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ABSTRACT
Waves of misery is a phenomenon where spikes of many node splits
occur over short periods of time in tree indexes. Waves of misery
negatively affect the performance of tree indexes in insertion-heavy
workloads. Waves of misery have been first observed in the context
of the B-tree, where these waves cause unpredictable index perfor-
mance. In particular, the performance of search and index-update
operations deteriorate when a wave of misery takes place, but is
more predictable between the waves. This paper investigates the
presence or lack of waves of misery in several R-tree variants, and
studies the extent of which these waves impact the performance
of each variant. Interestingly, although having poorer query per-
formance, the Linear and Quadratic R-trees are found to be more
resilient to waves of misery than both the Hilbert and R*-trees. This
paper presents several techniques to reduce the impact in perfor-
mance of the waves of misery for the Hilbert and R*-trees. One way
to eliminate waves of misery is to force node splits to take place
at regular times before nodes become full to achieve deterministic
performance. The other way is that upon splitting a node, do not
split it evenly but rather at different node utilization factors. This
allows leaf nodes not to fill at the same pace. We study the impact
of two new techniques to mitigate waves of misery after the tree
index has been constructed, namely Regular Elective Splits (RES,
for short) and Unequal Random Splits (URS, for short). Our exper-
imental investigation highlights the trade-offs in performance of
the introduced techniques and the pros and cons of each technique.
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1 INTRODUCTION
The R-tree [10] is a commonly used spatial index. It is a balanced
tree index that grows dynamically as data gets inserted into the in-
dex. When the R-tree nodes become overfull due to insertions, they
split. Generally, node splits are costly, and may involve multiple
adjustments and restructuring of the index at various degrees. How-
ever, because node splits are not frequent, their costs get amortized
over the many index inserts that take place over time.

Some applications that utilize R-trees are insertion-heavy, i.e.,
these applications experience a large number of inserts that con-
tinuously occur over time. With the advent of IoT devices, more
locations are being recorded and inserted into spatial databases,
which is also the case for satellite data where points are collected
and inserted.

In the context of the B-tree, Glombiewski, Seeger, and Graefe [8]
have discovered thewaves ofmisery phenomenon, where in insertion-
heavy scenarios, the B-tree experiences cluttered splits of tree nodes
over time that cause contention in the buffer pool, and results in
unpredictable query performance [8] (Refer to Figure 1). The reason
for naming this phenomenon a wave of misery is due to the negative

Figure 1: Waves of misery in the B-tree. The 𝑥-axis is the
number of batches inserted into the B-tree over time with
each batch having 10,000 inserts; the 𝑦-axis is the number of
leaf node splits in one batch.
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impact in performance of these large numbers of tree node splits
that take place in spikes over short periods of time.

In the context of the R-tree when handling insertion-heavy work-
loads, the questions that arise are: (1) Do R-trees experience waves
of misery similar to the ones experienced by the B-tree? (2) And
if the answer is yes, how can we mitigate these waves of misery?
(3) Will the techniques proposed for handling the waves of mis-
ery for the B-tree work for the R-tree? (4) Do the various types
of R-trees, e.g., the Linear R-tree [10], the Hilbert R-tree [11], the
R*-tree [3], the RR*-tree [5] differ in how they experience waves
of misery? and (5) whether the severity of the waves of misery
differs with the various types of the R-trees? In this paper, we seek
answers to these questions.

Figures 2(a)-(g) give the number of leaf node splits in seven R-
tree variants. Figure 2(h) gives the number of non-leaf node splits
in the Hilbert R-tree. We show the non-leaf node splits for the
Hilbert R-tree only as it has the largest number of non-leaf node
splits among the other R-tree variants. From the figure, the plotted
counts of tree node splits resemble the shape of a wave, including
leaf and non-leaf node splits. In this paper, since the leaf node splits
occur much more often than the non-leaf node splits, we only focus
on leaf node splits when studying the waves of misery phenomenon.

In this paper, we investigate the implications of the waves of
misery on several disk-based R-tree variants, namely the Linear and
Quadratic R-trees [10], the R*-tree [3] with and without reinsertion,
the Revised R*-tree (RR*-tree) [5], and the Hilbert R-tree [11] with
and without deferred split that have common yet unique features in
terms of waves of misery. Experiments indicate that node utilization
and range query performance are affected by the waves of misery,
and that performance is stable and predictable only during the
times when waves of misery do not take place. We study the impact
in performance of the waves of misery under various parameter
settings including the bulk-loading strategy, the initial index size,
the initial node utilization, the data distribution and the page size.
We show that tuning these parameters cannot resolve the impact
of the waves of misery in the R-tree, which is also demonstrated
to be of no use in the B-tree [8]. However, these experiments give
insight on how the waves of misery can be alleviated.

In this paper, we investigate two categories of approaches to
eliminate the negative effects in performance of the waves of mis-
ery, namely techniques that take place (1) during the bulk-loading
phase of the index, and (2) during the batch-insertion phase. In the
first category, we construct an R-tree with a variety of leaf-node
fill factors. In the second category, we use different node splitting
strategies including electively splitting some leaf nodes even before
they get entirely full and splitting nodes at different node utiliza-
tion factors. Two Category 1 methods are proposed in [8]. In this
paper, we propose two Category 2 methods. We compare and con-
trast all four methods. Their impact on query performance and on
mitigating the effects of the waves of misery are investigated.

Our experiments reveal some interesting findings. It is surprising
that the severity of the waves of misery differs among the R-tree
variants. Traditionally, it is well known that the Linear and the Qua-
dratic R-trees are outperformed by the other R-tree variants in terms
of query performance [3]. Despite that, our experiments demon-
strate that the Linear and Quadratic R-trees experience waves of

misery to a much lesser extent than the Hilbert R-tree. This perfor-
mance of the Linear and Quadratic R-trees has provided insight on
how to reduce the effect of the waves of misery in the context of
the other trees, e.g., the Hilbert R-tree. We provide several heuris-
tics for adoption within the insertion and split algorithms of the
Hilbert R-tree. These heuristics help diminish the effect of waves of
misery in the Hilbert R-tree without sacrificing much of the Hilbert
R-tree’s superior query performance.

