
Correlation Maps: A Compressed Access Method for
Exploiting Soft Functional Dependencies

Hideaki Kimura George Huo Alexander Rasin Samuel Madden Stanley B. Zdonik
Brown University Google, Inc. Brown University MIT CSAIL Brown University

hkimura@cs.brown.edu ghuo@google.com alexr@cs.brown.edu srmadden@mit.edu sbz@cs.brown.edu

ABSTRACT
In relational query processing, there are generally two choices for
access paths when performing a predicate lookup for which no
clustered index is available. One option is to use an unclustered
index. Another is to perform a complete sequential scan of
the table. Many analytical workloads do not benefit from the
availability of unclustered indexes; the cost of random disk I/O
becomes prohibitive for all but the most selective queries.

It has been observed that a secondary index on an unclustered
attribute can perform well under certain conditions if the unclus-
tered attribute is correlated with a clustered index attribute [4].
The clustered index will co-locate values and the correlation will
localize access through the unclustered attribute to a subset of the
pages. In this paper, we show that in a real application (SDSS)
and widely used benchmark (TPC-H), there exist many cases of
attribute correlation that can be exploited to accelerate queries. We
also discuss a tool that can automatically suggest useful pairs of
correlated attributes. It does so using an analytical cost model
that we developed, which is novel in its awareness of the effects
of clustering and correlation.

Furthermore, we propose a data structure called a Correlation
Map (CM) that expresses the mapping between the correlated
attributes, acting much like a secondary index. The paper also
discusses how bucketing on the domains of both attributes in the
correlated attribute pair can dramatically reduce the size of the
CM to be potentially orders of magnitude smaller than that of a
secondary B+Tree index. This reduction in size allows us to create
a large number of CMs that improve performance for a wide range
of queries. The small size also reduces maintenance costs as we
demonstrate experimentally.

1. INTRODUCTION
Correlations appear in a wide range of domains, including

product catalogs, geographic databases, census data, and so on [4,
9]. For example, demographics (race, income, age, etc.) are
highly correlated with geography; price is highly correlated with
product industry; in the natural world, temperature, light, humidity,
energy, and other parameters are often highly correlated; in the
stock market, trends in one security are often closely related to
those of others in similar markets.

Recent years have seen the widespread recognition that corre-
lations can be effectively exploited to improve query processing
performance [4, 9, 21, 17, 7]. In particular, if a column C1 is
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correlated with another column C2 in table T , then it may be
possible to use access methods (such as clustered indexes) on C2

to evaluate predicates on C1, rather than using the access methods
available for C1 alone [4, 21, 17, 7].

In this paper, we focus on a broad class of correlations known
as soft functional dependencies (soft FDs), where the values of
an attribute are well-predicted by the values of another attribute.
For example, if we know that the value of city is Boston, we
know with high probability but not with certainty that the value of
state is Massachusetts (since there is a large city named Boston in
Massachusetts and a much smaller one in New Hampshire). Such
soft FDs are a generalization of hard FDs, where one attribute is a
perfect predictor of another attribute.

Previous work has observed that soft FDs can be exploited by in-
troducing additional predicates into queries [4, 7] when a predicate
over only one correlated attribute exists. For example, if a user runs
the query SELECT * FROM emp WHERE city=’boston’, we can
rewrite the query as

SELECT * FROM emp

WHERE city=’boston’

AND (state=’MA’ or state=’NH’)

This will allow the query optimizer to exploit access methods, such
as a clustered index on state, that it would not otherwise choose
for query processing. Estimating and improving the performance
of such secondary index lookups in the presence of correlations is
our primary goal in this work.

In this work, we make three principal contributions beyond
existing approaches: first, we describe a set of algorithms to
search for soft functional dependencies that can be exploited at
query execution time (e.g., by introducing appropriate predicates or
choosing a different index). Without such a mechanism it is difficult
for the query planner to identify predicates to introduce to exploit a
broad array of soft FDs. Our algorithms are more general than pre-
vious approaches like BHUNT [4] because we are able to exploit
correlations in both numeric and non-numeric (e.g. categorical)
domains. Our algorithms are also able to identify multi-attribute
functional dependencies, where two or more attributes A1 . . . An are
stronger determinants of the value of an attribute B than any of the
attributes in A1 . . . An alone. Consider a database of cities, states,
and zipcodes. The pair (city, state) is clearly a better predictor
of zipcode than city or state alone, as there are many cities in the
US named “Fairview” or “Springfield” but there is typically only
one city with a given name in a particular state.

Our second major contribution is to develop an analytical cost
model to predict the impact of data correlations on the performance
of secondary index look-ups. Although previous work has exam-
ined how correlations affect query selectivity, our cost model is
the first to describe actual query execution using statistics that are
practical to calculate on large data sets. Furthermore, the model is
general enough that we use it in our algorithms to search for soft
FDs as well as during query optimization. We show that this model
is a good match for real world performance.



Our third contribution is to observe that to effectively exploit
the correlations identified by any search algorithm (including ours
or those in previous work), it may be necessary to create a large
number of secondary indexes (one per pair of correlated attributes).
Such indexes can be quite large, consuming valuable buffer pool
space and dramatically slowing the performance of updates, possi-
bly obviating the advantages gained from correlations. We address
this concern by proposing a compressed index structure called a
correlation map, or CM, that compactly represents correlations.
By avoiding the need to store an index entry for every tuple and
by employing bucketing techniques, we are able to keep the size of
CMs to less than a megabyte even for multi-gigabyte tables, thus
allowing them to easily fit into RAM.

CMs are simply a mapping from each distinct value (not tuple)
u in the domain of an attribute Au to pages in another attribute Ac

that contain tuples co-occurring with u in the database. Given a
clustered attribute Ac (for which their exists a clustered index), we
call attribute Au the unclustered attribute. Queries over Au can
be answered by looking up the co-occurring values of u in the
clustered index on Ac to find matching tuples.

We also evaluate the effectiveness of exploiting correlated at-
tributes on several data sets, coming from TPC-H, eBay, and the
Sloan Digital Sky Survey (SDSS). We show that correlations signif-
icantly improve query processing performance on these workloads.
For example, we show that in a test benchmark with 39 queries
over the SDSS data set, we are able to obtain more than a 2x
performance improvement on 13 of the queries and greater than
16x improvement on 5 of the queries by building an appropriately
correlated clustered index on one of the tables. We then show
that CMs can capture these same gains during query processing
with orders of magnitude less storage overhead. We show that
maintenance of CMs (including overheads for recovery) slows the
performance of update queries dramatically less than traditional
B+Trees. For example, we find that in the Experiment 3 of
Section 7.2 with 10 CMs or unclustered B+Trees, CMs can sustain
an update rate of 900 tuples per second, whereas B+Trees are
limited to 29 per second, a factor of 30 improvement.
2. RELATED WORK

There is a substantial body of prior work on exploiting correla-
tions in query processing. One can view our work as an extension
of approaches from the field of semantic query optimization (SQO);
there has been a long history of work in this area [21, 8, 12, 19].
The basic idea is to exploit various types of integrity constraints—
either specified by the user or derived from the database—to
eliminate redundant query expressions or to find more selective
access paths during query optimization.

Previous SQO systems have studied several problems that bear
some resemblance to correlation maps. Cheng et al. [17] describe
predicate introduction as one of their optimizations (which was
originally proposed by Chakravarthy et al [21] and is the same
technique we use in rewriting queries), in which the SQO injects
new predicates in the WHERE clause of a query based on constraints
that it can infer about relevant table attributes; in this case they use
logical or algebraic constraints (as in Gryz et al. [7]) to identify
candidate predicates to insert.

BHUNT [4] also explores the discovery of soft constraints,
focusing on algebraic constraints between pairs of attributes. The
authors explain how to use such constraints to discover access
paths during query optimization. For example, the distribution of
(delivery date – ship date) in a sales database may cluster
around a few common values – roughly 4 days for standard UPS, 2
days for air shipping, etc, that represent “bumps” in delivery dates
relative to ship dates. The idea is a generalization of work by Gryz

et al. [7], who propose a technique for deriving “check constraints,”
which are basically linear correlations between attributes with error
bounds (e.g., salary = age∗1k±20k). Godfrey et al. [15] have also
looked at discovering and utilizing “statistical soft constraints” are
similar to bumps with confidence measures in BHUNT.

