
1,000 Tables Under the From

Nicolas Dieu, Adrian Dragusanu, Françoise Fabret, François Llirbat, Eric Simon

SAP Business Objects

Levallois, France

firstname.lastname@sap.com

ABSTRACT

The goal of operational Business Intelligence (BI) is to help

organizations improve the efficiency of their business by giving

every “operational worker” insights needed to make better

operational decisions, and aligning day-to-day operations with

strategic goals. Operational BI reporting contributes to this goal by

embedding analytics and reporting information into workflow

applications so that the business user has all required information

(contextual and business data) in order to make good decisions.

EII systems facilitate the construction of operational BI reports by

enabling the creation and querying of customized virtual database

schemas over a set of distributed and heterogeneous data sources

with a low TCO. Queries over these virtual databases feed the

operational BI reports. We describe the characteristics of

operational BI reporting applications and show that they increase

the complexity of the source to target mapping defined between

source data and virtual databases. We show that this complexity

yields the execution of “mega queries”, i.e., queries with possible

a 1,000 tables in their FROM clause. We present some key

optimization methods that have been successfully implemented in

SAP Business Objects Data Federator system to deal with mega

queries.

1. OPERATIONAL BI APPLICATIONS
In this section, we describe the characteristics of operational BI

applications and the requirements for operational BI reporting.

1.1 Operational BI characteristics
The goal of operational BI is to help organizations improve the

efficiency of their business by:

• giving every “operational worker” insights needed to

make better operational decisions

• aligning day-to-day operations with strategic goals

While traditional BI focuses on tactical and strategic types of

decisions to the intention of middle managers, information

workers, executives, and senior managers, operational BI focuses

on operational types of decisions for supervisors and operational

workers.

Operational Workers (aka Structured Task Workers) are typically

bank clerks, call centre operators, nurses and people in supervisor

roles (shop managers, bank managers, etc.)

Operational decisions are decisions made by business users in

day-to-day operations (e.g., handle a call in a call center; supervise

the action of multiple agents, validate a purchase order; supervise

a supply chain; etc). There, the goal is to give these users the most

trusted and relevant information to improve their decisions.

Studies show that most operational decisions are made by

operational workers (70% of the decisions they make) while it

represents less than 20% of the decisions made by middle and

above managers.

Operational decisions have important characteristics. First, they

are highly contextual. They are typically part of a business process

(automated or not via business workflows) and they depend on

rich contextual information such as the context associated with a

particular processing step in the workflow, and the strategic goals

to which the operational decisions must contribute (e.g., a forecast

value of some KPI).

Second, they are highly repeatable. The same type of decisions is

made quite often, usually with the same premise but with a

different context. For instance, the caller, her location, the reason

for the call, etc are different although the type of action needed is

a well registered procedure.

Third, operational decisions have a small action distance.

Decisions are made by those close to execution and the effect of

action taken must be seen quickly by the operator who takes it but

also by other operators because it may change the context in which

subsequent decisions will be taken.

Operational BI applications take place in a decision loop (also

called lifecycle of business execution) with the following

consecutive phases:

• Awareness: handles process monitoring and operational

intelligence

• Insight: handles business intelligence and data mining

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Database
Endowment. To copy otherwise, or to republish, to post on servers or to
redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

• Strategy: handles planning and budgeting, scorecards

and goals, process modeling and optimization

• Execution: handles process execution through enterprise

applications and workflows

Operational decisions cover the phases of execution and

awareness. Operational BI creates the interface between these two

phases and the two other phases.

1.2 Operational BI reporting requirements
Referring to the above phases of the decision loop, the area of

focus of operational BI reporting is to link strategy to execution

(i.e., use business goals business data to drive process execution,

embed analytics and reporting information into workflow

applications), and link awareness to insight (i.e., show impact of

operational decisions, link operational and process metrics to

business warehouse data).

More specifically, the purpose of operational BI reporting is to

present the business user with all required information (contextual

and business) in order to make good decisions. Business data are

dependent on the process instance (e.g., the caller or the purchase

order) while contextual data reflect a more global situation (e.g.,

global KPI, business warehouse data). For instance, in a workflow

for validation of a purchase order (especially in times of strong

control of spending …), a typical operational BI report requires

business data (e.g. the data associated with the submitted

purchase order), and contextual data (what needs to be verified;

what is the strategic goal) that may depend on the type of order.

Both business and contextual data reside in many different types

of sources. Business data are typically in flat files, OLTP systems,

Enterprise Resource Planning (ERP) applications, or streams.

Contextual data are usually in spreadsheets, Data Warehouses

(DW) or Data Marts (DM), database servers or web services. The

number of data sources for a given customer can also be large.

Studies report that it is greater than 20 in 29% of the cases for

very large corporations and 15% of the cases for large

corporations, and varies between 5 and 20 in at least 34% of the

cases.

Highly repeatable decisions are captured through predefined

reports (also called enterprise reports) that use BI tools to enable

their fast deployment. These reports are based on highly

parameterized queries (by means of prompted values to the

business user) to the underlying data sources that contain business

and contextual data. The fact that reports are predefined means

that it is possible to know (or learn) all the queries that will be

issued to feed the reports, a notable fact when we will come to

query optimization later in this paper.

Regarding small action distance, operational BI reports must

reflect data with high accuracy and timeliness. Studies report

timely data requirements of: intraday (46%), intrahour (25%),

intraminute (7%). This typically concerns business data and raises

the challenge of providing direct access to these data without

staging them in intermediate data repositories.

1.3 Operational BI reporting architecture
A typical operational BI architecture deployed by SAP Business

Objects at customer sites distinguishes three main logical layers:

• a Data Source layer that comprises all the required data

sources needed by operational BI reporting

• a Semantic Layer, that provides a layer of virtual

“business objects”, called a “universe” in Business

Objects terminology, that can be easily composed to

build reports

• a Consumption Layer that comprises multiple client

tools such as reporting, dashboards, planning, data

explorer, etc.

The Semantic Layer and the Consumption Layer are packaged into

a single Business Suite. The semantic layer itself offers the

following layered functionalities:

• a data access functionality standing at the bottom level,

which provides a unified interface to retrieve metadata

and query the set of distributed and heterogeneous data

sources

• a data foundation functionality standing at the middle

level, which enables the creation of multiple entity-

relationship models from the metadata exposed by the

data access layer

• a business object functionality, which enables the

creation of so-called “business objects” (such as

measures, dimensions, details, etc) that can be freely

composed to create ad-hoc (BO) user queries

consumable by the consumption tools (e.g., reporting or

dashboarding tools).

In order to facilitate the fast deployment of operational BI reports,

the Semantic Layer must provide fast means to create data models

from multiple data sources without having for instance to require

the development of intermediate data marts. Enterprise

Information Integration (EII) systems [5], also called mediation

systems, play a key role in the architecture of the Semantic Layer

because they enable the creation and querying of virtual databases,

henceforth called target schemas, over a set of distributed and

heterogeneous data sources with a low TCO (Total Cost of

Ownership). Within SAP Business Objects offering, the EII

system is named Data Federator.

