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ABSTRACT
Kernel density visualization (KDV) has been the de facto method in

many spatial analysis tasks, including ecological modeling, crime

hotspot detection, traffic accident hotspot detection, and disease

outbreak detection. In these tasks, domain experts usually generate

multiple KDVs with different bandwidth values. However, generat-

ing a single KDV, let alone multiple KDVs, is time-consuming. In

this paper, we develop a share-and-aggregate framework, namely

SAFE, to reduce the time complexity of generating multiple KDVs

given a set of bandwidth values. On the other hand, domain experts

can specify bandwidth values on the fly. To tackle this issue, we

further extend SAFE and develop the exact method SAFE
all

and

the 2-approximation method SAFEexp which reduce the time com-

plexity under this setting. Experimental results on four large-scale

datasets (up to 4.33M data points) show that these three methods

achieve at least one-order-of-magnitude speedup for generating

multiple KDVs in most of the cases without degrading the visual-

ization quality.
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1 INTRODUCTION
Kernel-density-estimation-based visualization, a.k.a. kernel density

visualization (KDV), [12, 24, 54] is a commonly used visualization

tool for exploring and discovering patterns from a dataset that has

been extensively used in a wide range of applications, including

ecological modeling [8, 36, 37, 57, 63, 66], crime hotspot detec-

tion [11, 28, 40, 51], traffic accident hotspot detection [60, 65, 68],
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and disease outbreak detection [4, 14, 33, 42]. Due to its wide ap-

plicability, this operation has been supported in many scientific

and geographical software packages, including Scikit-learn [43],

QGIS [48], ArcGIS [1], and KDV-Explorer [14]. Figure 1b shows an

example usage of KDV for visualizing the crime hotspots in Atlanta

(this crime location dataset (cf. Figure 1a) can be found from [2]),

using KDV-Explorer [14].

(a) Crime location data (b) Crime hotspot map

Figure 1: Using KDV to generate the crime hotspot map for
Atlanta, where the red color denotes the high density (crime
rate) of that region.

To generate such a hotspot map for a given spatial dataset P , we
need to determine the color of each pixel q, based on the kernel

density function F
(b)
P (q) (cf. Equation 1), where w and Kb (q, p)

denote the normalization constant and the kernel function with

bandwidth value b, respectively. The representative kernel func-
tions are summarized in Table 1.

F
(b)
P (q) =

∑
p∈P

w · Kb (q, p) (1)

Table 1: Commonly-used kernel functions.

Kernel Kb (q, p) Used in

Triangular

{
1 − 1

b dist (q, p) if dist (q, p) ≤ b
0 otherwise

[8, 28]

Epanechnikov

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

[10, 57]

Quartic

{
(1 − 1

b2
dist (q, p)2)2 if dist (q, p) ≤ b

0 otherwise

[65, 68]

Even though KDV has been extensively used for generating

hotspot maps (cf. Figure 1), choosing the suitable bandwidth b
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Table 2: Theoretical results of different methods.

Method Time complexity Space complexity Quality Bandwidth properties

Baseline O (LXYn) O (XYL + n) Exact Known in advance

(cf. Section 2.2) On-the-fly

SAFE O (XY (n log L + L)) O (XYL + n) Exact Known in advance

(cf. Section 3.2) (cf. Theorem 1) (cf. Theorem 3)

SAFE
all

O (XY (n + L) logn) O (XY (n + L)) Exact On-the-fly

(cf. Section 4.1) (cf. Theorem 4) (cf. Theorem 5)

SAFEexp O (XY (n logn + L log(logn))) O (XY (logn + L) + n) 2-approximation On-the-fly

(cf. Section 4.2) (cf. Theorem 8) (cf. Theorem 7) (cf. Theorem 6)

for hotspot visualization is a challenging issue. In Figure 2a, we

can observe that we cannot identify any hotspot region once we

utilize a small b (undersmoothing). On the other hand, the hotspot

region tends to be very large (cf. Figure 2c) if we choose a large b
(oversmoothing).

(a) Small (b) Moderate (c) Large

Figure 2: The crime hotspot maps for Atlanta, varying the
bandwidth b of the Epanechnikov kernel function.

To obtain a high-quality hotspot map (e.g., Figure 2b), domain

experts [8, 11, 60, 68] iteratively generate multiple hotspot maps

by tuning different bandwidth values b and then select the best

one. The main reason for using this approach is that choosing the

suitable bandwidth b is subjective for hotspot detection in practice,

which has been pointed out in many research studies.

• “The choice of bandwidth is quite subjective...” [60]
• “An iterative procedure was followed to test the performance
of various bandwidths,...” [68]
• “There is flexibility when setting parameters such as the grid
cell size and bandwidth (search radius); however, despite many
useful recommendations (see Ratcliffe and McCullagh, 1999;
Chainey and Ratcliffe, 2005; Eck et al., 2005), there is no uni-
versal doctrine on how to set these and in what circumstances."
[11]

On the other hand, one of the most important tasks of hotspot

analysis [28, 68] is to understand the risk of different regions by

varying the bandwidth values. To provide better exploration ex-

periences, a better approach is for domain experts to thoroughly

view the changes in the hotspots versus the bandwidth values in

different regions. Therefore, we need to generate multiple KDVs

with many bandwidth values to support this task.

Although many efficient algorithms [12, 17, 72, 74] have been

developed to improve the efficiency of generating a single KDV,

these methods are not scalable to million-scale datasets [12], let

alone to generate multiple KDVs. Since the above tasks need to

compute KDVs for many bandwidth values, it is inefficient to utilize

the existing methods to support them.

Motivated by this, this paper investigates the following research

question: Can we efficiently generate multiple KDVs by exploring
the bandwidth values b in the commonly-used kernel functions (cf.
Table 1)? To provide an affirmative answer to this question, we

develop a Share-and-Aggregate FramEwork, called SAFE, which

significantly reduces the time complexity of generating multiple

KDVs, without increasing the space complexity, if the bandwidth

values are known in advance. However, users (e.g., geoscientists,

criminologists) may not know all of the bandwidth values for test-

ing in advance and they can fine-tune the bandwidth values or

perform the online exploratory analysis. For this case, we propose

a method, called SAFE
all
, which reduces the response time for gen-

erating multiple KDVs with on-the-fly bandwidth values. Due to

the high space complexity of using SAFE
all
, we further develop a

2-approximation method, called SAFEexp, which, compared with

SAFE
all
, reduces the space complexity and the time complexity. Ta-

ble 2 summarizes the theoretical results of different methods. Here,

we denote the resolution size, number of data points, and number

of bandwidth values to be X × Y , n, and L, respectively. Our exper-
iments on four large-scale datasets show that all of our methods

achieve at least one-order-of-magnitude speedup for generating

multiple KDVs without degrading the visualization quality. As a

remark, we also integrate our SAFE method in a system prototype

to support bandwidth exploration (cf. Section 5.4), which has not

been efficiently supported by other software packages.

The rest of the paper is organized as follows. First, we formally

define the problem and introduce the background in Section 2. Then,

in Section 3, we discuss our solution, SAFE, for efficiently generating

multiple KDVs where the bandwidth values are known in advance.

In Section 4, we extend SAFE and develop two solutions, SAFE
all

and SAFEexp, to efficiently support generating multiple KDVs with

on-the-fly bandwidth values. We discuss the experimental results

in Section 5. Then, we review the existing work in Section 6. Lastly,

we conclude our paper and discuss future work in Section 7.