If the widths of the bumps are chosen wisely, BHUNT can
capture many algebraic relationships between numeric columns.
The authors describe how such constraints can be included in the
WHERE clause in a query to allow the optimizer to use alternative ac-
cess paths (for example, by adding predicates like deliveryDate
BETWEEN shipDate+1 and shipDate+3). Like BHUNT, CMs
also are used to identify constraints that can be used to optimize
query execution. Unlike BHUNT, CMs are more general because
they are not limited to algebraic relations over ordered domains
(e.g., BHUNT cannot find correlations between states and zip
codes). BHUNT also does not address multi-dimensional corre-
lations or bucketing, which are a key focus of this paper.

The CORDS system in IBM DB2 [9] builds on the work of
BHUNT by introducing a more sophisticated measure of attribute-
pair correlation that captures non-numeric domains. CORDS
calculates statistics over samples of data from pairs of attributes
that satisfy heuristic pruning rules, and it determines soft (nearly
unique) keys, soft FDs, and other degrees of correlation. CMs
and CORDS are similar in their measure of soft FD strength
and their use of a query training set to limit the search space
over candidate attribute sets. Relative to CORDS, our work adds
our compressed correlation map structure (CMs), a complete cost
model and set of methods to exploit the discovered correlations
in query processing using CMs or secondary indices, and a set
of techniques to recommend secondary indices / CMs to build.
CORDS, on the other hand, focuses on using correlation statistics
to improve selectivity estimation during query optimization, and it
does not examine how to maintain the information necessary for
use during query execution. CORDS also does not find multi-
dimensional correlations or explore bucketing. Oracle 11g and
PostgreSQL have related statistics [3, 2], but they are used only
for choosing execution plans, too.

Chen et al. describe an approach called ADC Clustering that
is related in that it addresses the poor performance of secondary
indexes in data warehousing applications [22]. ADC Clustering
aims to improve the performance of queries in a star schema by
physically concatenating the values of commonly queried dimen-
sion columns that have restrictions into a new fact table, and
then sorting on that concatenation. Though correlations in the
underlying data play a major role in the performance of their
approach, ADC Clustering does not directly measure correlations
or model how they affect query performance.

When paired with an appropriate clustered index, a CM on an
unclustered attribute may replace a much larger secondary index
structure (such as a B+Tree or bitmap index) by serving as a lossy
representation of the index. There has been work on approximate
bitmap index structures (e.g. [20]), where Bloom filters are used to
determine which tuple IDs may contain a particular attribute value.
These techniques do not achieve as much compression as CMs
because they represent maps of tuples instead of values. Also, false
positives in approximate bitmaps will result in a randomly scattered
set of records that may match a given lookup, whereas bucketing in
CMs results in a contiguous range of clustered attribute records that
may match a lookup. Work on approximate bitmaps also does not
discuss how to choose the index size (the bin width, in our work)
to preserve correlations, as we do. Existing work on non-lossy
index compression, such as prefix compression [18] cannot achieve
anywhere near the same compression gains; our experiments with



gzip and index compression on our data sets suggest they yield
typical size reductions factors of 3–4.

Microsoft SQL Server has a similar technique called datetime
correlation optimization [1]. It maintains a small materialized view
to store co-occurring values of two datetime columns. When one
of the datetime columns is the clustered index key and the other
is predicated in a query, the MV is internally used to infer an
additional predicate on the clustered index. Though the approach
is related to ours, it is unable to capture general correlations. For
example, SQL Server is unable to exploit the state-city correlation
described in Figure 4 because it supports only datetime columns.
In data-warehouse queries, it is unusual for both the clustered key
and predicated key to have datetime types. Second, it cannot
capture multi-attribute correlations. For example, the (longitude,
latitude)→zipcode example described in Section 6 is inexpressible
by SQL Server. Detecting and exploiting such correlations in a
scalable way requires a sophisticated analysis. Third, it lacks an
adaptive bucketing scheme as described in Section 6 to utilize
correlations over a wide range of attribute domains. SQL Server
always buckets datetime values into month-long ranges. Without
an adaptive bucketing scheme, a system would not be able to op-
timize both the index size (and thus maintenance costs) and query
performance unless the attribute domains are evenly and sparsely
distributed. Last, SQL Server does not publish an analytic cost
model to evaluate the benefit of correlations, which is required to
determine the pairs of attributes to exploit. To realize these features,
we establish a correlation-aware cost model to evaluate the benefit
of correlations and the CM advisor to detect general correlations
and design proper bucketing schemes based on workload queries.

3. B+TREES AND CORRELATIONS
We begin with a brief discussion of the costs of conventional

database access methods and how they are affected by correlations,
before presenting a cost model for predicting the effect of such
access methods (Section 4) and a discussion of our compressed CM
structure (Section 5).

For selections when a clustered index is unavailable, a database
system has two choices: it may choose to perform a full table
scan or use a secondary B+Tree index, if one exists. The cost
of each access method depends on well understood factors—table
sizes, predicate selectivities, and attribute cardinalities—as well as
less well understood factors like correlations. To understand these
factors, we begin with a simple cost model and show how it changes
in the presence of correlations.

In the following discussion, we assume a table with clustered
attribute Ac and secondary attribute Au on which we query. Table 1
summarizes the statistics that we calculate over each table. For the
hardware parameters seek cost and seq page cost the table shows
measured values from our experimental platform. We assume that
all of the access methods are disk-bound.

Consider a sequential table scan. A table scan incurs no random
seek costs, but it must read each page in the table in order of the
clustered key. The number of pages p in a table is total tups

tups per page . The
costscan of scanning a table is then just seq page cost × p. We note
here that this model is oblivious to external factors such as disk
fragmentation and as such underestimates the true cost of a scan in
a real database implementation; our numbers show true scan cost
to be approximately 10% higher in our implementation.

As our goal in this paper is to explore secondary index costs, we
present cost models for secondary index accesses in the next two
sections, and then show how correlations affect such accesses.

3.1 Pipelined Index Scan
A secondary B+Tree index is the standard alternative to a table

Table 1: Statistics and parameters used in analytical model.
tups per page Number of tuples that fit on one page.

total tups Total number of tuples in the table.
btree height Average height of a clustered B+Tree path, root to leaf.
n lookups Number of Au values to look up in one query.

u tups Average number of tuples appearing with each Au value.
seq page cost Time to read one disk page sequentially.
Typical value: .078 ms

seek cost Time to seek to a random disk page and read it.
Typical value: 5.5 ms

scan, providing an efficient way to access a disk page containing a
particular unclustered attribute value. While the B+Tree identifies
the locations where relevant tuples can be found, it cannot guar-
antee that the tuples are accessed without interleaving seeks. This
is because the table may be clustered on a different attribute, and
a scan may result in tuple accesses scattered randomly across the
physical pages on disk.

In general, if the query executor uses a pipelined iterator model
(e.g., performing repeated probes into an index that is the inner
relation of a nested loops join) to feed tuples to operators, then a
B+Tree operator may need to access unclustered attribute values
in an order over which it has no control. If we ignore correlations
between the unclustered and clustered attributes, then, each new
input value will send the operator on btree height random seeks.
The approximate cost of n lookups is then:

costuncorrelated = (n lookups)(u tups)(seek cost)(btree height)

Since a random seek is so expensive, a pipelined secondary
B+Tree operation only makes sense for a small number of specific
value lookups. When the set of values to look up is available up
front (as in a blocked index nested loops join, or a range selection
over a base table), the standard optimization is to sort the index
keys before looking them up in the hash table. We call this a sorted
index scan.

3.2 Sorted Index Scan
When the set of all Au values satisfying the predicate is known

up front, the query executor can perform a number of lookups on
the unclustered B+Tree and assemble a list of record IDs (RIDs)
of all of the actual data tuples in the heap files. The RIDs can then
be sorted and de-duplicated. This allows the B+Tree to perform
a single sequential sweep to access the heap file, rather than a
separate disk seek for each unclustered index lookup. This sweep
always performs at least as fast as a sequential scan; it will be faster
if it can seek over large regions of the file.