2. EII SYSTEMS FOR OPERATIONAL BI
In this section, we focus on the requirements conveyed by

operational BI applications on EII systems.

2.1 Preliminaries on EII systems
An EII system is a middleware that includes wrappers and a query

engine. Wrappers expose the metadata relational schema of the

data sources called source tables. A wrapper describes also the

capabilities of the underlying data source in terms of SQL query

processing over the source tables. This model must be sufficiently

powerful to capture the sometimes subtle limitations of SQL

support in a data source (typically for systems like Progress and

SAS, for instance). The Query Engine (QE) provides a SQL

interface to express multi-source queries referring to source tables

or target tables (i.e., tables belonging to target schemas).

At the time of creation of a target schema, a source to target

mapping is created between the source tables and the target tables

belonging to a given target schema. An arbitrary number of

intermediate target tables can be used within this mapping to

facilitate its definition.

At the time of execution of a multi-source SQL query by the Query

Engine, the query is first unfolded using the mapping definition of

the target tables and then decomposed into a set of subqueries,

that are processed by the wrappers, and an assembly query that is

processed by the QE using the results returned by the subqueries.

This decomposition is called a query processing plan.

2.2 Target Schemas
It is important to keep in mind that a target schema is entirely

driven by the reporting requirements that it must serve, so its

design follows a top-down approach. Thus, the target schema is

created before the mapping actually occurs.

In operational BI reporting applications, target schemas often have

a “star”-like configuration, which distinguish fact tables from

dimension tables. Fact tables can either be measures (in the

traditional sense of multi-dimensional data modeling) such as

sales-unit, or sales-dollar, or entity data that are described using

multiple dimensions, such as a customer or an archive box.

Indeed, customer data can be a subject of analysis that is described

using different dimensions (location, organization, market

position,…). So, a customer is not necessarily a dimension, this

depends on the viewpoint of the business process to which the

operational BI model is associated with. Finally, dimension tables

are frequently de-normalized because these tables are virtual read-

only tables and it makes no sense from a reporting point of view to

decompose them in smaller tables.

2.3 Complex Source to Target Mappings
In our experience, we have observed three main sources of

complexity for target schemas in operational BI reporting: (i)

source data fragmentation, (ii) complex logic for contextual

information, and (iii) data cleaning operations.

First, source data are frequently fragmented even if the reasons

vary from one customer to the other. Consider for instance a

Customer dimension table with attributes such as ID, name,

address, home-phone, nation-name, etc. Vertical partitioning may

occur because the attributes of a customer originate from multiple

source tables (e.g., detailed data coming from Cust-support). Then

horizontal partitioning may occur because the source tables have

been partitioned into multiple databases. For instance, Customer

data can be co-located with orders data while customer support

data can be partitioned into regional databases. In this example,

this means that the mapping definition of the Customer table will

include a first level of union operations to address horizontal

partitioning and then a level of join operations (join, outer joins)

to address vertical partitioning.

Master databases may reduce the complexity created by

fragmentation because centralized consolidated tables (the master

tables) can be leveraged. This occurs typically for dimension data

such as a Customer table. However, it does not eliminate data

fragmentation. First, not all data about a customer are kept in a

customer master table and additional data can be aggregated on

demand. Second, lookup tables need sometimes to be built to keep

the relationships between the master table and the “original”

source tables from which the master table has been built. Indeed,

applications may continue using the original tables instead of the

consolidated master tables. These lookup tables are usually co-

located with the original source tables. Third, fact tables also rely

on fragmented source data, as our previous example showed.

A second source of complexity is the complex logic that can be

associated with a fact table, especially when it represents

contextual information. Indeed, contextual information may

consist of business indicators that are not readily available in the

underlying data sources but that require some computation.

Consider for instance, a fact table called Box_Destruction that

describes all the archive boxes that are eligible for destruction.

The data sources store information about archive boxes (for short,

called boxes), their customer, the organization within the

customer, etc. However, the notion of a box eligible to destruction

is a business notion that needs to be computed. In this example, a

box must be preserved if it has not passed its expiration date or:

Case 1: it is on hold by the company or

Case 3: it is on hold by the parent company or

Case 3: it is on hold by a division or

Case 3: it is on hold by a department

Each case yields an intermediate target table involving joins or left

outer joins and selections, and the union of these target tables

forms all the “box on hold” cases in a Box_Hold table. Finally, the

Box_Destruction tuples are obtained by taking the boxes that are

“not in” the Box_Hold table, which again could be implemented

by a left-outer join operation. So, the computation of the

Box_Destruction table requires an interleaved combination of

joins, left outer joins, selections and unions. In addition, if box

data are fragmented using horizontal partitioning. This

computation must be done for each partition and then a final union

will yield the result.

Finally, a third source of complexity is the necessity to perform

some data cleaning operations to enable the relationship between

data from different sources and to guarantee the accuracy of the

target data. The cleaning issues addressed by the EII mapping

must be translatable into tuple-transformations, which means that

the transformation operations can be applied to each tuple

individually. Hence, issues such as duplicate elimination are not

considered here and are usually addressed elsewhere (either the

source data are cleaned before hand or a clean database has been

created using an ETL tool). The impact on source to target

mappings is the presence of multiple evaluation expressions (aka

functional expressions) including case-when expressions and

string manipulation functions.

3. THE CHALLENGE OF MEGA QUERIES
We first introduce mega queries and explain how they may occur.

We then introduce the notion of data processing set as our main

optimization goal and explain its rationale.

3.1 Mega Queries
Mega queries are SQL queries which reference a large number of

source tables (several hundreds to more than a thousands) in their

FROM clause. Such queries can be issued by operational BI

reports as a result of the complexity of the source to target

mappings used to define the underlying target schemas. This

however does not equate to a comparable number of joins since

horizontal partitioning also creates many union operations.

Building upon our previous examples taken from a customer use

case, there are more than 300 databases of up to 100 GB each of

which containing source data about archive boxes. There is a

central master database that holds dimension data such as

customer and customer’s organization. All the data about the

boxes and their contents is horizontally partitioned over about 80

different databases within each region. The data about the

warehouses is also horizontally partitioned over 10 different

databases.

In a business process workflow, an operational BI report requires

business data that describe detailed customer information

associated with boxes eligible to destruction and the warehouses

where the boxes are kept. There is also the possibility of drilling

down into a particular archive box to see the list of files stored.

The target schema exposed for this operational BI report contains

tables such as Customer, Box_Destruction, Warehouse, Files. The

query used to report information on boxes eligible for destruction

is merely expressed by joining target tables Customer,

Box_Destruction, and Warehouse. Customer has a simple

mapping from the master database that mixes customer and

organization data. Box_Destruction has a complex mapping

sketched in the previous section. Finally, Warehouse also has a

simple mapping. However, after unfolding, the query references

over 1,000 source tables from more than 80 different databases.