2 PRELIMINARIES
In this section, we first formally define the problem in Section 2.1.

Then, we present the baseline method, called range-query-based

solution, in Section 2.2.

2.1 Problem Definition
Recall from Section 1, the users generate multiple KDVs (cf. Fig-

ure 2), by tuning the bandwidth b of the kernel function (cf. Table 1).

In the following, we define the concept of KDV in Definition 1. Here,

we choose the Epanechnikov kernel as the default kernel function

for discussion. As a remark, our method also supports other kernel

functions, which will be discussed in Section 3.
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Definition 1. (KDV) Given a plane with X × Y pixels, a point
set P with n data points, a bandwidth value b and the Epanechnikov
kernel (cf. Table 1), we color each pixel q, using the kernel density
function F (b)P (q), where:

F
(b)
P (q) =

∑
p∈P

w ·

{
1 − 1

b2
dist(q, p)2 if dist(q, p) ≤ b

0 otherwise
(2)

Based on the above definition, we can formulate the problem,

termed as KDV
explore

, in Problem 1.

Problem 1. (KDVexplore) Given a plane with X ×Y pixels, a point
set P with n data points and L bandwidth values b1, b2,..., bL , where:
b1 < b2 < ... < bL , we generate KDV (cf. Definition 1) for each
bandwidth value.

In practice, the users (e.g., geoscientists, criminologists, etc.) can

either know the set of bandwidth values for testing in advance

or select some bandwidth values on the fly. We will discuss both

scenarios in this paper.

2.2 Range-Query-based Solution (RQS)
In this section, we proceed to discuss the baseline method, called

range-query-based solution (RQS). Observe from Table 1, the data

point p can contribute to the kernel function Kb (q, p), once the

distance value dist(q, p) is within the bandwidth value b. Therefore,

computing F
(b)
P (q) (cf. Equation 2) can be regarded as the following

two-step method:

(1) Find the range query solution set R
(b)
q , where:

R
(b)
q = {p ∈ P |dist(q, p) ≤ b} (3)

(2) Compute F
(b)
P (q) (cf. Equation 2), based on R

(b)
q , where:

F
(b)
P (q) =

∑
p∈R(b)q

w ·
(
1 −

1

b2
dist(q, p)2

)
(4)

Even though RQS can improve the practical efficiency for gener-

ating a single KDV, the worst case time complexity for computing

KDV remains in O(XYn) time. The main reason is that |R
(b)
q | → n,

once we use a large bandwidth value, e.g., b → ∞. As such, the
worst case time complexity for solving KDV

explore
(i.e., Problem 1)

is O(LXYn).

3 OUR SOLUTION
In this section, we first describe the core ideas of our method in

Section 3.1. Then, we propose the Share-and-Aggregate FramEwork

(SAFE) to solve KDV
explore

(cf. Problem 1), which reduces the time

complexity fromO(LXYn) (RQS) toO(XY (n logL+L)) for all kernel
functions (cf. Table 1), without increasing the space complexity, in

Section 3.2.

3.1 Core Ideas
One major drawback for using RQS (cf. Section 2.2) is that this

method suffers from repetitive computation. Given the bandwidth

values b1, b2,..., bL , RQS obtains R
(b1)
q , R

(b2)
q ,..., R

(bL )
q and then eval-

uates F
(b1)
P (q), F (b2)P (q),..., F (bL )P (q), respectively. However, since

b1 ≤ b2 ≤ ... ≤ bL , those range query solution sets exhibit the

following property:

R
(b1)
q ⊆ R

(b2)
q ⊆ ... ⊆ R

(bL )
q (5)

Based on this property, suppose that we have already obtained

the range query solution set R
(bL )
q with the largest bandwidth bL ,

this set R
(bL )
q contains the sufficient and necessary information to

compute all the kernel density function values F
(b1)
P (q), F (b2)P (q),...,

F
(bL )
P (q) for the pixel q. Therefore, we ask a question: After we have

computed R(bL )q , can we share the computations to all kernel density

functions, F (b1)P (q), F (b2)P (q),..., F (bL )P (q), in order to efficiently solve
KDVexplore?

On the other hand, the kernel density function F
(b)
P (q) (cf. Equa-

tion 4) can be expanded in the following expression.

F
(b)
P (q) =

∑
p∈R(b)q

w ·
(
1 −

1

b2
dist(q, p)2

)
=

∑
p∈R(b)q

w −
w

b2

∑
p∈R(b)q

dist(q, p)2

= w |R
(b)
q | −

w

b2
SR(b)q

(6)

where SR(b)q
=
∑
p∈R(b)q

dist(q, p)2. Here, we term |R(b)q | and SR(b)q
as

the cardinality and aggregate distance, respectively, of the set R(b)q .

Observe from the above expression, suppose that we can effi-

ciently compute these aggregate values |R
(b)
q | and SR(b)q

for different

bandwidth values b, we can efficiently compute the kernel density

function F
(b)
P (q). Therefore, we ask another question: Can we ef-

ficiently maintain these aggregate values for different bandwidth
values b1, b2,...,bL in order to efficiently solve KDVexplore?

3.2 SAFE: Share-and-Aggregate Framework
Based on the two core ideas in Section 3.1, we propose the Share-

and-Aggregate FramEwork (SAFE), which follows these two steps,

(1) share and (2) aggregate.

Share: Observe from Figure 3, once we have obtained the range

query solution set R
(bL )
q , we can share each data point p in R

(bL )
q

into the corresponding bandwidth gap (bi−1,bi ]
1
. Here, we denote

this set as G
(bi−1,bi )
q (cf. Equation 7) and the dummy bandwidth b0

to be −∞.

G
(bi−1,bi )
q = {p ∈ P |bi−1 < dist(q, p) ≤ bi } (7)

−∞ = 𝑏0 < 𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏1 𝑏1 < 𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏2 …… 𝑏𝐿−1 < 𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏𝐿

𝑅𝐪
(𝑏𝐿)

𝐺𝐪
(𝑏0,𝑏1) 𝐺𝐪

(𝑏1,𝑏2) 𝐺𝐪
(𝑏𝐿−1,𝑏𝐿)

Figure 3: Share each data point p in the range query solu-
tion set R(bL )q into the corresponding bandwidth gap (bi−1,bi ],
where yellow, orange, and blue circles denote the data points
that are within the bandwidth gaps (b0,b1], (b1,b2], and
(bL−1,bL], respectively.
1
Following the mathematical convention, we use ] and ( to denote that this bandwidth

gap contains bi and does not contain bi−1 , respectively.
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Algorithm 1 Share Operation

1: procedure Share(R(bL )q ,b1,b2, ...,bL)
2: b0 ← −∞ ◃ Dummy bandwidth

3: G
(bi−1,bi )
q ← ϕ, where i = 1, ..., L ◃ Initialization

4: for each point p ∈ R(bL )q do
5: d ← dist(q, p)
6: i ← SEARCH(d), where bi−1 < d ≤ bi ◃ Binary search

7: G
(bi−1,bi )
q ← G

(bi−1,bi )
q ∪ p

8: Return G
(bi−1,bi )
q , where i = 1, ..., L

Algorithm 1 shows the pseudocode of this share operation. We

claim in Lemma 1 that this algorithm only incurs O(n logL + L)
time.

