
theoretically intractable, we consider in this paper an estimation of

type-aware GEV for G and G′.

4 TAGSIM
Existing GED solutions, including lower-bound based methods [10, 22, 26,

51] and GNN-based deep learning techniques [2, 30], model and quantify

GED as a single, global similarity score between graphs. In fact, GED is

collectively determined by the number of graph edit operations of four dif-

ferent types: NR, NID, ER, and EID, each of which has unique, fine-grained

transformative impacts on the localized neighborhood of graphs. For in-

stance, by inserting or deleting edges, EID may change graph connectivity,

but not the node information. In contrast, NR can change node labels, while

not altering the edge information nor graph connectivity. State-of-the-art,

type-oblivious solutions that treat GED as a global graph similarity score

ignore such salient impacts of different graph edit types, thus resulting in

coarse-grained, inaccurate GED estimations [2, 30]. To address this weak-

ness, we propose TaGSim (Type-aware Graph Similarity), a type-aware
GED learning and computation framework that refines the GED modelling,

learning, and computation respecting different graph edit types. Specifically,

GED is decoupled to four distinct components, as modeled in the four GEV

dimensions, each of which corresponds to one particular graph edit type to

be learned and estimated individually. TaGSim can significantly enhance the

effectiveness and efficiency in GED computation, compared with existing

type-oblivious methods.
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Figure 2: The TaGSim Framework: Stage 1 (left) is type-aware graph embedding; Stage 2 (right) is type-aware similarity

computation, where we estimate the number of graph edit operations for each edit type; that is, the dimensions of GEV.

Algorithm 1 The TaGSim Framework

Input: A graph pair (G, G′) , where G = (V, E, 𝑙, Σ), G′ = (V′, E′, 𝑙′, Σ)
Output: The estimated type-aware GEV, Ŝ, for G and G′

1: H𝑛
0 ← 𝑙 (V),H𝑒

0 ← 𝑙 (E) ; ⊲ 0-hop NLMs, ELMs of G

2: H𝑛′

0 ← 𝑙′ (V′),H𝑒′
0 ← 𝑙′ (E′) ; ⊲ 0-hop NLMs, ELMs of G′

3: H𝑛
𝑘 ← GAL(H𝑛

𝑘−1) , 𝑘 ≥ 1; ⊲ 𝑘-hop NLMs of G

4: H𝑒
𝑘 ← GAL(H𝑒

𝑘−1) , 𝑘 ≥ 1; ⊲ 𝑘-hop ELMs of G

5: H𝑛′

𝑘 ← GAL(H𝑛′

𝑘−1) , 𝑘 ≥ 1; ⊲ 𝑘-hop NLMs of G′

6: H𝑒′

𝑘 ← GAL(H𝑒′

𝑘−1) , 𝑘 ≥ 1; ⊲ 𝑘-hop ELMs of G′

7: h𝑛
𝑐𝑎𝑡 (𝑖,𝑗 )

←Pooling(H𝑛
𝑖 | |H

𝑛
𝑗 ), 𝑖, 𝑗 ≥ 0; ⊲ Node-level embedding of G

8: h𝑒
𝑐𝑎𝑡 (𝑖,𝑗 )

←Pooling(H𝑒
𝑖 | |H

𝑒
𝑗 ), 𝑖, 𝑗 ≥ 0; ⊲ Edge-level embeddings of G

9: h𝑛
′

𝑐𝑎𝑡 (𝑖,𝑗 )
←Pooling(H𝑛′

𝑖 | |H𝑛′

𝑗 ), 𝑖, 𝑗 ≥ 0; ⊲ Node-level embedding of G′

10: h𝑒
′

𝑐𝑎𝑡 (𝑖,𝑗 )
←Pooling(H𝑒′

𝑖 | |H𝑒′
𝑗 ), 𝑖, 𝑗 ≥ 0; ⊲ Edge-level embeddings of G′

11: 𝑠𝑁𝑅 ← NN𝑁𝑅 (NTN𝑁𝑅 (h
𝑛
𝑐𝑎𝑡 (𝑖,𝑗 )

, h𝑛
′

𝑐𝑎𝑡 (𝑖,𝑗 )
)), 𝑖, 𝑗 ≥ 0; ⊲ #𝑁𝑅

12: 𝑠𝑁𝐼𝐷 ← NN𝑁𝐼𝐷 (NTN𝑁𝐼𝐷 (h𝑛
𝑐𝑎𝑡 (𝑖,𝑗 )

, h𝑛
′

𝑐𝑎𝑡 (𝑖,𝑗 )
)), 𝑖, 𝑗 = 0; ⊲ #𝑁𝐼𝐷

13: 𝑠𝐸𝑅 ← NN𝐸𝑅 (NTN𝐸𝑅 (h
𝑒
𝑐𝑎𝑡 (𝑖,𝑗 )

, h𝑒
′

𝑐𝑎𝑡 (𝑖,𝑗 )
)), 𝑖, 𝑗 ≥ 0; ⊲ #𝐸𝑅

14: 𝑠𝐸𝐼𝐷 ← NN𝐸𝐼𝐷 (NTN𝐸𝐼𝐷 (h𝑛
𝑐𝑎𝑡 (𝑖,𝑗 )

| |h𝑒
𝑐𝑎𝑡 (𝑝,𝑞)

, h𝑛
′

𝑐𝑎𝑡 (𝑖,𝑗 )
| |h𝑒

′

𝑐𝑎𝑡 (𝑝,𝑞)
)) ,

𝑖, 𝑗 ≥ 1, 𝑝, 𝑞 ≥ 0; ⊲ #𝐸𝐼𝐷

15: return Ŝ = [𝑠𝑁𝑅, 𝑠𝑁𝐼𝐷 , 𝑠𝐸𝑅, 𝑠𝐸𝐼𝐷 ]

The TaGSim framework is sketched in Algorithm 1, which contains

two main stages. The first one is type-aware graph embedding (Lines 1-10):

For each type of graph edit operations, TaGSim extracts node/edge-level

embeddings by Graph Aggregation Layers (GALs) based on the unique

transformative impacts of that edit type (Lines 1-6; Details in Section 4.1).

The node/edge embeddings are further aggregated into type-aware graph

embeddings by graph pooling functions for the next-stage GED estimation

(Lines 7-10). The second stage, type-aware similarity computation, uses

neural tensor networks (NTNs) to establish interactions between type-aware

graph embeddings, and the results are further fed into fully connected neural

networks in order to estimate each dimension of GEVs (Lines 11-14; Details

in Section 4.2). To facilitate the training of TaGSim without resort to costly

exact GED computation, we design a type-aware graph-pair generator that

can efficiently generate graph pairs, together with their GEVs, as the ground

truth (Section 4.3). Once trained, TaGSim can be used to learn and estimate

for any pair of graphs their GED following the two stages analogously as in

the TaGSim training. The full TaGSim framework is illustrated in Figure 2.

4.1 Type-aware Graph Embedding
To estimate each dimension of GEV, or equivalently, the number of graph

edit operations of each type, we first investigate the intrinsic transformative

impacts of different graph edit operations on graphs. In particular, we

examine the localized regions surrounding nodes and edges where graph

edit operations arise. Given a node 𝑢 ∈ V , the 𝑘-hop neighborhood of 𝑢
is 𝑁𝑘 (𝑢) = {𝑣 |𝑑𝑖𝑠𝑡 (𝑢, 𝑣) = 𝑘, 𝑣 ∈ V}, where 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) is the shortest
distance between𝑢 and 𝑣 in G. 𝑁𝑘 (𝑢) comprises all the 𝑘-hop neighboring
nodes of 𝑢, and 𝑁 0 (𝑢) = {𝑢 } when 𝑘 = 0. In addition, the 𝑘-hop node-label
multiset of𝑢, defined as 𝐿𝑘 (𝑢) = {𝑙 (𝑣) |𝑣 ∈ 𝑁𝑘 (𝑢) }, comprises node-labels
of all the 𝑘-hop neighboring nodes of 𝑢 with repetitive labels maintained

cumulatively (In what follows, we use the format of element:multiplicity to

represent elements of a multiset for brevity). We further define the 𝑘-hop
node-label multiset (𝑘-hop NLM) of the graph G as follows,

