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ABSTRACT 

Developers need to programmatically access persistent XML data. 

Object-oriented access is often the preferred method.  Translating 

XML data into objects or vice-versa is a hard problem due to the 

data model mismatch and the difficulty of query translation. We 

propose a framework that addresses this problem by transforming 

object-based queries and updates into queries and updates on 

XML using flexible, declarative mappings between classes and 

XML schema types. The same mappings are used to shred XML 

fragments from query results into client-side objects.  Information 

in the XML store that is not mapped using the mapping language, 

such as comments and processing instructions, are also made 

available in the object representation. 

1. INTRODUCTION 
XML has become ubiquitous in data-centric applications, 

especially for ones that involve data exchange. Most of these 

applications need to store the XML that they receive and send. To 

support these applications, many commercial database systems 

offer XML storage, which enables an XML document to be stored 

as a single column value. By storing the original XML document 

in the database, an application retains a perfectly accurate copy of 

the original XML and enables users to query parts of the 

document that are not shredded into relational columns. 

The importance of offering an object-oriented data access layer to 

databases is well known — to assemble objects that are spread 

across many tables and data models and to augment the data with 

business logic. All large-scale database applications that we know 

of include such a layer.  Several object-relational mapping (ORM) 

frameworks [3] have emerged to help application developers 

bridge objects and relations. They leverage the performance and 

scalability of databases by translating queries on objects into 

equivalent queries in SQL.  ORM tools initially used fixed 

mappings, which were insufficiently flexible for most applications 

and hence not widely used. Recent tools that are driven by flexible 

mappings have become more popular [1, 6]. 

Mapping flexibility is important because application interfaces 

and database schemas can differ substantially and for good 

reasons: applications exploit inheritance to improve encapsulation 

and code reuse, whereas database schema design emphasizes 

performance, normalization, replication, access control, etc. 

Typically, ORMs do not handle the mismatch between objects and 

XML.  Translating between XML and objects automatically is a 

largely unsolved problem, due to differences in the expressive 

power of their type systems [9] and the difficulty of translating 

object queries into an XML query language such as XQuery. 

Currently, developers have two options for accessing XML stored 

in a relational database.  One option is to use XQuery to access 

XML from an imperative language (object-oriented or otherwise) 

by sending a query as a quoted string to a function, such as 

Execute("for $a in doc(‗b.xml‘) return ..."). This approach is 

brittle and complex since it offers no static type-checking and 

requires diving into XQuery, an unfamiliar territory for many 

developers. The alternative is to bring the entire XML document 

to the client and shred or wrap it into objects client-side [5, 8].  

For large documents or large document collections, this approach 

can be prohibitively expensive. 

To address this problem, we developed an object-oriented data 

access layer that exposes both XML and relational data as objects 

of user-defined (custom) classes. Initial feedback we got from 

application developers suggests that such a layer can provide up to 

an order-of-magnitude increase in developer productivity. Using 

an object-oriented programming language to access classes that 

encapsulate XML and relational data brings several essential 

advantages. First, developers get the type-checking benefits of a 

custom-class interface to their XML data. Second, they get an 

object-oriented query language called LINQ to access XML and 

relational data in a uniform fashion. LINQ is the new language-

integrated query mechanism in .NET [12]. LINQ queries resemble 

SQL, but are statically compiled and type-checked in the 

developer's object-oriented programming language, such as C# or 

Visual Basic. Finally, the integrated development environment 

can use type information to offer auto-completion functionality 

for class and member names in both imperative code and queries. 

We propose an architecture called LRX (LINQ over Relations and 

XML) for implementing an object-oriented data access layer to 

SQL plus XML. It has several new features. The first is a flexible 

mapping language to the underlying SQL and XML data. 

To offer object-oriented access to XML data via custom classes, 

we need a schema that describes the XML parts of the database. 

We use the XML Schema (XSD) standard for this purpose. XSD 

enables the specification of structural features of XML data and 

constraints that XML data is required to satisfy.  It is currently 

supported by Oracle, IBM DB2, and Microsoft SQL Server. We 

use the SQL and XSD schemas as the target of the object-to-

database mappings. In addition, we generate customizable classes 

from the SQL and XSD schemas and customizable mappings 

between the classes and the schemas. 

With these classes and mappings in place, LRX translates queries 

and updates expressed in LINQ on the client into SQL and 

XQuery queries and updates on the server.  Using these mappings, 

LRX can also retrieve XML fragments as part of a query result 

and materialize client objects in a way that respects the mappings. 
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One problem that is intrinsic in any schema-based approach to 

XML mapping is potential data loss. Data loss arises because 

XML documents may contain information that is not described in 

the document‘s schema, such as comments or extra attributes. 

Because this information is invisible to the document‘s schema, it 

is invisible to any schema-based mapping approach. 

We say that an object-oriented representation of XML data has 

full fidelity if it contains all of the information necessary to 

reconstruct the original document.  To address the problem of lost 

data, LRX includes a delta representation that describes all 

information that cannot be exposed through the mapping or is not 

captured in a given XML schema. Having a full-fidelity object 

representation means that developers have client-side access to all 

data in the original XML, and that the original document can be 

reconstructed in a lossless fashion. 

The primary contributions of this paper are as follows: 

1. A mechanism to translate object queries expressed in LINQ 

against custom-typed objects (and XPath expressions against 

generically typed, XML-like objects) into queries in SQL 

and XQuery to push query execution to the server. 

2. A flexible mapping language that allows choosing a variety 

of object representations for XML. 

3. A full-fidelity object-oriented representation that presents to 

the developer information that is in the XML document but is 

not exposed as instances of the custom-typed objects. 

4. A performance analysis demonstrating the performance gain 

achieved by pushing query evaluation to the server. 

The rest of this paper proceeds as follows.  Section 2 lays out 

motivating examples to illustrate the process of pushing queries 

expressed in LINQ to be executed on the database.  We briefly 

describe the components of LRX in Section 3.  In Section 4, we 

formalize our mapping language and discuss query translation.  

Section 5 describes how LRX allows a developer to interact with 

information that does not participate in the XML-to-object 

mappings.  We discuss update translation in Section 6.  Our 

performance results are introduced in Section 7.  Section 8 

provides an analysis of related work, and Section 9 concludes the 

paper with some final analysis. 

2. MOTIVATING EXAMPLES 
Our running example is based on the XMark benchmark [16].  We 

modified the schema and queries of the auction site example by 

partially shredding it, thereby creating a hybrid relational and 

XML data source.  Figure 1 shows the database schema used in 

our motivating examples and subsequent performance analysis. 

This database contains several tables whose columns store XML 

data. For example, the table Items has a column Item whose 

content in each row is an XML document. 

We call a part of an XSD schema custom-mapped if it has a direct 

correspondence as a custom class in the object-oriented type def-

initions. An XML fragment is custom-mapped if it is an instance 

of a custom-mapped part of the document‘s XSD schema.  