The contributions of this paper are as follows:
• This paper is the first to study and analyze waves of misery

in the R-tree and its variants. We demonstrate that the
different variants of disk-based R-trees suffer in terms of
performance from waves of misery at various degrees. We
investigate the reasons for this problem.

• We introduce two newmethods to mitigate waves of misery
for variants of the R-tree that suffer from the waves of
misery the most.

• We conduct thorough experiments using synthetic and real
data sets. We study the performance of the new mitigation
methods that we introduce in this paper for dealing with
the waves of misery for the R-tree variants. We contrast
these new methods with the existing mitigation methods
that have been developed originally for the B-tree and that
we adapt for the R-tree. We highlight the trade-offs in per-
formance of each of the methods as well as their pros and
cons, and provide recommendations towards the end of the
paper.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 presents the experimental setting for our
investigation. Section 4 demonstrates the waves of misery phenom-
enon in several variants of the R-tree. Section 6 presents several
measures for assessing the severity of the waves of misery. Sec-
tion 7 presents techniques to mitigate and alleviate the waves of
misery while Section 8 presents the performance results of all the
proposed techniques. Finally, Section 9 concludes the paper as well
as summarizing trade-offs for each tree and remedy, and provides
some recommendations.

2 RELATEDWORK
Glombiewski et al. [8] are the first to discover the waves of misery.
Their experiments focus on the B-tree. They assess the waves of
misery for the B-tree under various conditions. They propose two
remedies to alleviate waves of misery for the B-tree, both are during
the bulk-loading phase.

The R-tree [10] is a dynamic index suited for multi-dimensional
data objects. Searching the R-tree starts from the root and descends
the tree. Guttman [10] has proposed three methods to split an R-
tree node: (1) the exhaustive method, (2) the quadratic method, and
(3) the linear method. In the quadratic algorithm, two seed objects
are first identified. For each of the remaining objects, compute
the difference of the increase in area of the covering rectangles if
that object were to be added into each of the two partitions. The
object with the largest difference is chosen and is assigned to the
partition with the smaller rectangle enlargement. In the Linear R-
tree algorithm, two seed objects are identified, and the remaining
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Figure 2: Demonstration of the waves of misery in seven variants of the R-tree

objects are assigned to each partition with minimum increase in
the area of the bounding rectangle.

One drawback of the above algorithms is their lack of optimizing
the size of the overlapping regions among the split partitions. Thus,
if a query range intersects any of these overlapping regions, multi-
ple subtrees have to be descended to answer the query. Algorithms
have been proposed to eliminate, or at least reduce, the overlap.
New R-tree variants and their corresponding algorithms have been
introduced, e.g., [1, 3, 6, 9, 11].

The R*-tree adopts a combined optimization that minimizes both
the areas and the overlap between the enclosing rectangles [3].
Upon a split, the R*-tree generates several candidate distributions,
and computes three goodness measures; the area, the margin, and
the overlap. By optimizing these measures, the R*-tree reduces the
number of paths to traverse during a search. The R*-tree defers a
node split by reinserting the object farthest from the center of the
bounding rectangle into some other node in the same tree level.

The Hilbert R-tree is a variant of the R-tree that imposes a lin-
ear ordering on the data rectangles stored in the R-tree [11]. The
Hilbert value of the center of each data rectangle is computed, and
thus, a linear ordering of the rectangles is obtained. The bounding
rectangles are stored in the index nodes. The Hilbert R-tree allows
for deferred splitting. For an 𝑠-to-(𝑠 + 1) splitting policy, the over-
flowing node tries to push some of its entries to one of its 𝑠 − 1
siblings. If all of them are full, then a new node is created, and the
𝑠 nodes are split into 𝑠 + 1 nodes. This splitting policy drives the
utilization of the Hilbert R-tree to be as close as 100% [11]. In our
experiments, we use the ’1-to-2’ and ’2-to-3’ split policies.

Ang and Tan present a linear algorithm for minimizing region
overlaps among R-tree nodes [1]. In an overflowing node, all objects
are distributed into two separate lists per dimension. The dimension
that offers a more even distribution is used to split the node. If there
is a tie, the dimensionwith the smallest overlap is favored. If another
tie occurs, the dimension with the smallest total coverage is chosen.

Korotkov [14] proposes a double sorting-based node-splitting
algorithm. In the one-dimensional case, two arrays are used to store
the objects based on the lower and the upper bounds separately.
Arrays are sorted to choose two objects with minimum overlap as

seeds. Each seed represents a group. Then, unambiguous objects
are distributed to each group first. The remaining objects are sorted
according to the interval centers. Then, the objects are distributed
such that the total number of entries in the first group is𝑚 (𝑚 is
the minimum number constraint), and the remaining entries go to
the second group.

The Revised R*-tree (RR*-tree) [5] enhances over the R*-tree in
several ways. The reinsertion policy of the R*-tree is abandoned.
Also, the R*-tree has a relatively expensive overlap optimization
that is only performed in the lowest non-leaf level (the one above
the leaf nodes). With a redesigned algorithm, overlap optimiza-
tion can be applied to all non-leaf levels in the RR*-tree. Also, the
balance of the splitting pages is added as an optimization crite-
rion. Another improvement is on high-dimensional data. Since it is
possible that bounding boxes with zero volume occur when using
high-dimensional data, the volume-based optimization becomes
less effective. In such situations, a lower dimension perimeter-based
optimization is used.

