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ABSTRACT 

The goal of operational Business Intelligence (BI) is to help 

organizations improve the efficiency of their business by giving 

every “operational worker” insights needed to make better 

operational decisions, and aligning day-to-day operations with 

strategic goals. Operational BI reporting contributes to this goal by 

embedding analytics and reporting information into workflow 

applications so that the business user has all required information 

(contextual and business data) in order to make good decisions. 

EII systems facilitate the construction of operational BI reports by 

enabling the creation and querying of customized virtual database 

schemas over a set of distributed and heterogeneous data sources 

with a low TCO. Queries over these virtual databases feed the 

operational BI reports. We describe the characteristics of 

operational BI reporting applications and show that they increase 

the complexity of the source to target mapping defined between 

source data and virtual databases. We show that this complexity 

yields the execution of “mega queries”, i.e., queries with possible 

a 1,000 tables in their FROM clause. We present some key 

optimization methods that have been successfully implemented in 

SAP Business Objects Data Federator system to deal with mega 

queries.   

1. OPERATIONAL BI APPLICATIONS 
In this section, we describe the characteristics of operational BI 

applications and the requirements for operational BI reporting. 

1.1 Operational BI characteristics 
The goal of operational BI is to help organizations improve the 

efficiency of their business by: 

• giving every “operational worker” insights needed to 

make better operational decisions 

• aligning day-to-day operations with strategic goals 

While traditional BI focuses on tactical and strategic types of 

decisions to the intention of middle managers, information 

workers, executives, and senior managers, operational BI focuses 

on operational types of decisions for supervisors and operational 

workers.  

Operational Workers (aka Structured Task Workers) are typically 

bank clerks, call centre operators, nurses and people in supervisor 

roles (shop managers, bank managers, etc.) 

Operational decisions are decisions made by business users in 

day-to-day operations (e.g., handle a call in a call center; supervise 

the action of multiple agents, validate a purchase order; supervise 

a supply chain; etc). There, the goal is to give these users the most 

trusted and relevant information to improve their decisions. 

Studies show that most operational decisions are made by 

operational workers (70% of the decisions they make) while it 

represents less than  20% of  the decisions made by middle and 

above managers.   

Operational decisions have important characteristics. First, they 

are highly contextual. They are typically part of a business process 

(automated or not via business workflows) and they depend on 

rich contextual information such as the context associated with a 

particular processing step in the workflow, and the strategic goals 

to which the operational decisions must contribute (e.g., a forecast 

value of some KPI).  

Second, they are highly repeatable. The same type of decisions is 

made quite often, usually with the same premise but with a 

different context. For instance, the caller, her location, the reason 

for the call, etc are different although the type of action needed is 

a well registered procedure.  

Third, operational decisions have a small action distance. 

Decisions are made by those close to execution and the effect of 

action taken must be seen quickly by the operator who takes it but 

also by other operators because it may change the context in which 

subsequent decisions will be taken. 

Operational BI applications take place in a decision loop (also 

called lifecycle of business execution) with the following 

consecutive phases: 

• Awareness: handles process monitoring and operational 

intelligence 

• Insight: handles business intelligence and data mining 
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• Strategy: handles planning and budgeting, scorecards 

and goals, process modeling and optimization 

• Execution: handles process execution through enterprise 

applications and workflows 

Operational decisions cover the phases of execution and 

awareness. Operational BI creates the interface between these two 

phases and the two other phases.  

1.2 Operational BI reporting requirements 
Referring to the above phases of the decision loop, the area of 

focus of operational BI reporting is to link strategy to execution 

(i.e., use business goals business data to drive process execution, 

embed analytics and reporting information into workflow 

applications), and link awareness to insight (i.e., show impact of 

operational decisions, link operational and process metrics to 

business warehouse data).  

More specifically, the purpose of operational BI reporting is to 

present the business user with all required information (contextual 

and business) in order to make good decisions. Business data are 

dependent on the process instance (e.g., the caller or the purchase 

order) while contextual data reflect a more global situation (e.g., 

global KPI, business warehouse data). For instance, in a workflow 

for validation of a purchase order (especially in times of strong 

control of spending …), a typical operational BI report requires 

business data (e.g. the data associated with the submitted 

purchase order), and contextual data (what needs to be verified; 

what is the strategic goal) that may depend on the type of order.  

Both business and contextual data reside in many different types 

of sources. Business data are typically in flat files, OLTP systems, 

Enterprise Resource Planning (ERP) applications, or streams. 

Contextual data are usually in spreadsheets, Data Warehouses 

(DW) or Data Marts (DM), database servers or web services. The 

number of data sources for a given customer can also be large. 

Studies report that it is greater than 20 in 29% of the cases for 

very large corporations and 15% of the cases for large 

corporations, and varies between 5 and 20 in at least 34% of the 

cases.  

Highly repeatable decisions are captured through predefined 

reports (also called enterprise reports) that use BI tools to enable 

their fast deployment. These reports are based on highly 

parameterized queries (by means of prompted values to the 

business user) to the underlying data sources that contain business 

and contextual data. The fact that reports are predefined means 

that it is possible to know (or learn) all the queries that will be 

issued to feed the reports, a notable fact when we will come to 

query optimization later in this paper.  

Regarding small action distance, operational BI reports must 

reflect data with high accuracy and timeliness. Studies report 

timely data requirements of: intraday (46%), intrahour (25%), 

intraminute (7%). This typically concerns business data and raises 

the challenge of providing direct access to these data without 

staging them in intermediate data repositories.  

1.3 Operational BI reporting architecture 
A typical operational BI architecture deployed by SAP Business 

Objects at customer sites distinguishes three main logical layers: 

•  a Data Source layer that comprises all the required data 

sources needed by operational BI reporting 

• a Semantic Layer, that provides a layer of virtual 

“business objects”, called a “universe” in Business 

Objects terminology, that can be easily composed to 

build reports 

• a Consumption Layer that comprises multiple client 

tools such as reporting, dashboards, planning, data 

explorer, etc.  

The Semantic Layer and the Consumption Layer are packaged into 

a single Business Suite. The semantic layer itself offers the 

following layered functionalities:  

• a data access functionality standing at the bottom level, 

which provides a unified interface to retrieve metadata 

and query the set of distributed and heterogeneous data 

sources 

• a data foundation functionality standing at the middle 

level, which enables the creation of multiple entity-

relationship models from the metadata exposed by the 

data access layer 

• a business object functionality, which enables the 

creation of so-called “business objects” (such as 

measures, dimensions, details, etc) that can be freely 

composed to create ad-hoc (BO) user queries 

consumable by the consumption tools (e.g., reporting or 

dashboarding  tools).  

In order to facilitate the fast deployment of operational BI reports, 

the Semantic Layer must provide fast means to create data models 

from multiple data sources without having for instance to require 

the development of intermediate data marts. Enterprise 

Information Integration (EII) systems [5], also called mediation 

systems, play a key role in the architecture of the Semantic Layer 

because they enable the creation and querying of virtual databases, 

henceforth called target schemas, over a set of distributed and 

heterogeneous data sources with a low TCO (Total Cost of 

Ownership). Within SAP Business Objects offering, the EII 

system is named Data Federator.  