2.1 XML as Custom-Typed Objects 
Consider the following code fragment written in C#, which uses 

LINQ to list the name of the item with ID ―item20748‖ registered 

in North America: 

using (AuctionDB db = new AuctionDB()) { 

var q = from i in db.Items 

        where i.ID == "item20748" && 

             i.Region == "North America" 

        select i.item.Name; 

foreach (var o in q) 

Console.WriteLine(o); } 

This query is an object version of Q1 from the XMark benchmark.  

The "var q" declaration indicates that the return type of the query 

is inferred by the compiler (as a collection of strings, in this case). 

LRX translates the query into the following SQL and XQuery: 

WITH XMLNAMESPACES('http://.../Auction' AS a) 

SELECT VALUE(I.item, '*[1]/a:Name', varchar) 

FROM Items I 

WHERE I.region = 'North America' 

  AND I.id = 'item20478' 

The function "VALUE" is a placeholder for a DBMS-specific 

XML feature.  The VALUE function executes a query expressed 

in XQuery and casts the resulting atomic value into a relational 

data type.  This function exists as the XMLCAST function in 

Oracle, and the .value method in SQL Server. 

Although in this example the query could be expressed almost 

entirely in XQuery, our translation algorithm uses the relational 

operators whenever possible to leverage the relational capabilities 

of the query processor and to support queries that span both 

relational and XML data. 

2.2 XML as Generically Typed Objects 
Not all XML schema types can be mapped to custom types. For 

instance, the type of an XML element may be declared as 

"xsd:anyType", which cannot have a statically typed object 

counterpart any more descriptive than "any XML data". Also, 

mixed-content elements are hard to map to custom-typed objects 

due to text nodes that may be sprinkled between child elements. 

Finally, the developer may prefer to query persistent XML 

directly using XPath. 

LRX supports these scenarios by mapping XML schema elements 

to the .NET type XElement. For example, an XML schema 

element ―Text‖ that has mixed content is mapped to a class 

member of type XElement. Each XPath axis has a counterpart in 

the object layer as a method of the class XElement. 

The following LINQ query illustrates how one can use custom 

and generically typed portions of the query in a single expression: 

var q = from c in db.ClosedAuctions 

        where c.closed_auction.price > 20 

        from t in c.closed_auction 

  .annotation.description.text 

  .Descendants("emph") 

        select t; 

The query above selects all of the emphasis nodes in the 

descriptions of auctions that closed for more than 20 dollars.  This 

query is translated into the following SQL/XQuery expression: 

WITH XMLNAMESPACES('http://.../Auction' AS a) 

SELECT T 

FROM (SELECT QUERY(I, '*/a:Description//a:bold') 

FROM ClosedAuctions C, 

    SEQUENCE(C.closed_auction, 

    '*[1]/annotation/descriptiontext//emph') AS T) 

WHERE VALUE(C.closed_auction, '*[1]/price', 

      int) > 20 
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Figure 1. The schema of our test data, both relational (a) and XML (b) 

  

The XPath accessor Descendants() is passed through and becomes 

the abbreviated descendant axis ―//‖ in the final query.  The 

SEQUENCE function (corresponding to the XMLSEQUENCE 

function in Oracle and the .nodes method in SQL Server) takes a 

list of XML elements and returns one row per element. 

3. LRX Architecture 
XML stored in a relational database typically resides in relational 

columns.  Therefore, we propose an architecture that plugs into 

existing relational data access frameworks and can leverage its 

object-relational mapping capabilities and database connection 

APIs. We add new components to the data access framework in 

several ways to support handling of XML data, outlined in Figure 

2.  In the figure, all of the components in white come from the 

existing data access framework, and objects in gray are 

components that are new to the architecture. 

To validate our proposed architecture, we implemented it as 

extension to the Microsoft Entity Framework (EF) [1]. EF already 

supports mappings between object classes and relations; LRX 

adds support for mappings between object classes and types 

defined in XML Schema.  These two sets of classes are disjoint, 

so a class can be mapped to either a relation or an XML type but 

not both.  Though the developer can write a mapping manually, 

we have a tool that generates a default class for each XML type 

and a default object-XML mapping (which can be altered or 

rewritten by the developer). 

The mapping engine is responsible for several functions.  The first 

function of the engine is to handle references to XML-mapped 

objects in queries or updates.  All references to XML-mapped 

objects are packaged into function calls that reference the 

relational objects in the query; therefore, the resulting query can 

be operated upon by the relational engine in the data access 

framework without further alteration to the engine.  We call these 

function calls placeholder functions because they take the place of 

the object references that the relational engine cannot handle. 

The placeholder functions that LRX supports are: 

 VALUE(c, q, t), which executes the XQuery expression q 

against the XML-type relational column c and, expecting the 

query to return an atomic value, casts the answer into an object 

of type t. 

 QUERY(c, q), which executes the XQuery expression q against 

the XML-type relational column c and returns the result as a 

single XML fragment. 

 SEQUENCE(c, q), which executes the XQuery expression q 

against the XML-type relational column c and returns one row 

for each XML element returned by the query. 

 TEST(c, q), which executes the XQuery expression q against 

the XML-type relational column c and returns a Boolean value, 

true if the query returns any data and false if result is empty. 

 XINSERT(c, q, m, n), which inserts the nodes n into the 

documents in column c at the position indicated by XPath 

expression q.  The mode parameter m is one of ―before‖, 

―after‖, ―as first‖, or ―as last‖, indicating the position of the new 

nodes relative to the result of the XPath expression. 

Object queries and updates via LINQ 

O-X mappings 

DB2 Oracle 

DB2 Provider 

SQL Server 

PH  XQuery 

SS Provider 

PH  XQuery 

Ora Provider 

PH  XQuery 

O-R mappings 

Translate XML-mapped 

references to placeholder 

(PH) functions 

Shred XML into 

custom-typed objects 

or XML-like objects 

Translation to 

vendor-specific 

SQL syntax 

Relation-mapped classes XML-mapped classes 

Package queries and updates 

into abstract trees, then 

transform by applying mappings 

Build objects 

from query 

results 

Client-side 

object space 

Figure 2. An overview of the LRX architecture 
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Figure 3.  A relational to XML mapping using LRX.  A schema element in an XML type (a) is associated with a member in a client 

class (b) using a Component Designator expression and a position reference (c)

 

 XUPDATE(c, q, d), which replaces the data in the nodes 

returned by the XPath expression q against the documents in 

column c with the data d. 

 XDELETE(c, q), which deletes the nodes returned by the 

XPath expression q from the documents in column c. 

Once packaged into placeholder functions, the remaining query or 

update can be processed as usual by the relational mapping engine 

of the data access framework. 

The second function handled by the mapping engine is object 

materialization.  Queries may return XML fragments that must be 

deserialized into objects in client space.  The mapping engine 

generates an automaton based on the XML Schema and the type 

mappings that handles the shredding of XML fragments into 

objects in a type-and-mapping-specific, efficient way. 

When the query or update has successfully been passed through 

the relation components of the data access framework, it is 

processed by a database vendor-specific provider that translates 

the statement or statements into vendor-specific SQL syntax.  

Each database provider can be extended to look for our 

placeholder functions and translate them into the appropriate 

dialect of XML functions for that system; we extended the SQL 

Server provider to translate placeholder functions into XML 

functions supported by SQL Server 2008. 