There are several techniques for bulk-loading the R-tree. One
bulk-loading method is sort based [12]. Objects are ordered based
on some criterion, e.g., based on the Hilbert value of the centroid
of the object, then are packed into pages according to that order.
Another bulk-loading technique is the Sort-Tile-Recursive (STR,
for short) [15], where objects are sorted into tiles recursively using
one dimension at a time. For example, with two-dimensional data,
objects are first sorted by their 𝑥-coordinates and are partitioned
into vertical slices. Then, in each slice, objects are sorted by their 𝑦-
coordinates and are grouped into runs of length𝑏 (𝑏 is themaximum
number of objects that one node can hold) into one node.

3 EXPERIMENTAL SETUP
We use a 192 core machine having Intel(R) Xeon(R) Platinum 8168
CPU @ 2.70GHz with a 2 TB memory running Linux kernel 4.15.0.
We implement all the proposed methods within the Java indexing
library XXL [17]. We use the following synthetic and real two-
dimensional point data sets:
Synthetic Data:We use three two-dimensional synthetic data sets
in the experiments. All synthetic data sets are in the unit space
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[0, 1] × [0, 1]. The first point data set is uniformly distributed. The
𝑥 and the 𝑦 coordinates of the points are generated uniformly in
the space. The second point data set is normally distributed. Both
the 𝑥 and 𝑦 coordinates of the points follow normal distribution
with Mean 0.5 and Standard Deviation 1

6 . The third data set is an
artificial distribution Bit described in [4]. Bit is a point distribution
with floating point vectors generated as follows: each bit of the
mantissa of their components is set with probability 0.3. The data
is generated via SpiderWeb [13] inside the unit space.
Real Data: We use the following two real data sets in the exper-
iments: OpenStreetMap [16] and Twitter data set. We download
the US Midwest map from OpenStreetMap, and extract the coordi-
nates of points of interest from the map. The Twitter data contains
tweets that have been gathered over the period from 2013 to 2014.
We use the data that are collected in 2014/10/12. Only the tweets
that have spatial coordinates inside the US are considered. The
format of each tweet is: tweet identifier, tweet timestamp, tweet
location (longitude and latitude coordinates), and the text body of
the tweet. Both data sets are shuffled before use.

All the experiments are performed using the following R-trees:
the Linear R-tree, the Quadratic R-tree, the R*-tree with andwithout
reinsertion (if not indicated, R*-tree means no reinsertion in this
paper), the Revised R*-tree (the RR*-tree), and the Hilbert R-tree
with and without deferred splits (2-to-3 splits). All the indexes are
stored as files on disk. There is a buffer in memory with a fixed size,
which is the size of the available buffer in terms of the number of
nodes. The buffer is able to hold 1000 nodes unless stated otherwise.
For the rest of the paper, we assume that exactly one node fits
per disk page, and hereafter we use the two terms: node and page
interchangeably. All index nodes are fixed in the buffer. Only leaf
nodes can be fetched and flushed to disk. All the R-trees are bulk-
loaded with points sorted based on the Hilbert value. Points are
inserted one at a time after bulk-loading. The statistics are collected
per batch with each batch consisting of 10,000 points. The initial
index size is 10 million points unless stated otherwise. All the leaf
nodes are packed with an initial utilization of 90% unless stated
otherwise. The page size is 16KB unless stated otherwise.

We use three kinds of queries for the different data sets:
Uniform queries: The center of each query square follows a uni-
form distribution in the unit space. The width of the query square is
determined by the query area. These uniformly distributed queries
are used on the synthetic uniform data with sizes ranging from
0.0001%, 0.001%, 0.01%, 0.1%, 1%, and 5% of the entire space.
Nonuniform queries:We simulate nonuniform queries by first
fixing focal points at random, and then generating query centers
following a normal distribution around the focal points. Let 𝑟 be
the closest distance from a focal point to the unit space boundaries.
In order to ensure that all queries reside inside the unit space, the
standard deviation (𝜎) of the normal distribution is chosen such
that 99.7% of data lies inside the universe (3𝜎 ≤ 𝑟 ). The closer to
the central point, the higher the probability of the query centers,
thus the higher the density of the queries.
Queries with fixed selectivity: This type of queries is particu-
larly useful for real data sets. Because real data is non-uniformly
distributed, we want to guarantee that a test query returns a certain
number of objects, i.e., we need to be in control of the selectivities of

the test queries. In order to do that, one point is randomly chosen
in the underlying space, and a certain number of neighbors are
retrieved using the 𝑘-nearest neighbours query with 𝑘 being the
target selectivity. The query rectangle is formed as the minimum
rectangle holding all the neighbors. It may happen that when we
form the minimum bounding rectangle around the target number
of objects that the resulting rectangle ends up containing more
objects than the targeted selectivity. We discard this range query
if the actual query result is more than double the selectivity. We
apply queries with fixed selectivities ranging from 0.0001%, 0.001%,
0.01%, 0.1% of the number of objects in the newly updated data set
after each batch.

100 queries are issued after each batch insertion. I/O access is
measured by the number of buffer evictions as the buffer is filled
up with tree nodes. I/O latency, i.e., the total elapsed time by I/O
operations, is used to compare across the various R-tree variants.

4 PROBLEM DEFINITION
First, we show what the waves of misery are. In a write-intensive
spatial database, e.g., satellite data and IoT devices’ locations being
inserted into R-tree indexes, we simulate this scenario by inserting
batches of data over time into the R-tree, where each batch contains
10,000 points. We count the number of splits that happen during
one batch, and plot all the batches in Figure 2. Seven different R-
trees are used for comparison. Figures 2a-g give the number of leaf
node splits. Figure 2h gives the number of non-leaf node splits in
the Hilbert R-tree.

From Figure 2, all R-trees have spikes (waves) of leaf node splits
that are cluttered over short periods of time. We refer to these
spikes as waves of misery as they affect the performance of the
index during the wave. The Hilbert R-tree (Figure 2a) has the most
obvious waves, and hence is affected the most by the waves of
misery. The first wave is the highest. The following waves show
a decrease in height over time but with an increase in width. The
number of splits is almost zero in-between the waves.