Indeed, each case for defining Box_Hold involves 3 to 5 joins, so a

total of about 15 tables for each partition. This gets multiplied by

the number of roughly 80 partitions, yielding a total of 1,200

tables. Then, a total of roughly 15 tables is added for the

warehouse and master data. The filters that make this query

narrow are a filter on a customer ID and a region.

3.2 Data Processing Set
As mentioned before, in an EII system, a query processing plan P

(or query processing tree) for a query Q is composed of the

following macro-components:

• subqueries from the data sources, noted SQ, sometimes

called “data providers” (we shall denote [SQ]S a

subquery SQ on source S),

• an assembly query AQ run in the EII Query Engine

We introduce the notion of data processing set for a query plan P

of query Q, noted dps(P(Q)), as the number of rows that are read

from the data sources by the EII Query Engine in order to

complete the processing of AQ.

First, we define the data processing set of a subquery SQi, noted

dps(P(Q), SQi), as the number of rows returned by SQi in query

plan P(Q). If N is the number of subqueries in P(Q), we have:

∑
=

=

N

i

SQiQPdpsQPdps
1

)),(())((

3.3 Narrow Queries
We have observed that many queries for operational BI reporting

are “narrow” queries, which means that their data processing set

can be quite small although the source tables that they reference

can be very large. For instance, some fact tables issued from large

data warehouses such as Teradata or Netezza databases can be

extremely large.

The reason for narrow queries is that highly repeatable decisions

in workflow processes are typically captured by highly

parameterized queries in the operational BI reports. Usually, the

query parameters represent filters on dimension tables such as a

customer ID value, a region, a quarter or a range of dates, a

product ID, etc. One of these filters is usually quite selective

because it corresponds to the specific context of a particular

instance of a business process. For instance, the customer ID of

the caller in a self-service system will be specific although the

region where the customer belongs is not. In the customer use case

above dealing with archive boxes, 60% of the mega queries

reference more than 300 tables, while 12% reference more than

1,000 tables. However, 83% of the mega queries were narrow

queries that could be optimized and processed in a range of 20 s to

2 minutes.

Narrow operational BI queries are allowed to query production

systems (e.g., OLTP or ERP systems) for accessing their business

data because they generally issue small read transactions. Thus,

they are not causing problems in workload balancing.

In addition, a notable proportion of the queries return a small

result set because operational workers need condensed and canned

information to take decisions. Progressively, we also see mobile

operational workers which use mobile devices to display their

analytics and BI reports using specific interactive graphical

widgets.

3.4 Optimization Goal and Challenge
Our optimization goal is to find a query plan P for Q that has the

smallest dps(P(Q)). This goal does not guarantee that we produce

the cheapest query processing plan but it provides a good

approximation for two main reasons. Firstly, data transfer turns

out to be a dominant cost factor in query processing in an EII, so it

is imperative to limit it. This is particularly true for operational BI

queries that may access very large tables. Secondly, in all cases

where there exists a query plan with a small data processing set

(for narrow queries), it is important to find such a plan because

then the assembly query can be run extremely fast without

worrying too much about further ordering of operations. On the

contrary, missing a plan with a small data processing set can be

dramatic in terms of performance.

A main challenge for a query optimizer is the size of the search

space created by a mega query. Conventional techniques using

rule–based optimization, whereby rewriting rules are recursively

considered for application starting from the root node of a query

plan, do not apply because they do not scale both in time and

space. Similarly, dynamic programming techniques for join re-

ordering do not scale on mega queries although they may work on

smaller (partial) plans. In our previous implementation based on

conventional query optimization design principles, our optimizer

would take hours to optimize a query when it was not eventually

running out of memory. Over simplifying the optimization rules

would be insufficient because then we would miss our

optimization goal.

4. OPTIMIZE THE OPTIMIZER!
We first needed to radically change the way our query optimizer

works in order to address the complexity of mega queries. In this

section, we present our two main design decisions, that is, the

decomposition of the optimization process into sequential stages

and the design of a new compact representation of a query plan

that significantly reduces the cost of query optimization with

respect to our optimization goal. Other important decisions such as

when and how to collect statistics and how to propagate them are

left out of this paper.

4.1 Decompose optimization in stages
We first decomposed the optimization into successive “stages”

where each stage focuses on a particular type of optimization. Our

optimization stages are processed sequentially and only once.

They are designed with two objectives: (i) guarantee a low worst

case time complexity (linear or polynomial), and (ii) low memory

consumption, in particular favor “in place” transformations to

avoid the cloning of plans, which is very costly in memory space.

In this paper, we only discuss the following stages:

• Simplification and push-down of operations

• Searching for maximal subqueries

• Semi-join data provider reduction

Query simplification techniques perform transformations such as

the removal of useless duplicate columns in DISTINCT or

GROUP BY clauses, the removal of ORDER BY operators, the

replacement of UNION DISTINCT by UNION ALL, the removal

of useless columns/expressions that are not used /projected in the

upper part of a query plan, the grouping of common expressions,

etc. In particular, we make two assumptions:

• Useless LOJ are removed: if we have R LOJ S with an

equality condition on S primary key columns and no

column of S is used in the upper part of the plan the LOJ

is removed.

• False LOJ are transformed into Joins: if we have R LOJ

S followed by a null rejecting filter on a column of S

then the LOJ is transformed into a Join.

The push down of operations is done by exploiting the standard

commutativity and associativity properties of operators, in

particular for filters, evaluations, aggregates and unions [2], [4],

[8], [9]. Important properties to exploit during these

transformations are the dependencies between variables, variable

equivalence for transitive propagation, and behavior with respect

to null values. These transformations are quite important because

they prepare the work for the computation of maximal source

subqueries.

4.2 Compact Query Plan
Our second decision to address the scalability problem of mega

queries is to perform our optimizations on a compact

representation of a query plan, called Compact Query Plan (CQP).

We first introduce a couple of useful notions.

If Exp(x1, …xn) denotes a condition in conjunctive normal form

with variables x1 to xn, then Exp is said to be null rejecting if for

each i, 1 < i < n, (xi = null) implies that Exp(x1, …xn) evaluates

to false. Otherwise, Exp is said to be a null accepting condition.

By extension, if an LOJ (resp. FOJ) has a condition that is null

accepting, then the LOJ (resp. FOJ) is said to be null accepting.

Let Eval(x1, …xn) denote an evaluation operation with variables

x1 to xn, then Eval is said to be a null propagating evaluation

operation if there exists i, 1 < i <n, such that (xi = null) implies

that Eval(x1, …xn) evaluates to null. Finer sufficient conditions

are used in practice but these details are left out of the scope of

this paper.

A CQP distinguishes three types of nodes:

• Abstract node: contains a query plan restricted to the

following operators: Cartesian product (C), Filter (F),

Evaluation (E), Left Outer Join (LOJ)1 and Full Outer

Join (FOJ) that are null rejecting.