4. QUERY TRANSLATION 
Before we can have object-oriented query and update access to 

stored XML data, we need to map the XML types in schematized 

XML database columns to classes. Figure 3 shows the mapping 

that associates type ItemType from the XMark schema with a C# 

class TItem, part of the mapping required for the sample queries 

in Section 2. Each mapping is specified using Component 

Designator (CD) expressions, one for each class member. 

EF uses a mapping compilation approach; a developer specifies an 

object-relational mapping, which EF then compiles into views that 

it uses to process queries and updates [13].  LRX uses a similar 

approach.  For each member of an XML-mapped class, LRX 

compiles a mapping fragment associated with the member into an 

XQuery expression that represents the query for all elements that 

match the CD expression. 

4.1 XSD Component Designators 
XSD Component Designators (CD) [20] is an XPath-like 

language that is used to refer to individual elements within an 

XML Schema.  Component Designator expressions can be either 

absolute paths, which describe the location of a schema element 

relative to the schema document root, or relative paths, that 

describe the location of a schema element relative to some current 

location.  In LRX, we use CD absolute paths to describe the 

location of types, and within each type, we use relative paths to 

describe the location of schema elements that map to members. 

For example, consider the following Component Designator 

relative path expression: 

model::choice[3]/schemaElement::ns:Y[2] 

The expression above references the third choice particle in the 

current type definition, and within that particle, references the 

second element declaration with the name ―ns:Y‖. 

Just like XPath, Component Designators have an abbreviated 

syntax.  For expressions that only reference schemaElement 

axes, one can use a very XPath-like expression like the following: 

ns:X[2]/ns:Y 

This expression references the second ―ns:X‖ element reference in 

a type, then references the first ―ns:Y‖ element of the type of 

element associated with ―ns:X‖.  If there is only one matching 

element in a type, then one can omit the position reference (as in 

the example above, where ―ns:Y‖ refers to the first and only 

―ns:Y‖ element in a type). 

Because of the Unique Particle Attribution requirement of XML 

Schema, each element of an XML document validates against 

exactly one particle in an XML schema.  Since each CD path 

represents a particle in an XML schema, a CD expression has a 

clear semantics as a collection of XML nodes.  We can think of a 

CD path and the set of elements that validates against the 

referenced particle interchangeably. 

4.2 Mapping Formalism 
CD expressions only constitute part of a mapping expression.  For 

instance, mappings may optionally specify conditions that must be 

met on either the XML or object side or both, allowing a single 

XML schema type to be conditionally mapped to different classes, 

and vice versa. 

A mapping fragment is a triple (m, d, i), where m is a class 

member reference (e.g., a field or a property), d is a CD path 

expression, and i is a position designator.  The position designator 

i can be either a positive integer (designating a position reference 

within a collection of elements, where ―1‖ (one) is the first 

element in the collection) or the special value ―all‖, indicating that 

the mapping refers to all of the elements in the collection. 
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A type mapping is a 5-tuple (c, cp, x, xp, f), where c is an object 

class, cp is a (possibly empty) list of predicates on the class c, x is 

an XML Schema type, xp is a list of predicates on x, and f is a list 

of mapping fragments.  Predicates in cp (on objects that belong to 

class c) may be equality conditions on the values of members of 

the object or conjunctions of such expressions.  Predicates in xp 

(on elements that satisfy XML type x) may be equality conditions 

on the child element values or the name of the element, conditions 

on the existence of child elements, or conjunctions of the above. 

A type mapping (c, cp, x, xp, f) is valid if it meets a non-

redundancy condition: For any two mapping fragments f1 and f2 

in f, f1.d (the component descriptor for fragment f1) is not a prefix 

of f2.d.  This condition eliminates the possibility that a single 

XML element can map to multiple locations in object space. 

A schema mapping is a triple (cs, xs, ts), where cs is a client-side 

object schema, xs is an XML Schema instance, and ts is a 

collection of valid type mappings.  A schema mapping (cs, xs, ts) 

is valid if it meets all of the following conditions: 

 For each type mapping (c, cp, x, xp, f) in ts, class c is a valid 

class in cs, x is a valid type in xs.  Also, for each fragment (m, 

d, i) in f, m is a valid member of c relative to schema cs, d is a 

valid CD expression for x relative to schema xs, and m does not 

participate in any of the equality predicates in cp. 

 For each mapping fragment (m, d, i) in each type mapping, if 

the type of member m is scalar, then position value i is integral.  

If m has a collection type, then i is the special value ―all‖. 

 For each mapping fragment (m, d, i) in each type mapping, if 

the type of member m is atomic (i.e., a numeric or string type) 

or is a collection of atomic items, then the element type referred 

to by CD expression d is also atomic.  If m is not atomic, then 

the element type referred to by expression d is also not atomic. 

 Given any two type mappings t1 and t2 in ts, if t1.x is a subtype 

of t2.x, then either t1.c = t2.c or t1.c is a subclass of t2.c.  This 

condition prevents type conflicts in object space.  If an XML 

element has an associated xsi:type attribute saying it has type 

t1.x, it will become an object of type t1.c, which can still be 

assigned to variables of type t2.c.  Similarly, if t1.c is a subclass 

of t2.c, then either t1.x = t2.x or t1.x is a subtype of t2.x. 

 Given any two type mappings t1 and t2 in ts, if t1.x = t2.x (both 

mappings refer to the same XML type) and t1.xp˄t2.xp ≡ t1.xp 

(t1.xp is a stronger condition than t2.xp), then either t1.c = t2.c 

or t1.c is a subclass of t2.c (for the same reason as the previous 

condition).  Similarly, if t1.c = t2.c and t1.cp˄t2.cp ≡ t1.cp, 

then either t1.x = t2.x or t1.x is a subtype of t2.x. 

 Given any two type mappings t1 and t2 in ts, if t1.x=t2.x, then 

exactly one of the following conditions must be true: 

o t1.xp ˄ t2.xp = t1.xp (t1.xp is strictly more selective) 

o t1.xp ˄ t2.xp = t2.xp (t2.xp is strictly more selective) 

o t1.xp ˄ t2.xp = false (t1.xp and t2.xp have no overlap) 

Similarly, if t1.c=t2.c for two type mappings t1 and t2, then 

t1.cp must either be strictly more selective than t2.cp, strictly 

less selective than t2.cp, or have no overlap with t2.cp. 

 Finally, for every class c that participates in a type mapping, 

there must exist some type mapping t such that t.cp = true.  

This type mapping is called the base mapping for c. 

An XML element e matches a type mapping t if e has type t.x and 

e satisfies the predicate t.xp.  The element e maximally matches t 

if no other type mapping matches e.  Because of the properties of 

a valid schema mapping, any time an element matches a type 

mapping, there must exist a type mapping that maximally matches 

the element.  The definition for an object o matching or maxi-

mally matching a type mapping t follows from the same logic. 