The sorting itself can be implemented in a variety of ways. For
example, PostgreSQL uses the index to build a bitmap (with one
bit per tuple) indicating the pages that contain records that match
predicates [16]. It then scans the heap file sequentially and reads
only the pages where corresponding bits are set in the bitmap. In
practice, the CPU costs for sorting the offsets is typically negligible
compared to the I/O costs saved by the improved access pattern.

3.3 The Effect of Correlations
In this section, we show that the performance of a sorted index

scan is highly dependent on correlations between the clustered
and unclustered values. In particular, a sorted index scan behaves
especially nicely when the clustered table value is a good predictor
for an unclustered value. To illustrate this, in Figure 1 we visualize
the distribution of page accesses when performing lookups on
an unclustered B+Tree over the lineitem table from the TPC-
H benchmark. The figure shows the layout of the lineitem
table as a horizontal array of pages numbered 1 . . . n. Each black
mark indicates a tuple in the table that is read during lookups of
three distinct values of the unclustered attribute (either suppkey or
shipdate). The four rows represent four cases (in vertical order):

1. a lookup on suppkey; table is clustered on partkey



2. a lookup on suppkey; table is not clustered
3. a lookup on shipdate; table is clustered on receiptdate
4. a lookup on shipdate; table is not clustered

The suppkey is moderately correlated with partkey, as each sup-
plier only supplies certain parts. The shipdate and receiptdate
are highly correlated as most products are shipped 2, 4, or 5 days
before they are received.

In both cases, where correlations are present, the sorted index
scan visits a small number of sequential groups of pages com-
pared to numerous scattered pages when no correlation exists.
Particularly striking is the high-correlation case (shipdate and
receiptdate), where the sorted index scan only performs a
handful of large seeks to reach long sequential groups of pages. The
overall cost of accessing the index on shipdate when the table is
clustered on receiptdate is about 1/20 the cost of accessing it
when no clustering is used on the table.

Page 0 . . . n
partkey (Ac) vs
suppkey (Au)

receiptdate (Ac)
vs shipdate (Au)

Figure 1: Access patterns in lineitem table for an unclustered
B+Tree lookup on Au (suppkey/shipdate) with and without
clustering on correlated attribute Ac (partkey/receiptdate).

3.4 Experiments
Based on the intuition about the potential benefit of correlations

described above, in this section we describe two experiments that
demonstrate the actual benefit correlations yield when running
queries with unclustered B+Trees We describe our experimental
setup and these data sets in more detail in Section 7.

Varying the clustered attribute: Figure 2 shows the result of an
experiment conducted on the SDSS data set to demonstrate that
clustering on one well-chosen attribute can speed up many queries.

For this experiment, we devised a simple benchmark consisting
of 39 queries, each of which has a predicate over one of the
attributes in the PhotoObj table of the SDSS data set with 1% selec-
tivity. This table contains information about the optical properties
of various celestial objects, including their color, brightness, and so
on. Queries selecting objects with different combinations of these
attributes are very common in SDSS benchmarks [11].

We then clustered the table in 39 different ways (once on each of
the 39 attributes used in our test queries), and ran all 39 queries over
each clustering to measure the benefit that correlations can offer.

Figure 2 shows the number of queries that run at least a factor of
2, 4, 8, or 16 times faster than a pure table scan (or an unclustered
sorted index scan) when using a secondary index lookup for each
choice of clustered attribute. The clustered attribute varies on
the horizontal axis. For example, attribute 1 (fieldID) is highly
correlated with 12 attributes and clustering on it sped up querying
on 13 queries by at least a factor of two over a table scan, with 5 of
them exhibiting more than a factor of 16 speed-up.

Introducing correlated clustering: In this experiment we look at
the TPC-H attributes shown in Figure 1. We again highlight the
benefits of a good clustered index choice.

We measured the performance of queries over TPC-H data with
two different clustering schemes on the PostgreSQL database. In
the first, the lineitem table is clustered on receiptdate, which
is correlated with shipdate. In the second, we cluster on the
primary key – (orderkey, linenumber) – which is not correlated
with shipdate. In both cases, we create a standard secondary
B+Tree on shipdate. The query used in the experiment is:
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Figure 3: Performance of B+Tree with a correlated clustered
index on shipdate vs. an uncorrelated clustered index

SELECT AVG(extendedprice * discount) FROM LINEITEM
WHERE shipdate IN [list of 1 to 100 random shipdates]

As the graph in Figure 3 shows, the correct choice for the
clustered attribute can significantly improve the performance of
the secondary B+Tree index. For the uncorrelated case the per-
formance degrades rapidly, reaching the cost of a sequential scan
for queries with more than 4 shipdates. This happens because
the query on the uncorrelated attribute selects receiptdate values
that are scattered (approximately 7000 per shipdate), so the
bitmap scan access pattern touches a large fraction of the lineitem
table. We have observed the same behavior in other commercial
database products. Figure 3 also shows that we have a cost model
that is able to accurately predict the performance of unclustered
B+Trees in the presence of correlations – we present this model in
detail in the next section.

These experiments show that, if we had a way to discover these
correlations, substantial performance benefits are possible. Hence,
in the next few sections, we focus on our methods for discovering
such correlations. In particular, we show how to extend our ana-
lytical cost model to capture the effect of correlations (Section 4),
our algorithms for building compact CM indices (Section 5), and
finally our approach for discovering correlations (Section 6).

4. MODEL OF CORRELATION
In this section, we present our model for predicting the cost of

sorted index lookups in the presence of correlations. To the best of
our knowledge, this is the first model for predicting query costs
that embraces data correlations. As a result, it is substantially
more accurate than existing cost models in the presence of strongly
correlated attributes.

Table 2: Statistics used to measure attribute correlation.
c tups Average number of tuples with each Ac value.

c per u Average number of distinct Ac values for each Au value.



As shown in Table 2, we introduce two additional statistics that
capture a simple measure of correlation between Au and Ac. The
c per u value indicates the average number of distinct Ac values
that appear in some tuple with each Au value. The same measure
was proposed in CORDS [9] as the strength of a soft FD, where it
was used for finding strongly correlated pairs of attributes to update
join selectivity statistics rather than building a cost model.

4.1 Index Lookups with Correlations
Suppose that we are using a secondary B+Tree that sorts its

disk accesses when looking up a set of Au values as described in
Section 3.2. For each Au value v, the query must visit c per u
different clustered attribute values. We need to perform one
clustered index lookup to reach each of these clustered attribute
values. Once we reach a clustered value, we need to scan at most
c pages pages to guarantee finding each tuple containing v. As
before, we take the cost of an index lookup to be btree height disk
seeks. For each Ac value, we have to scan c tups/tups per page
pages. Finally, as with an uncorrelated sorted index scan, when
we scan a large fraction of the file, the access pattern becomes
gradually closer to a full table scan. Hence, the index scan is
upper bounded by costscan. These observations lead to the following
expression for the cost of n lookups on a secondary B+Tree with
correlations:

c pages = c tups/tups per page

costsorted = min((n lookups)(c per u)[(seek cost)(btree height)
+ (seq page cost)(c pages)], costscan)

One simplification in our model is that we ignore the potential
overlap between the sets of Ac keys associated with two particular
Au values. In other words, if one Au value maps to n different
Ac values on average, then it is not true in general that two Au

values map to 2n different Ac values. Our model may overestimate
the number of Ac values involved, and thus the cost of secondary
indexes. This is a concern, for example, when evaluating a range
predicate over an unclustered attribute that has linear correlation
with the clustered attribute (e.g., order receipt dates will overlap
heavily for a range of ship dates).

This cost model captures two key facts: first, when both c per u
and c pages are small, the cost of an individual secondary index
lookup is not much more than the cost of a lookup on a clustered
index (which costs btree height seeks plus a scan of c pages).
c per u will be small when there are few values in the clustered
attribute, or when there is a correlation between the clustered
attribute and the unclustered attribute. Second, if c per u is small
because the clustered attribute is few-valued, then c pages will
likely be large, driving up the cost of each unclustered index access
as it will scan a large range of the table.