• Singleton node: contains one of the following operators:

Aggregate Group by (A), FOJ that are null accepting

(FOJnull), Order by (O), and set-oriented operations like

Unions (U) and Minus (M).

• Source node: contains a subquery to a data source.

Before describing the construction of a CQP from a query plan, we

introduce a few notions.

Let (N1, …, Nk) be a descending path in a query plan such that

Nk is a source table or Nk is in {A, O, FOJnull, U, M}, and for

each i, 1 ≤ i ≤ k-1, (i) Ni is in {C, E, F} or (ii) Ni = LOJ and Ni+1

is the outer side of Ni. Then P = (N1, …, Nk-1) is said to be a

LOJ preserved path in the query plan.

If (N1, …, Nk) is path such that P = (N1, …, Nk-1) is an LOJ

preserved path and Nk is a singleton node then we associate a

variable node with P that contains the set of output variables of

node Nk.

We also introduce the notion of FOJ preserved path. Let P = (N1,

…, Nk) be a descending path in a query plan such that N1 and Nk

are FOJ, and for each i, 2 ≤ i ≤ k-1, Ni is either (i) an FOJ or (ii) a

null propagating evaluation node, or (iii) Ni is a null rejecting LOJ

and Ni+1 is the outer side of Ni. Then P is said to be an FOJ

preserved path in the query plan.

If P = (N1, …, Nk) is an FOJ preserved path and N, N’ are the

child singleton nodes of Nk, then we associate a variable node

with P that contains the set of output variables of N and N’.

BUILD COMPACT QUERY PLAN

Input: an (original) query plan

Output: a compact query plan

Method: traverse the original query plan from its root in a depth

first, left to right descending manner as follows:

Case 1: If an operator A, O, FOJnull, U or M is encountered in the

query plan, then a singleton node N is formed in CQP. Its parent

node (if it is not the root) in the CQP is the node of the CQP that

contains the parent of N in the original query plan.

1 Right outer joins are modeled using LOJ and joins are modeled using C and

F.

Case 2: if an operator in {E, C, F, LOJ, FOJ} is encountered in the

query plan it forms the root, called rootAN, of an abstract node

AN which is built using the following rules:

1. if rootAN is not an FOJ, all maximal LOJ preserved

paths2 rooted at rootAN form an additional block

expression of AN.

2. if rootAN is an FOJ, all maximal FOJ preserved paths3

rooted at rootAN form an additional FOJ block of AN.

3. if N is an FOJ node that is a child of a node of any block

expression of AN, all maximal FOJ preserved paths

rooted at N form an additional FOJ block of AN.

4. if N is the non outer side node of an LOJ node of any

block expression of AN and N is in {E, C, F, LOJ}, all

maximal LOJ preserved paths rooted at N form an

additional block expression of AN

5. if N is a child node of any block FOJ of AN and N is in

{E, C, F, LOJ}, all maximal LOJ preserved paths rooted

at N form an additional block expression of AN.

6. if N is a singleton node that is the non outer side of an

LOJ node of a (expression or FOJ) block, then a variable

node containing all the output variables of N is

associated with the LOJ node.

7. if N is a singleton node and N is a child node of an FOJ

block, then a variable node containing all the output

variables of N is associated with the FOJ block.

The parent node (if it is not the root) of an abstract node AN is the

node of the CQP that contains the parent node of rootAN in the

original query plan.

Case 3: if a scan operator of a source table is encountered then a

source node N is formed in the CQP. Its parent node in the CQP is

the node of the CQP that contains the parent of N in the original

query plan.

Finally, we remove from each (expression or FOJ) block the null

rejecting LOJ operators (together with their associated variable

node) and add them as new individual LOJ blocks in the abstract

node.

END – BUILD COMPACT QUERY PLAN

Thus, each abstract node has the following constituents: a set of

Block Expressions (BE) containing a set of paths, a set of FOJ

blocks (BFOJ) also containing a set of paths, and a set of LOJ

blocks. Rules 6 and 7 above add variable nodes to a block.

Informally, the variable nodes of a block represent the variables

that come from outside the abstract node that contains the block.

A block expression is internally represented by a variable

dependency graph, a DAG that connects the sets of evaluation

variables, filters, LOJ conditions, and variables of the variable

nodes. Similarly, a variable dependency graph is used for FOJ

blocks.

EXAMPLE 1: Applying BUILD COMPACT QUERY PLAN on

the query plan of Figure 1, we first get a singleton node (Order

2 Including the variable nodes of the maximal paths.

3 Including the variable nodes of the maximal paths.

By), then an abstract node AN consisting of one block expression

B1 (via rule 1 above) and an FOJ block (via rule 3 above). Then

we extract the two null rejecting LOJ to get blocks B2 and B4.

Note that the LOJ node inside B1 is a null accepting LOJ. Finally,

each source table will form a source node.

The variable nodes of B1 contain all the variables coming from T1

and T2 (via their preserved paths). The variables nodes of B3

contain all the variables coming from T3 and T4 (via JOJ

preserved path) and the variables coming T6 (via rule 7 above) �

Figure 1: Abstract node in a query plan

In the example of the archive boxes given earlier, the CQP for the

query that retrieves the boxes eligible to destruction has about 600

nodes due to the presence of many union nodes.

4.3 Execution Plan for an Abstract Node
Precedence relationships determine the ordering constraints under

which the blocks of an abstract node can be executed. They are

represented by precedence links, noted p-links, which describe

variable propagation flows between nodes up to the rootAN of the

abstract node. The definition of p-links derive from the standard

properties of relational operators: associativity and commutativity

of joins, associativity of FOJ, pseudo-associativity of LOJ and

joins, asscoiativity of LOJ, pseudo-associativity of LOJ and FOJ.

Let AN be an abstract node, P-links are defined as follows:

• if N is the root node of an FOJ block B and N’ is the

parent node of N in the original query plan, then (i) if N’

belongs to an FOJ or LOJ block4 then there is a p-link B

→ N’, otherwise (ii) there is a p-link B → B’ where B’

is the block expression containing N’.

• if N is the root node of a block expression B and N’ is

the parent node of N in the original query plan, then if

N’ belongs to an FOJ block B’ then there is a p-link B

→ B’

4 Necessarily on the non outer side of N’

The semantics of a p-link B1→ B2 is that B1 must be completely

computed before B2 can consume the output variables of B1.

Thus, a p-link creates a blocker in the pipelined evaluation of the

nodes.

EXAMPLE 2: in the abstract node of Figure 1, we have only one

p-link: B3→ B1 �

Let AN be an abstract node, and B1 and B2 be two (expression or

FOJ) blocks of AN. The variables of B1 can be propagated to B2

if either (i) there is a p-link B1→ B2, or (ii) there exists an LOJ

block B3 such that there is a p-link B1→ B3, and the preserved

variables of B3 can be propagated to B2, or (iii) there exists a

block B3 distinct from an LOJ block such that the variables of B1

can be propagated to B3 and the variables of B3 can be propagated

to B2.