A schema mapping s is complete if, for any XML element e that 

conforms to a type definition in s.xs, there is a type mapping that 

matches e, and for any object that conforms to a class in s.cs, there 

is a type mapping that matches o.  LRX checks mapping validity, 

but not completeness. Practically-speaking, the developer may not 

write type mappings for every contingency if they know a priori 

the characteristics of the objects or XML elements. 

4.3 Mapping Compilation 
There are two cases to consider when compiling a CD path 

expression into XQuery, depending on whether the XSD type in a 

mapping is simple.  We call an XSD type simple if its type defi-

nition has no repeated element definitions and no sequence, all, 

choice, or group particles with a maxOccurs value of greater than 

one.  The regular expression for the validation of elements of a 

simple type has no repeated symbols unless they are adjacent to 

each other (to allow constructs like maxOccurs=3 for an element) 

and no Kleene star symbols except on a single element.  One 

special case that we allow in the simple case is a disjunction of 

permutations (e.g., (abc|acb|cab |cba|bac|bca)), which accommo-

dates an ―all‖ particle.  So, a type with regular expression 

―ab*ccc?c?(d|e)‖ is simple, but ―aba‖ or ―a(bc)*‖ are not. 

Simple types have the property that queries that retrieve all 

elements corresponding to a CD expression can be done in XPath.  

For example, consider the CD expression ―a/b‖, which refers to 

the ―a‖ schema element in a type definition, and the ―b‖ schema 

element of the type associated with ―a‖.  To retrieve all matching 

elements from an instance of the parent type, one executes the 

XPath expression ―/a/b‖.  A simple type has the property that 

component designators and XPath expressions are interchange-

able.  The only exception is CD expressions that reference struct-

ural particles, such as ―model::choice[2]/schemaElement::foo‖;  

for a simple type, we can drop the axis reference for the particle, 

leaving the XPath expression ―/foo‖. 

For types that are not simple, retrieving all of the elements that 

match a particular CD expression is more complex, as it is not 

interchangeable with XPath.  Such compiled expressions gener-

ally require finding elements by relative location to other elements 

(e.g., /A[. >> ../B[3]], or ―select all A elements after the third B‖).  

In more complex cases, the compiled expressions are too express-

ive for XPath and require full XQuery.  This problem is signifi-

cant and difficult on its own.  We have developed an algorithm 

that can compile CD expressions for non-simple types in most 

cases, and are working on incorporating it into our prototype. 

4.4 Member Translation Algorithm 
As mentioned in Section 3, LRX packages references to XML-

mapped objects into placeholder functions that are then tunneled 

through the existing object-relational mapping functionality.  For 

queries, LRX walks the tree that represents the LINQ query and 

translates any references one at a time.  Therefore, when 

processing the statement foo.bar.att, the algorithm translates 

the member reference foo.bar, then the member reference .att.   



6 

LRX also performs some processing on conditions in the WHERE 

clause of a query.  Because LRX type mappings can have client-

side predicates, if those predicates appear in a query, LRX 

translates them into conditions on XML elements and types 

according to the XML side of the associated mapping. 

The ExpressionTranslate algorithm in Figure 4 outlines LRX 

query translation.  For brevity, we assume in our exposition that 

the conditions in the WHERE clause of the query are in 

disjunctive normal form.  The algorithm uses the following 

additional terminology: 

Q1∘Q2: The result of composing query Q1 with query Q2. 

PH(E): Represents the placeholder function that results from 

running ExpressionTranslate on E.  If P is the result, P.function 

refers to the function name, P.column refers to the function‘s 

column argument, and P.query refers to the query argument. 

COND(P, M, V):  A temporary placeholder function, representing 

that the condition ―P.M = V‖ was found in the query, and that M 

participates in a client-side condition of a type mapping.  The first 

phase of ExpressionTranslate (member translation) creates 

instances of COND.  The second phase (condition translation) 

packages them up to identify a non-base type mapping for the 

type of P, which translates to server-side XQuery conditions. 

There are two helper algorithms provided in Figure 4.  The first, 

PropertyTranslate, finds the appropriate compiled mapping 

fragment for a dereferenced member and composes it with the 

query in the current placeholder function (and creates instances of 

the COND temporary function).  The second helper function, 

MethodTranslate, translates some method calls into XQuery 

equivalents.  LRX recognizes three kinds of methods: 

 Methods on atomic types that have clear XQuery analogs.  For 

instance, the expression s.Contains(―foo‖) maps to the XQuery 

expression ―contains(q, ‗foo‘)‖ if s translates to query q.  

Computed properties like string length belong in this category.  

LRX includes a catalog of such method mappings. 

 The OfType<T> method, which filters a collection of objects, 

returning only those of type T. 

 XPath-like methods for the class XElement, described in 

Section 2.2.  For instance, the methods .Attribute(X), 

.Elements(Y), and .Descendants(Z) map to the XPath 

expressions ―/@X‖, ―/Y‖, and ―//Z‖ respectively. 

LRX only supports literal arguments to translated methods.  For 

simplicity of exposition, we treat the variable $method in the 

algorithm description as the method call with its arguments. 

4.5 Object Materialization 
Consider the following query: 

var q = from r in db.Items select r.Item; 

This query returns a list of objects of type ―TItem‖.  On the 

database side, the query returns a list of XML fragments of type 

―ItemType‖.  The object materializer component shreds each 

XML fragment in the query result into an object of type TItem 

according to the XML fragment‘s maximally matched type 

mapping.  If the type mapping includes equality predicates on the 

client-side class, the generated object fills in the appropriate 

values in the object to satisfy those predicates.  Section 5.2 

describes in more detail how object materialization occurs. 

ExpressionTranslate($query): 
    For each member reference $parent.$member in $query: 
        If $parent is not XML-mapped: 
            If $member is not XML-mapped or is a method call: 
                Move to next member 

            ⊲ Need to create placeholder function for XML 
            Else if called from the “from” clause of the query: 

                ⊲ Need to enumerate through results, so return a list 
                Replace with SEQUENCE ($parent.$member, /*) 
            Else: 
                Replace with QUERY ($parent.$member, /*) 

        $P ← PH($parent) 
 
        If $member is a property: 
            Replace with PropertyTranslate($parent, $member, $P) 
        If $member is a method call: 
            Replace with MethodTranslate($parent, $member, $P) 
    For each conjunctive clause $c in the where clause: 
        For each object $parent referenced by a COND function 
                                               appearing in $c 
            $cond ← conjunction of all COND($parent, _, _) 
            $M ← mapping for type of $parent where $M.cp = $cond 
            If $M does not exist, throw error 
            $Mold ← base mapping for type of $parent 

            $P ← PH($parent) 

            $func ← $P.query ∘ .[. instance of $M.x][$M.xp] 
            Replace $cond with TEST ($P.column, $func) 
 
PropertyTranslate($parent, $member, $P) 

    $M ← base mapping for the type of $parent 
    If $member has a mapping fragment in $M: 

        $comp ← compiled XQuery corresponding to the mapping 
                                      fragment for $M.$member 
        If $member is of atomic type: 

            $type ← type of $member 

            Return VALUE ($P.column, $P.query ∘ $comp, $type) 