The R*-tree without reinsertion (Figure 2b) and the RR*-tree
(Figure 2c) also have waves of misery, and they are almost identical,
both in the heights of the peaks and the batch numbers of each
peak. All of their waves are smaller than those of the Hilbert R-tree.
In between the waves, the number of splits is nonzero. Since one
of the improvements in the RR*-tree is on high-dimensional data
and we only use two-dimensional data, the difference between the
RR*-tree and the R*-tree (without reinsertion) is not much. We only
show the result of the R*-tree in later experiments.

The Linear R-tree (Figure 2d) and the Quadratic R-tree (Figure 2e)
are similar to each other, and both of them do not exhibit significant
waves of misery except for their first waves. The numbers of splits
become stable after the second wave.

For the Hilbert R-tree with deferred split (Figure 2f), waves of
misery are eliminated effectively except the first two waves. This
is expected because nodes do not have to split when they overflow,
rather they can push the overflow objects into one of the siblings
of the overflowing node. However, this results in longer insertion
time as illustrated in Figure 3a (left). The points are plotted at an
interval of 100 batches. The excess time in the deferred split policy
is spent to find a sibling node with some empty space as well as
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(a) Insertion time comparison in R-tree variants with deferred split (b) Buffer utilization and buffer eviction in Hilbert R-tree

(c) Waves of misery with Data sets: Bit, Twitter, OpenStreetMap.

Figure 3: (a) Insertion time comparison (points are plotted at an interval of 100 batches), (b) Buffer contention, and (c) Waves of
misery for Data sets: Bit, Twitter, and OpenStreetMap.

adjust the maximum bounding rectangles for both nodes. The R*-
tree with reinsertion is another example of deferred split and has
longer insertion times as in Figure 3a right.

When waves of misery take place, they put the buffer manager
in contention. Next, we investigate whether buffer utilization and
eviction have effect on the presence or lack of waves of misery. We
use two buffer sizes of 1000 and 5000 pages, and show the results
for the Hilbert R-tree in Figure 3b. Buffer utilization is calculated
as the quotient between the used buffer pool bytes and the total
available buffer pool bytes. The plot declines after each wave and
accumulates in between waves. Buffer eviction is counted as the
number of evicted buffer slots per batch. There is a sharp peak or
sharp turning point at each wave, especially around Batch 100 for
the buffer of size 1000 pages.

We also use Data Set Bit [13] and two real-world data sets:
OpenStreetMap and Twitter. The waves of misery of each R-tree
(Figure 3c) resemble their counterparts of the uniform data sets.

Waves of misery are most severe in the case of the Hilbert R-
tree, followed by the R*-tree, and then the Linear or the Quadratic
R-trees. The least is the Hilbert R-tree with deferred splits and the
R*-tree with reinsertion. This provides insight on how to mitigate
waves of misery as will be discussed in Section 7.

5 IMPACT OF WAVES OF MISERY
5.1 Query Performance
We perform range search queries of various range sizes, and plot
the number of I/Os in Figure 4a. We also issue fixed selectivity
queries on OpenStreetMap in Figure 4b and nonuniform queries
on uniform data in Figure 4c. We use the mean of a moving window
(runmean) equal to 100 batches to plot the number of I/O accesses.

The I/O latency and the number of I/O accesses of the 90th percentile
(tail latency) are given in Figure 4d first two rows. The three kinds
of queries show consistent results. The query performance of the
Hilbert R-tree shows a staircase pattern of increase. Each abrupt
increase in I/O latency matches the end of one wave of misery.
This demonstrates that waves of misery are the cause of the abrupt
increase in the number of I/O accesses. Notice that this abrupt
degradation in query performance is not due to the increase in the
depth of the tree because all the index (non-leaf) nodes are pinned
inside the buffer. As waves of misery make buffer management in
contention, large amount of leaf nodes are evicted from the buffer.
Thus, querying has to fetch the leaf nodes from disk again. The
increase in the number of I/O accesses in the case of the R*-tree
is not smooth either. Similar to the Hilbert R-tree, the increase in
the number of I/O accesses matches the end of the wave of misery
where too many splits take place. Notice that Linear and Quadratic
R-trees have almost no waves of misery after 2000 batches. As a
result, the number of I/O accesses for both the Linear and Quadratic
R-trees increases smoothly and not as abruptly as in the cases of
the Hilbert R-trees.

5.2 Node Utilization
In Figure 4d Row 3, we examine the average utilization of leaf nodes
after each batch. During bulk-loading, leaf node utilization is fixed
at 90% except the last leaf node. Leaf node utilization increases
in the first few batches. When the first wave of misery happens,
most leaf nodes are full and they split almost at the same time,
resulting in a drop in node utilization. With plenty of free space in
leaf nodes, utilization accumulates as objects are inserted until the
second wave occurs, and the utilization drops again. The Hilbert
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(a) Query performance using various uniform query sizes

(b) Query performance using fixed selectivity queries on OpenStreetMap (runmean of 100)

(c) Query performance using nonuniform queries on uniform data (runmean of 100)

(d) Impact of waves of misery in four R-tree variants. Legends "Right" and "Left" indicate 𝑦-axis on the right and left respectively.

Figure 4: Query performance of uniform, nonuniform and fixed selectivity queries and impacts of waves of misery

R-tree has the largest oscillations followed by the R*-tree. Both the
Linear and Quadratic R-trees have nearly stable node utilization
after Batch 2000. The Hilbert R-tree has the highest and the lowest
transient utilization. This result is consistent with the waves.