Definition 2. [𝑘-hop Node-label Multiset (NLM)] The 𝑘-hop node-
label multiset of the graph G, denoted as𝑁𝐿𝑀𝑘 (G) , is a multiset of the𝑘-hop
node-label multisets for all the nodes of G: 𝑁𝐿𝑀𝑘 (G) = {𝐿𝑘 (𝑢) |𝑢 ∈ V}

with repetitive elements, 𝐿𝑘 ( ·) , allowed in 𝑁𝐿𝑀𝑘 (G) . �

Example 2. Consider the graph G in Figure 1. The 0-hop NLM of G is

𝑁𝐿𝑀0 (G) = {{𝑌 : 1}, {𝐺 : 1}, {𝐺 : 1}, {𝐺 : 1}, {𝑅: 1}} (for brevity, it is repre-
sented as {{𝐺 : 1}: 3, {𝑌 : 1}: 1, {𝑅: 1}: 1}). The 1-hop NLM of G is𝑁𝐿𝑀1 (G)

= {{𝐺 : 1}: 2, {𝐺 : 2}: 1, {𝐺 : 1, 𝑌 : 1}: 1, {𝐺 : 2, 𝑌 : 1, 𝑅: 1}: 1}. �

Likewise, we extend the definition of 𝑘-hop neighborhood of nodes

to edges. Given an edge 𝑒 = (𝑢, 𝑣) ∈ E, the 𝑘-hop neighborhood of 𝑒 is
𝑁𝑘 (𝑒) = {𝑒′ |𝑑𝑖𝑠𝑡 (𝑒, 𝑒′) = 𝑘, 𝑒′ ∈ E }, where 𝑑𝑖𝑠𝑡 (𝑒, 𝑒′) is the shortest
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distance between 𝑒 and 𝑒′ in G 1
, and 𝑁𝑘 (𝑒) comprises all the 𝑘-hop

neighboring edges of 𝑒 . 𝑁 0 (𝑒) = {𝑒 } when 𝑘 = 0. Furthermore, the 𝑘-hop
edge-label multiset of 𝑒 , 𝐿𝑘 (𝑒) = {𝑙 (𝑒′) |𝑒 ∈ 𝑁𝑘 (𝑒) }, comprises edge labels

for all the 𝑘-hop neighboring edges of 𝑒 with repetitive labels maintained

cumulatively. We further define the 𝑘-hop edge-label multiset (𝑘-hop ELM)

of the graph G as follows,

Definition 3. [𝑘-hop Edge-label Multiset (ELM)] The 𝑘-hop edge-
label multiset of the graph G, denoted as 𝐸𝐿𝑀𝑘 (G) , is a multiset of the 𝑘-hop
edge-label multisets for all the edges of G: 𝐸𝐿𝑀𝑘 (G) = {𝐿𝑘 (𝑒) |𝑒 ∈ E},
with repetitive elements, 𝐿𝑘 ( ·) , allowed in 𝐸𝐿𝑀𝑘 (G) . □

Example 3. Consider the graph G′ in Figure 1. The 0-hop ELM of G′ is
𝐸𝐿𝑀0 (G′) = {{𝑆 : 1}: 4, {𝐷 : 1}: 1}, and the 1-hop ELM of G′ is𝐸𝐿𝑀1 (G′) =
{{𝑆 : 1}: 1, {𝑆 : 3}: 1, {𝑆 : 2, 𝐷 : 1}: 2, {𝑆 : 3, 𝐷 : 1}: 1}. □

The𝑘-hop NLM and𝑘-hop ELM are the key data structures that maintain

the node-label and edge-label information within 𝑘-hop (𝑘 ≥ 0) neighbor-

hood surrounding nodes and edges of G, respectively. When a graph edit

operation arises, it will transform G by triggering different changes to

𝑁𝐿𝑀𝑘 (G) and 𝐸𝐿𝑀𝑘 (G) depending on the type of that graph edit opera-

tion. Below we examine for each graph edit type its unique transformative

impacts upon G subject to 𝑁𝐿𝑀𝑘 (G) and 𝐸𝐿𝑀𝑘 (G) .
1. Node Relabeling (NR). Consider 𝑡 node relabeling operations, de-

noted as 𝑁𝑅1, . . . , 𝑁𝑅𝑡 (𝑡 ≥ 1) , which transform G to G′. Each 𝑁𝑅𝑖

changes an existing node label 𝑙𝑖 to a new label 𝑙′
𝑖
, where 𝑙𝑖 , 𝑙

′
𝑖
∈ ΣV (1 ≤

𝑖 ≤ 𝑡 ) . We denote the multiset of node-labels

⋃
1≤𝑖≤𝑡 {𝑙𝑖 } as the old label

set, and the multiset of node-labels

⋃
1≤𝑖≤𝑡 {𝑙′𝑖 } as the new label set. In the

case where there are no common labels between the old and the new label

sets; that is,

(∪1≤𝑖≤𝑡 {𝑙𝑖 }) ∩ (∪1≤𝑖≤𝑡 {𝑙′𝑖 }) = ∅, (2)

the difference between G and G′ incurred by node relabeling operations

is precisely reflected by the node label collections of G and G′; that is, the
0-hop NLMs of G and G′: 𝑁𝐿𝑀0 (G) and 𝑁𝐿𝑀0 (G′) . The reason is that,

for each node-relabeling operation 𝑁𝑅𝑖 , the old label 𝑙𝑖 is uniquely and

unambiguously substituted by the new label 𝑙′
𝑖
due to the condition in Equa-

tion 2, and the number of node relabeling operations, #NR, can be precisely

determined by the Hamming distance of 𝑁𝐿𝑀0 (G) and 𝑁𝐿𝑀0 (G′) .

Theorem 1. Given node relabeling operations 𝑁𝑅1, . . . , 𝑁𝑅𝑡 (𝑡 ≥ 1) that
transform G to G′, for each𝑁𝑅𝑖 (1 ≤ 𝑖 ≤ 𝑡 ) , it leads to at most one node-label
change between 𝑁𝐿𝑀0 (G) and 𝑁𝐿𝑀0 (G′) . □

Since one NR operation affects at most one node in G, Theorem 1 guar-

antees that the influence of NRs on 𝑁𝐿𝑀0 (G) is upper bounded. It thus
suffices to use 0-hop NLMs to estimate #NR in this case. However, when

the condition of Equation 2 fails, 0-hop NLMs may err in quantifying #NR.
Consider for instance two node-relabeling operations, 𝑁𝑅1 and 𝑁𝑅2, that

transform G to G′, where 𝑁𝑅1 replaces the label of a node 𝑢 from 𝑙1 to 𝑙2,

while 𝑁𝑅2 replaces the label of another node 𝑣 from 𝑙2 to 𝑙1. In this case,

both the old and new label sets are {𝑙1, 𝑙2 }. Since 𝑁𝐿𝑀0 (G) = 𝑁𝐿𝑀0 (G′) ,
no node relabeling operations can be identified.

As the number of node relabeling operations, #NR, is not solely deter-

mined by 0-hop NLMs, we consider the higher-order, structure-enriched

label information encoded in 𝑘-hop NLMs (𝑘 ≥ 1) of graphs. Note that

when an NR operation arises on a node𝑢, for every node 𝑣 within the 𝑘-hop

neighborhood of 𝑢, its 𝑘-hop node-label multiset, 𝐿𝑘 (𝑣) , needs an update

to reflect the label change of 𝑢. Consider 𝑁𝐿𝑀1 (G) (𝑘 = 1) as an example:

similar to Theorem 1, one NR operation changes at most 𝑑𝑢 elements in

𝑁𝐿𝑀1 (G) , where 𝑑𝑢 is the degree of 𝑢. As a result, the 𝑘-hop (𝑘 ≥ 1)

1
In a graph, the shortest distance between an edge 𝑒 and itself is 0; that is,𝑑𝑖𝑠𝑡 (𝑒, 𝑒) =
0. Consider two edges 𝑒 (𝑢, 𝑣) and 𝑒′ (𝑣, 𝑤) that are incident on a common node 𝑣,

where𝑢, 𝑣, 𝑤 ∈ V and𝑢 ≠ 𝑤, then 𝑒′ is a neighboring edge of 𝑒 , and 𝑑𝑖𝑠𝑡 (𝑒, 𝑒′) = 1.

This way, the notion of shortest distance can be extended to edges analogously.

𝒢1
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Figure 3: Given a graph G1 with the node-label set ΣV =

{W (white)} and the edge-label set ΣE = {S (single-bond)}, G1
is first transformed to G2 with the edge (𝑣2, 𝑣5) deleted by an
EID operation, EID(𝑣2, 𝑣5, 𝑆). G2 is further transformed to G3
by inserting another edge (𝑣1, 𝑣5) based on an EID operation,
EID(𝑣1, 𝑣5, 𝑆).