        Else, return QUERY ($P.column, $P.query ∘ $comp) 
    Else if $member participates in a predicate in $M, and also 
                               participates in a predicate “= $V” in the query 
        Return COND ($parent, $member, $V) 

    Else, throw error   ⊲ Member is not mapped to anything 
 
MethodTranslate($parent, $method, $P) 
    If $parent is atomic type: 
            && $method has a known XQuery equivalent 

        $T ← return type of $method 

        $func ← translation of $method into XQuery equivalent 
        If $T = Boolean: 

            Return TEST ($P.column, $P.query ∘ $func) 
        Else: 

            Return VALUE ($P.column, $P.query ∘ $func, $T) 
    Else if $parent is type XElement: 
            && $method is a method representing an XPath axis 

        $func ← XPath expression corresponding to $method 

        Return QUERY ($P.column, $P.query ∘ $func) 
    Else if $method = OfType<T>(): 

        $M ← base mapping for type T 

        ⊲ Create query that filters on the type and predicates of $M 

        $func ← $P.query ∘ .[. instance of $M.x][$M.xp] 
        Return $P.function ($P.column, $func) 

    Else, throw error       ⊲ Unsupported method 

Figure 4.  The LRX query translation algorithm 
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5. FULL-FIDELITY REPRESENTATION 
When an XML document is exposed through a schema mapping, 

information that is not mapped may be lost. In this section, we 

describe how we present information that would normally be lost 

in translation to the user, which may happen for several reasons: 

Information exists in the document that is not addressed in the 

schema.  A schematized XML document can include three kinds 

of information that cannot be described by its XSD: processing 

instructions, comments, and whitespace.  This kind of information 

can appear anywhere in an XML document, with our without a 

schema. Since it is not described in an XML schema, it ordinarily 

would not be part of the custom-typed object-oriented type 

definitions that are created to correspond to the XSD schema. 

Attributes have been added to elements that are not in the 

schema.   The set of attributes in a schema is the minimum set; 

new attributes can also be specified that are not anywhere in the 

associated schema (e.g., RDF tags).  Since these attributes are not 

part of the schema, they cannot participate in a schema mapping. 

Parts of the schema have not been mapped.  We do not require 

that a schema mapping contain mapping fragments that refer to 

every element in a schema. A schema mapping can leave out 

some information in the XSD schema from the custom-typed 

object-oriented type definitions. That is, the information is 

schematized and could be custom-typed, but the designer leaves it 

out, presumably because it is not of interest to the application. 

Order and element representations are not maintained.  Once 

a custom-typed object has been generated for an XML fragment, 

some aspects of the original fragment are lost.  The element order 

is lost, since object members have no explicit order (save for ele-

ments in a list).  If elements came from an XML ―all‖ group, the 

fragment‘s schema cannot be used to recover order.  Also, the 

element content may not directly translate into an OO counterpart.  

For instance, the value ―+06.43000‖ in an XML element would 

translate to the value ―6.43‖ if assigned to a numeric variable, 

even if the trailing and leading zeroes were significant. 

5.1 Delta Representation 
Information loss when accessing an XML document via object-

oriented type definitions presents the problem of how to obtain 

high fidelity when it is required. LRX addresses this problem by 

maintaining a delta representation that includes the information in 

an XML document that is not custom-typed, including comments, 

processing instructions, whitespace, and extra-schematic elements 

and attributes.  The delta representation also includes the relative 

order of information in the document. If the delta representation is 

complete, one can construct an exact copy of an XML document 

from the parts of the document that are exposed as instances of its 

object-oriented type definitions and its delta representation. 

We define an anchor to be a 2-tuple (c, i), where c is a 

Component Designator expression and i is a position reference.  

We know from Section 4 that, when considered together, these 

two pieces of information represent a unique element in an XML 

document.  Unlike mapping fragments, the position reference in 

an anchor must be an integer (i.e., cannot be the value ―all‖). 

A delta representation is a function ∆: (c, i) → (RSP, RSC, RC, REP, 

REC, RSC) that associates each anchor with a collection of six 

regions.  Each region represents a location of delta information in 

an XML document relative to an anchor‘s corresponding element: 

 StartPrefix (RSP): The region before element‘s opening tag. 

 StartContent (RSC): The region inside the element‘s opening 

tag, after the tag name.  Elements in this region are indexed by 

their position relative to attributes of the element that may be 

mapped.  Therefore, delta information immediately before 

attribute X will be indexed by the string ―X‖, or indexed by 

―null‖ if the information follows all attributes. 

 ElementContent (RC): The region inside the element, only if the 

anchor corresponds to an atomic type (e.g., cannot contain other 

elements).  Elements in RC are indexed by character position. 

 EndPrefix (REP): The region before the element‘s closing tag. 

 EndContent (REC): The region after the closing tag‘s name 

inside the tag. 

 SelfClosing (RSC): A Boolean value indicating whether the tag 

was self-closing. 

Each region can only contain certain kinds of information due to 

syntactic restrictions of XML.  For instance, one cannot place 

comments within an element declaration, so comments cannot 

appear in the StartContent or EndContent regions.  Table 1 shows 

the kinds of delta information that each region supports. 

Not all of these regions are applicable to anchors that represent 

XML attributes.  Attributes may contain whitespace before and 

after the equals sign.  In other words, the following two attribute 

declarations are syntactically valid and have equivalent data: 

Attribute="value" 

Attribute     =        "value" 

For the anchor associated with this attribute, the whitespace 

before and after the equals sign is captured in the StartContent and 

EndContent regions respectively. 

LRX presents an interface that allows a user to access or update 

the delta representation for an object.  The following example 

retrieves all attributes present in the delta information for member 

―foo‖ of object ―bar‖, where ―foo‖ is a scalar value: 

bar.delta["foo", null].StartContent 

                              .OfType(XAttribute); 

The following statement creates a new comment for the third 

member in list ―foo2‖ to be placed before the opening element: 

bar.delta["foo2",3].StartPrefix.Add( 

                         new XComment("Testing")); 

The first argument to the ―delta‖ member can be either an object 

member name or a component designator.  Each object member 

corresponds with a component designator (with or without a 

position reference), but there may be anchors that do not match 

with an object member.  For instance, the type mapping may 

flatten several levels of hierarchy in an XML element, but there 

may be delta information associated with a level of that hierarchy. 

Two special anchors exist to handle document-level delta infor-

mation, and are only present in the delta representation of the 

object representing the root element.  The first, ―.‖, corresponds to 

the document‘s root element and covers all regions relative to the 

root element in the normal way.  The second, ―null‖, corresponds 

to data after the root element‘s closing tag.  By convention, this 

delta information is stored in the null anchor‘s EndPrefix region. 



8 

Table 1.  Describing what kinds of data are compatible with each anchor region, and which regions are supported by attributes. 

 

Anchors are stored in the order that they are discovered in the 

document.  Therefore, ordering of document elements and 

attributes is preserved.  For elements that have an atomic value, 

the element value is stored as a string value as the item at index 

―null‖ in the ElementContent region for that element‘s anchor.  