Lemma 1. The worst case time complexity of Algorithm 1 is
O(n logL + L).

Proof. Recall that we haveb1 < b2 < ... < bL (cf. Problem 1), we

can adopt the binary search method to find the correct bandwidth

gap (bi−1,bi ] (line 6) for each p in R
(bL )
q , which incurs O(logL)

time. Therefore, the loop (lines 4-7) takes O(|R
(bL )
q | logL) time to

evaluate. Besides this loop, the computational time for lines 2, 3

and 8 is O(L). As such, Algorithm 1 consumes O(|R
(bL )
q | logL + L)

time. Theoretically, if bL →∞, the size |R
(bL )
q | → n. Therefore, we

can conclude that the worst case time complexity of Algorithm 1 is

O(n logL + L). �

Aggregate: Figure 4 summarizes the aggregate operation. Here, we

denote the aggregate distance SI for a set I of data points as:

SI =
∑
p∈I

dist(q, p)2 (8)

……

𝐺𝐪
(𝑏0,𝑏1) 𝐺𝐪

(𝑏1,𝑏2) 𝐺𝐪
(𝑏𝐿−1,𝑏𝐿)S

𝐺𝐪
(𝑏0,𝑏1) S

𝐺𝐪
(𝑏1,𝑏2) S

𝐺𝐪
(𝑏𝐿−1,𝑏𝐿)

𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏1

S
𝑅𝐪
(𝑏1)𝑅𝐪

(𝑏1)

𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏2

S
𝑅𝐪
(𝑏2)

𝑑𝑖𝑠𝑡(𝐪, 𝐩) ≤ 𝑏𝐿

S
𝑅𝐪
(𝑏𝐿)

𝑅𝐪
(𝑏2)

𝑅𝐪
(𝑏𝐿)

Figure 4: (1) Compute the aggregate values (in red color) for
each bandwidth gap (bi−1,bi ] and (2) compute the aggregate
values (in purple color) with dist(q, p) ≤ bi .

Once we have obtained the set G
(bi−1,bi )
q of the data points for

each bandwidth gap (bi−1,bi ] (cf. Figure 3), we compute the car-

dinality of the point set |G
(bi−1,bi )
q | and the aggregate distance

S
G (bi−1 ,bi )q

(in red color) in this range.

Based on these red aggregate values, we can further compute

the purple aggregate values (cf. Figure 4), including cardinality (cf.

Equation 9), and aggregate distance (cf. Equation 10), for the range

query solution set R
(bi )
q (cf. Equation 3) with each bandwidth value

bi .

|R
(bi )
q | =

{
|R
(bi−1)
q | + |G

(bi−1,bi )
q | if i > 1

|G
(b0,b1)
q | if i = 1

(9)

S
R(bi )q

=


S
R(bi−1)q

+ S
G (bi−1 ,bi )q

if i > 1

S
G (b0 ,b1)q

if i = 1

(10)

Recall from Equation 6, once we have these purple aggregate

values |R
(bi )
q | and S

R(bi )q
, we can compute the kernel density function

F
(bi )
P (q) for the bandwidth bi .

Algorithm 2 Aggregate Operation

1: procedure Aggregate(G(b0,b1)q ,G
(b1,b2)
q ,...,G

(bL−1,bL )
q )

2: for i ← 1 to L do
3: //Red aggregate values (cf. Figure 4)

4: Compute |G
(bi−1,bi )
q |

5: Compute S
G (bi−1 ,bi )q

◃ Equation 8

6: //Purple aggregate values (cf. Figure 4)

7: Compute |R
(bi )
q | ◃ Equation 9

8: Compute S
R(bi )q

◃ Equation 10

9: //Compute the kernel density value with bandwidth bi

10: Compute F
(bi )
P (q) ◃ Equation 6

11: Return F
(bi )
P (q), where 1 ≤ i ≤ L

Algorithm 2 describes the aggregate operation in detail. Here, we

claim that this algorithm can compute F
(b)
P (q), for all bandwidth

values b = b1,b2, ...,bL in O(n + L) time (cf. Lemma 2).

Lemma 2. The worst case time complexity of Algorithm 2 isO(n +
L).

Proof. Since we need to scan the set G
(bi−1,bi )
q of data points

in each bandwidth gap (bi−1,bi ] in order to compute the cardinal-

ity |G
(bi−1,bi )
q | and the aggregate distance S

G (bi−1 ,bi )q
, lines 4 and 5

in Algorithm 2 incur at most O(L + |R
(bL )
q |) time in L iterations.

Based on Equations 9 and 10, we can obtain the purple aggregate

values |R
(bi )
q | and S

R(bi )q
inO(1) time, since |R

(bi−1)
q | and S

R(bi−1)q
are

available in the previous iteration and |G
(bi−1,bi )
q | and S

G (bi−1 ,bi )q
are

available in lines 4 and 5. Furthermore, once the purple aggregate

values are available, computing F
(bi )
P (q) (line 10) is inO(1) time (cf.

Equation 6). Therefore, lines 7, 8 and 10 in Algorithm 2 take O(L)
time for all iterations. In the worst case, Algorithm 2 takesO(n +L)
time to evaluate. �

SAFE for solving KDVexplore: To generate KDVs for all bandwidth
values b1, b2,..., bL , each pixel q in the plane needs to (1) find the

range query solution set R
(bL )
q for the largest bandwidth value bL ,

(2) share the data points in this R
(bL )
q into different bandwidth gaps

(cf. Algorithm 1), i.e., G
(b0,b1)
q ,..., G

(bL−1,bL )
q , and (3) compute the
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kernel density values for all bandwidth values b1, b2,..., bL based

on the aggregate values (cf. Algorithm 2). Algorithm 3 shows the

pseudocode for SAFE.

Algorithm 3 Share-and-Aggregate Framework (SAFE)

1: procedure SAFE(Point set P, X, Y, b1,..., bL)
2: Create L planes P1,..., PL with X × Y pixels

3: for x ← 1 to X do
4: for y ← 1 to Y do
5: q← COORD(x,y) ◃ Obtain the coordinates

6: R
(bL )
q ← RANGE(q, P,bL) ◃ Range query

7: Obtain {G
(b0,b1)
q , ...,G

(bL−1,bL )
q } ◃ Algorithm 1

8: Obtain {F
(b1)
P (q), ..., F (bL )P (q)} ◃ Algorithm 2

9: for ℓ ← 1 to L do
10: Pℓ(x,y) ← F

(bℓ )
P (q) ◃ Line 8

11: Return Pℓ , where 1 ≤ ℓ ≤ L

Based on the cost for performing range search (O(n) time), the

share operation (cf. Lemma 1) and the aggregate operation (cf.

Lemma 2), we can conclude that each pixel q only takesO(n logL+
L) time to compute the kernel density values for all bandwidth

values b1, b2,..., bL . Therefore, the worst case time complexity for

using SAFE to solve KDV
explore

(cf. Problem 1) isO(XY (n logL+L))
(cf. Theorem 1).

Theorem 1. The worst case time complexity for using SAFE (cf.
Algorithm 3) to solve KDVexplore is O(XY (n logL + L)).