If B is a (expression or FOJ) block then the output variables of B

is the union of the set of variables that can be propagated to B and

the set of variables created in B (through evaluation nodes).

A valid execution plan AnP for an abstract node is a tree whose

nodes are either block expressions of FOJ blocks. Supposing that

all LOJ blocks are attached to a (expression of FOJ) block that

provides all the preserved variables of the LOJ, AnP is defined as

follows:

• Leaf node: a (expression or FOJ) block is a leaf node of

a query plan AnP if all its (used) variables are contained

in its variable nodes.

• Intermediate node: a (expression or FOJ) block B is a

parent node of B1, …, Bp if all its (used) variables are

contained either in its variable nodes or in the set of

output of B1, …, Bp.

EXAMPLE 3: In the abstract node AN associated with the query

plan of Figure 1, the only leaf node is B3. Then B1 is an

intermediate node. Block B4 can only be attached to B3 while B2

can be either attached to B1 or B3. �

5. OPTIMIZATION TECHNIQUES
In this section, we present two main techniques that have proved

to be the most effective to find a query plan with a small data

processing set: create maximal source subqueries, and use semi-

join reductions. We show how these techniques take advantage of

a Compact Query Plan to handle the complexity of mega queries.

5.1 Maximal Source Subqueries in a CQP
There is an optimization stage devoted to the construction of

maximal source subqueries. As said earlier, this stage follows a

stage of simplification and push-down transformations whereby

singleton nodes of a CQP have been pushed down.

5.1.1 Source capability model
A key feature for enabling the construction of maximal subqueries

is the capability model of the data sources. The model

distinguishes between two types of capabilities: (1) SQL-based

capabilities, which indicate the SQL operations supported by the

data source independently from the tables and columns to which

the operations apply, and (2) metadata-based capabilities, which

overwrite a SQL capability depending on the tables and columns

to which the operations are applied. In particular SQL-based

capabilities describe the evaluations (functional expressions) that

can be computed by a data source. This is quite important because

as said earlier, source to target mappings contain many

evaluations.

5.1.2 Finding Maximal Subqueries
We assume that we have as many colors as there are data sources

plus two special colors NONE and UNKNOWN, and we use the

colors to mark the nodes of the CQP. Initially, all source nodes are

colored with the color of their sources.

In what follows, we define a source subquery SQ to be analogous

to an abstract node. So, it may consist of a set of blocks

(expression, FOJ, LOJ), and a set of p-links.

CQP MAXIMAL SUBQUERY

Input: a CQP

Output: a new CQP in which abstract nodes and source nodes have

been modified

Method: start from the source nodes of a CQP which are simple

scans of source tables, and perform a bottom-up left to right

traversal of a CQP.

Case 1: if a singleton node N is encountered:

1. If (i) its input nodes in the CQP all have a color C

distinct from NONE, (ii) N satisfies the source

capabilities of source C, and (iii) it is profitable to push

N into C, then the tree rooted at N is moved to a source

node of color C and the parent of N is examined

2. Otherwise, mark N with color NONE and stop tree

traversal from N

Case 2: if an abstract node N is encountered then search for the

maximal source subqueries that can be extracted from N, say SQ1,

…, SQn.

1. if there is a single SQ1 of color C that is equivalent to N

then the tree rooted at N is moved to a new source node

of color C and the parent of N is examined.

2. otherwise, create n source nodes for the SQi subqueries,

remove them from N, merge them with the subqueries

associated with the source nodes input of N. Finally,

mark N with a NONE color and stop tree traversal from

N5.

END – CQP MAXIMAL SUBQUERY

The profitability condition used in Case 1 is a heuristics that

considers multiple cases, for instance for a union singleton node,

which is not always worth pushing. Details are beyond the scope

of this paper.

We now explain the search for maximal subqueries within an

abstract node:

ABSTRACT NODE MAXIMAL SUBQUERY

5 Subqueries can actually be “challenged” by marking them and continuing

the bottom-up traversal of the CQP to see if further merges are possible,
without affecting the linear complexity of the method (still a single
traversal). Details are beyond the scope of this paper.

Input: an abstract node AN

Output: a set of source subqueries other than table scans, and a

possibly new node AN’ where subqueries have been removed

from the expression or FOJ blocks, empty blocks are removed, and

LOJ blocks have been removed.

Method: follows the following steps

Step 1: Initialization

For each (expression or FOJ) block that qualifies as a leaf node in

a valid query plan, search for maximal subqueries SQ1, …, SQn.

Using the same analysis as in Case 2 of the previous method, we

end up with either a block of color C with a single associated

subquery, or a block of color NONE with several associated

subqueries. The output p-link of a block takes the color of its

block.

Step 2: bottom-up traversal of p-links and marking of all nodes

Start from colored blocks and perform a bottom-up traversal of the

graph of p-links until all blocks are either marked as NONE or

UNKNOWN.

Case 1: B is a colored block, there is a link B → B’ and the used

variables of B’ are contained in the union of its variable nodes and

its propagated variables. Search for maximal subqueries SQ1, …,

SQn of B’:

1. if there is a single SQ1 of color C that is equivalent to

B’ then SQ1 is merged with the subqueries associated

with the blocks that point to B’, and B’ is marked with

color C.

2. otherwise, the SQi subqueries are merged with the

subqueries associated with the blocks that point to B’,

and B’ is marked with color NONE.

Case 2: B is a colored block, there is a link B → B’ and there are

used variables of B’ that are not in the union of its variable nodes

and its propagated variables. Search for maximal subqueries SQ1,

…, SQn of B’. By assumption, there will be multiple subqueries

SQi, (possibly with the same color C). Then, B’ is marked as

UNKNOWN.

Case 3: B is a colored block, there is a link B → B’ and B’ is an

LOJ block. Then a subquery SQ of color C that contains all the

variable on the outer join side of the LOJ is searched for6. If SQ is

found in a block B’’ it is merged with the LOJ and the subquery

associated with its input block. Block B’ is removed from AN. If

there is a block that has an input p-link from B’’ and a color

UNKNOWN, it must be revisited to see if it matches Case 17.

Case 4: B is an LOJ block with no incoming p-link. This is similar

to Case 3.

Step 3: clean up abstract node, consisting of removing subqueries

from their associated blocks and removing empty blocks.

END – ABSTRACT NODE MAXIMAL SUBQUERY

 We now introduce the last method for a block.

6 If it exists, the subquery SQ if it exists is unique

7 Because propagation variables have been updated through the merge of the
LOJ with SQ.

BLOCK MAXIMAL SUBQUERY

Input: a block B with colored variables in variable nodes and

propagated variables

Output: a set of source subqueries other than table scans, and a

possibly new block B’ where subqueries have been removed from

B.

Method: traverse in a bottom-up manner the variable dependency

graph of the block. At each node of this graph, if (i) its input

variables have a same color C distinct from NONE 8, (ii) the node

expression is compatible with the capabilities of C, and (iii) it is

profitable to push the node expression into C, then the node is

marked with C. Otherwise, variable equivalences are used to find

a set of input variables that would match condition (i). At the end

all nodes of a same color C form a subquery (containing a sub-

block) for source C and all subqueries other than single table

scans are returned.