2. EII SYSTEMS FOR OPERATIONAL BI 
In this section, we focus on the requirements conveyed by 

operational BI applications on EII systems.  

2.1 Preliminaries on EII systems 
An EII system is a middleware that includes wrappers and a query 

engine. Wrappers expose the metadata relational schema of the 

data sources called source tables. A wrapper describes also the 

capabilities of the underlying data source in terms of SQL query 

processing over the source tables. This model must be sufficiently 

powerful to capture the sometimes subtle limitations of SQL 

support in a data source (typically for systems like Progress and 

SAS, for instance). The Query Engine (QE) provides a SQL 

interface to express multi-source queries referring to source tables 

or target tables (i.e., tables belonging to target schemas).   

At the time of creation of a target schema, a source to target 

mapping is created between the source tables and the target tables 



belonging to a given target schema. An arbitrary number of 

intermediate target tables can be used within this mapping to 

facilitate its definition.   

At the time of execution of a multi-source SQL query by the Query 

Engine, the query is first unfolded using the mapping definition of 

the target tables and then decomposed into a set of subqueries, 

that are processed by the wrappers, and an assembly query that is 

processed by the QE using the results returned by the subqueries. 

This decomposition is called a query processing plan.  

2.2 Target Schemas 
It is important to keep in mind that a target schema is entirely 

driven by the reporting requirements that it must serve, so its 

design follows a top-down approach. Thus, the target schema is 

created before the mapping actually occurs.  

In operational BI reporting applications, target schemas often have 

a “star”-like configuration, which distinguish fact tables from 

dimension tables. Fact tables can either be measures (in the 

traditional sense of multi-dimensional data modeling) such as 

sales-unit, or sales-dollar, or entity data that are described using 

multiple dimensions, such as a customer or an archive box. 

Indeed, customer data can be a subject of analysis that is described 

using different dimensions (location, organization, market 

position,…). So, a customer is not necessarily a dimension, this 

depends on the viewpoint of the business process to which the 

operational BI model is associated with. Finally, dimension tables 

are frequently de-normalized because these tables are virtual read-

only tables and it makes no sense from a reporting point of view to 

decompose them in smaller tables.  

2.3 Complex Source to Target Mappings 
In our experience, we have observed three main sources of 

complexity for target schemas in operational BI reporting: (i) 

source data fragmentation, (ii) complex logic for contextual 

information, and (iii) data cleaning operations.  

First, source data are frequently fragmented even if the reasons 

vary from one customer to the other. Consider for instance a 

Customer dimension table with attributes such as ID, name, 

address, home-phone, nation-name, etc. Vertical partitioning may 

occur because the attributes of a customer originate from multiple 

source tables (e.g., detailed data coming from Cust-support). Then 

horizontal partitioning may occur because the source tables have 

been partitioned into multiple databases. For instance, Customer 

data can be co-located with orders data while customer support 

data can be partitioned into regional databases. In this example, 

this means that the mapping definition of the Customer table will 

include a first level of union operations to address horizontal 

partitioning and then a level of join operations (join, outer joins) 

to address vertical partitioning.  

Master databases may reduce the complexity created by 

fragmentation because centralized consolidated tables (the master 

tables) can be leveraged. This occurs typically for dimension data 

such as a Customer table. However, it does not eliminate data 

fragmentation. First, not all data about a customer are kept in a 

customer master table and additional data can be aggregated on 

demand. Second, lookup tables need sometimes to be built to keep 

the relationships between the master table and the “original” 

source tables from which the master table has been built. Indeed, 

applications may continue using the original tables instead of the 

consolidated master tables. These lookup tables are usually co-

located with the original source tables. Third, fact tables also rely 

on fragmented source data, as our previous example showed.  

A second source of complexity is the complex logic that can be 

associated with a fact table, especially when it represents 

contextual information. Indeed, contextual information may 

consist of business indicators that are not readily available in the 

underlying data sources but that require some computation. 

Consider for instance, a fact table called Box_Destruction that 

describes all the archive boxes that are eligible for destruction. 

The data sources store information about archive boxes (for short, 

called boxes), their customer, the organization within the 

customer, etc. However, the notion of a box eligible to destruction 

is a business notion that needs to be computed. In this example, a 

box must be preserved if it has not passed its expiration date or:  

Case 1: it is on hold by the company or 

Case 3: it is on hold by the parent company or 

Case 3: it is on hold by a division or  

Case 3: it is on hold by a department 

Each case yields an intermediate target table involving joins or left 

outer joins and selections, and the union of these target tables 

forms all the “box on hold” cases in a Box_Hold table. Finally, the 

Box_Destruction tuples are obtained by taking the boxes that are 

“not in” the Box_Hold table, which again could be implemented 

by a left-outer join operation. So, the computation of the 

Box_Destruction table requires an interleaved combination of 

joins, left outer joins, selections and unions. In addition, if box 

data are fragmented using horizontal partitioning. This 

computation must be done for each partition and then a final union 

will yield the result.  

Finally, a third source of complexity is the necessity to perform 

some data cleaning operations to enable the relationship between 

data from different sources and to guarantee the accuracy of the 

target data. The cleaning issues addressed by the EII mapping 

must be translatable into tuple-transformations, which means that 

the transformation operations can be applied to each tuple 

individually. Hence, issues such as duplicate elimination are not 

considered here and are usually addressed elsewhere (either the 

source data are cleaned before hand or a clean database has been 

created using an ETL tool). The impact on source to target 

mappings is the presence of multiple evaluation expressions (aka 

functional expressions) including case-when expressions and 

string manipulation functions.  

3. THE CHALLENGE OF MEGA QUERIES 
We first introduce mega queries and explain how they may occur. 

We then introduce the notion of data processing set as our main 

optimization goal and explain its rationale.   

3.1 Mega Queries 
Mega queries are SQL queries which reference a large number of 

source tables (several hundreds to more than a thousands) in their 



FROM clause. Such queries can be issued by operational BI 

reports as a result of the complexity of the source to target 

mappings used to define the underlying target schemas. This 

however does not equate to a comparable number of joins since 

horizontal partitioning also creates many union operations.  

Building upon our previous examples taken from a customer use 

case, there are more than 300 databases of up to 100 GB each of 

which containing source data about archive boxes. There is a 

central master database that holds dimension data such as 

customer and customer’s organization. All the data about the 

boxes and their contents is horizontally partitioned over about 80 

different databases within each region. The data about the 

warehouses is also horizontally partitioned over 10 different 

databases.  

In a business process workflow, an operational BI report requires 

business data that describe detailed customer information 

associated with boxes eligible to destruction and the warehouses 

where the boxes are kept. There is also the possibility of drilling 

down into a particular archive box to see the list of files stored.  