On the other hand, if c per u is small due to correlations, c pages
is not necessarily large. Hence, if we cluster a table on an attribute
that has:

1. A small c pages value and,
2. Correlations to many unclustered attributes (i.e., with a small

c per u value for many unclustered attributes),
then we can expect to be able to exploit this clustering to get good
performance from many different secondary indices.

4.2 Implementing The Cost Model
To obtain performance predictions from this cost model, we

have developed a tool that scans existing tables and calculates the
statistics needed by the cost model. Our approach for doing this is
quite simple and uses a sampling-based method to reduce the heavy
cost of exact parameter calculation.

Given these statistics and measurements of underlying hardware
properties, the cost model can predict how much (or if) a given
pair of attributes benefits from an unclustered index. The database
administrator can use these measurements to choose to build
unclustered indexes and to cluster tables on high-benefit attribute
pairs that the application is likely to query. In Section 7, we present
the plots predicted by our cost model alongside our empirical
results.

The key measure of correlation that our model relies on is the
c per u statistic. As c per u is the average number of distinct Ac

values for each Au value, we can calculate its value based on the
cardinalities of columns, as follows (this approach is similar to that
presented in [9]). We write the number of distinct values over a
pair of attributes Ai and A j as D(Ai, A j) and the number of distinct
values over a single attribute as D(Ai). Then we can write:

c per u =
D(Au, Ac)

D(Au)

The basic problem of estimating the cardinality of a column
has had extensive treatment in both the database and statistics
communities, where it is known as the problem of estimating the
number of species (e.g. [10]).

For estimating single-attribute cardinality, we use the Distinct
Sampling (DS) algorithm by Gibbons [6], which computes esti-
mates that are far more accurate than pure sampling-based ap-
proaches at a cost of one full table scan. We choose DS over less
costly sampling schemes because an error in cardinality estimation
for single attributes may cause substantial errors in later database
design phases (alternatively, the system catalogs may maintain this
statistic accurately).

In Section 6 we present our CM advisor that recommends
multi-column composite indexes. It is not feasible to use DS for
estimating the cardinality of all attribute combinations that our
advisor considers, so to estimate composite c per u measurements
we use the Adaptive Estimator (AE) algorithm [13]. AE estimates
composite attribute cardinalities based on a random data sample;
we sacrifice some accuracy, but it is very fast because the sample
can be kept in memory. These samples are randomly collected
during the DS table scan, yielding an optimum random sample as
described in [14].

5. COMPRESSING B-TREES AS CMS
We have shown the potential to exploit correlations to make

unclustered B+Trees perform more like clustered B+Trees, and
we now turn our attention to describe how to efficiently store
many unclustered B+Trees in a database system. Our approach
uses a compressed B+Tree-like structure called a Correlation Map
(CM) that works especially well in the presence of correlations.
Compressing secondary indexes is not a new concept: several
approaches have been explored in prior work [18]. The goals
of compression are twofold; first, compression saves disk space,
which can be prohibitive when considering numerous indexes on
large datasets. Second, compression improves system performance
by reducing I/O costs associated with using indexes and by reduc-
ing pressure on the buffer pool.

Although disk space is becoming cheaper every day, it is still a
limited resource. For large data warehouses in real applications,
having many B+Tree indexes can easily require petabytes of
disk space and thus does not scale [11]. Existing lossless index
compression might achieve up to a 4x reduction in space while,
as we show in our experimental section, CMs can reduce index
sizes by 3 orders of magnitude. There is an obvious advantage to
reducing secondary index sizes – the database requires less disk



space and index lookups during query processing consume fewer
I/O operations. However, an even more significant improvement
comes from reduced index maintenance costs.

Indexes have to be kept up-to-date as the underlying data change
through inserts or deletes. Accessing the disk on every update is
prohibitively expensive. Thus, the universally applied solution is
to keep modified pages in memory and delay writing to disk for
as long as possible. Unfortunately, RAM is a much more limited
resource than disk space and only a small fraction of a typical
B+Tree can be cached. As we show in Experiment 3 of Section 7.2,
maintaining as few as 5 or 10 B+Trees can lead to a dramatic
slowdown in overall system performance. CMs on the other hand
can be usually be fully cached in memory as they are quite small;
this leads to substantially lower update cost. This means that it is
realistic to maintain a large number of CMs, whereas it may not
be practical to maintain many conventional B+Trees. In the rest of
this section, we describe how CMs are structured, built, and used.
5.1 Building and Maintaining CMs

Given that the user wants to build a CM over an attribute T.Au of
a table T (we call this is the CM Attribute), with a clustered attribute
T.Ac, the CM is simply a mapping of the form u→ S c, where

1. u is a value in the domain of T.Au, and
2. S c is a set of values in the domain of T.Ac s.t. there exists a

tuple t ∈ T of the form (t.Au = u, t.Ac = c, . . .) ∀c ∈ S c.
For example, if there is a clustered index on product.state,
a CM on product.city might contain the entry “Boston →
{NH,MA},” indicating that there is a city called Boston in both
Massachusetts and New Hampshire.

The algorithm for building a CM is shown in Algorithm 1. The
algorithm works as follows: once the administrator issues a DDL
command to create a CM, the system scans the table to build the
mapping (line 1). As the system scans the table, it looks up the
CM key value in the mapping and adds the clustered index key to
the set of key values (line 1). The system tracks the number of
times a particular pair of (uncorrelated, correlated) values occurs
using a “co-occurrence” count, which is initialized to 1 (line 1) and
incremented as needed (line 1).

The number of times a particular correlated value occurs with
each uncorrelated value in the table is needed for deletions. When
a tuple t is deleted, the CM looks up the mapping mAu for the
uncorrelated attribute value and decrements the count c for the
correlated value t.Ac. When c reaches 0, the value t.Ac is removed
from mAu .

The insertion algorithm is very similar to the algorithm for
building the table. The main loop (line 1 in Algorithm 1) is simply
repeated for each new tuple that is added. Updates can be treated
as a delete and an insert.

Since a CM is just a key-value mapping from each unclustered
attribute value to the corresponding clustered attribute values, it
can be physically stored using any map data structure. This is
convenient because database systems provide B+Trees and Hash
Indexes that can be used for this purpose. In our implementation,
we physically represent a CM using a PostgreSQL table. Whenever
a tuple is inserted, deleted, or modified, the CM must be updated as
discussed above. Because the CM is relatively compact (containing
one key for each value in the domain of the CM attribute, which
in our experiments occupy 0.1–1 MB for databases of up to 5
GB), we expect they can generally be cached in memory. Rather
than modify PostgreSQL internals, we implemented our own front-
end client that caches CMs (see Section 7.1). We report the
sizes of CMs for several datasets in our experimental evaluation
in Section 7, showing that they are often much more compact than
the equivalent B+Tree.

input : Relation T with attribute T.Au and clustered index I
over attribute T.Ac

output: Correlation map C, a map from T.Au values to
co-occurring T.Ac values, along with co-occurrence
count.

C ← new Map(Value→ Set)
foreach tuple t ∈ T do

m← C.get(t.Au)
if (m.get(t.Ac) = null) then
/* Add fact that t.Ac co-occurred with t.Au
to mapping for t.Au, initializing
co-occurrence count to 1 */

m.put(t.Ac, 1)
end
else
/* Increment co-occurrence count for t.Ac
in mapping for t.Au */

cnt ← m.get(t.Ac)
m.put(t.Ac, cnt + 1)

end
end
return C

Algorithm 1: CM Construction Algorithm

5.2 Using CMs
The API for performing lookups on the CM is straightforward;

the CM implements a single procedure, cm lookup({vu1 . . . vuN}).
It takes a set of N CM attribute values as input and returns a list
of clustered attribute values that co-occur with {vu1 . . . vuN}. These
clustered attribute values are determined by taking the union of
the clustered attribute values returned by a CM lookup on each
unclustered value vui.