As such, we can conclude that our method SAFE can reduce

the worst case time complexity for solving KDV
explore

(cf. Prob-

lem 1) compared with the method RQS (cf. Section 2.2), which takes

O(LXYn) time.

Further improvement: The main bottleneck of SAFE is to evaluate

the share operation using Algorithm 1 (i.e., line 7 in Algorithm 3),

which takesO(n logL + L) time for each pixel q. We need this addi-

tional logL factor, since we need to utilize the binary search method

(line 6 in Algorithm 1) to share each point into the correct band-

width gap (cf. Figure 3). However, the users (e.g., geoscientists) can

also visualize multiple KDVs, by uniformly increasing the band-

width values (e.g., b1 = 100, b2 = 200,..., b100 = 10000). In this case,

since all bandwidth gaps have the same distance (e.g., 100), we can

mathematically derive the bandwidth gap i for each point p from

R
(bL )
q (cf. Figure 3) without using the binary search method, where:

i =

⌈
dist(q, p)
b2 − b1

⌉
By adopting this approach, we can further remove this logL

factor for using SAFE (cf. Theorem 2).

Theorem 2. Suppose that we have L bandwidth values
b1,b2, ...,bL and these bandwidth values have the same bandwidth
gap, i.e., b2 − b1 = b3 − b2 = ... = bL − bL−1, the time complexity for
using SAFE to solve KDVexplore is O(XY (n + L)).

Space complexity of SAFE: We proceed to discuss the space com-

plexity for using SAFE to solve KDV
explore

. Observe from Algo-

rithm 3, since we need to return multiple KDVs for all bandwidth

values b1, b2,..., bL , it takes O(XYL) space for storing the L planes

P1,...,PL . Moreover, we need to useO(n) space for storing the point
set P . Since both the range query operation

2
(line 6), the share

operation (line 7) and the aggregate operation (line 8) only con-

sume at mostO(n) space throughout the loops (lines 3 to 4), we can
conclude that SAFE only requires O(XYL + n) space (cf. Theorem
3), which is the same as the baseline method (cf. Section 2.2).

Theorem 3. The space complexity for using SAFE (cf. Algorithm 3)
to solve KDVexplore is O(XYL + n).

SAFE for other kernel functions: In previous discussion, we il-

lustrate SAFE with Epanechnikov kernel function. Here, we extend

SAFE for supporting other commonly-used kernel functions (cf.

Table 1). Recall that one of the core ideas of our method (cf. Sec-

tion 3.1) is to efficientlymaintain the aggregate values for evaluating

F
(b)
P (q) (e.g., the cardinality |R

(b)
q | and the aggregate distance SR(b)q

in Epanechnikov kernel). Like Equation 6, we can also decompose

F
(b)
P (q) into different aggregate values for other kernel functions

(cf. Table 1).

Triangular kernel:We can decompose F
(b)
P (q) in the following

expression.

F
(b)
P (q) = w |R

(b)
q | −

w

b
DR(b)q

where:

DR(b)q
=

∑
p∈R(b)q

dist(q, p)

Quartic kernel: We can decompose F
(b)
P (q) in the following

expression.

F
(b)
P (q) = w |R

(b)
q | −

2w

b2
SR(b)q

+
w

b4
QR(b)q

where:

QR(b)q
=

∑
p∈R(b)q

dist(q, p)4

Therefore, we can extend SAFE for supporting these kernel func-

tions with the same time (cf. Theorem 1 and Theorem 2) and space

complexity (cf. Theorem 3), based on the above aggregate values,

which are summarized in Table 3.

Table 3: Aggregate values for all kernel functions.
Kernel Aggregate values

Triangular |R(b)q |, DR(b)q

Epanechnikov |R(b)q |, SR(b)q

Quartic |R(b)q |, SR(b)q
, Q

R(b)q

4 SAFE FOR ON-THE-FLY BANDWIDTH
VALUES

In Section 3, we illustrate how to use SAFE to efficiently gener-

ate multiple KDVs with L bandwidth values, which are known in

advance. However, the users may not know the suitable set of band-

width values and they can explore many bandwidth values on the

fly. In this section, we propose twomethods, namely SAFE
all

(cf. Sec-

tion 4.1) and SAFEexp (cf. Section 4.2), which can solve KDV
explore

2
Some range query solutions can take more than O (n) space. Here, we refer to the

commonly used index structures, e.g., kd-tree [9] and ball-tree [41, 43], which only

take O (n) space, for solving the range query.
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(cf. Problem 1) with lower time complexity compared with the base-

line method RQS, without knowing L bandwidth values in advance.

We also discuss the practical implementation of these methods (cf.

Section 4.3).

4.1 First Solution: SAFEall
Unlike the share operation in Figure 3, we do not know those L
bandwidth values in advance under this setting. Therefore, our core

idea (cf. Figure 5) is to store the sorted distance values and the

aggregate values, i.e., dist(q, pi ) and SR(dist (q,pi ))q
, respectively, for

all data points pi , in each pixel q. To simplify the notations, we let

dist(q, p1) ≤ dist(q, p2) ≤ ... ≤ dist(q, pn ). Theoretically, different
pixels q can induce different orders of distance values.

…… ……
𝑑𝑖𝑠𝑡(𝐪, 𝐩1)

𝑑𝑖𝑠𝑡(𝐪, 𝐩2)

𝑑𝑖𝑠𝑡(𝐪, 𝐩ℓ)

𝑑𝑖𝑠𝑡(𝐪, 𝐩ℓ+1)

𝑑𝑖𝑠𝑡(𝐪, 𝐩𝑛−1)

𝑑𝑖𝑠𝑡(𝐪, 𝐩𝑛)

b
S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩1))

S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩2))

S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩ℓ))

S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩ℓ+1))

S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩𝑛−1))

S
𝑅𝐪
(𝑑𝑖𝑠𝑡(𝐪,𝐩𝑛))

Figure 5: The core idea of our method SAFEall.

Based on these aggregate values, we can compute F
(b)
P (q) with

Epanechnikov kernel, for any bandwidth b (red dashed line in

Figure 5), using Equation 11, which is the analogy of Equation 6.

F
(b)
P (q) = w × ℓ −

w

b2
S
R
(dist (q,pℓ ))
q

(11)

where pℓ is the data point in P such that dist(q, pℓ) is the largest
value that is smaller than b (cf. Figure 5).

Therefore, SAFE
all

follows these two steps, (1) store the distance

values (with increasing order) and aggregate values for each pixel

q (cf. Figure 5), (2) generate KDV for each bandwidth b on the fly.

In the first step, we can compute all distance values for each

pixel q, sort these distance values, and then compute the aggregate

values, based on Equation 12, which is the analogy of Equation 10.

S
R(dist (q,pi ))q

=

{
S
R(dist (q,pi−1))q

+ dist(q, pi )2 if i > 1

dist(q, p1)2 if i = 1

(12)

In the second step, we need to first find the largest distance value

dist(q, pℓ), which is just smaller than the bandwidth b (cf. Figure 5)

and its corresponding aggregate value S
R
(dist (q,pℓ ))
q

. Then, we use

Equation 11 to obtain the kernel density value F
(b)
P (q), for each

pixel q.
Since there are X × Y pixels and the bottleneck in the first step

is to perform the sorting operation, which takes O(n logn) time,

the time complexity of the first step is O(XYn logn). In the second

step, the most time-consuming operation is to find pℓ , which takes

O(logn) time, using the binary search method. As such, the second

step consumes O(XY logn) time for each bandwidth b. Therefore,
we claim that SAFE

all
takesO(XY (n + L) logn) time for generating

multiple KDVs with L bandwidth values (cf. Theorem 4).