The target schema exposed for this operational BI report contains 

tables such as Customer, Box_Destruction, Warehouse, Files. The 

query used to report information on boxes eligible for destruction 

is merely expressed by joining target tables Customer, 

Box_Destruction, and Warehouse. Customer has a simple 

mapping from the master database that mixes customer and 

organization data. Box_Destruction has a complex mapping 

sketched in the previous section. Finally, Warehouse also has a 

simple mapping. However, after unfolding, the query references 

over 1,000 source tables from more than 80 different databases.  

Indeed, each case for defining Box_Hold involves 3 to 5 joins, so a 

total of about 15 tables for each partition. This gets multiplied by 

the number of roughly 80 partitions, yielding a total of 1,200 

tables. Then, a total of roughly 15 tables is added for the 

warehouse and master data. The filters that make this query 

narrow are a filter on a customer ID and a region.  

3.2 Data Processing Set 
As mentioned before, in an EII system, a query processing plan P 

(or query processing tree) for a query Q is composed of the 

following macro-components: 

• subqueries from the data sources, noted SQ, sometimes 

called “data providers” (we shall denote [SQ]S a 

subquery SQ on source S), 

• an assembly query AQ run in the EII Query Engine 

We introduce the notion of data processing set for a query plan P 

of query Q, noted dps(P(Q)), as the number of rows that are read 

from the data sources by the EII Query Engine in order to 

complete the processing of AQ.  

First, we define the data processing set of a subquery SQi, noted 

dps(P(Q), SQi), as the number of rows returned by SQi in query 

plan P(Q). If N is the number of subqueries in P(Q), we have: 

∑
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3.3 Narrow Queries 
We have observed that many queries for operational BI reporting 

are “narrow” queries, which means that their data processing set 

can be quite small although the source tables that they reference 

can be very large. For instance, some fact tables issued from large 

data warehouses such as Teradata or Netezza databases can be 

extremely large.  

The reason for narrow queries is that highly repeatable decisions 

in workflow processes are typically captured by highly 

parameterized queries in the operational BI reports. Usually, the 

query parameters represent filters on dimension tables such as a 

customer ID value, a region, a quarter or a range of dates, a 

product ID, etc. One of these filters is usually quite selective 

because it corresponds to the specific context of a particular 

instance of a business process. For instance, the customer ID of 

the caller in a self-service system will be specific although the 

region where the customer belongs is not. In the customer use case 

above dealing with archive boxes, 60% of the mega queries 

reference more than 300 tables, while 12% reference more than 

1,000 tables. However, 83% of the mega queries were narrow 

queries that could be optimized and processed in a range of 20 s to 

2 minutes. 

Narrow operational BI queries are allowed to query production 

systems (e.g., OLTP or ERP systems) for accessing their business 

data because they generally issue small read transactions. Thus, 

they are not causing problems in workload balancing.  

In addition, a notable proportion of the queries return a small 

result set because operational workers need condensed and canned 

information to take decisions. Progressively, we also see mobile 

operational workers which use mobile devices to display their 

analytics and BI reports using specific interactive graphical 

widgets.    

3.4 Optimization Goal and Challenge 
Our optimization goal is to find a query plan P for Q that has the 

smallest dps(P(Q)). This goal does not guarantee that we produce 

the cheapest query processing plan but it provides a good 

approximation for two main reasons. Firstly, data transfer turns 

out to be a dominant cost factor in query processing in an EII, so it 

is imperative to limit it. This is particularly true for operational BI 

queries that may access very large tables. Secondly, in all cases 

where there exists a query plan with a small data processing set 

(for narrow queries), it is important to find such a plan because 

then the assembly query can be run extremely fast without 

worrying too much about further ordering of operations. On the 

contrary, missing a plan with a small data processing set can be 

dramatic in terms of performance.  

A main challenge for a query optimizer is the size of the search 

space created by a mega query. Conventional techniques using 

rule–based optimization, whereby rewriting rules are recursively 

considered for application starting from the root node of a query 

plan, do not apply because they do not scale both in time and 

space.  Similarly, dynamic programming techniques for join re-

ordering do not scale on mega queries although they may work on 

smaller (partial) plans. In our previous implementation based on 

conventional query optimization design principles, our optimizer 

would take hours to optimize a query when it was not eventually 

running out of memory. Over simplifying the optimization rules 



would be insufficient because then we would miss our 

optimization goal.  

4. OPTIMIZE THE OPTIMIZER!  
We first needed to radically change the way our query optimizer 

works in order to address the complexity of mega queries.  In this 

section, we present our two main design decisions, that is, the 

decomposition of the optimization process into sequential stages 

and the design of a new compact representation of a query plan 

that significantly reduces the cost of query optimization with 

respect to our optimization goal. Other important decisions such as 

when and how to collect statistics and how to propagate them are 

left out of this paper.    

4.1 Decompose optimization in stages 
We first decomposed the optimization into successive “stages” 

where each stage focuses on a particular type of optimization. Our 

optimization stages are processed sequentially and only once. 

They are designed with two objectives: (i) guarantee a low worst 

case time complexity (linear or polynomial), and (ii) low memory 

consumption, in particular favor “in place” transformations to 

avoid the cloning of plans, which is very costly in memory space. 

In this paper, we only discuss the following stages: 

• Simplification and push-down of operations 

• Searching for maximal subqueries  

• Semi-join data provider reduction  

Query simplification techniques perform transformations such as 

the removal of useless duplicate columns in DISTINCT or 

GROUP BY clauses, the removal of ORDER BY operators, the 

replacement of UNION DISTINCT by UNION ALL, the removal 

of useless columns/expressions that are not used /projected in the 

upper part of a query plan, the grouping of common expressions, 

etc. In particular, we make two assumptions: 

• Useless LOJ are removed: if we have R LOJ S with an 

equality condition on S primary key columns and no 

column of S is used in the upper part of the plan the LOJ 

is removed.  

• False LOJ are transformed into Joins: if we have R LOJ 

S followed by a null rejecting filter on a column of S 

then the LOJ is transformed into a Join.  

The push down of operations is done by exploiting the standard 

commutativity and associativity properties of operators, in 

particular for filters, evaluations, aggregates and unions [2], [4], 

[8], [9]. Important properties to exploit during these 

transformations are the dependencies between variables, variable 

equivalence for transitive propagation, and behavior with respect 

to null values. These transformations are quite important because 

they prepare the work for the computation of maximal source 

subqueries.  

4.2 Compact Query Plan 
Our second decision to address the scalability problem of mega 

queries is to perform our optimizations on a compact 

representation of a query plan, called Compact Query Plan (CQP). 

We first introduce a couple of useful notions.  

If Exp(x1, …xn) denotes a condition in conjunctive normal form 

with variables x1 to xn, then Exp is said to be null rejecting if for 

each i, 1 < i < n, (xi = null) implies that Exp(x1, …xn) evaluates 

to false. Otherwise, Exp is said to be a null accepting condition. 

By extension, if an LOJ (resp. FOJ) has a condition that is null 

accepting, then the LOJ (resp. FOJ) is said to be null accepting.  