NLM of G, 𝑁𝐿𝑀𝑘 (G) , maintains the information for node-label updates

triggered by NRs within 𝑘-hop neighborhood surrounding nodes of G. Even
in the case where the condition of Equation 2 fails, the higher-order 𝑘-hop

NLMs can still capture the occurrences of NRs, thus providing accurate

estimations for #𝑁𝑅.

2. Node Insertion/deletion (NID). It is worth noting that a node-

deletion operation can be avoided when transforming a graph G with

fewer nodes to another graph G′ with more nodes. Without loss of gener-

ality, we only consider node insertion operations for NID because of the

symmetric property of GED. Since a node insertion operation leads to a

new, isolated node, NID only changes the node count of G, which can be

well captured by the 0-hop NLM of G. Therefore, 𝑁𝐿𝑀0 (G) suffices for

the #𝑁𝐼𝐷 estimation.

3. Edge Relabeling (ER). Similar to NR, relabeling an edge 𝑒 = (𝑢, 𝑣)
may change not only the edge-label multiset of G, 𝐸𝐿𝑀0 (G) , but also the

𝑘-hop edge-label multiset 𝐿𝑘 (𝑒′) of every edge 𝑒′ that is within the 𝑘-hop

neighborhood of 𝑒 , where 𝑘 ≥ 1. Therefore, to estimate #ER, we consider
both 0-hop and 𝑘-hop (𝑘 ≥ 1) ELMs of G.

4. Edge Insertion/deletion (EID). EID changes not only the edge label

information, but graph connectivity as well. As a result, EID may affect

𝑘-hop data structures for both nodes and edges. Consider an EID operation

related to either an existing or a new edge 𝑒 = (𝑢, 𝑣) in G. Node labels of
the two incident nodes 𝑢 and 𝑣 stay unchanged, so there are no updates

in 𝑁𝐿𝑀0 (G) . However, the 𝑘-hop node-label multisets for (1) 𝑢, (2) 𝑣,
and (3) 𝑢’s (and 𝑣’s) (𝑘 − 1)-hop neighbors are all changed due to the

insertion or deletion of the edge (𝑢, 𝑣) . Therefore, the 𝑘-hop NLM of G,
𝑁𝐿𝑀𝑘 (G) (𝑘 ≥ 1) , may change due to EID.

Example 4. Consider graph G1 shown in Figure 3. The 1-hop NLM of G1 is
𝑁𝐿𝑀1 (G1) = {{𝑊 : 2}: 3, {𝑊 : 3}: 1, {𝑊 : 1}: 1}. When an EID arises that
removes the edge (𝑣2, 𝑣5) , G1 is transformed to G2, and G2’s 1-hop NLM is
𝑁𝐿𝑀1 (G2) = {{𝑊 : 2}: 3, {𝑊 : 1}: 2}. Therefore, EIDs may trigger updates
to 𝑁𝐿𝑀𝑘 (G1) when 𝑘 = 1. □

Theorem 2. Consider an EID operation upon the edge (𝑢, 𝑣) of G. It may
change at most two elements of 𝑁𝐿𝑀1 (G) related to the incident nodes 𝑢
and 𝑣. □

According to Theorem 2, an EID upon edge 𝑒 = (𝑢, 𝑣) changes the 1-hop
NLMs of 𝑢 and 𝑣, respectively; that is, the number of changes incurred by

an EID upon 1-hop NLMs is upper bounded. We thus can estimate #EID by

examining the differences between the 1-hop NLMs of two graphs.

When multiple EIDs arise, however, the 1-hop NLM of G may fail

to estimate #EID accurately. For example, consider the graph G1 in Fig-

ure 3, and there are two EIDs upon G1, 𝐸𝐼𝐷 (𝑣2, 𝑣5, 𝑆) and 𝐸𝐼𝐷 (𝑣1, 𝑣5, 𝑆) ,
that transform G1 to G3. Note that the 1-hop NLM of G1, 𝑁𝐿𝑀1 (G1) =
{{𝑊 : 2}: 3, {𝑊 : 3}: 1, {𝑊 : 1}: 1}, and the 1-hop NLM of G3,𝑁𝐿𝑀1 (G3) =
{{𝑊 : 2}: 3, {𝑊 : 3}: 1, {𝑊 : 1}: 1}, are the same, so they cannot account for
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Table 1: Transformative Impacts of Different Types of Graph
Edit Operations on 𝑘-hop Data Structures: NLMs and ELMs

0-hop NLM 0-hop ELM 𝑘-hop NLM (𝑘 ≥ 1) 𝑘-hop ELM (𝑘 ≥ 1)

𝑁𝑅 ✔ ✔

𝑁𝐼𝐷 ✔

𝐸𝑅 ✔ ✔

𝐸𝐼𝐷 ✔ ✔ ✔

the two EIDs between G1 and G3 in this scenario. To this end, we further

consider 𝑘-hop NLMs by increasing the values of 𝑘 . Note that when 𝑘 = 2,

the 2-hop NLM of G1, 𝑁𝐿𝑀2 (G1) = {{𝑊 : 1}: 2, {𝑊 : 2}: 3}, and the 2-hop
NLM of G3, 𝑁𝐿𝑀2 (G3) = {{𝑊 : 1}: 1, {𝑊 : 2}: 1, {𝑊 : 3}: 3}, are different
due in particular to the two EID operations between G1 and G3.

Theorem 3. Consider an EID operation upon the edge (𝑢, 𝑣) of G. It may
change at most 2(𝑑𝑚𝑎𝑥 )𝑘−1 elements in 𝑁𝐿𝑀𝑘 (G) (𝑘 ≥ 2) , where 𝑑𝑚𝑎𝑥 is
the maximum node-degree of G. □

Proof. For any node 𝑢 of G, consider the (𝑘 − 1)-hop neighborhood of

𝑢, 𝑁𝑘−1 (𝑢) . We have |𝑁𝑘−1 (𝑢) | ≤ (𝑑𝑚𝑎𝑥 )𝑘−1. Then ∀𝑤 ∈ 𝑁𝑘−1 (𝑢) ,
we have 𝑢 ∈ 𝑁𝑘−1 (𝑤) by symmetry. For any node 𝑤 ∈ 𝑁𝑘−1 (𝑢) ∧
𝑑𝑖𝑠𝑡 (𝑤, 𝑣) > 𝑘 , after the insertion of edge (𝑢, 𝑣) , 𝑣 is now within 𝑤’s

𝑘-hop neighborhood; that is, 𝑣 ∈ 𝑁𝑘 (𝑤) . From the perspective of 𝑢, there

are at most |𝑁𝑘−1 (𝑢) | elements changed in 𝑁𝐿𝑀𝑘 (G) due to the EID.
For node 𝑣, the situation is the same: there are at most |𝑁𝑘−1 (𝑣) | ele-
ments changed in 𝑁𝐿𝑀𝑘 (G) . For edge deletion, 𝑁𝐿𝑀𝑘 (G) changes the
same way as in the case of edge insertion. As a result, there are at most

|𝑁𝑘−1 (𝑢) | + |𝑁𝑘−1 (𝑣) | = 2(𝑑𝑚𝑎𝑥 )𝑘−1 elements changed in 𝑁𝐿𝑀𝑘 (G)
because of the EID. □

Theorem 3 provides an upper bound for the number of possible changes

upon 𝑘-hop NLMs (𝑘 ≥ 2) incurred by an EID; Upper bounds on 𝑘′-hop
ELMs can be derived in a similar way, where 𝑘′ ≥ 0. As a result, #𝐸𝐼𝐷 can

be estimated by a combination of 𝑘-hop NLMs (𝑘 ≥ 1) and 𝑘′-hop ELMs

(𝑘′ ≥ 0) of graphs.

Based on the above discussion, we summarize the transformative impacts

of each type of graph edit operations upon the 𝑘-hop data structures, as

shown in Table 1. As such transformative impacts are type-variant, they have

to be modeled individually in order to estimate the number of correponding

graph edit types in GED. In the following, we propose Graph Aggregation

Layer (GAL) to encode the 𝑘-hop NLMs and ELMs as low-dimensional,

type-aware graph embeddings for accurate GED estimation.