Theorem 4. The time complexity of SAFEall isO(XY (n+L) logn)
for solving KDVexplore without knowing those L bandwidth values in
advance.

Compared with SAFE (cf. Section 3.2), this method SAFE
all

is

inferior in terms of time complexity. However, SAFE
all

can out-

perform the RQS method when L > logn. We argue that this is

practical when the users need to continuously tune the bandwidth

b to visualize the changes of KDV.

However, since each pixel needs to storen distance and aggregate
values and we need to generate multiple KDVs with L bandwidth

values, SAFE
all

consumesO(XY (n+L)) space (cf. Theorem 5), which

is space-consuming in practice.

Theorem 5. The space complexity of SAFEall is O(XY (n + L)).

4.2 Second Solution: SAFEexp
Observe that SAFE

all
takes O(XY (n + L)) space (cf. Theorem 5).

Therefore, we ask a question: Can we avoid storing n distance and
aggregate values (cf. Figure 5) for each pixel q, which can still provide
the accurate answer for solving KDVexplore (cf. Problem 1) without
knowing all bandwidth values? Here, we provide an affirmative

answer to this question.

……

b

B1 = 𝑑𝑖𝑠𝑡(𝐪, 𝐩1)
S
𝑅𝐪
(𝐵1)

B2 = 𝑑𝑖𝑠𝑡(𝐪, 𝐩2)

S
𝑅𝐪
(𝐵2)

B3 = 𝑑𝑖𝑠𝑡(𝐪, 𝐩4)
S
𝑅𝐪
(𝐵3)

B4 = 𝑑𝑖𝑠𝑡(𝐪, 𝐩8)

S
𝑅𝐪
(𝐵4)

B log2 𝑛 +1 = 𝑑𝑖𝑠𝑡(𝐪, 𝐩𝑛)
S
𝑅𝐪
(𝐵 log2 𝑛 +1)

Figure 6: The core idea of SAFEexp.

Figure 6 summarizes the core idea of our method SAFEexp.

SAFEexp chooses

⌈
log

2
n
⌉
+ 1 bandwidth values, i.e., B1, B2,...,

B⌈log
2
n⌉+1, where:

Bi = dist(q, pmin(2i−1,n)) (13)

These

⌈
log

2
n
⌉
+ 1 bandwidth values cover the exponential num-

bers, i.e., 1, 2, 4, 8, ...,n, of data points in P , i.e.,

|R
(Bi )
q | = min(2i−1,n) (14)

Like Equation 10, we can also obtain the aggregate values S
R(Bi )q

in all these bandwidth values Bi , using the concept of bandwidth
gap (cf. Equation 7), where B0 = −∞ is the dummy bandwidth.

S
R(Bi )q

=


S
R(Bi−1)q

+ S
G (Bi−1 ,Bi )q

if i > 1

S
G (B0 ,B1)q

if i = 1

(15)

After we have computed the purple aggregate values (cf. Figure 6)

for these

⌈
log

2
n
⌉
+ 1 bandwidth values, a simple idea for approx-

imating F
(b)
P (q) with the on-the-fly bandwidth value b (e.g., red

dashed line in Figure 6) is to return either F
(Bℓ )

P (q) or F (Bℓ+1)

P (q)
(based on Equation 6) as an answer, where Bℓ < b < Bℓ+1. However,
b can be anywhere in between Bℓ and Bℓ+1 and Bℓ << Bℓ+1 the-

oretically (e.g., Bℓ → 0 and Bℓ+1 →∞). Therefore, both F
(Bℓ )

P (q)

and F
(Bℓ+1)

P (q) cannot provide the approximation guarantee for

computing F
(b)
P (q).

Here, we describe how to obtain the approximate result of

F
(b)
P (q) with an approximation ratio of 2. We first define the v-

truncated kernel density function τ
(b ,v)
P (q) (with bandwidth b) in

Equation 16. Observe that τ
(b ,v)
P (q) only calculates the distance
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values which are smaller than the value v (e.g., we only consider

the five white dots before v for calculating τ
(b ,v)
P (q) in Figure 7).

τ
(b ,v)
P (q) =

∑
p∈R(v )q

w ·

{
1 − 1

b2
dist(q, p)2 if dist(q, p) ≤ b

0 otherwise

(16)
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Figure 7: Illustration ofv-truncated kernel density function,
each white dot denotes the distance value x = dist(q, p) for
each p in P . The red dashed lines (v, Bℓ , Bℓ+1) are the possible
truncated lines.

Observe from Figure 7, we claim that τ
(b ,v)
P (q) exhibits the fol-

lowing two properties in Lemma 3.

Lemma 3. The v-truncated kernel density function τ (b ,v)P (q) ex-
hibits these two properties:

(1) τ (b ,b)P (q) = F (b)P (q).

(2) τ (b ,v)P (q) is monotonic increasing with respect to v .

Proof. Regarding the first property, we can simply substitute v
by b in Equation 16. Then, based on Equation 4, we can prove the

first property.

Regarding the second property, if v1 < v2, we have:

τ (b ,v2)

P =
∑

p∈R(v2)q

w ·

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

= τ (b ,v1)

P +
∑

p∈G (v1 ,v2)q

w ·

{
1 − 1

b2
dist (q, p)2 if dist (q, p) ≤ b

0 otherwise

Since the second term is non-negative, we conclude τ
(b ,v1)

P ≤

τ
(b ,v2)

P . Hence, we prove the second property. �
By adopting these two properties, we have the following inequal-

ity:

τ
(b ,Bℓ )

P (q) ≤ τ
(b ,b)
P (q) = F (b)P (q) ≤ τ

(b ,Bℓ+1)

P (q) (17)

where we let b be in between Bℓ and Bℓ+1 (e.g., b is in between B3
and B4 in Figure 6).

Here, we claim that τ
(b ,Bℓ+1)

P (q) ≤ 2τ
(b ,Bℓ )

P (q) in Lemma 4.

Lemma 4. τ
(b ,Bℓ+1)

P (q) ≤ 2τ
(b ,Bℓ )

P (q).

Proof. We first prove these two properties:

(1) Let pr and pд be two data points in R
(Bℓ )
q and G

(Bℓ ,Bℓ+1)
q ,

respectively, we have dist(q, pr ) ≤ dist(q, pд).

(2) |G
(Bℓ ,Bℓ+1)
q | ≤ |R

(Bℓ )
q |.

We can easily prove the first property by comparing these two

sets R
(Bℓ )
q (cf. Equation 3) and G

(Bℓ ,Bℓ+1)
q (cf. Equation 7).