Let Eval(x1, …xn) denote an evaluation operation with variables 

x1 to xn, then Eval is said to be a null propagating evaluation 

operation if there exists i, 1 < i <n, such that (xi = null) implies 

that Eval(x1, …xn) evaluates to null. Finer sufficient conditions 

are used in practice but these details are left out of the scope of 

this paper. 

A CQP distinguishes three types of nodes: 

• Abstract node: contains a query plan restricted to the 

following operators: Cartesian product (C), Filter (F), 

Evaluation (E), Left Outer Join (LOJ)1 and Full Outer 

Join (FOJ) that are null rejecting.  

• Singleton node: contains one of the following operators: 

Aggregate Group by (A), FOJ that are null accepting 

(FOJnull), Order by (O), and set-oriented operations like 

Unions (U) and Minus (M). 

•  Source node: contains a subquery to a data source.  

Before describing the construction of a CQP from a query plan, we 

introduce a few notions.   

Let (N1, …, Nk) be a descending path in a query plan such that 

Nk is a source table or Nk is in {A, O, FOJnull, U, M}, and for 

each i, 1 ≤ i ≤ k-1, (i) Ni is in {C, E, F} or (ii) Ni = LOJ and Ni+1 

is the outer side of Ni. Then P = (N1, …, Nk-1) is said to be a 

LOJ preserved path in the query plan.  

If (N1, …, Nk) is path such that P = (N1, …, Nk-1) is an LOJ 

preserved path and Nk is a singleton node then we associate a 

variable node with P that contains the set of output variables of 

node Nk.     

We also introduce the notion of FOJ preserved path. Let P = (N1, 

…, Nk) be a descending path in a query plan such that N1 and Nk 

are FOJ, and for each i, 2 ≤ i ≤ k-1, Ni is either (i) an FOJ or (ii) a 

null propagating evaluation node, or (iii) Ni is a null rejecting LOJ 

and Ni+1 is the outer side of Ni. Then P is said to be an FOJ 

preserved path in the query plan.   

If P = (N1, …, Nk) is an FOJ preserved path and N, N’ are the 

child singleton nodes of Nk, then we associate a variable node 

with P that contains the set of output variables of N and N’.  

BUILD COMPACT QUERY PLAN 

Input: an (original) query plan 

Output: a compact query plan 

Method: traverse the original query plan from its root in a depth 

first, left to right descending manner as follows: 

Case 1: If an operator A, O, FOJnull, U or M is encountered in the 

query plan, then a singleton node N is formed in CQP. Its parent 

node (if it is not the root) in the CQP is the node of the CQP that 

contains the parent of N in the original query plan.   

                                                             
1 Right outer joins are modeled using LOJ and joins are modeled using C and 

F.  



Case 2: if an operator in {E, C, F, LOJ, FOJ} is encountered in the 

query plan it forms the root, called rootAN, of an abstract node 

AN which is built using the following rules: 

1. if rootAN is not an FOJ, all maximal LOJ preserved 

paths2 rooted at rootAN form an additional block 

expression of AN. 

2. if rootAN is an FOJ, all maximal FOJ preserved paths3 

rooted at rootAN form an additional FOJ block of AN. 

3. if N is an FOJ node that is a child of a node of any block 

expression of AN, all maximal FOJ preserved paths 

rooted at N form an additional FOJ block of AN. 

4. if N is the non outer side node of an LOJ node of any 

block expression of AN and N is in {E, C, F, LOJ}, all 

maximal LOJ preserved paths rooted at N form an 

additional block expression of AN 

5. if N is a child node of any block FOJ of AN and N is in 

{E, C, F, LOJ}, all maximal LOJ preserved paths rooted 

at N form an additional block expression of AN. 

6. if N is a singleton node that is the non outer side of an 

LOJ node of a (expression or FOJ) block, then a variable 

node containing all the output variables of N is 

associated with the LOJ node. 

7. if N is a singleton node and N is a child node of an FOJ 

block, then a variable node containing all the output 

variables of N is associated with the FOJ block.  

The parent node (if it is not the root) of an abstract node AN is the 

node of the CQP that contains the parent node of rootAN in the 

original query plan.  

Case 3: if a scan operator of a source table is encountered then a 

source node N is formed in the CQP. Its parent node in the CQP is 

the node of the CQP that contains the parent of N in the original 

query plan.   

Finally, we remove from each (expression or FOJ) block the null 

rejecting LOJ operators (together with their associated variable 

node) and add them as new individual LOJ blocks in the abstract 

node.  

END – BUILD COMPACT QUERY PLAN 

Thus, each abstract node has the following constituents: a set of 

Block Expressions (BE) containing a set of paths, a set of FOJ 

blocks (BFOJ) also containing a set of paths, and a set of LOJ 

blocks. Rules 6 and 7 above add variable nodes to a block. 

Informally, the variable nodes of a block represent the variables 

that come from outside the abstract node that contains the block.  

A block expression is internally represented by a variable 

dependency graph, a DAG that connects the sets of evaluation 

variables, filters, LOJ conditions, and variables of the variable 

nodes. Similarly, a variable dependency graph is used for FOJ 

blocks.  

EXAMPLE 1: Applying BUILD COMPACT QUERY PLAN on 

the query plan of Figure 1, we first get a singleton node (Order 

                                                             
2 Including the variable nodes of the maximal paths.  

3 Including the variable nodes of the maximal paths.  

By), then an abstract node AN consisting of one block expression 

B1 (via rule 1 above) and an FOJ block (via rule 3 above). Then 

we extract the two null rejecting LOJ to get blocks B2 and B4. 

Note that the LOJ node inside B1 is a null accepting LOJ. Finally, 

each source table will form a source node.  

The variable nodes of B1 contain all the variables coming from T1 

and T2 (via their preserved paths). The variables nodes of B3 

contain all the variables coming from T3 and T4 (via JOJ 

preserved path) and the variables coming T6 (via rule 7 above) � 

 

Figure 1: Abstract node in a query plan 

In the example of the archive boxes given earlier, the CQP for the 

query that retrieves the boxes eligible to destruction has about 600 

nodes due to the presence of many union nodes.  

4.3 Execution Plan for an Abstract Node 
Precedence relationships determine the ordering constraints under 

which the blocks of an abstract node can be executed. They are 

represented by precedence links, noted p-links, which describe 

variable propagation flows between nodes up to the rootAN of the 

abstract node. The definition of p-links derive from the standard 

properties of relational operators: associativity and commutativity 

of joins, associativity of  FOJ, pseudo-associativity of LOJ and 

joins, asscoiativity of LOJ, pseudo-associativity of LOJ and FOJ. 

Let AN be an abstract node, P-links are defined as follows: 

• if N is the root node of an FOJ block B and N’ is the 

parent node of N in the original query plan, then (i) if N’ 

belongs to an FOJ or LOJ block4 then there is a p-link B 

→ N’, otherwise (ii) there is a p-link B → B’ where B’ 

is the block expression containing N’.    