END – BLOCK MAXIMAL SUBQUERY

The profitability condition of item (iii) above is a heuristics that

aims to control that if two subqueries SQ1 and SQ2 of color C can

be composed via a node into a subquery SQ of color C, then

dps(SQ) ≤ dps(SQ1) + dps(SQ2).

The complexity of the search of the maximal subqueries is linear

in the number of nodes of a CQP, the number of blocks in an

abstract node and the number of nodes in the variable dependency

graph of a block.

EXAMPLE 4: We illustrate the application of the method on the

example of Figure 1. We apply ABSTRACT NODE MAXIMAL

SUBQUERY to abstract node AN = {B1, B2, B3, B4}.

On step1: B3 is the only leaf node and we search for its maximal

subqueries using BLOCK MAXIMAL SUBQUERY. We get SQ0

and SQ1 as table scans of T4 and T3 respectively, and [SQ2]S2 =

{T3 FOJ T6}. Then B3 takes color NONE.

On step 2: Case 2 applies to B1 and the search for maximal

subqueries returns [SQ3]S1 = {F(T1 C T2))} and B1 is marked to

UNKOWN. Then Case 4 applies to B4, SQ0 is merged with the

LOJ to create [SQ4]S3 = {T4 LOJ T5} which is part of block B3,

and B4 is removed. Since B3 → B1 and B1 is UNKNOWN it is

examined but remains unchanged. Then Case 4 applies to B2,

SQ1 is merged with the LOJ to create [SQ5]S2 = {T3 LOJ T7}

which is part of B3, and B2 is removed. Again, since B3 → B1

and B1 is UNKNOWN it is examined and is moved to NONE

since it has all its variables.

On step 3: B3 is transformed into {T3 FOJ T4}, B1 is transformed

into {E(T2 LOJ T4)}.

So ABSTRACT NODE MAXIMAL SUBQUERY returns AN’ =

{B1, B3} with four subqueries. Finally, CQP MAXIMAL

SUBQUERY resumes by creating three source nodes: SN1 is the

result of the merge of T2, T1, and [SQ3]S1; SN2 is the result of

the merge of T3, T6, [SQ2]S2, and [SQ5]S2; and SN3 is the result

of the merge of T4, T5, and [SQ4]S3. This is illustrated on Figure

2. �

8 Getting the color of a variable may recursively trigger the evaluation of the

cases of method CQP MAXIMAL SUBQUERY

Figure 2: Result of finding maximal subqueries in a CQP

5.2 Semi-Join Reduction in a CQP

5.2.1 Semi-Join Reduction and Bind Joins
Semi-join reduction is a well-known method to execute joins in a

distributed system [1].

Suppose that you want to join two subqueries SQ1 and SQ2 from

two distinct sources with a join predicate SQ1.A=SQ2.A. The

semi-join reduction uses SQ1.A to generate a new subquery:

SQ2’: SQ1.A SemiJoin (A=A) SQ2

Then SQ1 will be joined with SQ’2 to produce the final result.

Bind join operations also discussed in [3], [7] have been used as a

means to implement semi-join reduction (e.g., in [6]). Reusing the

previous example, a possible Bind Join implementation of SQ2’ is

to:

• collect distinct join attribute values from SQ1 (A values)

into a cache node

• create a parameterized query SQ2$ which adds a filter A

= $A

• generate as many execution of SQ2$ as there are A

values in the cache by substituting the parameter $A

with a value from the cache

The principle of semi-join reduction is illustrated on Figure 3,

where R denotes the left operand of the bind join operator (noted

BJ). We say that the result of SQ1.A is a semi-join reducer for

subquery SQ2.

The effectiveness of this semi-join reduction depends on the

number of distinct A values that will be returned by SQ1 and the

number of records returned by each SQ2$ query as compared to

the number of records returned by SQ2 (i.e., the cardinality of the

result of SQ2). Thus, the decision to use a bind join depends on

statistics on distinct values, and the ability to estimate the fan-out

factor between SQ1.A and SQ2.A.

We have implemented multiple versions of a Bind Join operator to

handle multiple cases of semi-join reductions. In particular,

Hybrid Bind Join is an implementation that adapts its behavior

(hash join or bind join) depending on the size of the distinct

values of the cache node. Their discussion is however out of the

scope of this paper.

5.2.2 Finding Semi-Join Reducers
Given a CQP, the problem is to find all the bind joins that can

possibly reduce the data processing set (dps) of all large

subqueries so that the total dps of the CQP remains small.

We first introduce the notion of variable reducer. Let V1 and V2

be two variables of a CQP. Then V1 is said to be a reducer for V2

if there exists a filter with a disjunctive term of the form V1 = V2

or there exists an LOJ whose condition has a disjunctive term of

the form V1 = V2 and V2 is a variable on the non outer side of the

LOJ. The Reducer Set for a variable V1 contains all the variables

for which V1 can be reducer. If V2 is in this set, we say that V2 is

reducible by V1.

Figure 3: Semi-join reduction using a Bind Join

On the example of Figure 3, variable SQ1.A is a reducer for

variable SQ2.A and conversely. Thus, Reducer Set for variable

SQ1.A contains SQ2.A.

BUILD VARIABLE REDUCERS

Input: a CQP with a Variable Set containing the output variables

of the CQP

Output: a Variable Set containing all the used variables of CQP,

and for each variable a Reducer Set that contains its variable

reducers.

Method: perform a top down depth first traversal of the CQP as

follows. Initially, the Variable Set contains all output variables of

the CQP and each variable has an empty Reducer Set.

Case 1: If N is a union operator and V’ a variable in Variable Set,

then variable input V of N that has been renamed as V’ is added

to the Reducer Set and inherits the Reducer Set of V’.

Case 2: If N is an aggregate and V is a group by variable of the

Variable Set, then the input variable of N corresponding to V

inherits the Reducer Set of V.

Case 3: if an abstract node AN is encountered

• If B is a block expression and V is a variable in the

Variable Set output of B, each variable V’ that is a

reducer for V is added to the Reducer Set of V together

with its reducers, V’ is added to the Variable Set (if it

does not exist) and the reducers of V are added to its

Reducer Set

• If B is an LOJ block expression and V is a variable in B

then V is added to the Variable Set (if it does not exist)

and each variable V’ that is a reducer for V is added to

its Reducer Set together with the reducers of V’.

• If B is a block expression and V is a variable of B that is

not in the Variable Set output of B, then V is added to

the Variable Set (if it does not exist) and each variable

V’ that is a reducer for V is added to its Reducer Set

together with the reducers of V’.

Case 4: if a source node is encountered, nothing happens.

Case 5: if an FOJnull node is encountered and x is an output

variable of the node then x is removed from all existing Reducer

Sets.