Regarding the second property, since each bandwidth value cov-

ers exponential number, i.e., 1, 2, 4, 8, ...,n, of data points, we have:

|R
(Bℓ+1)
q | ≤ 2|R

(Bℓ )
q |

|R
(Bℓ )
q | + |G

(Bℓ ,Bℓ+1)
q | ≤ 2|R

(Bℓ )
q |

|G
(Bℓ ,Bℓ+1)
q | ≤ |R

(Bℓ )
q |

Based on these two properties, once we replace each pд in

G
(Bℓ ,Bℓ+1)
q by each pr in R

(Bℓ )
q , we have:

τ (b ,Bℓ+1)

P (q)

= τ (b ,Bℓ )

P (q) +
∑

pд∈G
(Bℓ ,Bℓ+1)
q

w ·

{
1 − 1

b2
dist (q, pд )2 if dist (q, p) ≤ b

0 otherwise

≤ τ (b ,Bℓ )

P (q) +
∑

pr ∈R
(Bℓ )
q

w ·

{
1 − 1

b2
dist (q, pr )2 if dist (q, p) ≤ b

0 otherwise

= 2τ (b ,Bℓ )

P (q)

�
Based on the inequality (cf. Equation 17) and Lemma 4, once we

use τ
(b ,Bℓ )

P (q) as the approximate result of F
(b)
P (q), we can achieve

the approximation ratio 2.

Theorem 6. If Bℓ ≤ b ≤ Bℓ+1, τ
(b ,Bℓ )

P (q) is the approximate

value of F (b)P (q) with approximation ratio 2.
Our method SAFEexp follows the same two-step method as

SAFE
all

(cf. Section 4.1), except that we only store those

⌈
log

2
n
⌉
+ 1

distance and aggregate values (cf. Figure 6) in step 1 and compute

τ
(b ,Bℓ )

P (q), instead of F (b)P (q), in step 2. Therefore, we can conclude

that the space complexity of SAFEexp is O(XY (logn + L) + n) (cf.
Theorem 7).

Theorem 7. The space complexity of SAFEexp is O(XY (logn +
L) + n).

Regarding the time complexity of SAFEexp, step 1 still needs

O(XYn logn) time for scanning and sorting all data points for each

pixel. In step 2, the bottlenecks are to first adopt the binary search

for finding Bℓ , which takes O(log(logn)) time and then evaluate

τ
(b ,Bℓ )

P (q). Like Equation 6, we can compute τ
(b ,Bℓ )

P (q) (with b >
Bℓ ) in O(1) time, using those distance and aggregate values, where:

τ
(b ,Bℓ )

P (q) = w |R(Bℓ )
q | −

w

b2
S
R
(Bℓ )
q

Therefore, we conclude that the time complexity for solving

KDV
explore

is O(XY (n logn + L log(logn))).

Theorem 8. The time complexity of SAFEexp is O(XY (n logn +
L log(logn))) for solving KDVexplore without knowing L bandwidth
values in advance.
4.3 Practical Implementation of SAFEall and

SAFEexp
In real applications, users (e.g., transportation experts [65, 68], crim-

inologists [40], etc.) do not use the kernel function Kb (q, p) with an

extremely large bandwidth value b. Imagine that we have a crime

event p in New York, we do not expect that this event can influence

a location q in San Francisco. Therefore, the users can know the

largest bandwidth value bL for testing in advance. After they have

specified the largest bandwidth value bL , both SAFE
all

and SAFEexp
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only need to scan those data points pwith distance values dist(q, p)
smaller than bL , for each pixel q, which can further improve the

practical efficiency and space consumption for these two methods.

5 EXPERIMENTAL EVALUATION
In this section, we first discuss the experimental settings in Sec-

tion 5.1. Then, we show the experimental results for solving

KDV
explore

(cf. Problem 1) with known bandwidth values in Sec-

tion 5.2. After that, we further provide the experimental results for

solving KDV
explore

with on-the-fly bandwidth values in Section 5.3.

Lastly, we show the system prototype for supporting KDV
explore

,

using our solution SAFE, in Section 5.4.

5.1 Experimental Settings
We use four large-scale datasets (up to 4.33 million data points),

which correspond to four different categories, for conducting the

experiments. All these datasets are the open data from the local

governments in different cities. Table 4 gives the details for each

dataset. To conduct the experiments, we follow [12, 23] and utilize

Scott’s rule [54] to generate the bandwidth value bS and randomly

sample L bandwidth values from the range [0.5bS , 2bS ], based on

the uniform distribution. By default, we choose L = 20 and the

resolution size X × Y as 640 × 480. In addition, as discussed in

Section 4.3, we also assume that the users can know the largest

bandwidth value bL in advance.

Table 4: Datasets.

Dataset n Category Ref.

Chicago 237255 Environmental inspections [3]

Seattle 839504 Crime events [7]

New York 1499928 Traffic accidents [5]

San Francisco 4333098 311 cases [6]

In our experiments, we compare different state-of-the-art meth-

ods for solving KDV
explore

, which are summarized in Table 5. SCAN

is the sequential scan method for computing F
(b)
P (q) for each pixel

q. Both RQS
kd

and RQS
ball

are the range-query-based solutions

(cf. Section 2.2), which adopt the kd-tree and ball-tree index struc-

tures, respectively. Z-order [72–74] is the data sampling method,

which provides the probabilistic error guarantee for computing

F
(b)
P (q). Both aKDE [25] and QUAD [12] approximate the kernel

functions (cf. Table 1) with the simple curves, e.g., constant value

and quadratic function, respectively, and combine with the index-

ing framework, to improve the efficiency for evaluating F
(b)
P (q). In

contrast to these research studies, our methods SAFE and SAFE
all

are the exact solutions, which can reduce the time complexity for

solving KDV
explore

with known and on-the-fly bandwidth values,

respectively. To further reduce the space consumption of SAFE
all
,

our SAFEexp can provide the deterministic approximation ratio 2

for solving KDV
explore

with on-the-fly bandwidth values.

We implemented all methods with C++ and conducted experi-

ments on an Intel i7 3.19GHz PC with 32GB memory. In this paper,

we use the response time (sec) and memory space (MB) to measure

the time and space efficiency of all methods, respectively. Here, we

only report the results with the response time smaller than 14400

sec (i.e., 4 hours) and the memory space smaller than 24GB. Due to

space limitations, we do not include the experiment for testing the

efficiency of all methods with the sequence of uniformly increasing

bandwidth values.

5.2 Experiments for KDVexplore with Known
Bandwidth Values

Even though our method SAFE can reduce the time complexity for

solving KDV
explore

, we do not know the practical improvement

for using this method compared with the existing solutions. In

this section, we conduct the following experiments, where the

bandwidth values are known in advance.

Response time of all methods with the default setting of pa-
rameters: We adopt the default parameters, i.e., L = 20 and

X × Y = 640 × 480, and report the response time of all meth-

ods for solving KDV
explore

(cf. Figure 8). Since our method SAFE

reduces the time complexity for solving KDV
explore

from O(LXYn)
toO(XY (n logL + L)) (cf. Theorem 1), our method achieves at least

3.96x to 7.55x speedup compared with different state-of-the-art

methods for generating KDVs with L = 20 bandwidth values.

Response time of all methods with different resolution sizes:
We proceed to investigate how the resolution size X ×Y affects the

response time for generating multiple KDVs with L = 20. Here, we

choose four resolution sizes, which are 160×120, 320×240, 640×480,

and 1280 × 960. In Figure 9, once we increase the resolution size by

4 times (e.g., from 160 × 120 to 320 × 240), the response time of all

methods also increases roughly by 4 times. Observe that no matter

which resolution size we choose, our method SAFE consistently

achieves better efficiency compared with other methods.