• if N is the root node of a block expression B and N’ is 

the parent node of N in the original query plan, then if 

N’ belongs to an FOJ block B’ then there is a p-link B 

→ B’  

                                                             
4 Necessarily on the non outer side of N’ 



The semantics of a p-link B1→ B2 is that B1 must be completely 

computed before B2 can consume the output variables of B1. 

Thus, a p-link creates a blocker in the pipelined evaluation of the 

nodes.  

EXAMPLE 2: in the abstract node of Figure 1, we have only one 

p-link: B3→ B1 � 

Let AN be an abstract node, and B1 and B2 be two (expression or 

FOJ) blocks of AN.  The variables of B1 can be propagated to B2 

if either (i) there is a p-link B1→ B2, or (ii) there exists an LOJ 

block B3 such that there is a p-link B1→ B3, and the preserved 

variables of B3 can be propagated to B2, or (iii) there exists a 

block B3 distinct from an LOJ block such that the variables of B1 

can be propagated to B3 and the variables of B3 can be propagated 

to B2.  

If B is a (expression or FOJ) block then the output variables of B  

is the union of the set of variables that can be propagated to B and 

the set of variables created in B (through evaluation nodes). 

A valid execution plan AnP for an abstract node is a tree whose 

nodes are either block expressions of FOJ blocks. Supposing that 

all LOJ blocks are attached to a (expression of FOJ) block that 

provides all the preserved variables of the LOJ, AnP is defined as 

follows: 

• Leaf node: a (expression or FOJ) block is a leaf node of 

a query plan AnP if all its (used) variables are contained 

in its variable nodes. 

• Intermediate node: a (expression or FOJ) block B is a 

parent node of B1, …, Bp if all its (used) variables are 

contained either in its variable nodes or in the set of 

output of B1, …, Bp.  

EXAMPLE 3: In the abstract node AN associated with the query 

plan of Figure 1, the only leaf node is B3. Then B1 is an 

intermediate node. Block B4 can only be attached to B3 while B2 

can be either attached to B1 or B3. � 

5. OPTIMIZATION TECHNIQUES  
In this section, we present two main techniques that have proved 

to be the most effective to find a query plan with a small data 

processing set: create maximal source subqueries, and use semi-

join reductions. We show how these techniques take advantage of 

a Compact Query Plan to handle the complexity of mega queries. 

5.1 Maximal Source Subqueries in a CQP 
There is an optimization stage devoted to the construction of 

maximal source subqueries. As said earlier, this stage follows a 

stage of simplification and push-down transformations whereby 

singleton nodes of a CQP have been pushed down.  

5.1.1 Source capability model 
A key feature for enabling the construction of maximal subqueries 

is the capability model of the data sources. The model 

distinguishes between two types of capabilities: (1) SQL-based 

capabilities, which indicate the SQL operations supported by the 

data source independently from the tables and columns to which 

the operations apply, and (2) metadata-based capabilities, which 

overwrite a SQL capability depending on the tables and columns 

to which the operations are applied. In particular SQL-based 

capabilities describe the evaluations (functional expressions) that 

can be computed by a data source. This is quite important because 

as said earlier, source to target mappings contain many 

evaluations.  

5.1.2 Finding Maximal Subqueries 
We assume that we have as many colors as there are data sources 

plus two special colors NONE and UNKNOWN, and we use the 

colors to mark the nodes of the CQP. Initially, all source nodes are 

colored with the color of their sources.  

In what follows, we define a source subquery SQ to be analogous 

to an abstract node. So, it may consist of a set of blocks 

(expression, FOJ, LOJ), and a set of p-links.  

CQP MAXIMAL SUBQUERY 

Input: a CQP 

Output: a new CQP in which abstract nodes and source nodes have 

been modified  

Method: start from the source nodes of a CQP which are simple 

scans of source tables, and perform a bottom-up left to right 

traversal of a CQP. 

Case 1: if a singleton node N is encountered: 

1. If (i) its input nodes in the CQP all have a color C 

distinct from NONE, (ii) N satisfies the source 

capabilities of source C, and (iii) it is profitable to push 

N into C, then the tree rooted at N is moved to a source 

node of color C and the parent of N is examined 

2. Otherwise, mark N with color NONE and stop tree 

traversal from N  

Case 2: if an abstract node N is encountered then search for the 

maximal source subqueries that can be extracted from N, say SQ1, 

…, SQn.  

1. if there is a single SQ1 of color C that is equivalent to N 

then the tree rooted at N is moved to a new source node 

of color C and the parent of N is examined.  

2. otherwise, create n source nodes for the SQi subqueries, 

remove them from N, merge them with the subqueries 

associated with the source nodes input of N. Finally, 

mark N with a NONE color and stop tree traversal from 

N5.  

END – CQP MAXIMAL SUBQUERY 

The profitability condition used in Case 1 is a heuristics that 

considers multiple cases, for instance for a union singleton node, 

which is not always worth pushing. Details are beyond the scope 

of this paper.  

We now explain the search for maximal subqueries within an 

abstract node: 

ABSTRACT NODE MAXIMAL SUBQUERY 

                                                             
5 Subqueries can actually be “challenged” by marking them and continuing 

the bottom-up traversal of the CQP to see if further merges are possible, 
without affecting the linear complexity of the method (still a single 
traversal). Details are beyond the scope of this paper. 



Input: an abstract node AN 

Output: a set of source subqueries other than table scans, and a 

possibly new node AN’ where subqueries have been removed 

from the expression or FOJ blocks, empty blocks are removed, and 

LOJ blocks have been removed.  

Method: follows the following steps  

Step 1: Initialization  

For each (expression or FOJ) block that qualifies as a leaf node in 

a valid query plan, search for maximal subqueries SQ1, …, SQn. 

Using the same analysis as in Case 2 of the previous method, we 

end up with either a block of color C with a single associated 

subquery, or a block of color NONE with several associated 

subqueries. The output p-link of a block takes the color of its 

block.  

Step 2: bottom-up traversal of p-links and marking of all nodes 

Start from colored blocks and perform a bottom-up traversal of the 

graph of p-links until all blocks are either marked as NONE or 

UNKNOWN.  

Case 1: B is a colored block, there is a link B → B’ and the used 

variables of B’ are contained in the union of its variable nodes and 

its propagated variables. Search for maximal subqueries SQ1, …, 

SQn of B’: 

1. if there is a single SQ1 of color C that is equivalent to 

B’ then SQ1 is merged with the subqueries associated 

with the blocks that point to B’, and B’ is marked with 

color C.   

2. otherwise, the SQi subqueries are merged with the 

subqueries associated with the blocks that point to B’, 

and B’ is marked with color NONE. 

Case 2: B is a colored block, there is a link B → B’ and there are 

used variables of B’ that are not in the union of its variable nodes 

and its propagated variables. Search for maximal subqueries SQ1, 

…, SQn of B’. By assumption, there will be multiple subqueries 

SQi, (possibly with the same color C). Then, B’ is marked as 

UNKNOWN.  