5.2 Parsing Automata 
Current commercial implementations of XML offer separate tools 

to validate an XML document with respect to an XSD schema and 

then to parse the XML so that it can be accessed via an object-

oriented API. This is wasteful, since much of the computation 

time in validating the document involves parsing. It is therefore 

more efficient to integrate these two tasks so they are performed 

together in a single pass over the document [2, 7]. 

LRX compiles an XSD schema into an automaton that accepts 

documents that conform to the schema. When the automaton 

recognizes a part of the document that corresponds to a custom-

typed object-oriented type definition, it creates an instance of that 

type, extracts the recognized part of the document, and uses the 

extracted part to populate the instance in the same pass. Since the 

automaton is parsing the document relative to the XSD schema, it 

is in effect validating the document too. For example, the 

automaton might parse a DateTime value to recognize its type, 

which tells it that this part of the document is valid and tells it 

how to populate an object that is supposed contain that value. 

One way in which our compiled automaton differs from previous 

projects that compile XSD-specific parsers in that we build the 

delta representation in the same single pass.  When the automaton 

identifies a part of the document that is not covered by the schema 

(such as a comment), it retains this information in the delta 

representation, in the region in which it is found relative to the 

anchor point at the current position of the cursor (or next anchor 

point, if the delta information is found between elements).  Thus, 

the automaton effectively splits an input document into the parts 

extracted to populate custom-typed objects and the remainder that 

is retained in the delta. We call this an input automaton. 

A type mapping may associate a class member m with an XML 

element x that is optional.  When parsing an XML fragment, if the 

input automaton discovers that element x is not present, it will 

leave member m in the generated object as null.  However, the 

automaton will create a delta representation anchor with all empty 

regions.  If member m is given a value on the client, its anchor is 

already in the appropriate order placement in the delta. 

When the automaton identifies a part of the document that does 

not conform to the schema (such as an element that is out of place 

according to the schema), it retains the violating part of the 

document in the delta.  An exception is only thrown if the 

document is missing required data.  This relaxed schema valid-

ation can be used to cope with schema evolution.  Documents that 

conform to the evolved schema may still be accepted by the 

automaton for the original schema. In this case, the data that 

conforms to the new parts of the schema but not the original 

schema are not lost, because they are retained in the delta. 

In most cases, given an XML type that participates in a type 

mapping, LRX can uniquely determine the corresponding type 

from the schema mapping and thus can generate a type-specific 

parsing automaton.  However, there are two exceptions: 

 There is an xsi:type attribute in an element.  Consider the case 

that element e would normally map to class C1, but an xsi:type 

attribute indicates that e should translate into an instance of C2.  

We try to parse e into an instance of C1, but upon seeing the 

xsi:type attribute, we restart parsing in a C2-specific automaton.  

Because xsi:type attributes appear early, little time is wasted. 

 There are XML conditions in the type mapping.  In this case, 

we cannot uniquely determine the output object type because it 

is determined by the content of each parsed element, and that 

information is not available until after the parse.  In this case, 

we revert to parsing the element into an XML fragment in 

client space, read the data to determine the correct type, then 

run the type-specific parser to build the object and delta 

representation.  This process is an open area of optimization. 

LRX also precompiles an output automaton from the schema, 

which joins together data saved as custom-typed objects with the 

deltas to generate the original XML document with full fidelity.  

Some verification occurs in the output automaton to ensure the 

XSD semantics are preserved.  For instance, if the XML schema 

has a choice restriction and there is not exactly one qualifying 

data member, the output automaton will throw an error. 

6. UPDATE TRANSLATION 
A developer updates a database through LRX by updating the 

results of a query.  To be updatable, a query result must contain 

enough information to identify the row that an XML fragment 

belongs to (e.g., key values) and also must refer to the root node 

of the XML column.  This updatability restriction is compatible 

with the restrictions currently in place for updates through EF.  

So, the following query would return a result that is updatable: 

var q = from i in db.Items 

        select new {i.ID, i.Item}; 

LRX translates updates against client-side objects into update 

statements on the database.  For non-simple types, LRX handles 

updates to the members of objects of that type or their 

descendants by using the output automaton for that type to 

reconstitute the XML document associated with the updated 

object and updating the entire document on the client side. 

Region Supported by 

Attributes 

Processing 

Instructions 

Comments Whitespace Extra-Schematic 

Attributes 

Unmapped 

Content 

StartPrefix No X X X  X 

StartContent Yes   X X  

ElementContent No X X X   

EndPrefix No X X X  X 

EndContent Yes   X   

SelfClosing No      
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For simple types, LRX translates object modifications into 

XINSERT, XUPDATE, or XDELETE placeholder functions, 

which represent in-place modifications of stored XML documents.  

All three major DBMS systems support the ability to insert, 

update, or delete nodes relative to the result of an XPath 

expression.  For instance, for deleting nodes, the DELETEXML 

function in Oracle can delete all nodes in a document that match 

an XPath expression.  The .modify method in SQL Server and the 

xmlquery function in DB2 are both patterned after the XQuery 

Update Facility [19] and can delete in-place all nodes in a 

document that are returned by an XQuery expression.  Since 

mapping fragments on simple types compile to XPath, they can be 

used to identify update locations across all three implementations. 

For example, consider the following code expression: 

foreach (var i in q) if (i.ID == "item20748") 

  i.Item.Name = "NewName"; 

db.SaveChanges(); 

This code immediately changes the name of a single item in client 

space, but also generates an update statement that is sent to the 

database once the SaveChanges method is called.  On SQL 

Server, the update statement takes the following form: 

UPDATE Regions SET Item.modify(' 

  declare namespace a = "http://.../Auction"; 

  replace value of (/*/Name) with "NewName"') 

WHERE ID = 'item20748' 

Every time a member m (or collection element) is modified on a 

simple-type, XML-mapped object p, LRX runs algorithm 

UpdateTranslation (Figure 5) to generate placeholders.  LRX then 

uses existing EF features to identify the relational tables, columns, 

and conditions of the update.  If m is updated or deleted, 

UpdateTranslation uses compiled mapping fragments to generate 

a query that identifies the XML document location of m.  If m is 

inserted, UpdateTranslation uses p‘s delta representation ordering 

to identify the members that occur just before and after m to place 

m‘s data in the correct location in the document. 

UpdateTranslation has two helper functions.  The first, BuildPath, 

compiles into a single XQuery the list of CD expressions that are 

necessary to get from the root of the XML document to the 

element for the updated object‘s parent.  The second, PadValue, 

nests a node that is to be inserted ($element) within new elements 

so that the inserted node is at the necessary level of the document 

hierarchy (represented by the CD expression in parameter $cd).  

Finally, ⇔ (query1, query2) is shorthand that represents a query 

for all of the sibling nodes before query2, and also after query1 if 

it is not empty.  We use this shorthand to identify, for a node n to 

be deleted, the nodes corresponding to the delta information for n. 

The association between an anchor and delta information in its 

regions implies a positional relationship, not necessarily a 

semantic one.  UpdateTranslation presumes that the positional 

relationship is also a semantic relationship and maintains the 

relative positions of delta information with respect to its anchor.  