Response time of all methods with different dataset sizes: In
this experiment, we test how the dataset sizes affect the response

time of all methods. For each dataset, we obtain four sampled sub-

sets, which contain 25%, 50%, 75% and 100% (original one) data

points of the original dataset. In Figure 10, we observe that our

method SAFE significantly outperforms the state-of-the-art meth-

ods by 3.96x to 12.3x, using different dataset sizes.

Response time of all methods with different numbers L of
bandwidth values: We discuss how the number L of bandwidth

values affects the response time of all methods. Observe from

Figure 11, our method SAFE is not sensitive to the number L of

bandwidth values. Therefore, the larger the number L, the larger
the time gap between SAFE and other methods. The main rea-

son is that the worst case time complexity of our method SAFE

is O(XY (n logL + L)) (cf. Theorem 1), which is much smaller than

the time complexity of other methods O(LXYn), especially for the

large L.
Response time of all methods for other kernel functions: We

proceed to investigate the response time of all methods, when we

utilize other kernel functions (cf. Table 1), including triangular and

quartic kernels. Here, we choose two largest datasets, i.e., New York

and San Francisco, and adopt the default parameters, i.e., L = 20

andX ×Y = 640×480, for testing. We report the response time of all

methods in Figure 12. Since both existing methods and our method

SAFE can be easily extended to support other kernel functions

without incurring significant time overhead, the response time

of all methods is similar to Figures 8c and 8d. As such, like the

results in Epanechnikov kernel, our method SAFE can outperform

the existing methods by a visible margin for both triangular and

quartic kernels.

520



Table 5: Methods for solving KDVexplore.
Method SCAN RQS

kd
RQS

ball
Z-order aKDE QUAD SAFE SAFE

all
SAFEexp

Ref. [54] Section 2.2 with [9] Section 2.2 with [41] [72] [25] [12] Section 3.2 Section 4.1 Section 4.2
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Figure 8: Response time of all methods, using the default parameters (L = 20 and X × Y = 640 × 480).
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Figure 9: Response time of all methods with L = 20, varying the resolution sizes (from 160 × 120 to 1280 × 960).
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Figure 10: Response time of all methods with L = 20 and X × Y = 640 × 480, varying the dataset sizes (sampling different
percentages of the original datasets).

5.3 Experiments for KDVexplore with
On-The-Fly Bandwidth Values

We further verify the efficiency of solving KDV
explore

with on-

the-fly bandwidth values. Recall that SAFE
all

and SAFEexp need to

consumemorememory space (cf. Theorem 5 and Theorem 7, respec-

tively) and SAFEexp provides the approximation result for solving

KDV
explore

(cf. Theorem 6). Therefore, except for only performing

experimental evaluation for the running time, we also test the mem-

ory space conumption and the visualization quality of all methods

in this section. Here, we conduct the following experiments.

Response time of all methods with different numbers L of
bandwidth values: We examine how the parameter L affects the

response time of all methods (cf. Figure 13). Since the methods

SCAN, aKDE, QUAD, RQS
kd
, RQS

ball
, Z-order can be seamlessly

adopted for solving KDV
explore

with on-the-fly bandwidth values,

the response time of these methods is the same as the one in Fig-

ure 11. Observe that our best method SAFEexp outperforms the

state-of-the-art methods by a visible margin, due to the small time

complexity of these methods. Here, we omit the results of SAFE
all

in

both Seattle and San Francisco datasets, since this method consumes

more than 24GB memory space.

Memory space consumption of all methods with different res-
olution sizes: We test how the resolution size affects the memory

space consumption of all methods. In Figure 14, we observe that

SAFE
all

is more space-consuming compared with other methods.

The main reason is that SAFE
all

needs to store n distance and aggre-

gate values for each pixel in the worst case, which takes O(XYn)
memory space (cf. Theorem 5). Since SAFEexp only takes O(logn)
additional space for each pixel, SAFEexp can significantly reduce

the space consumption compared with SAFE
all
. Here, we further

observe that SAFEexp achieves competitive memory consumption

compared with other methods, regardless of the resolution size.

Memory space consumption of all methods with different
dataset sizes: We further investigate how different dataset sizes
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Figure 11: Response time of all methods with X × Y = 640 × 480, varying the number L of bandwidth values.

102

103

104

SC
AN

RQ
S kd

RQ
S ba

ll

Z-
or

de
r
aK

DE
QUA

D
SA

FE

>4h

Ti
m

e 
(s

ec
)

Methods

102

103

104

105

SC
AN

RQ
S kd

RQ
S ba

ll

Z-
or

de
r
aK

DE
QUA

D
SA

FE

>4h >4h

Ti
m

e 
(s

ec
)

Methods

102

103

104

SC
AN

RQ
S kd

RQ
S ba

ll

Z-
or

de
r
aK

DE
QUA

D
SA

FE

>4h

Ti
m

e 
(s

ec
)

Methods

102

103

104

105

SC
AN

RQ
S kd

RQ
S ba

ll

Z-
or

de
r
aK

DE
QUA

D
SA

FE

>4h >4h

Ti
m

e 
(s

ec
)

Methods

(a) New York (Triangular) (b) San Francisco (Triangular) (c) New York (Quartic) (d) San Francisco (Quartic)

Figure 12: Response time of all methods for other kernel functions, including triangular (a and b) and quartic kernels (c and
d), in the New York (a and c) and San Francisco (b and d) datasets, using the default parameters (L = 20 and X × Y = 640 × 480).
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Figure 13: Response time of all methods with X × Y = 640 × 480, varying the number L of on-the-fly bandwidth values.
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Figure 14: Memory space (MB) consumption of all methods with L = 20, varying the resolution sizes.

affect the memory space consumption of all methods (cf. Figure 15).

Observe that the larger the dataset size, the larger thememory space

consumption of all methods. Compared with other methods, our

method SAFEexp achieves competitive memory space consumption,

no matter which dataset size we adopt.

Visualization quality of all approximation methods: We pro-

ceed to compare the visualization quality of different approximation

methods, including aKDE, QUAD, Z-order, and SAFEexp, with the

exact solution (EXACT). In this experiment, we adopt the default

setting of parameters (i.e., X ×Y = 640× 480 and L = 20) and select

three KDVs, which correspond to the 25
th
, 50

th
and 75

th
smallest

bandwidth values, for each method. Figure 16 reports the visual

results of all methods. Since all approximation methods have the

approximation guarantees (e.g., Theorem 6 in SAFEexp), they yield

similar visualization results compared with exact methods (e.g.,

SCAN), no matter which bandwidth value we choose.
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Figure 15: Memory space consumption of all methods with L = 20 and X × Y = 640 × 480, varying the dataset sizes (sampling
different percentages of the original datasets).
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Figure 16: Visual quality of the exact and approximation methods with the 25th (upper figures), 50th (middle figures) and 75
th

(lower figures) smallest bandwidth values.

5.4 System Prototype with SAFE for KDVexplore
In practice, domain experts need to (1) select the reasonable hotspot

map and (2) understand how the hotspots change with different

bandwidth values (e.g., they need to determine the risk of different

regions). Therefore, we develop a system prototype
3
for supporting

these two tasks. Figure 17 summarizes the general idea of this

system prototype. First, domain experts need to specify L bandwidth
values (e.g., L = 80 in our demonstration (cf. footnote 3)). Then,

our solution, SAFE, generates KDVs for these bandwidth values.