END – BUILD VARIABLE REDUCERS

We assume that for each node of a CQP, we know (estimate)

whether the number of records produced by the node is either

“small”, “big” or “unknown”9.

We now introduce a few additional notions. We associate with

each node N of a CQP an annotation composed of two sets: a

Small Variable Set (SVS) and a Big Variable Set (BVS). The set

SVS contains vectors of the form S[x1, …, xk] such that (i) S is an

input node of N, and x1, …, xk are output variables of S, and (ii)

the number of records produced by N is small. Similarly we define

BVS as the set of vectors for input nodes of N that are expected to

be big.

We now define a reduction path associated with an abstract node

as a path of nodes in a CQP whose meaning is that if N precedes

N’ in the path then N is a reducer for N’. Reduction paths are

computed in the main method below and are used to generate the

cache nodes of Bind Joins.

We can now present the general method to find semi-join reducers

in a CQP. For the sake of clarity, this is a simplified version of the

method actually implemented. Refinements do not however

change the worst case polynomial complexity of the presented

method which is in o(Np) where N is the number of source nodes

and p is the height of the CQP.

BUILD SEMI-JOIN REDUCTIONS

Input: a CQP with its Variable Set and Reducer Set for each

variable

9 The notions of “small” or “big” are parameters of the system managed by

thresholds. “unknown” is a value between the two thresholds.

Output: a CQP in which all semi-join reducers have been detected

and integrated in abstract nodes.

Method: use the following steps:

Step 1: Build the annotations SVS and BVS for every source node

of the CQP, and select a source node, InitNode, that has a small

dps and whose output variables have at least a non empty Reducer

Set10.

Step 2: perform a bottom-up left to right traversal of the CQP

starting from InitNode until no new node can be visited, as

follows:

Case 1: if a singleton node N is encountered:

• if N is in {A, U, M, O}, the annotation and the vector

for node N are computed in a straight forward manner

and classified.

• If N is an FOJnull node then stop traversal and select

another InitNode (if any) to perform.

Case 2: if an abstract node AN is encountered:

1. Build (or update) the annotations for AN

2. For each new vector S[x1, …, xk] of SVS(AN), find the vectors

of BVS(AN) that are reducible from S[x1, …, xk], henceforth

called “big reducible” – see FIND BIG REDUCIBLE

3. For each big reducible vector N’ found that is a source node and

can be reduced by a vector N to become small, then move N’ from

BVS(AN) to SVS(AN), add (N, N’) to the reduction path of AN

ending at N (if any), and build Bind Join for N’ using reduction

path from N to N’.

4. If a new vector has been added to SVS(AN) then repeat until no

new vector is found in SVS(AN):

• find big reducible of each new vector of SVS(AN),

• apply step 3 of Case 2.

5. For each big reducible N’ is not a source node and for each

variable v of N’ that is reduced by a variable of a vector N,

• find the source nodes SN such that SN is big and v is an

output variable of SN modulo variable renaming

 if a (single) SN node is found without renaming

o if the vector of SN is classified as small after

reduction then update the annotation of SN

and apply Step 2 of BUILD SEMI-JOIN

REDUCTIONS from SN as an InitNode until

node AN is encountered else return.

 if multiple SN nodes are found modulo renaming

o Perform a bottom up traversal of the CQP

starting from all found SN nodes similarly to

Step 2 of BUILD SEMI-JOIN REDUCTIONS

except that a union node blocks the bottom up

traversal until all its child node’s vectors have

been updated with respect to the SN nodes

found.

• Update the annotation of AN

10 Select first the smallest dps and the largest number of reducers

• Add (N, SN) to the reduction path of AN ending at N,

and build bind join for SN using reduction path from N

to SN.

6. If a new vector has been added to SVS(AN) then:

• find big reducible of the new vector of SVS(AN),

• apply steps 3 to 6 of Case 2.

7. Compute the vector for AN and classify it as big or small

END – BUILD SEMI-JOIN REDUCTIONS

We finally give two auxiliary methods used above.

FIND BIG REDUCIBLE

Input: a vector S[x1, …, xk], and a set BVS(N)

Output: all vectors of BVS that are reducible from S[x1, …, xk],

represented in a (big reducible) graph where nodes are vectors and

there is an arc from N to N’ if N is a reducer for N’

Method: for each variable xi of S[x1, …, xk] search if there exists

a variable y in the Reducer Set of xi such that y belongs to a vector

N’[…, y, …] of BVS. If found then add vector N’ to the output

graph and create an arc from S to N’.

BUILD ANNOTATION SOURCE NODE

Input: a source node SN associated with a subquery SQ

Output: annotations SVS and BVS for SN

Method: We use heuristics and statistics to identify if SQ is

expected to return a small or large data processing set. If SQ is

expected to be small then all its output variables are in a vector

SN of SVS, otherwise they are in BVS.

END – BUILD ANNOTATION SOURCE NODE

BUILD BIND JOIN

Input: reduction path from N to N’, source node N’

Output: an updated source node of N’ which contains a bind join

between a cache node and N’

Method: build the maximal subquery covering the nodes of the

input reduction path (this is done using the variable dependency

graph) and take only the equality predicates that involve variables

of N’. This subquery is then projected on the columns that are

used in equality predicates with N’ with a DISTINCT clause. It is

used to compute the cache node associated with N’. Finally the

source node N’ is rewritten into a bind join between SQ and the

cache node.

END – BUILD BIND JOIN

EXAMPLE 5: Consider the CQP of Figure 4. All source nodes

have pairwise distinct data sources. Abstract nodes are

represented in dotted lines. We assume that S1, R1, and R4 are

estimated to be small source nodes, and all the others are expected

to be big. We indicate output variables on top of each node. We

sketch the application of BUILD SEMI-JOIN REDUCTIONS on the

CQP.

Figure 4: Example of a CQP

Step 1 (R4): S1, R1, and R4 have an empty BVS and their SVS is

as follows: SVS(S1) = {S1[x’31, x’32]}, SVS(R1) = {R1[x11,

x12]}, SVS(R4) = {R4[x41, x42]}. Suppose InitNode is R4.

Step2 (R4): AN2 is encountered. SVS(AN2) = {R4[x41, x42]},

and BVS(AN2) = {R5[x51], R6[x61, x62]}. R5[x51] is the single

vector of BVS that is reducible from R4[x41, x42] because x51

belongs to the Reducer Set of x42. Case 2.3 executes and

assuming that the result of the join between R4 and R5 is small

then R5 is moved from BVS to SVS, a reduction path (R4, R5) is

created and a Bind Join is created in the source node R5. Case 2.5

executes but does not yield anything. Finally, vector for AN2 is

AN2[x41, x42, x51, x61, x62] and it is expected to be big

Step 2 (R4): AG2 is encountered. Its vector is AG2[x61, x62, y2]

and big.