For instance, consider the region RSP for a deleted object (or a 

member whose object reference is set to null) with comments or 

processing instructions preceding the original element‘s start tag.  

UpdateTranslation deletes all delta information for that object, so 

it also deletes the nodes in that region in the original document.   

UpdateTranslation only creates XINSERT statements with ―as 

first‖ or ―after‖ modes, so that new nodes do not come between an 

existing node and the delta information immediately before it. 

UpdateTranslation ($parent, $member): 
    ($column, $query) ← BuildPath($parent) 
    If $member has a mapping fragment defined for the base 
                                                     mapping for the type of $parent: 
        ($cd, $index) ← mapping fragment for $member 
        $qmap ← compiled query for mapping fragment 
        $v ← new value for $member, serialized to XML using 
                                            output automaton if not atomic-typed 
        ($cb, $ib) ← first anchor with a non-null member value 
                                   before ($cd, $index) in the delta for $parent  
        ($ca, $ia) ← first anchor with a non-null member value 
                                     after ($cd, $index) in the delta for $parent  
        $pfxb ← common prefix between $cb and $cd 
                                                               or “.” if $cb does not exist 
        $pfxa ← common prefix between $ca and $cd 
                                                               or “.” if $ca does not exist 
        If $v = null (or $member is item deleted from a collection): 

            Issue XDELETE ($column,⇔($cb[$ib], $query ∘ $qmap)) 

            Issue XDELETE ($column, $query ∘ $qmap) 
            Delete the contents of ∆($cd, $index) 
        Else if old value of $member is null 
                              (or $member is item inserted into a collection): 
            If length of $pfxb < length of $pfxa: 
                $mode ← “as first” 

                ⊲ Case: new element is the first entry in a list 
                If $cd = $pfxa, ($cn, $in) ← ($cd.parent, 1) 

                ⊲ Case: new element is the first entry in a sequence 
                Else, ($cn, $in) ← ($pfxa, 1) 
            Else: 
                $mode ← “after” 

                ⊲ Case: new element is an added entry in a list 
                If $cd = $pfxb, ($cn, $in) ← ($cb, $ib)                 

                ⊲ Case: new element is an added entry in a sequence 
                Else, ($cn, $in) ← ($pfxb’, $ia’) 
                       where $pfxb’ is $pfxb plus one more step from $cb 
                       and $ib’ = $ib if $pfxb’ = $cb, 1 otherwise 
            $v ← PadValue ($cd, $v, $cn) 
            $qprev ← compiled fragment for anchor ($cn, $in) 

            Issue XINSERT ($column, $query ∘ $qprev, $v, $mode) 
       Else: 

            Issue XUPDATE ($column, $query ∘ $qmap, $v) 
            Delete the contents of ∆($cd, $index).RC 
    If $member participates in a type mapping condition: 

        ⊲ Object now may maximally match a different mapping 
        $o ← the result of repackaging object $parent into XML 
        Issue XUPDATE ($column, $query, $o) 
 
BuildPath ($parent): 
    $root ← ancestor object of $parent corresponding to the root 
                                               of the XML document 
    $query ← “/*” 
    For each member reference $p.$m in the path of 
                                     member references from $root to $parent 
        $map ← maximally matched type mapping for $p 

        $query ← $query ∘ (XQuery for $m’s fragment in $map) 
    Return ($root, $query) 
 

⊲ Nest an XML element to the needed hierarchy level 
PadValue ($cd, $element, $cdcompare): 
    $common ← common prefix between $cd and $cdcompare 
    $diff ← part of expression $cd after $common 

    ⊲ With simple types, $diff is interchangeable with XPath 
    For each step $step in $diff, read backwards 
        $element ← <$step>$element</$step> 
    Return $element 

Figure 5.  The LRX update translation algorithm 
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Figure 6. Timing results from running four queries, pushing the entire query to the server using LRX (SC and SH) versus 

evaluating the XML portion client-side (CC and CH).  Results are in seconds

 

7. EVALUATION 
We believe that a primary contribution of LRX is developer 

productivity.  Anecdotally, we have seen examples of SQL and 

XQuery queries that take hours to construct and debug.  Using 

LRX, there is no need to worry about SQL dialects, XQuery 

constructs, namespaces, correct embedding of XQuery into SQL, 

etc.  Without long-term developer adoption, this hypothesis is 

impossible to test.  However, if LRX is at least as fast as existing 

approaches, then we believe that LRX can offer an overall 

advantage.  Our performance results demonstrate LRX is just as 

fast as client-side execution in the worst case, and often offers 

dramatic performance gains. 

To evaluate LRX performance, we built a prototype that extends 

EF in the fashion described in Section 3.  In this section, we 

present timing analysis of different scenarios that demonstrate the 

performance benefit of pushing object queries to the server as 

SQL and XQuery when compared to performing the XML portion 

of the same queries on the client. 

We tested our implementation by measuring the execution time of 

four different queries.  Included in this set of queries are 

equivalents of queries Q1, Q5, and Q9 in the XMark benchmark.  

The fourth query that we ran is the query from Section 2.2 above, 

referred to as Query N.  Our data set was generated using the 

XMark data generator with a scaling factor of 40, generating a 

4GB XML file that we then shredded into our database. 

Execution time was measured from when the query is sent to LRX 

to when the query has finished computation and has been 

processed by the client, iterating through all of the rows of the 

result.  This ensures that client-side and server-side processing are 

compared on an even playing field, as server execution time alone 

does not account for the time cost of moving results to the client. 

The performance tests were run on a machine running Windows 

Vista with a 3GHz dual-core processor and 4GB of RAM, with a 

commercially-available database management system.  Client and 

server were run on the same machine to eliminate network 

overhead, and to ensure isolation of the database.  Figure 6 

presents the results of our timing analysis.  We ran each query 400 

times, 100 times each for the following cases: 

 Using LRX, clearing buffers and plan cache between 

executions (SC – ‗C‘ for ―cold buffers‖ case) 

 Using LRX, leaving buffers and plan cache alone between 

executions (SH – ‗H‘ for ―hot buffers‖ case) 

 Pushing the relational part of the query to the server (clearing 

buffers and plan cache), but evaluating XML client-side (CC) 

 Evaluating XML client-side, leaving the buffers and plan cache 

alone between executions (CH) 

In the text of the queries, there are member references that include 

the suffixes ―_Typed‖ and ―_XML‖.  The ―_Typed‖ member 

represents the custom-typed version of whatever the member is, 

with an associated XML mapping so that queries referencing the 

member are pushed to the server.  The ―_XML‖ member 

represents the generically typed version of the member, where the 

raw XML stored in the corresponding relational column is pulled 

to the client and validated and processed there as XML. 

These performance tests are not intended to evaluate specific 

XML parsing or query engines, either on the client or the server.  

Our contention is that, by pushing queries to the server, 

performance improves because indexes can be exploited or built, 

queries can be optimized at the server, and the high likelihood that 

far fewer data rows are returned by the query over the network. 