5.3 Number of Leaf Nodes and R-Tree Height
In Figure 4d Row 4, the number of Hilbert R-tree leaf nodes grows
in a staircase pattern. There are batches that do not have any leaf
node increase. In between the plateau area, there is an extensive

growth in leaf nodes, while the remaining three R-trees have steady
growth in the number of leaf nodes with data insertions. We plot
the tree height after each batch. The increase in height is rare.

6 ANALYSIS
For the four types of R-trees, we investigate what factors affect
the waves of misery including the bulk-loading strategy, the initial
index size after bulk-loading, the initial utilization factor at bulk-
loading time, the data distribution, and the page size.
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(a) Effect of bulk-loading strategy

(b) Effect of initial index size

(c) Effect of initial node utilization

(d) Effect of both the initial and the insertion data distributions

(e) Effect of page sizes

Figure 5: Analysis on the waves of misery
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Effect of Bulk-loading Strategy:There are various bulk-loading
strategies, including the Sort-Tile Recursive (STR) [15] and sort-
based strategy [12]. We bulk-load the R-trees using STR and plot
their waves of misery in Figure 5a. Since the Hilbert R-tree sorts
the objects based on their Hilbert values, rather than their 𝑥 and 𝑦
coordinates (as performed in STR), we exclude the Hilbert R-tree
from this experiment. The highest wave is more than 200 splits in
all the four R-trees of Figure 5a, which are greater than those in
Figure 2. Even for the R*-tree (with reinsertion), the Linear R-tree,
and the Quadratic R-tree that originally do not exhibit any obvious
waves of misery after their first waves, show oscillating waves after
Batch 1000 as in Figure 5a. As can be seen from the figure, the
problem of the waves of misery is more severe in the case of the
STR strategy.
Effect of the Initial Index Size: The motivation behind focusing
on the initial index size at bulk-loading time is the following. Hy-
pothetically, if we know the ultimate and final index size at index
construction time, we would allocate the needed number of leaf nodes
in advance, and hence eliminate the waves of misery as no splits would
take place. This makes the initial index size a sensitive parameter.
We compare four R-tree variants under four initial sizes: 1M, 5M,
10M, and 50M points. In Figure 5b, all four index sizes still show
waves of misery during batch inserts. However, the larger the index,
the more batches it needs to show a following wave. The widths of
the waves are also different. The larger the index, the wider each
wave. This behavior is consistent in all R-tree variants. While a
good observation, only changing the initial index size does not stop
waves of misery from happening.
Effect of Initial Node Utilization at Bulk-loading Time: If
some free space is allocated at bulk-loading time, short-term inser-
tions can be ingested without node splits. However, this would not
eliminate the waves of misery altogether. In Figure 5c, we compare
the split counts under initial node utilization of 50%, 70%, and 90%.
The 90% utilization tree needs the least number of insertions to
have its first wave. The amplitudes of the waves differ as well. The
waves are more compact in the trees with higher utilization ratios.
Thus, tuning the initial utilization does not eliminate the waves, but
rather delays and weakens them.
Effect of the Data Distributions of the Initial and Batch
Phases: The previous experiments use uniform data both for the
construction and insertion phases. Here, we experiment with data
that follow normal distribution in both phases. There are four com-
binations: Normal/Normal (N2N), Uniform/Uniform (U2U), Uni-
form/Normal (U2N), and Normal/Uniform (N2U). Similar to [8],
N2N and U2U (Figure 5d 1st and 4th rows) show the most obvious
waves of misery. If the distributions do not match, although there
are oscillations before batch number 800, waves are still negligible.

Effect of Page Size: We compare four R-tree variants with
different page sizes: 1KB, 2KB, 4KB, 8KB, and 16KB in Figure 5e.
With a 1KB page size, the peaks are the largest and the valleys in
between the waves also have the largest number of splits. The 2KB
page size forms waves of misery beneath those of the 1KB page
size, with the same oscillating pattern and frequency, but with a
smaller number of splits. The waves of misery for the 4KB, 8KB,
and 16KB page sizes have even lower peaks. When the initial index
size is kept the same, a smaller page size leads to more leaf nodes,
thus the wave is higher. This result is consistent for all four R-trees.

To summarize, switching to a different bulk-loading strategy, or
tuning the initial index size, the initial node utilization or varying
the page size do not eliminate waves of misery, but rather delay
them. Although waves of misery are weaker if data distributions do
not match between the initial bulk-loading and the batch insertion
phases of data upload inserted the R-tree, these data distributions
are usually unknown beforehand. However, the unmatched distri-
butions give insight into how to mitigate waves of misery.

7 MITIGATINGWAVES OF MISERY
In [8], new algorithms at the bulk-loading phase are proposed to
have diverse node utilization factors before the batch insertion
phase starts. We introduce these algorithms here to test them in
the context of the R-tree. Then, we propose two new methods that
take place during the batch insertion phase. One main advantage
of these new methods is that a rebuild of the R-tree is not required.

Another observation is that there are R-trees that show negligible
waves of misery, mainly, the Linear and Quadratic R-trees, and the
R-tree with deferred splits. In Section 7.3, we present in-depth
analysis of how the split algorithms for the Linear and Quadratic
R-trees affect the waves of misery.

7.1 The Bulk-loading Phase
7.1.1 Sound Remedy (SR). Sound Remedy [8] has been introduced
to mitigate waves of misery for the B-tree. The basic idea is to keep
the leaf node utilization in balance (steady state) when the tree is
constructed, and maintain this balance at all times. This prevents
time-clustered leaf node splits from happening.