Case 3: B is a colored block, there is a link B → B’ and B’ is an 

LOJ block. Then a subquery SQ of color C that contains all the 

variable on the outer join side of the LOJ is searched for6. If SQ is 

found in a block B’’ it is merged with the LOJ and the subquery 

associated with its input block. Block B’ is removed from AN. If 

there is a block that has an input p-link from B’’ and a color 

UNKNOWN, it must be revisited to see if it matches Case 17.   

Case 4: B is an LOJ block with no incoming p-link. This is similar 

to Case 3.  

Step 3: clean up abstract node, consisting of removing subqueries 

from their associated blocks and removing empty blocks. 

END – ABSTRACT NODE MAXIMAL SUBQUERY 

 We now introduce the last method for a block.  

                                                             
6 If it exists, the subquery SQ if it exists is unique 

7 Because propagation variables have been updated through the merge of the 
LOJ with SQ.  

BLOCK MAXIMAL SUBQUERY 

Input: a block B with colored variables in variable nodes and 

propagated variables 

Output: a set of source subqueries other than table scans, and a 

possibly new block B’ where subqueries have been removed from 

B.  

Method: traverse in a bottom-up manner the variable dependency 

graph of the block. At each node of this graph, if (i) its input 

variables have a same color C distinct from NONE 8, (ii) the node 

expression is compatible with the capabilities of C, and (iii) it is 

profitable to push the node expression into C, then the node is 

marked with C.  Otherwise, variable equivalences are used to find 

a set of input variables that would match condition (i). At the end 

all nodes of a same color C form a subquery (containing a sub-

block) for source C and all subqueries other than single table 

scans are returned.  

END – BLOCK MAXIMAL SUBQUERY 

The profitability condition of item (iii) above is a heuristics that 

aims to control that if two subqueries SQ1 and SQ2 of color C can 

be composed via a node into a subquery SQ of color C, then 

dps(SQ) ≤ dps(SQ1) + dps(SQ2).   

The complexity of the search of the maximal subqueries is linear 

in the number of nodes of a CQP, the number of blocks in an 

abstract node and the number of nodes in the variable dependency 

graph of a block.  

EXAMPLE 4: We illustrate the application of the method on the 

example of Figure 1. We apply ABSTRACT NODE MAXIMAL 

SUBQUERY to abstract node AN = {B1, B2, B3, B4}.  

On step1: B3 is the only leaf node and we search for its maximal 

subqueries using BLOCK MAXIMAL SUBQUERY. We get SQ0 

and SQ1 as table scans of T4 and T3 respectively, and [SQ2]S2 = 

{T3 FOJ T6}. Then B3 takes color NONE.  

On step 2: Case 2 applies to B1 and the search for maximal 

subqueries returns [SQ3]S1 = {F(T1 C T2))} and B1 is marked to 

UNKOWN. Then Case 4 applies to B4, SQ0 is merged with the 

LOJ to create [SQ4]S3 = {T4 LOJ T5} which is part of block B3, 

and B4 is removed. Since B3 → B1 and B1 is UNKNOWN it is 

examined but remains unchanged. Then Case 4 applies to B2, 

SQ1 is merged with the LOJ to create [SQ5]S2 = {T3 LOJ T7} 

which is part of B3, and B2 is removed. Again, since B3 → B1 

and B1 is UNKNOWN it is examined and is moved to NONE 

since it has all its variables.  

On step 3: B3 is transformed into {T3 FOJ T4}, B1 is transformed 

into {E(T2 LOJ T4)}.  

So ABSTRACT NODE MAXIMAL SUBQUERY returns AN’ = 

{B1, B3} with four subqueries. Finally, CQP MAXIMAL 

SUBQUERY resumes by creating three source nodes: SN1 is the 

result of the merge of T2, T1, and [SQ3]S1; SN2 is the result of 

the merge of T3, T6, [SQ2]S2, and [SQ5]S2; and SN3 is the result 

of the merge of T4, T5, and [SQ4]S3. This is illustrated on Figure 

2. � 

                                                             
8 Getting the color of a variable may recursively trigger the evaluation of the 

cases of method CQP MAXIMAL SUBQUERY  



 

Figure 2: Result of finding maximal subqueries in a CQP 

 

5.2 Semi-Join Reduction in a CQP 

5.2.1 Semi-Join Reduction and Bind Joins 
Semi-join reduction is a well-known method to execute joins in a 

distributed system [1].  

Suppose that you want to join two subqueries SQ1 and SQ2 from 

two distinct sources with a join predicate SQ1.A=SQ2.A. The 

semi-join reduction uses SQ1.A to generate a new subquery: 

SQ2’: SQ1.A SemiJoin (A=A) SQ2 

Then SQ1 will be joined with SQ’2 to produce the final result. 

Bind join operations also discussed in [3], [7] have been used as a 

means to implement semi-join reduction (e.g., in [6]). Reusing the 

previous example, a possible Bind Join implementation of SQ2’ is 

to: 

• collect distinct join attribute values from SQ1 (A values) 

into a cache node 

• create a parameterized query SQ2$ which adds a filter A 

= $A 

• generate as many execution of SQ2$ as there are A 

values in the cache by substituting the parameter $A 

with a value from the cache 

The principle of semi-join reduction is illustrated on Figure 3, 

where R denotes the left operand of the bind join operator (noted 

BJ). We say that the result of SQ1.A is a semi-join reducer for 

subquery SQ2. 

The effectiveness of this semi-join reduction depends on the 

number of distinct A values that will be returned by SQ1 and the 

number of records returned by each SQ2$ query as compared to 

the number of records returned by SQ2 (i.e., the cardinality of the 

result of SQ2). Thus, the decision to use a bind join depends on 

statistics on distinct values, and the ability to estimate the fan-out 

factor between SQ1.A and SQ2.A.   

We have implemented multiple versions of a Bind Join operator to 

handle multiple cases of semi-join reductions. In particular, 

Hybrid Bind Join is an implementation that adapts its behavior 

(hash join or bind join) depending on the size of the distinct 

values of the cache node. Their discussion is however out of the 

scope of this paper.  

5.2.2 Finding Semi-Join Reducers 
Given a CQP, the problem is to find all the bind joins that can 

possibly reduce the data processing set (dps) of all large 

subqueries so that the total dps of the CQP remains small.  

We first introduce the notion of variable reducer. Let V1 and V2 

be two variables of a CQP. Then V1 is said to be a reducer for V2 

if there exists a filter with a disjunctive term of the form V1 = V2 

or there exists an LOJ whose condition has a disjunctive term of 

the form V1 = V2 and V2 is a variable on the non outer side of the 

LOJ. The Reducer Set for a variable V1 contains all the variables 

for which V1 can be reducer. If V2 is in this set, we say that V2 is 

reducible by V1.  

 

Figure 3: Semi-join reduction using a Bind Join 

On the example of Figure 3, variable SQ1.A is a reducer for 

variable SQ2.A and conversely. Thus, Reducer Set for variable 

SQ1.A contains SQ2.A.  