4.1.1 Graph Aggregation Layer (GAL). For the core data structures

𝑘-hop NLMs and 𝑘-hop ELMs, they can be built from the initial node/edge

labels and the adjacency matrix of G. Inspired by graph representation

learning methods [24, 42], we propose graph aggregation layer (GAL), which
extracts graph embeddings to encode the salient information of𝑘-hop NLMs

and 𝑘-hop ELMs of G. First of all, the node-based GAL, H𝑛
𝑘
(𝑘 ≥ 0) can be

computed as

H𝑛
1
= A · H𝑛

0
(3)

where A ∈ R|V|×|V| is the adjacency matrix of G; H𝑛
0
∈ R|V|×𝑑𝑛 is the

0-hop node-feature matrix with 𝑑𝑛 the size of node feature vectors. At

first, H𝑛
0
is initialized as the one-hot encoding of the 0-hop NLM of G,

𝑁𝐿𝑀0 (G) . Based on Equation 3, H𝑛
1
∈ R|V|×𝑑𝑛 approximates the 1-hop

node-label multiset information for the nodes of G. We thus use H𝑛
1
as

the embeddings of 1-hop NLM of G, 𝑁𝐿𝑀1 (G) . Analogously, for 𝑘-hop
NLMs of G,𝑁𝐿𝑀𝑘 (G) , where 𝑘 ≥ 2, they can be derived based on a 𝑘-step

iterative computation of GAL as,

H𝑛
𝑘
= A · H𝑛

𝑘−1 (4)

where H𝑛
𝑘
summarizes the 𝑘-hop node-label multiset information for each

node of G. To this end, node-based GALs encode 𝑘-hop NLMs of G as node

embeddings, which can be used to estimate the following dimensions of

GEV: #𝑁𝑅, #𝑁𝐼𝐷 , and #𝐸𝐼𝐷 .

Different from existing GNN-based graph similarity solutions where edge

labels are ignored in GED learning and computation [2, 11], TaGSim takes

into consideration both edge labels and edge relabeling operations, ER. To
handle the edge label information, we propose edge-based GAL analogously.

First, we introduce edge adjacency matrix of G as follows,

Definition 4. [Edge Adjacency Matrix] Given a graph G = (V, E) ,
the edge adjacency matrix E of G is a |E | × |E | matrix with its element
E𝑖,𝑗 (1 ≤ 𝑖, 𝑗 ≤ |E |) defined as

E𝑖,𝑗 = 𝟙E𝑖∩E 𝑗≠∅ (5)

where 𝟙 is the indicator function; E𝑖 denotes the 𝑖-th edge of E; E𝑖 ∩ E 𝑗 ≠ ∅
means that edge E𝑖 and edge E 𝑗 are incident on a common node. □

Similar to the adjacency matrixA, the edge adjacency matrix Emaintains

the edge connectivity information of G: for each edge of G, its neighboring
edges can be explicitly identified by E. We further define the edge-based

GAL as

H𝑒
1
= E · H𝑒

0
(6)

where H𝑒
0
∈ R|E |×𝑑𝑒 is the 0-hop edge feature matrix with 𝑑𝑒 the size of

edge feature vectors, and it is initialized as the one-hot encoding of the edge-

label information in 𝐸𝐿𝑀0 (G) . According to Equation 6, H𝑒
1
summarizes

the 1-hop edge-label multiset information for each edge of G, so we use

it as the edge embedding of the 1-hop ELM of G, 𝐸𝐿𝑀1 (G) . Analogously,
for the 𝑘-hop ELMs of G, 𝐸𝐿𝑀𝑘 (G) , where 𝑘 ≥ 2, we compute H𝑒

𝑘
as

edge embeddings by a 𝑘-step iterative computation. As a result, edge-based

GALs encode 𝑘-hop ELMs of G as edge embeddings, which can be used to

estimate the following dimensions of GEV: #𝐸𝑅 and #𝐸𝐼𝐷 .

Note that the node-based GAL, H𝑛
𝑘
, and the edge-based GAL, H𝑒

𝑘
, where

𝑘 ≥ 0, are designed to encode the salient information in the core data

structures of 𝑘-hop NLMs and 𝑘-hop ELMs in the forms of node/edge em-

beddings. In addition, different from existing GNN methods [24, 42] where

linear/non-linear transformations, together with a large number of hyper-

parameters, are required in different layers of GNNs, our GAL structures

are parameter-free, thus leading to a significantly lower training cost than

existing GNN-based solutions. As a result, GALs enable us to construct

type-aware graph embeddings for each type of graph edit operations. We

then introduce the techniques on how to combine them for GED learning

and estimation.

4.1.2 Embedding Concatenation and Pooling. According to the anal-

ysis in Section 4.1, each type of graph edit operations has different trans-

formative effects on the key data structures, 𝑘-hop NLMs and 𝑘-hop ELMs.

In the meantime, the node-based GAL and the edge-based GAL encode the

salient information of 𝑘-hop NLMs and ELMs into low-dimensional node

and edge embeddings, which, as a result, can help estimate the number of

graph edit operations in different types. For instance, for NR operations,

they may affect 𝑁𝐿𝑀0 (G) and 𝑁𝐿𝑀𝑘 (G) (𝑘 ≥ 1) . As a consequence, we
need H𝑛

𝑘′ , where 𝑘
′ = 0, and H𝑛

𝑘′′ , where 𝑘
′′ ≥ 1, together to learn and esti-

mate #𝑁𝑅. To this end, we combine and concatenate different embeddings

from H𝑛
𝑘
and/or H𝑒

𝑘
for different types of graph edit operations, based on

the results in Table 1. We denote, for instance, a concatenation of H𝑛
𝑖
and

H𝑛
𝑗
, where 𝑖, 𝑗 ≥ 0, as

H𝑛
𝑐𝑎𝑡 (𝑖,𝑗 ) = H𝑛

𝑖
| | H𝑛

𝑗
(7)

where | | is the concatenation operator; BothH𝑛
𝑖
andH𝑛

𝑗
are𝑑𝑛-dimensional

node embeddings that are concatenated toward a new 2𝑑𝑛-dimensional

node embedding: H𝑛
𝑐𝑎𝑡 (𝑖,𝑗 ) ∈ R

|V|×2∗𝑑𝑛
. For example, H𝑛

𝑐𝑎𝑡 (0,1) combines

H𝑛
0
and H𝑛

1
, which can be used for learning and estimating #𝑁𝑅. This

way, for each graph edit type, the node/edge embeddings are combined

adaptively to enable type-aware GED learning and computation.
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Algorithm 2 Graph Pair Generator

Input: A graph G = (V, E, 𝑙, Σ) ; A target GEV

Output: The graph pair (G, G𝑠 ) with the ground truth GEV

1: G𝑠 = (V𝑠 , E𝑠 , 𝑙𝑠 , Σ) ← G;
2: for 𝑖 = 1, 2, . . . ,𝐺𝐸𝑉 [𝑁𝑅 ] do ⊲ Node Relabeling

3: Randomly select 𝑣 ∈ V𝑠
where 𝑣 is not relabeled;

4: 𝑁𝑅 (𝑣, 𝑙𝑠 (𝑣), 𝑙𝑠′ (𝑣)) where 𝑙𝑠 (𝑣), 𝑙𝑠′ (𝑣) ∈ ΣV and 𝑙𝑠 (𝑣) ≠ 𝑙𝑠
′ (𝑣) ;

5: end for
6: for 𝑖 = 1, 2, . . . ,𝐺𝐸𝑉 [𝑁𝐼𝐷 ] do ⊲ Node Insertion

7: 𝑁𝐼𝐷 (𝑣𝑛𝑒𝑤 , 𝑙𝑠 (𝑣𝑛𝑒𝑤 )) where 𝑙𝑠 (𝑣𝑛𝑒𝑤 ) ∈ ΣV ;
8: end for
9: Randomly select𝑇𝑜𝐷𝑒𝑙 ∈ {0, 1, . . . ,𝐺𝐸𝑉 [𝐸𝐼𝐷 ] };
10: Del_Edge← []; ⊲ Initialized as an empty list

11: for 𝑖 = 1, 2, . . . ,𝑇𝑜𝐷𝑒𝑙 do ⊲ Edge Deletion

12: Randomly select 𝑒 ∈ E𝑠 ;
13: Del_Edge.append(𝑒);