Given a list of clustered attribute values to access, the system
then performs a sorted index scan on the clustered index. Return
values from this scan must be filtered by predicates over the CM
attribute, since some values in the clustered index may not satisfy
the unclustered predicates – for example, a scan of the states “MA”
and “NH” to find records with city “Boston” will encounter many
records from non-satisfying cities (e.g., “Manchester”.)

Figure 4 illustrates an example CM and how it guides the query
executor. A secondary B+tree index on city is a dense structure,
containing an entry for every tuple appearing with each city.
In order to satisfy the “Boston” or “Springfield” predicate using
a standard B+Tree, the query engine uses the index to look up
all corresponding rowids. The equivalent CM in this example
contains all unique pairs (city, state). To satisfy the same
predicate using a CM, the query engine looks up all possible state
values corresponding to “Boston” or “Springfield”. The resulting
values (“MA”, “NH”, “OH”) correspond to 3 sequential ranges of
rowids in the table. These are then scanned and filtered on the
original city predicate. Notice that the CM scans a superset of the
records accessed by the B+Tree, but that it contains fewer entries.

5.3 Discussion
CMs capture the correlation between the indexed attribute and

the clustered attribute. If the two attributes are well-correlated, each
value of the CM attribute will co-occur with only a few values in
the clustered attribute, whereas if they are poorly correlated, the
CM attribute will co-occur with many clustered attribute values.
The degree of compression obtained by replacing a B+Tree with a
CM is determined by the degree of correlation as the CM needs to
store every unique pair of attributes (Au, Ac).

We’ve already seen that CM performance is well-predicted by
c per u. However, there is another condition that affects the
performance of correlation maps: they only perform well when the
set of relevant clustered attribute values covers a relatively small
fraction of the entire table. To see this, consider a correlation with
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Figure 4: Diagram illustrating an example CM and its use in a
query plan, and comparing to the use of a conventional B+Tree

a table clustered on a small-domain attribute, such as gender. Even
if the gender attribute is highly correlated with some unclustered
attribute, the correlation is unlikely to reduce access costs for most
scans of the unclustered attribute, since the system would have to
scan about 50% of the table using the CM.

We now briefly describe how CMs can be further compressed
through bucketing. An extensive treatment of our approach to
bucketing over one or multiple attributes can be found in Section 6.

5.4 Bucketing CMs
The basic CM approach described in the previous section works

well for attributes where the number of distinct values in the CM
attribute or the clustered attribute are relatively small. However,
for large attribute domains (such as real-valued attributes), the size
of the CM can grow quite unwieldy (in the worst case having one
entry for each tuple in the table). Keeping a CM small is important
to keep the performance benefits outlined above.

We can reduce the size of a CM by “bucketing” ranges of the
unclustered attribute together into a single value. We can compress
ranges of the clustered attribute stored in the CM similarly. For
example, suppose we build a CM on the attribute temperature
with a clustered index on humidity (these attributes are often
correlated, with lower temperatures bringing lower humidities).
For example, given the unbucketed CM on the left, we can bucket
it into the 1oC or 1% intervals shown on the right via truncation:
{12.3oC} → {17.5%, 18.3%}

{12.7oC} → {18.9%, 20.1%}

{14.4oC} → {20.7%, 22.0%}

{14.9oC} → {21.3%, 22.2%}

{17.8oC} → {25.6%, 25.9%}

{12 − 13oC} → {17 − 18%, 18 − 19%, 20 − 21%}

{14 − 15oC} → {20 − 21%, 21 − 22%, 22 − 23%}

{17 − 18oC} → {25 − 26%}

Note that we only need to store the lower bounds of the intervals in
the bucketed example above.

The effect of this truncation is to decrease the size of the CM
while increasing the number of false positives, since now each CM
attribute value maps to a larger range of clustered index values
(requiring a scan of a larger range of the clustered index for each
CM lookup). We address bucketing in more detail in Section 6,
and also discuss a sampling-based algorithm we have developed to
search for a size-effective bucketing.

The next section of the paper describes our CM Advisor tool that
can identify good candidate attributes for a CM and searches for
optimal CM bucketings.

6. CM ADVISOR
In this section, we present our CM Advisor algorithm that

searches for good bucketings of clustered attributes and recom-
mends useful CMs to build. There are several reasons why having
an automatic designer for CMs is valuable in query processing.

First, a database administrator needs to understand which at-
tributes will benefit from the creation of CMs; although CMs are
compact, creating one on every attribute is not possible, especially
when allowing composite CMs (over multiple attributes) with
different bucketings. Composite CMs are important because there
are situations where two attributes can yield stronger correlations
with a third attribute than either of the attributes individually.
For example an individual longitude or latitude can occur in
many different zipcodes, but a combined (longitude, latitude)
pair lies in exactly one zip code. This property still holds even
if longitude and latitude are bucketed using a relatively large
bucket size. A traditional (secondary) B+Tree with a composite
(longitude, latitude) key might perform substantially worse
than a bucketed CM in such a case as shown in Experiment 5.

Second, the query optimizer needs to be able to estimate whether
a given query should use the CM or not; using the CM adds
overhead to query execution. As discussed earlier, CMs work best
when a strong correlation exists between the indexed attribute and
the clustered attribute. If the correlation is not strong enough, the
access pattern using a CM might turn into a sequential scan and
thus should not be employed by the query optimizer.

For these reasons, we have developed the CM Advisor, an
automatic designer for CMs based on the statistics and cost model
described in Section 4. In this section, we describe how the
CM Advisor finds composite correlations from a vast number of
possible attribute combinations and proposes promising bucketings
that keep the size of the CM small without significantly degrading
query performance. Our experimental results show that a well
designed composite CM can be both faster than a composite
B+Tree index (due to reduced I/O to read from the index and
reduced pressure on the buffer pool from index pages) and up to
three orders of magnitude smaller.

Before going into the details of the composite CM selection
algorithm, we first describe how the CM Advisor chooses possible
bucketings for a single attribute that contains many values. We
show how to do this for both the clustered and unclustered attribute
(on which we build the CM).

6.1 Bucketing Many-Valued Attributes
As described in Section 5.4, bucketing can dramatically reduce

the size of a CM; in particular, bucketing allows the CM Advisor to
consider many-valued (even unique) attributes when making CM
recommendations. However, we must be careful when choosing
bucketing granularity. Very large buckets may result in poor
performance by unnecessarily reading large blocks of the corre-
lated attribute, while small buckets produce large data structures,
increasing CM access costs (and preventing them from fitting
in memory). In this section we describe how our CM Advisor
algorithm finds the “ideal” bucketing granularity that strikes a
balance between size and performance.

We look at two cases: bucketing the clustered attribute and
bucketing the unclustered attributes (the “key” of the CM).

6.1.1 Clustered Attribute Bucketing
If the clustered key is many-valued, the CM structure can

become very large even in the presence of a strong correlation
between the clustered attribute and the unclustered attribute, since
each unclustered attribute value will map to many clustered values.
This causes two problems: first, each CM access becomes more



Table 3: Clustered attribute bucketing granularity and I/O cost
Bucket Size [pgs/bucket] Pages Scanned IO Cost [ms]

1 96 15.34
5 105 15.925

10 110 16.25
15 135 17.875
20 140 18.2
40 160 19.5

expensive due to its size. Second, if we introduce too many
query predicates to implement CM scans over clustered attributes
(e.g., employing the query rewriting method used in Section 7.1),
the query plan itself becomes more complex, causing significant
overhead in the query optimizer.

To alleviate these problems, the CM Advisor buckets the clus-
tered attribute by adding a new column to the table that represents
the “bucket ID.” All of the tuples with the same clustered attribute
value will have the same bucket ID, and some consecutive clustered
attribute values will also have the same bucket ID. The CM then
records mappings from unclustered values to bucket IDs, rather
than to values of the clustered attribute. CM Advisor performs
the actual bucketing during its sequential scan of the table (while
computing c per u statistics). The Advisor begins by assigning
tuples to bucket i = 1. Once it has read b tuples, it reads the value
v of the clustered attribute of the bth tuple. It continues assigning
tuples to bucket i until the value of the clustered attribute is no
longer v, at which point it starts assigning tuples to bucket i + 1 and
increments i (this ensures that a particular clustered attribute value
is not spread across multiple buckets). This process continues until
all tuples have been assigned a bucket.