Assume that a node, say𝑄 , is at least 50% full. Let 𝑗 be the number
of objects in 𝑄 , i.e., (𝐵 + 1)/2 ≤ 𝑗 ≤ 𝐵, where 𝐵 is the maximum
number of objects that a node can hold. The steady-state probability
𝑃 𝑗 , that a leaf node has 𝑗 objects, is 𝑃 𝑗 = 𝐵

𝑗 ( 𝑗+1) , and the sum of
the probabilities across all leaf nodes is: Σ𝐵

𝑗=(𝐵+1)/2𝑃 𝑗 = 1. During
bulk-loading, to start from a steady-state, 𝑗 is randomly decided
by 𝑃 𝑗 . After 𝑗 is determined, the next 𝑗 objects are put into one
node and no more objects are added. When the remaining objects
are less than (3𝐵 + 1)/2, we switch to a final round: If there are at
most 𝐵 objects, they are put in one leaf node. Else, the objects are
distributed equally over two leaf nodes. This algorithm guarantees
that all the leaf nodes are at least half full and the probability that a
record insertion triggers a split of a leaf node is constant. The proof
follows the basic ideas of fringe analysis [2, 7, 18] and is omitted.

7.1.2 Linear and Random Practical Remedies (LPR and RPR). There
are other methods to determine node utilization factors, namely
practical remedy. The linear and random practical remedies (LPR
and RPR respectively) [8] are illustrated below by an example. If the
bulk-loading target utilization is 90%, LPR assigns the first node to
be 100%, the second to 80%, the third to 99%, the fourth to 81%, etc.
The value is chosen in this alternating way. However, RPR requires
a target range as well. With 90% target utilization and 10% target
range, RPR chooses a random number from 80% to 100%. With a
smaller 5% range, the random number is constrained within 85% to
95%. One advantage of LPR and RPR over Sound Remedy (SR) is
that the target utilization can be tuned. The theoretical analysis of
SR guarantees that the average utilization is about 69% (ln 2).
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7.2 Batch Insertion Phase
The previous methods apply during bulk-loading. However, in sit-
uations when rebuilding an existing R-tree is costly, mitigating
waves of misery during batch insertion can be a better option.

7.2.1 Unequal Random Split (URS). The waves of misery happen
because nodes get filled synchronously. The core idea of the above
methods is to keep the filling ratio of the leaf nodes in a steady state
starting from the bulk-loading phase. However, the filling ratio can
also be tuned during the batch insertion phase. In Figure 2, the
overflowing leaf nodes are split in half, i.e., the two resulting leaf
nodes are half full. If the split is intentionally made unbalanced, the
resulting two leaf nodes will receive a different number of entries,
and thus simulating the effect of SR. However, if the imbalanced
split is kept at a fixed ratio, e.g., 30% and 70%, waves of misery
cannot be avoided either. The reason is that nodes that are 70%
full are being filled at the same pace, forming one round of waves,
while nodes that are 30% full are filled up together, forming another
round of waves. We demonstrate the performance of unequal fixed
split (UFS) in Section 8.3. With a random number chosen between
30% and 70%, the remaining node utilization becomes closer to the
steady state. Thus, URS is faster than UFS in achieving stability.

7.2.2 Regular Elective Split (RES). One observation from theHilbert
R-tree is that there are no leaf node splits in between the waves of
misery. We can force leaf nodes to split regularly and sequentially
such that leaf nodes split before they actually overflow. We allow
one overflow page for each leaf node in case the node gets filled
before its split time. Although this may deteriorate the average leaf
node utilization, the overall index becomes more deterministic espe-
cially in query performance. We give a unique increasing identifier
to each leaf node at its creation time, and start the split process
from the first leaf node. During insertion, a point is inserted into
either a leaf node, or an overflow page if the leaf node is full, or a
split is triggered if all overflow pages are full. Besides this split, a
split is performed regularly every𝑚 insertions on leaf nodes based
on the node identifier. Parameter 𝑚 can be optimized based on
the workload. This way, each node has a chance to get split. Thus,
waves of misery can be avoided before they occur. Hence, splits
will be distributed over time, and waves of misery will be flattened.

7.3 Effect of the Split Algorithm
Refer to Figure 2, both the Linear and Quadratic R-trees do not have
discernible waves of misery as those in the Hilbert and R*-trees.
Since these R-trees differ most in their splitting algorithms, we
dissect the splitting process, and how the splitting algorithm affects
the waves of misery. Consider the Linear R-tree’s split algorithm.
First, two seed points need to be found. The remaining points are
distributed by computing the area of the bounding rectangle. There
is no optimization in minimizing the overlap of the resulting two
leaf nodes. Based on the experiments, we observe that many of the
splits are skewed, that is, the smaller leaf node ends up residing
almost completely inside the larger one. To confirm this, first, we
define 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜 as follows:

SplitOverlapRatio =
𝐴𝑟𝑒𝑎(Overlap)

𝐴𝑟𝑒𝑎(MBR(Small leaf node)) (1)

If 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜 is close to 1, then the overlapping area is
almost as large as the small leaf node. This implies that the smaller
leaf node almost resides inside the larger one. We compute the
average value of 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜 for all R-tree variants.

As expected, the Linear R-tree has the highest 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜
(95%), indicating that its split strategy results in the situation de-
scribed above, i.e., on average, 95% of the area of the small leaf node
is covered by the large leaf node. The lowest 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜
value is the R*-tree’s (0.048%). 𝑆𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜 for both the Qua-
dratic and Hilbert R-trees is around 1/3. When a point is inserted
into the Linear R-tree, a leaf node with the smallest area is chosen
for insertion. Thus, if a point falls within the range of the overlap-
ping region, it is inserted into the small leaf node. If more points
are inserted into the overlap region, then the small leaf nodes will
be filled faster. The above statement holds only when the overlap
region has a higher chance of points being inserted into it. This
means that the size of the overlap region is greater than that of the
non-overlapping one. We compute 𝑆𝑝𝑙𝑖𝑡𝑅𝑎𝑡𝑖𝑜 as follows:

SplitRatio =
𝐴𝑟𝑒𝑎(MBR(Small leaf node))
𝐴𝑟𝑒𝑎(MBR(Large leaf node)) (2)

We observe that the Linear R-tree has an average 𝑆𝑝𝑙𝑖𝑡𝑅𝑎𝑡𝑖𝑜 of 70%
with standard deviation of 20% indicating that the smaller partition
during a split occupies more than half of the larger partition.