Lastly, domain experts can continuously slide the bandwidth bar to

visualize the changes in the hotspot map. In addition, this system

prototype also offers the plot of density value versus bandwidth

to further help domain experts to determine the risk in different

regions. Since our solution, SAFE, is much faster than the state-of-

the-art solutions, domain experts can generate multiple KDVs with

more bandwidth values.

6 RELATEDWORK
Kernel density visualization (KDV) has been the de facto method

to identify the hotspots in different applications, including crime

3
The demonstration video can be found at https://github.com/edisonchan2013928/

SAFE/blob/main/supplementary_files/SAFE_bandwidth_exploration.mp4.

bandwidth

… … … …

Figure 17: A system prototype to display multiple KDVs in
the New York traffic accident dataset with different band-
width values.

hotspot detection [11, 28, 40, 51] and traffic accident hotspot de-

tection [60, 65, 68]. In these applications, domain experts need to

generate multiple hotspot maps, by varying different bandwidth

values [8, 11, 60, 68], which we term this problem as KDV
explore

(cf. Problem 1). However, generating multiple KDVs with differ-

ent bandwidth values can be very time-consuming, which takes

O(LXYn) time in the worst case with L bandwidth values. In this

section, we review five camps of research studies, which are mostly

related to this work.

Efficient methods for computing a single KDV: Since KDV is a

computationally expensive operation, many algorithms have been

developed to boost the efficiency for computing KDV. Raykar et
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al. [50] and Yang et al. [67] utilize the fast Gauss transform to approx-

imate the kernel density functionF
(b)
P (q) (cf. Equation 1), which can

improve the efficiency for generating KDV. However, this approach

cannot provide the approximation guarantee between the returned

result and the density value F
(b)
P (q). Chan et al. [12, 14, 16, 17],

Gan et al. [23], and Gray et al. [25] develop the bound functions to

approximate F
(b)
P (q). By combining the indexing structures (e.g.,

ball-tree [41] and kd-tree [9]) with these bound functions, they can

boost the efficiency for generating KDV. However, these methods

cannot reduce the worst case time complexity for generating KDV.

Zheng et al. [72, 74] and Phillips et al. [44–46] develop the data

sampling method to wisely sample the original dataset. Then, they

apply the exact KDV (with slight modification of the kernel den-

sity function F
(b)
P (q)) for this reduced dataset. Even though this

approach can improve the efficiency for generating a single KDV,

they still need to evaluate the exact KDV for the reduced dataset,

which can still be time-consuming for generating multiple KDVs.

As a remark, since these data sampling methods are orthogonal

to this work, we can combine our methods and these methods to

further improve the efficiency for solving KDV
explore

.

Range-query-based methods: Recall from Section 2.2 that we can

evaluate the kernel density functionF
(b)
P (q) (cf. Equation 4) for each

pixel q based on the range-query-solution set R
(b)
q (cf. Equation 3).

In the literature, many efficient index structures [20, 52, 70] have

been developed for supporting range queries. Among most of these

index structures, both kd-tree [9] and ball-tree [41] are the most

popular ones (supported by Scikit-learn [43]), which can efficiently

solve the range queries in low-dimensional datasets. Unlike our

method SAFE, even though these index structures can improve the

efficiency for generating a single KDV, this approach cannot reduce

the worst case time complexity (i.e., O(LXYn) time) for solving

KDV
explore

(cf. Section 2.2).

Bandwidth selection methods: Bandwidth selection is a long-

studied problem in the statistics [24, 30, 32, 54, 56, 58, 59, 61] and

data mining [47, 49, 74] communities. In these four decades, many

algorithms have been proposed to choose the best bandwidth value

for the kernel density estimation model. However, choosing the

best bandwidth value is subjective [11, 60, 68], which depends on

different applications and datasets. As such, there is no one-size-

fit-all bandwidth selection method for finding the best bandwidth

value. In addition, due to a huge amount of research work in this

topic, it is hard for domain experts to directly select the correct

bandwidth selection method without tuning the bandwidth values.

For example: Yu et al. [68] adopt the rule-of-thumb approach [54] to

select the bandwidth value of the kernel function and then multiply

this value by different constants for generating multiple hotspot

maps. Compared with the above bandwidth selection methods, our

method SAFE offers the users to efficiently tune the bandwidth

values for obtaining multiple KDVs.

Multiple-query optimization (or batch query processing): The
general idea of our method SAFE is to first compute KDV with the

largest bandwidth value bL and share its information to multiple

KDVs with smaller bandwidth values, i.e., b1, b2,..., and bL−1, which
can be regarded as a kind of multiple-query optimization (MQO).

Even though MQO has been extensively studied in the database

community for improving the efficiency in different types of queries,

e.g., relational database queries [31, 55, 62], spatial queries [34, 64,

71], and graph queries [18, 19], none of these studies focuses on

the kernel density function F
(b)
P (q). As such, all these techniques

cannot be adopted to solve the KDV
explore

problem.

Spatial visualization tools: Recently, many spatial visualization

tools [14, 21, 22, 26, 27, 35, 38, 39, 69] have been proposed in

both database and visualization communities. Among these spa-

tial visualization tools, KDV-Explorer [14], HadoopViz [22], and

GeoSparkViz [69] can support the generation of multiple KDVs.

However, KDV-Explorer [14] (based on QUAD [12]) is not scalable

to large resolution sizes (e.g., 640 × 480). In addition, even though

HadoopViz [22] and GeoSparkViz [69] use a computer cluster to

efficiently support generating KDV with large-scale datasets, these

methods consume many computational resources, which may not

be suitable for domain experts who normally adopt the QGIS [48]

and ArcGIS [1] software packages and do not necessarily have

many computational resources. As a remark, our methods can also

be fully parallelized to further boost the efficiency of generating

multiple KDVs. The details can be found in this supplementary

document https://github.com/edisonchan2013928/SAFE/blob/main/

supplementary_files/SAFE_parallel.pdf.

7 CONCLUSION
KDV is an important operation, which has been extensively used

in many spatial analysis tasks. In these tasks, domain experts typi-

cally generate multiple KDVs by tuning different bandwidth values.

However, generating multiple KDVs is time-consuming, which is

not scalable to a large number L of bandwidth values and million-

scale datasets. Therefore, we propose a share-and-aggregate frame-

work, called SAFE, which reduces the time complexity for gener-

ating multiple KDVs with L bandwidth values from O(LXYn) to
O(XY (n logL + L)) (cf. Theorem 1), given that those L bandwidth

values are known in advance. To tackle on-the-fly bandwidth val-

ues, we extend SAFE and develop the exact method SAFE
all

and

2-approximation method SAFEexp, which also reduce the time com-

plexity (cf. Theorem 4 and Theorem 8) and retain the visualization

quality (cf. Theorem 6). Our experimental results on four large-scale

datasets show that all methods SAFE, SAFE
all
, and SAFEexp provide

at least one-order-of-magnitude speedup over different state-of-the-

art methods in most of the cases. In addition, our approximation

method SAFEexp retains the good visualization quality in practice.

In the future, we plan to extend our methods to support other

types of KDV, e.g., NKDV [15] and STKDV [13]. In addition, we

will study other types of statistical and machine learning models,

e.g., kernel smoothing [29] and kernel PCA [53].
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