14: 𝐸𝐼𝐷 (𝑒, 𝑙𝑠 (𝑒)) ;
15: end for
16: for 𝑖 = 1, 2, . . . ,𝐺𝐸𝑉 [𝐸𝑅 ] do ⊲ Edge Relabeling

17: Randomly select 𝑒 ∈ E𝑠 where 𝑒 is not relabeled;

18: 𝐸𝑅 (𝑒, 𝑙𝑠 (𝑒), 𝑙𝑠′ (𝑒)) where 𝑙𝑠 (𝑒), 𝑙𝑠′ (𝑒) ∈ ΣE and 𝑙𝑠 (𝑒) ≠ 𝑙𝑠
′ (𝑒) ;

19: end for
20: for 𝑖 = 1, 2, . . . ,𝐺𝐸𝑉 [𝐸𝐼𝐷 ] −𝑇𝑜𝐷𝑒𝑙 do ⊲ Edge Insertion

21: 𝐸𝐼𝐷 (𝑒𝑛𝑒𝑤 , 𝑙𝑠 (𝑒𝑛𝑒𝑤 )) where 𝑙𝑠 (𝑒𝑛𝑒𝑤 ) ∈ ΣE , 𝑒𝑛𝑒𝑤 ∉ Del_Edge;

22: end for
23: return (G, G𝑠 ) , GEV

To this end, the embeddings are solely represented at the node or edge

level. To read out the ultimate embedding at the more general graph level,

an extra pooling layer is required. For the example of H𝑛
𝑐𝑎𝑡 (0,1) , the pooling

can be represented as

h𝑛
𝑐𝑎𝑡 (0,1) = Pooling(H𝑛

𝑐𝑎𝑡 (0,1) ) (8)

where h𝑛
𝑐𝑎𝑡 (0,1) ∈ R

2∗𝑑𝑛
. In practice, there are many choices for the pooling

function. To retain the information of 𝑘-hop NLMs and ELMs of G, we
simply choose sum( ·) as the default pooling function, and the output of

graph pooling is the final type-aware graph embeddings we design for GED

estimation in the next step.

4.2 Type-aware Similarity Computation
In the second-stage of TaGSim, we estimate the four GEV dimensions,

equivalently the number of different graph edit types, based on separate

type-aware GED computation modules.

4.2.1 Graph Pair Interaction. Given the type-aware graph embeddings for

a pair of input graphs, which turn out to be the output of the first stage

of TaGSim, they are fed into a graph interaction module that generates a

vector as the GED similarity embedding for the graph pair. Here we adopt

the neural tensor network (NTN) [39] for graph pair interaction: For each

graph edit type 𝑡 , a type-aware NTN𝑡 is trained and deployed to compute

type-aware similarity embeddings, as shown in Figure 2. Specifically, given

the type-aware graph embeddings h1, h2 ∈ R𝑑 for graphs G1 and G2,
respectively, the type-aware NTN w.r.t. graph edit type 𝑡 is formulated as

NTN𝑡 (h1, h2) = 𝜎 (h1W[1:𝐿]
1

h⊤
2
+W2 (h1 | | h2)⊤ + b) (9)

whereW[1:𝐿]
1

∈ R𝑑×𝑑×𝐿 ,W2 ∈ R𝐿×2𝑑 , and𝑏 ∈ R𝐿 are learnable weights; 𝐿

is a hyper-parameter controlling the output dimension; 𝜎 ( ·) is an activation

function. The output of a type-aware NTN𝑡 is a similarity embedding vector

of size 𝐿.

Table 2: Statistics of Datasets

Dataset D |D | Avg. |V | Avg. |E | |ΣV | |ΣE |
LINUX 1,000 7.6 6.9 1 1

IMDB 1,500 13.0 65.9 1 1

AIDS700 700 8.9 8.8 29 1

AIDS 42,689 25.6 27.5 66 3

PubChem 23,903 48.3 50.8 10 3

4.2.2 Graph Edit Vector (GEV) Estimation. After we get the type-aware
similarity embeddings for the input graph pair, several fully connected

neural networks (NNs) are constructed as predictors in order to estimate

the GED between graphs. Each type-aware predictor targets on one type

of graph edit operations corresponding to a dimension of GEV, and all the

four predicted scores are aggregated as the final estimated GED score, �𝐺𝐸𝐷 .

During the training of TaGSim, the output of the predictors are compared

against the type-wise ground-truth GED scores based on the mean squared
error (mse) loss function as follows

L𝑡 = 1

|D|
∑
(G𝑖 ,G𝑗 )∈D (𝑠𝑡 (G𝑖 , G𝑗 ) − 𝑠𝑡 (G𝑖 , G𝑗 ))

2
(10)

and the overall loss for all different types of graph edit operations is

L =
∑

𝑡∈T L𝑡 (11)

where T = {𝑁𝑅, 𝑁 𝐼𝐷, 𝐸𝐼𝐷, 𝐸𝑅 } is the set of all graph edit types; D is

the training set of graph pairs; 𝑠𝑡 (G𝑖 , G𝑗 ) denotes the ground-truth GED

score w.r.t. the graph edit type 𝑡 between G𝑖 and G𝑗 , which is typically

transformed to 𝑠𝑡 (G𝑖 , G𝑗 ) = exp(−2 · GEV(G𝑖 , G𝑗 ) [𝑡 ]/( |G𝑖 | + |G𝑗 |)) for
the ease of computation; 𝑠𝑡 is the output of the predictor for the graph edit

type 𝑡 .

4.3 Efficient Training for TaGSim
4.3.1 Graph Pair Generator. Existing GNN-based GED computation models

rely heavily on the availability of training graph pairs together with their

ground truth GEDs. However, getting the exact GED between graphs is very

time-consuming, or even intractable especially for large graphs [33, 49].

In addition, the state-of-the-art, exact GED methods [10, 33] return only

an overall GED score for a given graph pair, while not bookkeeping the

fine-grained values for each graph edit type in GEV. As a result, this global

GED score cannot be readily used while training our type-aware model,

TaGSim.

We thus propose a graph pair generator that constructs graph pairs with

fine-grained, type-aware GED values to facilitate the training of TaGSim, as

presented in Algorithm 2. Given as input a graph G and a target GEV, the

algorithm generates a synthetic graph G𝑠 such that𝐺𝐸𝑉 (G, G𝑠 ) conforms

to the target GEV. Specifically, starting from G, we apply each type of graph

edit operations upon G according to the targe GEV. For example, assume

𝐺𝐸𝑉 [𝑁𝑅 ] = 2. We thus execute NR operations twice at random upon

G (Lines 2 - 5). This way, the resultant 𝐺𝐸𝑉 (G, G𝑠 ) is the same as the

target GEV. Our graph pair generator has the following clear advantages:

(1) it can efficiently produce as much training data as possible that can

train TaGSim with sufficient configurations for GEVs, thus solving the data

scarcity issue for GNN training; (2) it totally avoids the costly process of

exact GED computation, thus making the training of TaGSim efficient and

cost-effective in practice.

4.3.2 Computational Complexity of TaGSim. For the first, type-aware graph
embedding stage, according to [2, 24], the time complexity of computing

Equation 3 and Equation 6 for graph embeddings within each iteration is

O( |E |) and O( |V |) , respectively. For the second, type-aware similarity

computation stage, the time complexity of graph pair interaction and GEV

prediction is O( (𝑑2

𝑛 +𝑑2

𝑒 )𝐿) , where 𝐿 is the output dimension in Equation 9,

𝑑𝑛 = O( |ΣV |) , and 𝑑𝑒 = O( |ΣE |) .
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5 EXPERIMENTS
In this section, we report our experimental studies and main findings for

GED-based graph similarity computation in real-world graphs. We imple-

ment our type-aware graph similarity learning and computation method,

TaGSim, and compare it with state-of-the-art GED solutions toward an-

swering the following questions: (1) Is the type-aware graph embedding

and learning approach effective for GED estimation? (2) Is TaGSim more

efficient than state-of-the-art solutions for GED computation? (3) Can our

graph pair generator produce high-quality training data for deep learning

based GED solutions? All our experiments have been carried out on a Linux

machine running Ubuntu Server 20.04 with two Intel 2.3GHz ten-core CPUs

and 256GB memory.