BUILD VARIABLE REDUCERS 

Input: a CQP with a Variable Set containing the output variables 

of the CQP 

Output: a Variable Set containing all the used variables of CQP, 

and for each variable a Reducer Set that contains its variable 

reducers.  

Method: perform a top down depth first traversal of the CQP as 

follows. Initially, the Variable Set contains all output variables of 

the CQP and each variable has an empty Reducer Set.   

Case 1: If N is a union operator and V’ a variable in Variable Set, 

then variable input V of N that has been renamed as V’ is added 

to the Reducer Set and inherits the Reducer Set of V’.   



Case 2: If N is an aggregate and V is a group by variable of the 

Variable Set, then the input variable of N corresponding to V 

inherits the Reducer Set of V.  

Case 3: if an abstract node AN is encountered 

• If B is a block expression and V is a variable in the 

Variable Set output of B, each variable V’ that is a 

reducer for V is added to the Reducer Set of V together 

with its reducers, V’ is added to the Variable Set (if it 

does not exist) and the reducers of V are added to its 

Reducer Set 

• If B is an LOJ block expression and V is a variable in B 

then V is added to the Variable Set (if it does not exist) 

and each variable V’ that is a reducer for V is added to 

its Reducer Set together with the reducers of V’.   

• If B is a block expression and V is a variable of B that is 

not in the Variable Set output of B, then V is added to 

the Variable Set (if it does not exist) and each variable 

V’ that is a reducer for V is added to its Reducer Set 

together with the reducers of V’. 

Case 4: if a source node is encountered, nothing happens. 

Case 5: if an FOJnull node is encountered and x is an output 

variable of the node then x is removed from all existing Reducer 

Sets.    

END – BUILD VARIABLE REDUCERS 

We assume that for each node of a CQP, we know (estimate) 

whether the number of records produced by the node is either 

“small”, “big” or “unknown”9.  

We now introduce a few additional notions. We associate with 

each node N of a CQP an annotation composed of two sets: a 

Small Variable Set (SVS) and a Big Variable Set (BVS). The set 

SVS contains vectors of the form S[x1, …, xk] such that (i) S is an 

input node of N, and x1, …, xk are output variables of S, and (ii) 

the number of records produced by N is small. Similarly we define 

BVS as the set of vectors for input nodes of N that are expected to 

be big.  

We now define a reduction path associated with an abstract node 

as a path of nodes in a CQP whose meaning is that if N precedes 

N’ in the path then N is a reducer for N’. Reduction paths are 

computed in the main method below and are used to generate the 

cache nodes of Bind Joins.  

We can now present the general method to find semi-join reducers 

in a CQP. For the sake of clarity, this is a simplified version of the 

method actually implemented. Refinements do not however 

change the worst case polynomial complexity of the presented 

method which is in o(Np) where N is the number of source nodes 

and p is the height of the CQP.  

BUILD SEMI-JOIN REDUCTIONS 

Input: a CQP with its Variable Set and Reducer Set for each 

variable 

                                                             
9 The notions of “small” or “big” are parameters of the system managed by 

thresholds. “unknown” is a value between the two thresholds.  

Output: a CQP in which all semi-join reducers have been detected 

and integrated in abstract nodes. 

Method: use the following steps: 

Step 1: Build the annotations SVS and BVS for every source node 

of the CQP, and select a source node, InitNode, that has a small 

dps and whose output variables have at least a non empty Reducer 

Set10.   

Step 2: perform a bottom-up left to right traversal of the CQP 

starting from InitNode until no new node can be visited, as 

follows: 

Case 1: if a singleton node N is encountered: 

• if N is in {A, U, M, O}, the annotation and the vector 

for node N are computed in a straight forward manner 

and classified.   

• If N is an FOJnull node then stop traversal and select 

another InitNode (if any) to perform.   

Case 2: if an abstract node AN is encountered: 

1. Build (or update) the annotations for AN  

2. For each new vector S[x1, …, xk] of SVS(AN), find the vectors 

of BVS(AN) that are reducible from S[x1, …, xk], henceforth 

called  “big reducible” – see FIND BIG REDUCIBLE 

3. For each big reducible vector N’ found that is a source node and 

can be reduced by a vector N to become small, then move N’ from 

BVS(AN) to SVS(AN), add (N, N’) to the reduction path of AN 

ending at N (if any), and build Bind Join for N’ using reduction 

path from N to N’. 

4. If a new vector has been added to SVS(AN) then repeat until no 

new vector is found in SVS(AN):  

• find big reducible of each new vector of SVS(AN),  

• apply step 3 of Case 2.   

5. For each big reducible N’ is not a source node and for each 

variable v of N’ that is reduced by a variable of a vector N,  

• find the source nodes SN such that SN is big and v is an 

output variable of SN modulo variable renaming 

  if a (single) SN node is found without renaming 

o if the vector of SN is classified as small after 

reduction then update the annotation of SN 

and apply Step 2 of BUILD SEMI-JOIN 

REDUCTIONS from SN as an InitNode until 

node AN is encountered else return. 

  if multiple SN nodes are found modulo renaming 

o Perform a bottom up traversal of the CQP 

starting from all found SN nodes similarly to 

Step 2 of BUILD SEMI-JOIN REDUCTIONS 

except that a union node blocks the bottom up 

traversal until all its child node’s vectors have 

been updated with respect to the SN nodes 

found.  

• Update the annotation of AN  

                                                             
10 Select first the smallest dps and the largest number of reducers 



• Add (N, SN) to the reduction path of AN ending at N, 

and build bind join for SN using reduction path from N 

to SN.  

6. If a new vector has been added to SVS(AN) then: 

• find big reducible of the new vector of SVS(AN),  

• apply steps 3 to 6 of Case 2.   

7. Compute the vector for AN and classify it as big or small 

END – BUILD SEMI-JOIN REDUCTIONS 

We finally give two auxiliary methods used above.  

FIND BIG REDUCIBLE 

Input: a vector S[x1, …, xk], and a set BVS(N) 

Output: all vectors of BVS that are reducible from S[x1, …, xk], 

represented in a (big reducible) graph where nodes are vectors and 

there is an arc from N to N’ if N is a reducer for N’ 

Method: for each variable xi of S[x1, …, xk] search if there exists 

a variable y in the Reducer Set of xi such that y belongs to a vector 

N’[…, y, …] of BVS. If found then add vector N’ to the output 

graph and create an arc from S to N’.  

BUILD ANNOTATION SOURCE NODE 

Input: a source node SN associated with a subquery SQ 

Output: annotations SVS and BVS for SN 

Method: We use heuristics and statistics to identify if SQ is 

expected to return a small or large data processing set. If SQ is 

expected to be small then all its output variables are in a vector 

SN of SVS, otherwise they are in BVS. 