Step 2 (R4): AN0 is encountered. SVS(AN0) = {R1[x11, x12]},

and BVS(AN0) = {AG1[x31, y1], AG2[x61, x62, y2]}. By Case

2.2, AG2 is the only vector of BVS that is reducible from R1. By

Case 2.5, v = x61 is the only variable of AG2 that is reduced by

variable x11 of R1. The big source node with output variable x61

is R6 and assuming that R6 becomes small by reduction x11 =

x61, then we apply BUILD SEMI-JOIN REDUCTIONS from R6 up

to AN0.

Step 2 (R6): AN2 is encountered. SVS(AN2) = {R4[x41, x42],

R5[x51], R6[x61, x62]}, and BVS(AN2) = {}. Assuming that the

result of the LOJ x62 = x41 is small then vector AN2[x41, x42,

x51, x61, x62] is small.

Step 2 (R6): AG2 is encountered. Its vector is AG2[x61, x62, y2]

and small. And this finishes the traversal from R2.

Step 2 (R4): Annotation is updated: SVS(AN0) = {R1[x11, x12],

AG2[x61, x62, y2]}, and BVS(AN0) = {AG1[x31, y1]}. (R1, R6)

is added to the reduction path from R1 and a Bind Join is created

in the source node for R6. Case 2.6 executes and AG1 is found as

a big reducible from the new addition AG2 in SVS(AN0) via

variable x62. Since AG1 is not a source node, Case 2.5 applies.

We find two sources nodes S1 and S2 which, after renaming via

the union, have x31 as output variable but only S2 is big. So we

restart a variant of BUILD SEMI-JOIN REDUCTIONS from S2.

Step 2 (S2): Union node is encountered, it’s a blocker. Since all

child nodes vectors have been updated, vector U[x31, x32] is

computed and is small.

Step 2 (S2): AN1 is encountered. SVS(AN1) = {U[x31, x32]} and

BVS(AN0) = {R2[x21, x22]}. Case 2.2 applies and R2 is

reducible from U via x32. Since it is a source node, assuming that

R2 becomes small after the reduction by U, then R2[x21, x22] is

moved to SVS, a reduction path (U, R2) is added in AN1 and a

Bind Join is created in the source node for R2.

Step 2 (S2): AG1 is encountered. Its vector is small. This finishes

the traversal from S2.

Step 2 (R4): Annotation is updated: SVS(AN0) = {R1[x11, x12],

AG2[x61, x62, y2], AG1[x31, y1]}, and BVS(AN0) = { }. A

reduction path (AG2, S2) is added in AN0 and a Bind Join is

created in the source node for S2. Case 2.6 does not yield results.

All nodes of the CQP have been visited, so BUILD SEMI-JOIN

REDUCTIONS terminates. In summary, all data sources have been

reduced by semi-join and the following four bind joins have been

created:

(AG2 BJ S2); (U BJ R2); (R1 BJ R6); (R4 BJ R5) �

We now use the previous example to make a few observations and

point out a few improvements of the method. First, suppose that

there exists a new source node R7 that is big and is an input of

AN2 with a predicate x52 = x71. Then the reduction path of AN2

(R4, R5) will be extended into (R4, R5, R7) and would be used to

compute a Bind Join on R7. Now suppose that R7 is small, then

there would be another reduction path (R7, R5) in addition to (R4,

R5) and these two paths could be used to build the Bind Join for

R5 by building a cache node that contains the Cartesian product of

the distinct values of x41 and x71. Finally, assume that the result

of the reduction of S2 is uncertain (captured by a value

“unknown” on the size of S2 after reduction), if R2 is known to be

big it may be useful to create an Hybrid Bind Join for R2.

6. CONCLUSION
We presented the characteristics of operational BI reporting

applications and showed that they need to issue queries over

virtual target schemas managed by an EII system that federates

distributed and heterogeneous data sources. We explained how

mega queries over these data sources occur due to the complexity

of source to target mappings, thereby raising a significant

challenge to EII query optimizers.

We then presented the main decisions taken in the design of the

query optimizer of the SAP Business Objects Data Federator

system in order to deal with mega queries. We first introduced a

new data structure for query plans, called Compact Query Plan

(CQP), and then presented two optimization techniques for finding

maximal source subqueries and reducing the result set of source

queries through Bind Join operations. These two techniques can

be run respectively in linear and polynomial time over CQP and

consume little memory. They are effective with respect to our goal

of minimizing the data processing set of a query, and enable

scalable optimization of mega queries.

Several other important aspects of query optimization for mega

queries have not been covered in this paper and are just outlined

here. First is the use of semi-join reduction to enable dynamic

optimization in presence of fragmented data in the sources

(expressed via union operation in a CQP). Second is the

optimization of the statements generated by a wrapper to a data

source taking into account the capabilities of the underlying query

engine of the data source (in particular mitigation of complex

source queries). Third is the estimation and computation of

statistics.

7. ACKNOWLEDGMENTS
The authors want to thank the members of the Data Federator

engineering team for their contribution to the overall system and

more specifically Raja Agrawal, Benoit Chauveau, Cristian Saita,

Fei Sha, Mokrane Amzal, Florin Dragan, Aurelian Lavric, Jean-

Pierre Matsumoto, Ivan Mrak, and Mohamed Samy for their great

design and implementation effort on Data Federator Query Server.

We finally want to thank Dennis Shasha for his regular technical

contribution to the team.

8. REFERENCES
[1] Bernstein, P., Chiu, D. Using Semi-Joins to Solve Relational

Queries. Journal of the ACM, 28(1):2-40, 1981

[2] Bhargava, G., Goel, P., Bala, I. Efficient Processing of Outer

Joins and Aggregate Functions. In Proc. of Int. Conf on Data

Engineering (ICDE), 1996.

[3] Florescu, D., Levy, A., Manolescu, I., Suciu, D. Query

Optimization in the Presence of Limited Access Patterns. In

Proc. of ACM SIGMOD Conf. on Management of Data, 1999

[4] Galindo-Legaria, C., Rosenthal, A. Outerjoin Simplification

and Reordering for Query Optimization. In ACM

Transactions On Database Systems, 22(1), 1997.

[5] Halevy, A et al. Enterprise Information Integration :

Successes, Challenges, and Controversies. In Proc. of ACM

SIGMOD Int. Conf. on Management of Data, June 2005.

[6] Manolescu I., Bouganim L., Fabret, F., Simon, E.. Efficient

Querying of Distributed Resources in Mediators Systems,

Proc of Int Conf CoopIS, Irvine, CA, Oct 2002.

[7] Rajaraman, A., Sagiv, Y., Ullmann, J. Answering Queries

using Templates with Binding Patterns. In Proc. of the

Symposium on Principles of Database Systems (PODS), San

Jose, CA, 1995.

[8] Rao, J., et al. Using EELs, a Practical Approach to Outerjoin

and Antijoin Reordering. In Proc. of Int. Conf on Data

Engineering (ICDE), 2001.

[9] Rao, J., Pirahesh, A., Zuzarte, C. Canonical Abstraction for

Outerjoin Optimization. In Proc. of ACM SIGMOD Int. Conf.

on Management of Data, 2004.