5.1 Datasets and Preprocessing
We consider in our experimental studies five real-world graph datasets,

whose key statistics are reported in Table 2, including the dataset size |D |,
the graph sizes in terms of the average number of nodes (avg. |V |) and the

average numbers of edges (avg. |E |), the size of the node label set |ΣV | and
the size of the edge label set |ΣE |:
• LINUX [2, 45] consists of 48,747 program dependence graphs generated

from the Linux kernel. Each graph in the dataset represents a kernel

function with nodes as code statements and edges illustrating statement

dependencies. Following [2], we sample 1, 000 graphs with ten or fewer

nodes as the Linux dataset. Both nodes and edges of the graphs are

unlabeled: |ΣV | = |ΣE | = 1;

• IMDB [2, 48] comprises 1,500 graphs, each of which represents an ego-

network of movie actors and actresses. An edge in the graph indicates

two individuals co-occur in the same movie. Both the nodes and edges

of the graphs are unlabeled;

• AIDS [10, 18, 51] is an antivirus screen chemical dataset released by the

Developmental Therapeutics Program at NCI/NIH
2
. It contains 42, 689

graphs with labeled nodes and edges;

• AIDS700 [2] is a subset of the AIDS dataset with 700 graphs, each of

which has at most ten nodes. Different from AIDS where graphs are

edge-labeled, the edges of the graphs in AIDS700 are unlabeled;

• PubChem [10, 18, 51] is a chemical compound dataset in the PubChem

project
3
. It consists of 23, 903 graphs, which are both node-labeled and

edge-labeled.

Training Datasets. In the training phase for the GNN based methods,

including TaGSim, the training data is generated by the graph pair generator

(Section 4.3). Specifically, we select 80% of graphs from each dataset as the

input to the graph pair generator. For each graph 𝑔 in a dataset, the graph

pair generator produces a certain number (ranging from 20 to 1,500) of

counterpart graphs 𝑔′, based on different GEVs, 𝐺𝐸𝑉 (𝑔,𝑔′) , as training
data. In the LINUX dataset, the training dataset contains 800× 1,000 graph

pairs; In IMDB, the training dataset size is 1,200 × 1,500; In AIDS700, the

training dataset size is 560 × 1,120; In AIDS, the training dataset size is

34,151 × 20; In PubChem, the training dataset size is 19,122 × 20.

Test Datasets. In the test phase, we select test graph pairs from the re-

maining 20% data in each graph dataset. There are two different types of

test graph pairs. The first type, termed synthetic test set, consists of graph
pairs generated from the graph pair generator in a similar way as training

graph-pair generation: In LINUX, the size of synthetic test set is 200 × 1,000
(each test graph spawns 1,000 synthetic graph pairs); In IMDB, the size is

300 × 1,500; In AIDS700, the size is 140 × 700; In AIDS, the size is 8,538

× 1,000; In PubChem, the size is 4,781 × 500. The second type of test set,

termed real test set, consists of graph pairs directly from the graph dataset.

In this category, the exact GED between test graph pairs has to be computed

based on the best-known exact GED computation method, AStar+-LSa [10].

2
https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz. (Last visited: Oct. 2021)

3
http://pubchem.ncbi.nlm.nih.gov (Last visited: Oct. 2021)

In LINUX, there are 200 × 1,000 real graph pairs; In IMDB, the real test set

size is 300 × 1,500; In AIDS700, the size is 140 × 700; In AIDS, we select

twenty test graphs, each of which is paired with 800 graphs from AIDS, and

the real test size is 20 × 800. Note that we do not consider real test sets for

PubChem because exact GED computation based on AStar+-LSa is simply

intractable for the large graphs in PubChem.

5.2 Experimental Settings
Baseline Methods. We consider eight existing GED computation methods

as the baselines to be compared with TaGSim in our experimental studies.

Such baselines are broadly classified into two categories:

(1) Combinatorial Search-based Methods. Methods in this category aim

at exploiting some combinatorial structures or GED lower-bounds for

GED approximation. Given a pair of graphs, the results returned by

these methods are estimated GEDs without exact GED verification. The

representative methods in this category include (1) A*-Beam [29], an al-

gorithm following the beam search strategy, which takes sub-exponential

time for GED computation; (2) Hungarian [25, 32], a cubic-time algo-

rithm based on the Hungarian method for weighted graph matching; (3)
VJ [12, 20], a cubic-time algorithm based on bipartite graph matching;

(4) Inves [22], a GED lower-bound based algorithm that leverages a

partition-based lower bound based on the number of disjoint mismatch-

ing substructures between graphs for false-positive graph identification

and pruning.

(2) GNN-based Learning Methods. Methods in this category take advan-

tage of graph neural networks for GED estimation. These GNN based

models are required to be trained before test graph pairs are investigated

for GED learning and computation: SimGNN [2] is the most up-to-date

method in this category, and therefore the main competitor of our pro-

posed method, TaGSim. SimGNN derives node embeddings from the

input graphs, and leverages the attention mechanism to readout graph

embeddings for GED computation; SimpleSum [2] is a variant of SimGNN,
which generates graph embeddings based on the summation of node

embeddings; AttDegree [2] is another variant of SimGNN, which applies

the attention mechanism based on node degrees as the attention weights.

HierarchicalMax [11] adopts themax pooling functions to generate graph
embeddings. Specifically, for each dimension, HierarchicalMax selects

maximum values among all the node embedding vectors in order to

construct graph embeddings.

Evaluation Methods. For GNN-based learning methods, including our

solution, TaGSim, we first use the training datasets to train the correspond-

ing GNN models, which can be done offline. For each GED computation

method, we examine every test graph pair (G, G′) from the test datasets,

including both the synthetic test sets and the real test sets, to estimate their

GED value, �𝐺𝐸𝐷 (G, G′) .
We consider the following experimental metrics to evaluate the effec-

tiveness of different GED computation techniques: (1) mean squared error
(mse), which measures the average discrepancy between the exact and the

estimated GEDs for the test graph pairs in the test sets; (2) Spearman’s
Rank Correlation Coefficient (𝜌) [40], and (3) Kendall’s Rank Correlation
Coefficient (𝜏 ) [21], both of which evaluate how well the estimated GED

ranking results match the true ranking results. Specifically, for each test

graph G, we estimate GEDs for the test graph pairs (G, G𝑐𝑎𝑛𝑑 ) where
G𝑐𝑎𝑛𝑑 is a graph from the synthetic/real test sets. We then rank all such

graphs, G𝑐𝑎𝑛𝑑 , based on a nondecreasing order of their GED similarity

scores w.r.t. G; (4) Precision at 𝑘 (p@k), which computes the ratio of esti-

mated top-𝑘 similar graphs within the ground truth top-𝑘 similar results

(𝑘 = 20 by default). For the GED estimation efficiency, we primarily compare

the runtime cost of TaGSim against that of SimGNN, the state-of-the-art
GNN-based solution, and that of AStar+-LSa [10], the currently best-known

exact GED computation algorithm.
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Table 3: GED Estimation Effectiveness on Synthetic Test Sets.

Datasets A*-Beam Hungarian VJ Inves SimpleSum Hier-Max AttDegree SimGNN TaGSim

LINUX

mse(10−3) 29.097 18.172 26.830 26.348 3.642 8.124 3.252 3.553 1.249
𝜌 0.878 0.646 0.540 0.350 0.867 0.787 0.889 0.864 0.950
𝜏 0.776 0.495 0.405 0.233 0.682 0.615 0.758 0.678 0.844

p@20 0.809 0.439 0.090 0.843 0.203 0.302 0.412 0.593 0.887

IMDB

mse(10−3) 24.056 29.229 99.695 21.023 2.008 2.488 1.730 5.747 0.911
𝜌 0.916 0.602 0.674 0.415 0.863 0.835 0.921 0.652 0.959
𝜏 0.870 0.576 0.601 0.267 0.652 0.673 0.783 0.481 0.870

p@20 0.790 0.769 0.575 0.011 0.341 0.344 0.407 0.508 0.745

AIDS700

mse(10−3) 39.593 21.830 10.806 76.475 1.041 1.087 1.025 1.159 0.945
𝜌 0.770 0.672 0.599 0.555 0.881 0.876 0.881 0.867 0.885
𝜏 0.661 0.530 0.451 0.420 0.720 0.714 0.729 0.702 0.734

p@20 0.577 0.538 0.317 0.314 0.641 0.632 0.631 0.604 0.655

AIDS

mse(10−3) 21.427 24.363 110.882 48.782 3.776 5.013 5.499 3.650 1.472
𝜌 0.614 0.453 0.535 0.270 0.652 0.613 0.656 0.645 0.812
𝜏 0.468 0.340 0.384 0.175 0.473 0.441 0.477 0.468 0.692

p@20 0.545 0.485 0.085 0.110 0.251 0.223 0.274 0.240 0.558

PubChem

mse(10−3) 20.502 13.586 148.474 28.288 8.305 4.817 3.140 8.537 0.822
𝜌 0.636 0.641 0.425 0.517 0.401 0.595 0.645 0.411 0.868
𝜏 0.527 0.515 0.306 0.496 0.377 0.423 0.465 0.379 0.702

p@20 0.468 0.542 0.089 0.175 0.050 0.224 0.275 0.051 0.586

Table 4: GED Estimation Effectiveness on Real Test Sets.