END – BUILD ANNOTATION SOURCE NODE 

BUILD BIND JOIN  

Input: reduction path from N to N’, source node N’ 

Output: an updated source node of N’ which contains a bind join 

between a cache node and N’ 

Method: build the maximal subquery covering the nodes of the 

input reduction path (this is done using the variable dependency 

graph) and take only the equality predicates that involve variables 

of N’. This subquery is then projected on the columns that are 

used in equality predicates with N’ with a DISTINCT clause. It is 

used to compute the cache node associated with N’. Finally the 

source node N’ is rewritten into a bind join between SQ and the 

cache node.  

END – BUILD BIND JOIN  

EXAMPLE 5: Consider the CQP of Figure 4. All source nodes 

have pairwise distinct data sources. Abstract nodes are 

represented in dotted lines. We assume that S1, R1, and R4 are 

estimated to be small source nodes, and all the others are expected 

to be big. We indicate output variables on top of each node. We 

sketch the application of BUILD SEMI-JOIN REDUCTIONS on the 

CQP.  

 

Figure 4: Example of a CQP 

Step 1 (R4): S1, R1, and R4 have an empty BVS and their SVS is 

as follows: SVS(S1) = {S1[x’31, x’32]}, SVS(R1) = {R1[x11, 

x12]}, SVS(R4) = {R4[x41, x42]}. Suppose InitNode is R4. 

Step2 (R4): AN2 is encountered. SVS(AN2) = {R4[x41, x42]}, 

and BVS(AN2) = {R5[x51], R6[x61, x62]}. R5[x51] is the single 

vector of BVS that is reducible from R4[x41, x42] because x51 

belongs to the Reducer Set of x42. Case 2.3 executes and 

assuming that the result of the join between R4 and R5 is small 

then R5 is moved from BVS to SVS, a reduction path (R4, R5) is 

created and a Bind Join is created in the source node R5. Case 2.5 

executes but does not yield anything. Finally, vector for AN2 is 

AN2[x41, x42, x51, x61, x62] and it is expected to be big 

Step 2 (R4): AG2 is encountered. Its vector is AG2[x61, x62, y2] 

and big.  

Step 2 (R4): AN0 is encountered. SVS(AN0) = {R1[x11, x12]}, 

and BVS(AN0) = {AG1[x31, y1],  AG2[x61, x62, y2]}. By Case 

2.2, AG2 is the only vector of BVS that is reducible from R1. By 

Case 2.5, v = x61 is the only variable of AG2 that is reduced by 

variable x11 of R1. The big source node with output variable x61 

is R6 and assuming that R6 becomes small by reduction x11 = 

x61, then we apply BUILD SEMI-JOIN REDUCTIONS from R6 up 

to AN0.  

Step 2 (R6): AN2 is encountered. SVS(AN2) = {R4[x41, x42], 

R5[x51], R6[x61, x62]}, and BVS(AN2) = {}. Assuming that the 

result of the LOJ x62 = x41 is small then vector AN2[x41, x42, 

x51, x61, x62] is small.  

Step 2 (R6): AG2 is encountered. Its vector is AG2[x61, x62, y2] 

and small. And this finishes the traversal from R2. 

Step 2 (R4): Annotation is updated: SVS(AN0) = {R1[x11, x12], 

AG2[x61, x62, y2]}, and BVS(AN0) = {AG1[x31, y1]}. (R1, R6) 

is added to the reduction path from R1 and a Bind Join is created 

in the source node for R6. Case 2.6 executes and AG1 is found as 

a big reducible from the new addition AG2 in SVS(AN0) via 

variable x62. Since AG1 is not a source node, Case 2.5 applies. 

We find two sources nodes S1 and S2 which, after renaming via 



the union, have x31 as output variable but only S2 is big. So we 

restart a variant of BUILD SEMI-JOIN REDUCTIONS from S2.  

Step 2 (S2): Union node is encountered, it’s a blocker. Since all 

child nodes vectors have been updated, vector U[x31, x32] is 

computed and is small.  

Step 2 (S2): AN1 is encountered. SVS(AN1) = {U[x31, x32]} and 

BVS(AN0) = {R2[x21, x22]}. Case 2.2 applies and R2 is 

reducible from U via x32. Since it is a source node, assuming that 

R2 becomes small after the reduction by U, then R2[x21, x22] is 

moved to SVS, a reduction path (U, R2) is added in AN1 and a 

Bind Join is created in the source node for R2.  

Step 2 (S2): AG1 is encountered. Its vector is small. This finishes 

the traversal from S2.  

Step 2 (R4): Annotation is updated: SVS(AN0) = {R1[x11, x12], 

AG2[x61, x62, y2], AG1[x31, y1]}, and BVS(AN0) = { }. A 

reduction path (AG2, S2) is added in AN0 and a Bind Join is 

created in the source node for S2. Case 2.6 does not yield results.  

All nodes of the CQP have been visited, so BUILD SEMI-JOIN 

REDUCTIONS terminates. In summary, all data sources have been 

reduced by semi-join and the following four bind joins have been 

created:  

(AG2 BJ S2); (U BJ R2); (R1 BJ R6); (R4 BJ R5)  � 

We now use the previous example to make a few observations and 

point out a few improvements of the method. First, suppose that 

there exists a new source node R7 that is big and is an input of 

AN2 with a predicate x52 = x71. Then the reduction path of AN2 

(R4, R5) will be extended into (R4, R5, R7) and would be used to 

compute a Bind Join on R7. Now suppose that R7 is small, then 

there would be another reduction path (R7, R5) in addition to (R4, 

R5) and these two paths could be used to build the Bind Join for 

R5 by building a cache node that contains the Cartesian product of 

the distinct values of x41 and x71. Finally, assume that the result 

of the reduction of S2 is uncertain (captured by a value 

“unknown” on the size of S2 after reduction), if R2 is known to be 

big it may be useful to create an Hybrid Bind Join for R2.  

6. CONCLUSION 
We presented the characteristics of operational BI reporting 

applications and showed that they need to issue queries over 

virtual target schemas managed by an EII system that federates 

distributed and heterogeneous data sources. We explained how 

mega queries over these data sources occur due to the complexity 

of source to target mappings, thereby raising a significant 

challenge to EII query optimizers.   

We then presented the main decisions taken in the design of the 

query optimizer of the SAP Business Objects Data Federator 

system in order to deal with mega queries. We first introduced a 

new data structure for query plans, called Compact Query Plan 

(CQP), and then presented two optimization techniques for finding 

maximal source subqueries and reducing the result set of source 

queries through Bind Join operations. These two techniques can 

be run respectively in linear and polynomial time over CQP and 

consume little memory. They are effective with respect to our goal 

of minimizing the data processing set of a query, and enable 

scalable optimization of mega queries.  

Several other important aspects of query optimization for mega 

queries have not been covered in this paper and are just outlined 

here. First is the use of semi-join reduction to enable dynamic 

optimization in presence of fragmented data in the sources 

(expressed via union operation in a CQP). Second is the 

optimization of the statements generated by a wrapper to a data 

source taking into account the capabilities of the underlying query 

engine of the data source (in particular mitigation of complex 

source queries). Third is the estimation and computation of 

statistics.   
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