In an area small enough like a bounding rectangle of a leaf node,
we can assume data points are distributed uniformly. When there is
a point, say 𝑝 , waiting to be inserted into a leaf node, the probability
of inserting 𝑝 into the overlap region is higher because it has a
larger size. Thus, when 𝑝 can be inserted into multiple leaf
nodes because of the overlap, the leaf node with the smaller
bounding rectangle is chosen. Thus, the smaller leaf node
will be filled much faster than the bigger one in the Linear
R-tree, which alleviates the waves of misery, but has poor
query performance because of the larger overlap region.

However, this does not explain why the Quadratic R-tree has
negligible waves of misery because 𝑠𝑝𝑙𝑖𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑡𝑖𝑜 is only 1/3
in the Quadratic R-tree. We trace all the leaf nodes split in Batches
200-1000, and record the type of leaf node that gets split. There
are two types of leaf nodes: an original bulk-loaded leaf node, or
a descendant from a previous split, i.e., a split node. Furthermore,
there are two kinds of split nodes: Large Child, i.e., the one with a
larger area, and Small Child, i.e., the one with a smaller area.

Within Batches 200 to 1000, 60.5% of the split nodes are Large
Child, 35.2% are Small Child, and only 4.2% are bulk-loaded nodes.
This suggests that more than half of the splits are from Large Child.
Thus, Large Child fills faster during this time window. The reason
is that after each split, each of the two leaf nodes has half the
entries. Due to the same reason, we can assume that the points are
distributed uniformly within one leaf node, and so are the inserted
points. Thus, a leaf node with a larger area is more likely to have
more points inserted. This explains why larger leaf nodes are split
more often than the other ones in the Quadratic R-tree.

To prove this hypothesis, we record the area difference between
the two leaf nodes during each split and sum the area differences
across all batches.

The Linear R-tree has the largest area difference of 9.15, followed
by the Quadratic R-tree (5.79), and the R*-tree (2.08). The Hilbert
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R-tree is the smallest among all at 0.94. Thus, with a larger area
difference, the Large Child receives more points and gets filled
sooner. Thus, the split is spread across all batches. The order of
area differences is consistent with the waves of misery in Figure 2
as the Hilbert R-tree that shows the smallest area difference has
the most obvious waves of misery, followed by the R*-tree, while
the Linear and Quadratic R-trees that have more area differences
do not exhibit obvious waves.

8 EVALUATION RESULTS
Next, we apply all the remedies on the Hilbert R-tree, the R*-tree
and the RR*-tree. As the results are consistent in all three R-tree
types, we only show the results of the Hilbert R-tree. Two data sets
are used: uniform data and OpenStreetMap.

8.1 Effect of SR
We bulk-load the Hilbert R-tree using the new algorithm introduced
in Section 7.1.1. The waves are completely eliminated with this new
bulk-loaded R-tree (Figure 6a), proving the feasibility of SR. We
observe the average leaf node utilization that remains stable at
around 69%. This is consistent with the theoretical analysis. With-
out the waves of misery, query performance becomes stable and
deterministic. We show one of the range sizes in Figure 6a and it
does not show a staircase pattern as in the original Hilbert R-tree.
With OpenStreetMap data, both waves of misery and average leaf
node utilization are identical to the results from the case of the
uniform data. The query result has a higher variation because data
is skewed and the selectivity is an approximate number.

8.2 Effect of LPR and RPR
We evaluate the effects of LPR and RPR on Hilbert R-tree. From
Figure 6c, observe that the peaks of waves of misery treated with
remedies are decreased. The decrease is most effective for the first
wave. Both LPR and RPR have their first wave immediately after
batch insertion because portions of the nodes are nearly fully uti-
lized. All of the three waves shown in one plot have almost equal
height, and the batch number of each wave is almost identical to
that of the original Hilbert R-tree. The average leaf node utilization
is consistent with the waves of misery, where the oscillation range
shrinks as the amplitude of the wave decreases. Also, the query per-
formance is impacted. The increase between each plateau becomes
slightly more flat with remedies. Both LPR and RPR show a similar
effect in mitigating waves of misery, and the results are consistent
for the two data sets.

8.3 Effect of URS
First, we investigate UFS and plot the waves of misery in Figure 6d.
The waves still exist. If we compare the most skewed distribution
(i.e., the 10%/90%) with the least one (i.e., the 50%/50%), we find
that the waves are much denser in the skewed splits and converge
faster. Also, we observe waves with two twin peaks in the 40%/60%
and 30%/70% distributions. The reason is that after the split, each
child with its fixed utilization forms its own wave, e.g., the wave
from the 40% nodes and the wave from the 60% nodes. When the
two rounds of waves collide, a wave with twin peak appears.

Next, we investigate the effect of URS in Figure 6e. The first
wave still exists in all the tested ranges. However, the splits become
stable after that. For the ranges 10%-90% and 20%-80%, the second
and following waves are negligible. With a more narrowed range
(30%-70% and 40%-60%), the second waves become clearer, but the
heights of the waves are much lower compared to the original
waves in all tested ranges. Average leaf node utilization correlates
with the waves of misery. For range 10%-90%, the average leaf node
utilization is around 57% after Batch 1000. This number is higher
for range 20%-80% at around 63%. The 30%-70% range oscillates
more but its stable average leaf node utilization is around 66%. The
40%-60% range oscillates the most but has the largest average leaf
node utilization. Thus, there is a trade-off between waves of misery
and leaf node utilization. For query performance, the R-trees with
10%-90% and 20%-80% ranges are worse in number of I/O accesses
than the other two. Considering all the aspects above, we use the
30%-70% range for remedy comparison.