Datasets A*-Beam Hungarian VJ Inves SimpleSum Hier-Max AttDegree SimGNN TaGSim

LINUX

mse(10−3) 9.268 29.805 63.863 37.894 12.701 20.729 12.836 12.840 5.278
𝜌 0.827 0.638 0.581 0.536 0.889 0.689 0.840 0.884 0.941
𝜏 0.714 0.517 0.450 0.454 0.757 0.536 0.723 0.753 0.834

p@20 0.924 0.836 0.251 0.848 0.275 0.072 0.053 0.193 0.867

IMDB

mse(10−3) 13.412 15469 15.760 45.280 98.600 105.419 88.993 77.871 35.690

𝜌 0.893 0.863 0.879 0.870 0.836 0.116 0.671 0.715 0.958
𝜏 0.853 0.796 0.810 0.713 0.759 0.109 0.661 0.626 0.926

p@20 0.933 0.936 0.937 0.533 0.907 0.344 0.289 0.886 0.986

AIDS700

mse(10−3) 12.090 25.296 29.157 38.594 21.983 26.526 17.311 14.769 5.890
𝜌 0.609 0.510 0.517 0.129 0.175 0.475 0.396 0.534 0.679
𝜏 0.463 0.378 0.383 0.112 0.125 0.378 0.285 0.397 0.520

p@20 0.493 0.392 0.345 0.079 0.015 0.086 0.075 0.024 0.266

AIDS

mse(10−3) 456.203 436.020 456.500 22.196 96.824 75.495 105.457 84.331 9.827
𝜌 0.220 0.233 0.229 0.563 0.294 0.359 0.350 0.374 0.688
𝜏 0.201 0.214 0.211 0.499 0.206 0.253 0.246 0.266 0.527

p@20 0.049 0.059 0.022 0.188 0.067 0.008 0.083 0.022 0.322

Model Settings in TaGSim. In TaGSim, we use type-aware graph embed-

dings to estimate each dimension of GEV. In our experimental studies, if not

specified otherwise, we consider h𝑛
𝑐𝑎𝑡 (0,1) (Equation 8) as the type-aware

graph embedding for the graph edit type NR; For the graph edit type NID,
we consider h𝑛

𝑐𝑎𝑡 (0,1) ; For the graph edit type EID, we consider h
𝑛
𝑐𝑎𝑡 (1,2) ; For

the graph edit type ER, we consider h𝑒
𝑐𝑎𝑡 (0,1) if the graphs are edge-labeled.

In addition, we also conduct experiments to explore the effects of different

combinations of type-aware graph embeddings, and the results are reported

in Section 5.3.3.

For the pooling function (Equation 8), we select sum( ·) as the default
function in TaGSim. We also consider other pooling functions and discuss

their impacts in Section 5.3.4. For the setting of the NTN network (Equa-

tion 9), we consider 𝐿 = 16 and the ReLU function [28] for 𝜎 by default.

The GEV predictors consist of three layers of neural networks with 16, 8, 4

neurons in each layer, respectively, and the output is a scalar value. During

the training of TaGSim, we set the batch size to be 128, and Adam [23] is

chosen as the optimizer for back propagation with the learning rate of 0.001.

The parameter studies of TaGSim are reported in Section 5.3.5.

5.3 Experimental Results
5.3.1 GED Estimation Effectiveness. The results for GED estimation effec-

tiveness of nine different methods are tabulated in Table 3 and Table 4 for

synthetic test sets and real test sets, respectively. On all the different datasets,

TaGSim consistently achieves the best performance under virtually every

evaluation metric. In particular, when compared with the most up-to-date

GNN-based method, SimGNN, TaGSim achieves notable performance gains
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Table 5: GED Estimation Effectiveness: Type-oblivious vs. Type-aware

Methods
LINUX IMDB AIDS700 AIDS

mse 𝜌 𝜏 p@20 mse 𝜌 𝜏 p@20 mse 𝜌 𝜏 p@20 mse 𝜌 𝜏 p@20

Type-oblivious 13.771 0.888 0.760 0.355 93.565 0.803 0.739 0.754 13.728 0.567 0.422 0.151 75.877 0.413 0.322 0.049

Type-aware 5.278 0.941 0.834 0.867 35.690 0.958 0.926 0.986 5.890 0.679 0.520 0.266 9.827 0.688 0.527 0.322

(a) Training Data Acquisition Time (b) Graph Similarity Computation Time

Figure 4: Training and GED Estimation Efficiency.

for GED learning and computation: on the LINUX and IMDB datasets, the

mean squared errors (mse) of TaGSim are only about 15.85% to 35.15% of

those in SimGNN ; On AIDS and PubChem, TaGSim’s mse results are less

than 10% of the results of SimGNN. Regarding other rank-based evaluation

metrics (𝜌 , 𝜏 , and p@20), TaGSim achieves 30% to 12X effectiveness im-

provement in comparison with SimGNN, especially on AIDS and PubChem

datasets where graphs are large and structurally complex. Such significant

performance gains are primarily attributed to the type-aware GED learning

idea and the computation framework, TaGSim, in which each type of graph

edit operations can be modeled, learned, and estimated in a fine-grained

approach, thus resulting in more accurate GED estimation results than all

existing type-oblivious approaches.

When compared with the combinatorial search-based solutions, TaGSim

achieves more significant performance gains especially in AIDS and Pub-

Chem datasets where graphs are structurally more complicated and of larger

sizes. Specifically, TaGSim outperforms the state-of-the-art, partition-based

GED lower-bound method, Inves, in terms of all the evaluation metrics. The

performance gains w.r.t.mse can be one to two orders of magnitude in AIDS

and PubChem datasets. We also recognize that existing GED lower bounds

in Inves are still loose: In many experimental scenarios, Inves fails to deliver

accurate GED estimations for real-world graphs.

As a consequence, TaGSim can accurately estimate GED for real-world

graphs. It has demonstrated competitive performance gains and clear advan-

tages in GED learning and computation, compared with the state-of-the-art

GED solutions.

5.3.2 Model Training and GED Estimation Efficiency. We further examine

the runtime cost of training data acquisition and GED learning and com-

putation for TaGSim, and the results on the real test sets are presented in

Figure 4. In Figure 4(a), we report the average runtime cost for graph pair

generation, as proposed in Section 4.3, and the average runtime cost of

AStar+-LSa for exact GED computation. It is worth noting that, the runtime

of the graph pair generator is three orders of magnitude less than that of

AStar+-LSa, which is very time-consuming in the experiments. Specifically,

in the AIDS dataset, it typically takes at least 10 seconds for AStar+-LSa to

compute the exact GED for a given graph pair as the ground-truth GED.

In order to train the GNN-based models with thousands of graph pairs

together with their exact GED scores, the runtime cost for the training data

acquisition can be exceptionally high. In contrast, our graph pair generator

(Algorithm 2) is very efficient, which can help train and deploy TaGSim fast

in practice.

We further report the average runtime cost for GED computation by

different methods, and the results are presented in Figure 4(b). We recognize

that TaGSim is 20% up to 50% faster than SimGNN for GED learning and

estimation in different datasets. The primary reason is that, the type-aware

graph embeddings of TaGSim do not need linear and non-linear transforma-

tions for node and graph embeddings, which, however, are required steps

in SimGNN and other GNN-based methods. In other words, TaGSim has

a simplified graph embedding framework, thus leading to an accelerated

GED learning process. Furthermore, TaGSim is three orders-of-magnitude

faster than the exact GED method, AStar+-LSa, in all the datasets. When

computing GEDs between large graphs in the AIDS dataset, we recognize a

significant slowdown in AStar+-LSa, whereas TaGSim can work efficiently

especially for real-world, large graphs.