Wider bucketing causes CM-based queries to read a larger
sequential range of the clustered attribute (by introducing false
positives), increasing sequential I/O reads but not adding disk
seeks. When the bucketing width is chosen well, we have observed
that the negative impact of this additional sequential I/O is minimal.
To illustrate this, we bucketed the Sloan Digital Sky Survey (SDSS)
dataset (see Section 7). We then measured the time to run query
SX6, performing a lookup on two values of the attribute fieldId,
which is well correlated with the clustered attribute (ObjID in this
case). We simulated the disk behavior by counting scanned pages
and seeks between non-contiguous pages, and then calculated
the runtime by applying the statistics in Table 1. We varied
the bucketing of the clustered attribute from 1 to 40 disk pages
per bucket. The results are shown in Table 3. We found that
performance is relatively insensitive to the bucket size (up to some
limit); a value of b such that about 10 pages of tuples map to each
bucket appears to work well, taking only about 1 ms longer to read
than a bucket size of 1.

6.1.2 Bucketing Unclustered Attributes
Bucketing unclustered attributes has a larger effect on perfor-

mance than bucketing clustered attributes because merging two
consecutive values in the unclustered domain will potentially in-
crease the amount of random I/O the system must perform (it will
have to look up additional, possibly non-consecutive values in the
clustered attribute). This is in contrast to bucketing the clustered
attribute, which adds only sequential I/O.

The CM advisor builds equi-width histograms of several dif-
ferent bucket widths from the random data sample (described in
Section 4.2). Each of these histograms represents one possible
bucketing scheme for the attribute under consideration. For a
single-attribute CM, the c per u value for each bucketing can be
computed directly from each histogram, by calculating the average
number of clustered attribute values that appear in each bin of the
histogram, as described in Section 4.2. Histograms with fewer,

wider bins will have more clustered values per bin and a higher
c per u, whereas histograms with more, narrower bins, will have
lower c per u values. For composite CMs, computing c per u
is more complex, as described in Section 6.1.3. In practice,
we find that there is often a “natural” bucketing to the data that
results in little increase in c per u while substantially reducing CM
size; we show this effect in our experiments in Section 7. Once
our CM advisor has constructed all possible histograms (within
the bucketing constraints), it iterates through each of them to
recommend CMs that will provide good performance, as described
in Section 6.2 below.

One question that remains unanswered is how to determine the
number of different bucketings to consider for each attribute. Our
algorithm considers all bucketings that yield between 22 and 216

buckets. The bucket sizes that we consider scale exponentially.
For example, if a column has 100 values, the algorithm considers
bucket sizes of 21, 22, 23, 24 and 25 (since a bucket size of 26 = 64
yields less than 4 buckets). The limits 22 and 216 on the numbers
of buckets are configurable, but we found that sufficiently compact
bucketing designs often lie within this range in practice.

As another example, Table 4 below shows the output from
bucketing on the SDSS dataset. Here, CM Advisor outputs
attributes such as mode and type, which are few-valued, without
bucketing. For the many-valued attributes fieldID and psfMag g,
it recommends a series of bucketings that keep the number of
buckets in the desired range.

In the case of building a composite CM, we do not directly
compute c per u for each of the single-attribute histograms, but
rather pass the possible binnings and the random sample we
collected to the composite CM selection algorithm which tries to
select a good multi-attribute CM, as we describe next.

Table 4: Unclustered attribute bucketings considered for the
SX6 query in the SDSS benchmark.

Column Cardinality Bucket Widths
mode 3 none
type 5 none ∼ 21

psfMag g 196352 22 ∼ 216

fieldID 251 none ∼ 26

6.1.3 Bucketing Composite Unclustered Attributes
The number of possible composite CM designs for a given

table is very large because there are
∏CN

c=C1
(Bucketing(c) + 1) − 1

unique combinations of N columns and bucketings (assuming we
use the bucketing scheme described above for each attribute).
Consider Table 4 again. There are two options for the attribute
mode: whether to include it in the composite CM or not. For
fieldID, there are eight options: to include it unbucketed, to
include it with bucket widths 21 through 26, or not to include
it at all. Similar choices apply for the other attributes. Hence,
in total, Table 4 implies (2 ∗ 3 ∗ 16 ∗ 8) − 1 = 767 different
candidate designs for CMs from just 4 attributes. As described
in Section 4.2 we use Adaptive Estimation (AE) to estimate the
combined c per u for each candidate design. We observed that a
sample size of 30,000 tuples gives us reasonably accurate estimates
(similar sample size was chosen in [9]). Using this sample, AE
can compute cardinality and bucketing estimates in approximately
5 milliseconds per candidate design.

6.2 Recommending CMs
In this section, we explain how the CM Advisor selects (possibly

multi-attribute) CMs and bucketings.

6.2.1 Training Queries
A CM can help query execution only when some (or, ideally,



all) of its attributes are used as predicates in some query. In other
words, an interesting CM design for a query should contain some
subset of the predicated attributes. To obtain a set of candidate
attributes, our algorithm uses a set of training queries (specified by
the DBA) as input. For example, in our SDSS dataset, the DBA
might provide the following set of sample queries (alternatively,
queries can be collected by monitoring queries at runtime):

Query 1: SELECT . . . FROM . . . WHERE ra BETWEEN
170 AND 190 AND dec < 0 AND mode = 1
=⇒ { ra, dec, mode }

Query 2: SELECT . . . FROM . . . WHERE fieldID IN ( . . . )
AND mode = 1 AND type = 6 AND psfMag g < 20
=⇒ { fieldID, mode, type, psfMag g }

Query 3: . . .

The goal of the CM Advisor is to output one or more recom-
mended CM designs for each query, along with the expected speed-
up factors and CM size estimates. The DBA can then choose which
CMs to create. As long as CMs are small, it is reasonable to expect
that there will be several CMs on any given table.

6.2.2 Searching for Recommendations
Our CM Advisor exhaustively tries all possible composite index

keys and bucketings of attributes for a given training set query. We
only consider attributes actually used together in training queries
as CM keys. Previous work used similar techniques to prune
candidate attribute pairs [4, 9]. As most queries refer to a fairly
small number of predicates and we only consider a limited number
of bucketings (see in Sections 6.1.2 and 6.1.3), this keeps the
number of candidate CM designs small. The search space is limited
also by removing predicates less selective than some threshold
(i.e. >0.5). For the queries in our experiments the longest the
CM Advisor ran was about 20 seconds. This is for a query with
5 predicated columns. Given that the CM Advisor is an offline
algorithm we believe this is practical.

As we described in Section 4, the c per u value associated with a
CM is a good indicator of the expected query runtime improvement.
However, a large CM tends to be less useful, even if it has very
low c per u, because it requires too much space to fit into main
memory and thus lookup and maintenance become expensive (we
further explore the overheads of lookup and maintenance on large
index structures in Section 7). Therefore simply recommending
CM with the lowest c per u is a poor idea. Instead, our CM de-
signer recommends the smallest CM design within a performance
target (defined as a slowdown in query performance relative to an
unbucketed design) chosen by the user. We use the cost model
developed in Section 4 to estimate the performance degradation
compared to a secondary B+Tree.

Table 5 shows estimated CM sizes for the SDSS dataset, sorted
by increased runtime compared to a B+Tree. A performance drop
of +3% means that the access method using CM costs 3% more
than the access method using a B+Tree for the query. We also show
the size ratio of CMs to B+Trees. The CM Advisor recommends
the smallest CM design within the user-defined threshold on perfor-
mance (e.g., up to 10% slowdown compared to a B+Tree), yielding
tunable performance. If the Advisor cannot find an unclustered
index that is expected to improve performance substantially for a
given query, it may recommend that no CM be built.