8.4 Effect of RES
With an insertion batch size of 10k, for RES, we test several split
frequencies: one split every 400-900 insertions. The higher split
frequency (400) means more splits are forced. Thus, more leaf nodes
are created, and leaf nodes are less utilized. There is a clear trade-
off between waves of misery and utilization. We choose 600 and
900 to be the split frequencies for the Hilbert R-tree and the R*-
tree, respectively. We allow one overflow page per leaf node. As
in Figure 6b, the waves of misery are almost eliminated using RES
with few oscillations around Batch 4000. To compute the average
leaf node utilization, we do not consider overflow pages because
they are for transient storage only and will be inserted into the leaf
nodes eventually. The query performance shows a smooth growth
in number of I/O accesses, which is more deterministic than in the
original Hilbert R-tree. The results are consistent for the two data
sets.

8.5 Comparison of Methods
We compare the query performance of various remedies. In addition,
we include the Hilbert R-tree with deferred split and the R*-tree
with reinsertion in the comparison (Figure 7a and Figure 7b). DE
refers to the Hilbert R-tree with deferred split and the R*-tree with
reinsertion. Since LPR and RPR have similar performance in terms
of waves of misery, we only include LPR in the study. We show the
results of four range queries over uniform data.

In Figure 7a, of three larger range queries after Batch 6000, RES
has the largest number of I/O accesses, with SR and URS next, and
DE and LPR have the lowest I/O accesses. In Batches 4000-6000,
LPR displays a plateau, with RES still having the largest number of
I/O accesses, and DE the lowest. Before Batch 4000, the difference
among RES, SR and URS becomes negligible with LPR showing
sharp steps and taking as few I/O accesses as DE around Batches
1500 and 3000, and most I/O accesses around Batches 1700 and
4000. With the smallest range query (0.01%), RES takes fewer I/O
accesses than SR and URS in Batches 2200-5300. After Batch 5300,
RES is slightly worse than SR and DE uses the lowest number of
I/O accesses among all. For the R*-tree in Figure 7b, the differences
among remedies are smaller. URS has a slightly higher number of
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(a) Effect of the SR method (b) Effect of RES

(c) Effect of the LPR and RPR methods

(d) Effect of the UFS method

(e) Effect of the URS method

Figure 6: Waves of misery and query performance of the Hilbert R-tree with remedies. Both uniform data and OpenStreetMap
data are used.
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(a) Query performance comparison in the Hilbert R-tree

(b) Query performance comparison in the R*-tree

Figure 7: Query performance comparison in the Hilbert R-tree and the R*-tree

I/O accesses among all remedies in all query sizes, followed by RES
and SR. Before Batch 1000, RES uses the smallest number of I/O
accesses among all. With smallest query size (0.01%), LPR uses the
smallest number of I/O accesses after around Batch 5800. In the
remaining batches and query sizes, DE uses the lowest I/O counts.

Table 1: Percentage that the remedy outperforms the Hilbert
R-tree

Number of batches DE SR RES URS LPR
Query Range 5% 75% 41% 28% 31% 20%
Query Range 1% 77% 43% 31% 39% 59%
Query Range 0.1% 79% 46% 35% 39% 73%
Query Range 0.01% 82% 39% 47% 35% 67%
Query Range 0.001% 82% 57% 54% 32% 50%
Query Range 0.0001% 83% 76% 82% 83% 25%

Table 2: Percentage that the remedy outperforms the R*-tree
Number of batches DE SR RES URS LPR
Query Range 5% 86% 41% 33% 18% 51%
Query Range 1% 90% 45% 40% 18% 58%
Query Range 0.1% 84% 45% 38% 16% 64%
Query Range 0.01% 34% 0 16% 0 29%
Query Range 0.001% 3% 0 6% 0 0
Query Range 0.0001% 1% 0 3% 12% 7%

Next, we compare the query performance of all the remedies
with that for the original trees without remedies. We count the num-
ber of batches that the remedy outperforms the Hilbert R-tree out
of 7000 batches in Table 1. Under all range sizes, DE has the largest
number of batches that outperforms the Hilbert R-tree. With the
smallest range size, DE, SR, RES and URS have better performance
in more than half of the batches. For the R*-tree, we compute the
equivalent numbers in Table 2. With very small range sizes (0.0001%
and 0.001%), none of the remedies outperform the original R*-tree.
With larger range sizes, DE has a better performance over the orig-
inal tree, while SR and RES are slightly worse, LPR has comparable
performance, and URS is the lowest among all on average.

9 CONCLUDING REMARKS
This paper offers a new perspective for comparing R-trees using
waves of misery. Waves of misery result in non-deterministic per-
formance as clustered splits put extra stress on buffer management.
Besides query performance, waves of misery also affect node utiliza-
tion. Although the Linear and Quadratic R-trees are outperformed
by the other R-tree variants in previous studies, the waves of mis-
ery of the Linear and Quadratic R-trees are negligible. Experiments
show the uniqueness in their splitting algorithms that makes them
not suffer from waves of misery. Several methods are proposed to
alleviate waves of misery for the other R-tree types, and all of them
have trade-offs in waves of misery and query performance.

• If insertion time is a tolerable issue, then deferred split
is a good choice. The Hilbert R-tree with deferred split
and the R*-tree with reinsertion have reasonable query
performances, and only one or two waves of misery. If
faster insertion time is needed, then SR, RES, URS, and PR
can be good candidates.

• SR is most effective in eliminating waves of misery, and has
comparable query performance. If tree rebuild is an option,
SR and PR are good candidates. The advantages of PR are
twofold: easy implementation and higher node utilization.
However, PR is not as effective as SR in eliminating waves
of misery.

• If tree rebuild is not an option, then we can use either RES or
URS, where both have good query performance for queries
of smallest size for the Hilbert R-tree. If we can tolerate
some extra space for the index, then RES can be a good
candidate because its regular split results in lower average
leaf utilization. Otherwise, URS is a good choice.
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