In summary, TaGSim is significantly more efficient than the exact GED

computation methods. Furthermore, it outperforms the state-of-the-art,

GNN-based solution, SimGNN, in terms of GED estimation efficacy, in

real-world datasets due in particular to its simplified, type-aware graph

embedding framework.

5.3.3 Effectiveness of Type-aware Graph Embedding and Learning. In this

experiment, we substitute the type-aware graph embedding and learning

components in TaGSim with the traditional, type-oblivious GNN struc-

tures employed by SimGNN, which consist of three graph convolutional

network (GCN) layers and an extra attention layer. We denote this method

Type-oblivious, as different types of graph edit operations are modeled and

learned indiscriminately in this framework. We compare Type-oblivious

with TaGSim (denoted as Type-aware in this setting), and the effectiveness

results for GED estimation on real test sets are shown in Table 5. It is inter-

esting to note that, Type-aware achieves consistently better effectiveness

results for GED estimation than Type-oblivious on all datasets. The primary

reason is that our type-aware graph embedding and learning modules are de-

signed to identify and encode different transformative impacts incurred by

different types of graph edit operations. Consequently, Type-aware provides

fine-grained, and more accurate prediction models than Type-oblivious. In

addition, the type-aware graph embeddings of TaGSim involve no extra

hyper-parameters to be learned, which, however, are required in SimGNN.

As a result, the type-aware solution, TaGSim, outperforms the type-oblivious

method, SimGNN, in terms of both the GED estimation effectiveness and

efficiency.

To systematically study the performance of type-aware graph embed-

dings, we consider different 𝑘-hop NLMs and ELMs (by varying the values
of 𝑘), together with their possible combinations in TaGSim, and examine

the estimation effectiveness for different graph edit types. The effectiveness

results are illustrated in Figure 5. For instance, for the graph edit type NR

with the default setting h𝑛
𝑐𝑎𝑡 (0,1)

, we consider graph embeddings leveraging

further neighborhood information with 𝑘 = 2, 3; that is, h𝑛
𝑐𝑎𝑡 (0,2)

, h𝑛
𝑐𝑎𝑡 (0,3)

,

h
𝑛
𝑐𝑎𝑡 (0,1+2)

, and h𝑛
𝑐𝑎𝑡 (0,1+3)

(here h𝑛
𝑐𝑎𝑡 (0,1+2)

= Pooling(H𝑛
𝑐𝑎𝑡 (0,1+2)

) , where

H
𝑛
𝑐𝑎𝑡 (0,1+2)

= H
𝑛
0 | | (H

𝑛
1 + H

𝑛
2 )). For EID, according to Table 1, we note that

only this graph edit type can affect both H
𝑛
𝑘 (𝑘 ≥ 1) and H

𝑒
𝑘 (𝑘 ≥ 0) . We

thus explore different combinations of H𝑛
𝑘 and H𝑒

𝑘 for the estimation of EID.

While extending the graph embeddings for one graph edit type, we keep

the embeddings for other types of graph edit operations with the default

settings. From the experimental results as reported in Figure 5, we note
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(a) mse for NR (b) 𝜌 for NR (c) 𝜏 for NR (d) p@20 for NR

(e) mse for NID (f) 𝜌 for NID (g) 𝜏 for NID (h) p@20 for NID

(i) mse for ER (j) 𝜌 for ER (k) 𝜏 for ER (l) p@20 for ER

(m) mse for EID (n) 𝜌 for EID (o) 𝜏 for EID (p) p@20 for EID

Figure 5: TaGSim is configured with different 𝑘-hop NLMs and ELMs for type-aware graph embedding. The “ours” in each

figure (colored in green) denotes the default settings for TaGSim. In each figure, the symbol h𝑛
𝑐𝑎𝑡 (0,1+2)

= Pooling(H𝑛
𝑐𝑎𝑡 (0,1+2)

),

where H𝑛
𝑐𝑎𝑡 (0,1+2)

= H
𝑛
0 | | (H

𝑛
1 + H

𝑛
2 ). Other terms, such as h𝑛

𝑐𝑎𝑡 (0,1+3)
, h𝑒

𝑐𝑎𝑡 (0,1+2)
, are defined and computed analogously. Note that

the four figures of each row share the same legends, which are only shown in the first figure of that row, for the sake of clarity.

that in almost all different datasets, our default settings for type-aware

graph embeddings can achieve the most satisfactory effectiveness results.

For instance, in Figure 5(i), the GED estimation effectiveness of h𝑛
𝑐𝑎𝑡 (0,1)

for the edit type ER is better than those of h𝑛
𝑐𝑎𝑡 (0,1+2)

and h
𝑛
𝑐𝑎𝑡 (0,1+3)

(in

terms of mse, the lower the better). In practice, with at most two layers

(𝑘 ≤ 1) of GAL computation, we can obtain sufficiently good type-aware

graph embeddings in TaGSim for GED computation.

5.3.4 Performance of Different Pooling Functions. In this experiment, we

consider different pooling functions to study their potential effects on

TaGSim. As mentioned in Section 4.1.2, besides the default setting of the

pooling function, sum( ·) , we also consider mean( ·) and max( ·) (select

the maximum value for each dimension of node embedding vectors as the

resultant dimension of the graph embedding), and the effectiveness results

on real test sets are presented in Figure 6. Note that TaGSim with the sum

pooling function consistently achieves the best performance in terms of all

the evaluation metrics. The reason is that sum can easily maintain the graph

size information (the numbers of nodes and edges), while mean and max

cannot. Additionally, in type-aware graph embedding, sum helps preserve

the neighborhood information within 𝑘-hop NLMs and ELMs, thus making
it an ideal pooling function in TaGSim.

5.3.5 Parameter Sensitivity. In TaGSim, the neural tensor networks have

the hyper-parameter 𝐿 that controls the output dimensions (Section 4.2.1).
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Max Mean Sum(ours)

Figure 6: GED estimation effectiveness for TaGSim with different pooling functions. “Ours” in the figures denotes the default
setting, Sum(·).

LINUX IMDB AIDS700 AIDS

Figure 7: TaGSim with different output dimensions (𝐿) in
neural tensor networks (NTU). The default setting is 𝐿 = 16.

We examine the performance of TaGSim by setting different values of 𝐿,

and the effectiveness results are presented in Figure 7. We note that, by

increasing the values of 𝐿 starting from 4, the performance of TaGSim
keeps improving and converges to a high level when 𝐿 = 16 or 32. When

the values of 𝐿 keep increasing (e.g., 𝐿 = 128), the performance of TaGSim
deteriorates slightly because there are more learnable weights or parameters

in TaGSim, resulting in a higher probability of overfitting. It turns out that

TaGSim with 𝐿 = 16 or 32 typically achieves the best performance under

different evaluation metrics.

In TaGSim, the neural network based GEV predictors consist of three

fully connected layers. In this experiment, we fine tune the dimension

for each of the three hidden layers, represented in the form of 𝑑𝑖𝑚 (𝐿1) \
𝑑𝑖𝑚 (𝐿2) \ 𝑑𝑖𝑚 (𝐿3) , and the results for GED estimation effectiveness are

presented in Figure 8. Note that the estimation effectiveness of TaGSim
improves when the dimensions of hidden layers increase, and it converges

fast under different evaluation metrics in different datasets. Empirically,

the dimension of the last hidden layer cannot be set too low (e.g., smaller

than or equal to 2). Typically 𝑑𝑖𝑚 (𝐿3) = 4 is sufficiently good for GED

estimation in different graph datasets.

6 CONCLUSION
The graph edit distance (GED) based similarity computation has been critical

and fundamental in a proliferation of real-world, graph-based applications.

In this paper, we proposed a new concept of type-aware graph similarity

LINUX IMDB AIDS700

Figure 8: TaGSim with different dimensions for three hidden
layers. The default setting of TaGSim is “16\8\4".

learning and computation, where each type of graph edit operations was

modeled, learned, and estimated in a type-aware, fine-grained approach.

Following this concept, we proposed a novel graph similarity learning and

computation framework, TaGSim, consisting of two deep learning based

functional modules: (1) type-aware graph embedding and (2) type-aware
similarity learning and estimation. To facilitate the training of TaGSim, we

also designed a cost-effective graph pair generator that can provide sufficient

graph pairs with fine-grained, ground truth GEDs without recourse to the

costly exact GED computation. Our experimental studies have validated the

efficiency and effectiveness of TaGSim on five real-world datasets, compared

with eight existing GED computation solutions.
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