7. EXPERIMENTAL EVALUATION
In this section, we present an experimental validation of our

results. The primary goals of our experiments are to validate the
accuracy of our analytical model, to demonstrate the effectiveness
of our CM Advisor algorithm, and to compare the performance of

Table 5: CM designs and estimated performance drop com-
pared to secondary B+Trees

Runtime CM Design Size Ratio
0% psfMag g(22), type, fieldID, mode 100%

+1% psfMag g(213), type, fieldID, mode 24.1%
+3% psfMag g(214), type, fieldID, mode 14.6%
+7% type(21), fieldID 1.4%
+10% fieldID 0.8%
. . . . . . . . .

Table
Clustered Index

Buffer PoolXLog

Rewrite

Update

Correlation Maps

SELECT

INSERT
DELETE

PostgreSQLJava

Logging

Figure 5: Experimental System Overview
CMs and secondary B+Tree indexes.

We ran our tests on a single processor machine with 1G of
RAM and a 320G 7200rpm SATA II disk. All experiments were
run on PostgreSQL 8.3. We flushed memory caches between
runs by using the Linux /proc/sys/vm/drop cachesmechanism
and by restarting PostgreSQL for each trial. Note that whenever
we compare our results to a B+Tree, we are using the standard
PostgreSQL secondary index. We also configured PostgreSQL to
use a bitmap index scan (see Section 3.2) when it is beneficial.
Because of the flushing and bitmap index scan, we also observed
similar performance results with much larger amount of RAM (e.g.,
4GB) and data.

7.1 System
We prototyped Correlation Maps as a Java front-end application

to PostgreSQL as shown in Figure 5. All queries are sent to the
front-end. Our prototype rewrites SELECT queries to add an IN
clause over the clustered attribute. This clause restricts to the
clustered attribute values mapped by a predicate on the unclustered
attribute. For example, consider the query:

SELECT * FROM lineitem WHERE receiptdate=t

If we have a CM over receiptdate and a table clustered on ship-
date, the system might rewrite the query to:

SELECT * FROM lineitem WHERE receiptdate=t
AND shipdate IN (s1 . . . sn)

where s1 . . . sn are the shipdate values that receiptdate t maps
to in the CM. PostgreSQL receives queries with the rewritten IN
clause, which causes it to use the clustered index to find blocks
containing matching tuples; by including the original predicate
over the unclustered attribute we ensure we receive only tuples
that satisfy the original query. For INSERT and DELETE queries,
the prototype updates internal CMs as well as table data in Post-
greSQL. Although the prototype keeps CMs in main memory
and only occasionally flushes to disk on updates, we provide
comparable recoverability to a secondary B+Tree index by using a
Write Ahead Log (WAL) and flushing the transaction log file during
Two-Phase Commit (2PC) in PostgreSQL. We use the PREPARE
COMMIT and COMMIT PREPARED commands in PostgreSQL
8.3 to implement the 2PC protocol.

Note that CMs could be implemented as an internal sub-module
in a DBMS thereby obviating the need for query rewriting. We
expect this would exhibit better performance than the results we



present here. We employed the rewriting approach to avoid modi-
fying the internals of PostgreSQL (e.g., its planner and optimizer).

7.1.1 Datasets
Hierarchical Data: The first dataset that we use is derived from
eBay category descriptions that are freely available on the web [5].
The eBay data contain 24,000 categories arranged in a hierarchy
of sub-categories with a maximum of 6 levels (e.g. antiques →
architectural & garden→ hardware→ locks & keys).

We have populated this hierarchy with unique ItemIDs. We
chose 500 to 3000 ItemIDs uniformly per category, resulting in
a table with 43M rows (occupying 3.5GB on disk). Each category
is assigned a unique key value as its Category ID (CATID), and the
sub-categories for each CATID are represented using 6 string-valued
fields – CAT1 through CAT6. The median value for the price of each
category was chosen uniformly between $0 and $1M. Individual
prices within a category were generated using a Gaussian around
that median with a standard deviation of $100. Thus, there exists a
strong (but not exact) correlation between Price and CATID. The
schema for this dataset is as follows:

ITEMS(CATID, CAT1, CAT2, CAT3, CAT4, CAT5,CAT6, ItemID, Price)

TPC-H Data: For our second data source, we chose the lineitem
table from the TPC-H benchmark, which represents a business-
oriented log of orders, parts, and suppliers. There are 16 attributes
in total in which we looked for correlations. The table consists of
approximately 18M rows of 136 bytes each, for a total table size of
2.5GB at scale 3. The partial schema for this database follows:

LINEITEM (orderkey, partkey, suppkey, . . . ,
shipdate, commitdate, receiptdate, . . . )

SDSS Data: Our third source is the desktop SDSS skyserver [11]
dataset which contains 200,000 tuples. We used the fact table
PhotoObj (shown below) and its partial copy PhotoTag.

PhotoObj (objID, ra, dec, g, rho, . . . )

PhotoObj is a very wide table with 446 attributes, while Pho-
toTag only has a subset of 69 of these attributes. To augment the
SDSS dataset to contain a comparable number of tuples to the other
datasets, we extended PhotoTag by copying the right ascension
(ra) and declination (dec) windows 10 times in each dimension
to produce a 100-fold increase in size (20M rows, 3GB).

7.2 Results
In Section 3.3 we presented two experiments demonstrating that

a secondary index scan performs better when an appropriately
chosen clustered index is present and that useful correlations are
reasonably common in a real-world data set (SDSS). In this section,
we describe the results of a variety of experiments about CMs.

Experiment 1: In our first experiment, we explore the perfor-
mance implications of using a CM instead of a secondary B+Tree
(with an appropriately correlated clustering attribute). Our goal is
to demonstrate that CMs capture the same benefits of correlations
we showed before. Bear in mind that CMs are substantially smaller
than unclustered B+Trees; we measure these size effects and their
performance benefit in later experiments. We experimented on the
eBay hierarchical dataset clustered on CATID. We picked a bucket
size of 4096 tuples per bucket for the Price attribute (we explain
this choice in Experiment 2). We use the following query, varying
price ranges as indicated below.

SELECT COUNT(DISTINCT CAT2) FROM ITEMS WHERE
Price BETWEEN 1000 AND 1000+PriceRange

In Figure 6, we omit the results for the full table scan as well
as for a B+Tree with no correlations, both of which take more
than 100 seconds. Here, the CM performs 1s to 4s worse than
the secondary index (but still an order of magnitude better than
a sequential scan or an index lookup without clustering). This is
explained primarily by the increasing number of extraneous heap
pages that the CM access pattern reads (which are avoided by
the bitmap scan since they do not contain the desired unclustered
attribute value), as well as the overhead associated with query
rewriting. The observation is that CM performance is competitive,
while the data structure is three orders of magnitude smaller (the
CM is 0.9MB on disk, the secondary B+Tree is 860MB).
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Figure 6: Performance of CM and B+Tree index (with corre-
lated clustered attribute) for queries over range of Price

Experiment 2: In this experiment, we explore the effects of
bucketing. We optimize over bucketing schemes by balancing the
performance of the target query and the size of CM. We again use
CATID as the clustered attribute, but instead of relying on one fixed
bucket layout for the unclustered attribute, we vary the bucket size
using the approach presented in Section 6. We run the query:

SELECT COUNT(DISTINCT CAT3) FROM ITEMS WHERE
Price BETWEEN 1000 AND 1100

The selectivity of this predicate is 6617 rows out of 43M, or
0.000154. In order to evaluate different bucket layouts, we vary
the bucket size by powers of two. Therefore, a level of 3 indicates
that each bucket holds 23 unclustered attribute values.

Looking at Figure 7, we see that CM performance is nearly the
same as that of the B+Tree up to a bucket level of about 13. With no
bucketing, the size of the CM is 350MB, which is already smaller
than the PostgreSQL secondary B+Tree (850MB). Observe that as
we increase the bucket size, the CM size continues to decrease. It is
worth noting that even a CM on a many-valued column like Price
can become very compact after bucketing.

Figure 7 demonstrates a tradeoff between runtime and size. The
lookup runtime grows rapidly after the CM hits a particular bucket
size. The intuition behind this critical bucket size is the following:
if there are two adjacent buckets in the CM that point to the same
set of buckets in the clustered index, doubling the CM bucket size
has no effect on c per u. The key bucket size in this example occurs
at 213 = 8192, which is the number of Price values closest to the
6617 selected by the range predicate. This shows that there is an
“ideal” choice for bucket size that occurs at the knee of the curve.

Experiment 3: In this experiment, we compare the maintenance
costs of CMs and secondary B+Trees on eBay data. The table
is still clustered on CATID, but this time we have multiple CMs
and secondary B+Tree indexes on the same columns. We inserted
500k tuples in batches of 10k tuples, which is a standard approach
for keeping update overhead low in data warehouses. As shown
in Figure 8, the total time for inserting 500k tuples quickly
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Figure 7: Query runtime and CM size as a function of bucket
level. The query selects a range of Price values.
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Figure 8: Cost of 500k insertions on B+Tree indexes and CMs
deteriorates for B+Trees while for CMs it remains level. Note
that we counted all costs involved in maintaining a CM, including
transaction logging and 2PC with PostgreSQL.

The reason why the B+Tree’s maintenance cost deteriorates for
more indexes is that additional B+Trees cause more dirty pages to
enter the buffer pool for the same number of INSERTs, leading to
more evictions and subsequent page writes to disk. On the other
hand, CMs are much smaller than B+Trees and can be kept in
memory even when all of their pages are dirty. Therefore, we can
maintain a significantly larger number of CMs than B+Trees.

We also compared the performance of B+Trees and CMs under
50 runs of a mixed workload consisting of INSERTs of 10,000
tuples followed by 100 SELECTs. Here the SELECT query has
a predicate on one of CAT1 to CAT6

SELECT AVG(Price) FROM ITEMS WHERE CATX=X

We randomly chose the predicated attribute and value. The
mixed workload gives roughly the same runtime for SELECTs
and INSERTs if there is only one B+Tree index. Figure 9
shows the total runtime with 5 B+Trees and 5 CMs in the mixed
workload, compared against the original INSERT-only workload.
The insertion costs on both B+Trees and CMs were higher than the
original workload because SELECT queries consume space in the
buffer pool and accelerate the overflow of dirty pages. Interestingly,
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Figure 9: Cost of 500k INSERTs and 5k SELECTs on 5 B+Tree
indexes and 5 CMs
CMs are faster than B+Trees even for SELECT queries in this
mixed workload unlike the read-only workload in Experiment 1
and Experiment 2. This is because SELECT queries over B+Trees
frequently have to re-read pages that were evicted from the buffer
pool due the many page writes incurred by the updates. In total, 5
CMs are more than 4x faster than B+Trees in the mixed workload;
with more secondary indices, the disparity would be more dramatic.

To confirm that correlations benefit both CMs and secondary
B+Trees, we also ran the mixed workload for 5 B+Tree indexes
after re-clustering the table on ItemID (which has no correlation
with the predicates). Query performance becomes significantly
worse than the times shown in Figure 9; the queries take 100x-
400x longer because PostgreSQL needs to scan almost the entire
table to look up randomly scattered tuples.

In summary, these first experiments demonstrate that properly
exploiting correlations can significantly speed up queries both for
B+Trees and CMs. However, for multiple B+Trees, maintenance
costs quickly deteriorate as the total number of indexes increases.
The same effect is not true for CMs because they are so much
smaller than B+Trees, and place less pressure on the buffer pool.
As a result, we believe CMs provide an ideal way to exploit
correlations in secondary index scans.

Experiment 4: In this experiment, we demonstrate that our cost
model based on c per u captures actual query costs accurately. The
data set and clustered key used in this experiment are the same as
in Experiment 1, but we use a different query shown below which
has a predicate on CAT5:

SELECT AVG(Price) FROM ITEMS WHERE CAT5=X

In other words, we select over a particular subcategory in the
fifth level of the eBay product hierarchy. We build a CM on CAT5,
which is strongly correlated with CATID. We tested different values
chosen from the CAT5 category that exhibited different c per u
counts (ranging from 4 to 145). Our cost model predicts that the
CM’s performance is primarily determined by how many clustered
attribute values the predicated unclustered value corresponds to.
As Figure 10 shows, this cost model effectively captures the
performance of a CM with various c per u values.

Experiment 5: For our final experiment, we use the SDSS
dataset to demonstrate a situation where composite CMs have an
advantage over single-attribute CMs as well as secondary B+Tree
indexes with a real-world query. This is an example of a non-
trivial correlation that was discovered by our CM Advisor tool. The
clustered attribute objID is correlated strongly with the pair (ra,
dec), but the correlation is weaker with each individual attribute.
We use the following query, a variant of Q2 from SDSS that
identifies objects having blue and bright surfaces within a region.

SELECT COUNT(*) FROM PhotoTag
WHERE ra BETWEEN 193.117 AND 194.517
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Figure 10: CM cost model based on c per u

AND dec BETWEEN 1.411 AND 1.555
AND g + rho BETWEEN 23 AND 25

We choose the columns and bucket sizes for the CM rec-
ommended by the CM Advisor. As we can see in Table 6,
the composite CM performs much better than a single attribute
CM because neither attribute predicts the clustered value but the
composition of the attributes does. Both the CM on right ascension
and the CM on declination perform worse than the B+Tree index
on the pair. However, the CM on the pair of attributes actually
performs even better than the B+Tree.

The reason that the composite CM wins is that the B+Tree index
performs poorly given multiple range predicates. The secondary
index is only used for the range on right ascension, which is the
prefix of the compound key. The CM does not have this problem
as it is only 699 KB and can be scanned from memory. The size of
the secondary index on (ra, dec), on the other hand, is 542 MB.
Table 6: Single and composite CMs for an SDSS range query

Index Bucketing Runtime[s] Size[MB]
CM(ra) 212 4.0 0.67

CM(dec) 214 1.7 0.936
CM(ra, dec) 214(ra) 216(dec) 0.21 0.699

B+Tree(ra, dec) - 1.12 542

7.3 Summary
In this section, we compared the performance of secondary

B+Tree and CMs in PostgreSQL on a variety of different data
sets and workloads. We showed that CMs and B+Trees can both
exploit correlated clustered attributes; that our cost model is a
good predictor of performance; and that our CM Advisor can au-
tomatically select high performance multi-attribute CMs. We also
showed that bucketing can reduce CM size without substantially
impacting overall performance, and demonstrated that smaller CMs
are substantially cheaper to maintain and keep in main memory,
resulting in significantly better overall performance than B+Trees.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we showed that it is possible to exploit correla-

tions between attributes in database tables to provide substantially
better performance from unclustered database indexes than would
otherwise be possible. Our techniques exploit correlations by
transforming lookups on the unclustered attribute to lookups in the
associated clustered index. In order to predict when CMs will ex-
hibit improvements over alternative access methods, we developed
an analytical cost model that is suitable for integration with existing
query optimizers. Additionally, we described the CM Advisor tool
that we built to identify correlated attributes and recommend CMs
and bucketings that will provide good performance.

Our experimental results over several different data sets validate
the accuracy of our cost model and establish numerous cases where

CMs dramatically accelerate lookup times over either unclustered
B+Trees (without an appropriate clustered column) or sequential
scans. We also showed that CMs are much smaller than conven-
tional unclustered B+Trees, making it possible to maintain a large
number of them to speed up many different queries. For a workload
with updates the compact size of a CM reduces its maintenance
overhead over that of the equivalent unclustered B+tree. Based on
these results, we conclude that CMs, coupled with our analytical
model, have the potential to offer substantial performance gains on
a broad class of queries.

We are extending the work in the broader context of physical
database design. Our work in this paper assumes a given clustered
index. However, if we had the freedom to chose the clustered index
(which is fine in a data warehouse) to have stronger correlations
with predicated attributes in the workload, we would likely achieve
even greater improvement. We are developing a new physical
database designer which chooses a set of materialized views,
clustered indexes and CMs so that the correlations between the
clustered and unclustered indexes are maximized to optimize the
performance for given workload queries within a given space bud-
get. Another extension is to design even more flexible bucketing
for skewed value distributions. One possible solution is to consider
variable-width buckets that pack more predicated attribute values
into a bucket when that bucket has many repeated values for the
associated clustered attribute. This approch might further reduce
the size of CMs without affecting the query performance.
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