7.1 Simple XPath Processing (Q1) 
Query Q1 from the XMark benchmark returns a single, scalar 

value representing the name of a particular item.  This query is 

only different than the one listed in the XMark documentation in 

that we have changed the item ID to one that corresponds to an 

item in our data set.  Here is Q1, expressed in LINQ: 

var q = from o in db.Items 

        where o.region == "namerica" 

        where o.id == "item522031" 

        select o.item_Typed.name; 

foreach (var o in q) var s = o; 

Here is the same query, expressed as a strictly relational query 

with client-side XML processing: 

var q = from o in db.Items 

        where o.region == "namerica" 

        where o.id == "item522031" 
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        select o.item_XML; 

foreach (var o in q) 

  string s = (string) o.Element("name"); 

Figure 6 shows that pushing query Q1 entirely to the server takes 

approximately the same time as running the XML portion on the 

client.  Comparing case SC versus CC and SH versus CH shows a 

negligible performance difference between client and server 

execution.  This result is unsurprising, since query Q1 retrieves a 

single row in a table, then parses and validates the XML value for 

that row to run the XPath query.  Whether the parsing, validating, 

and querying of that one small document occurs on the server or 

the client does not have a large effect on performance. 

7.2 Aggregation and Filtering (Q5) 
Query Q5 from the XMark benchmark is an aggregation query, 

counting the number of auctions that closed for at least a price of 

40.  Here is the query, expressed entirely as an object query: 

var c = (from o in db.ClosedAuctions 

         where o.closed_auction_Typed.price >= 40 

         select o.auto_id).Count(); 

Here is the same query, expressed as a strictly relational query 

with client-side XML processing: 

var q = from o in db.ClosedAuctions 

        select o.closed_auction_XML; 

int i = 0; 

foreach (var o in q) 

  if ((decimal)o.Element("price") >= 40) i++; 

From Figure 6, by comparing case SC versus case CC for query 

Q5 we see that pushing the query entirely to the server has a 42% 

performance gain over client-side execution on cold buffers.  On 

hot buffers, the performance gain is substantially greater. 

7.3 Joining on Values (Q9) 
Query Q9 from the XMark benchmark is a join query, which joins 

on the values within the XML.  In XMark, this query joins along 

ID references.  In our partially-shredded data set, two of the join 

parameters have become relational columns, so the join is 

between XML values and relational values.  Here is the query 

expressed as an object query: 

var q = from o in db.People 

        from c in db.ClosedAuctions 

        from i in db.Items 

        where c.closed_auction_Typed 

               .itemref.item == i.id 

           && c.closed_auction_Typed 

               .buyer.person == o.id 

        select new { name = o.name, 

                     item = i.item_Typed.name }; 

int j = 0; 

foreach (var o in q) 

{ var s = o.name; j++; } 

Here is the same query, expressed as a strictly relational query 

with client-side XML processing: 

var q = from o in db.People 

        from c in db.ClosedAuctions 

        from i in db.Items 

        select new { iid  = i.id, 

                     cl   = c.closed_auction_XML, 

                     pid  = o.id, 

                     name = o.name }; 

int j = 0; 

foreach (var o in q) 

  if (o.iid == (string) o.cl.Element("itemref") 

                            .Attribute("item") 

   && (string) o.cl.Element("buyer") 

                   .Attribute("person") == o.pid) 

   { j++; } 

The performance improvement by pushing this query to the server 

was dramatic.  The client-side version of Q9 ran reliably for 

longer than four hours without completing, versus about 6.5 

minutes for the LRX version with cold cache and buffers.  

Because the three-way join is based entirely on values within the 

closed auction XML trees, the relational-only query sent to the 

server is just a massive cross product. 

7.4 Descendant Query with Sequence (N) 
This query is roughly related to query Q6 from the XMark 

benchmark in that it evaluates a descendant‘s XPath expression.  

Query Q6 did not have a direct analog in our test data, since the 

interesting part of Query Q6 referenced XML that was shredded 

into relations.  This query returns a list of all of the emphasized 

text elements in the description of any closed auction that closed 

for more than 20.  The server-side version of the query includes a 

call of the descendants (//) axis of XPath and the use of the 

SEQUENCE placeholder function.  Its object query is: 

var q = from c in db.ClosedAuctions 

        where c.closed_auction_Typed.price > 20 

        from e in c.closed_auction_Typed 

               .annotation.description 

               .text.Descendants("emph") 

        select e; 

int j = 0; 

foreach (var o in q) j++; 

Here is the same query, expressed as a strictly relational query 

with client-side XML processing: 

var q = from c in db.ClosedAuctions 

        select c.closed_auction_XML; 

int j = 0; 

foreach (var o in q) 

  if ((decimal) o.Element("price") > 20) 

  { var f = o.Element("annotation") 

             .Element("description") 

             .Element("text"); 

    if (f != null) 

      foreach (var d in f.Descendants("emph")) 

        j++; } 

In Figure 6, we see that, for hot cache buffers, there is a 56% 

performance gain using LRX for this query. 

8. RELATED WORK 
There is a great deal of research that has been done in the areas of 

data and schema mapping, query and update translation, and data 

exchange.  For brevity, we narrow our focus here to topics 

specific to XML, and direct the reader to previous publication on 

the Entity Framework for additional discussion [1,13].  We have 

previously demonstrated an earlier prototype of LRX [17], and we 

have additional work describing compilation of mapping 

fragments for non-simple types [12]. 

Several tools are available that provide access to XML documents 

as custom-typed objects. XML Beans [18] exposes XML 

documents as typed Java objects, while Liquid XML [10] exposes 

XML documents as typed objects in a variety of languages. 

Finally, a custom-typed LINQ interface to XML was proposed in 

the initial LINQ-to-XSD work of Lämmel et al. [8] at Microsoft. 

Each of these tools is limited to XML in main memory. They do 

not push any operations to a database. In addition, they use fixed 

mappings that cannot be controlled by the user. Our work 
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addresses both of these limitations.  To the best of our knowledge, 

LRX is the first system that supports accessing typed XML stored 

in a database through any object-based query language. 

Both XML Beans and LINQ-to-XSD support full fidelity 

representations of XML by maintaining a complete copy of the 

original document.  In these tools, a custom-typed object is just an 

interface to the document, and updates occur in place.  The 

advantage of the full-document approach is that it is never 

necessary to reconstruct the original document, since it is always 

present.  The disadvantage is that access to the full fidelity of the 

information is not object-oriented.  To access delta information, 

for instance, one must traverse the XML using a cursor.  The 

advantage of the delta representation is that one can ask the 

question, ―What is the delta information for object member X‖.  

In LRX, if XML-like, generically typed access is preferred, it is 

always possible to return query results as XML documents and 

still be able to push queries to the server. 

Tools such as XJ [5] and LINQ-to-XML offer an XPath-like 

interface to generically typed XML objects. These tools are also 

limited to manipulating XML in memory.  Lenses [4] and 

bidirectional XQuery [11] are additional approaches for updatable 

access to XML.  Rather than translating queries and updates, these 

approaches are state-based, taking an updated materialized query 

result and reconstructing an updated base document. 

Other research projects have considered the benefits of compiling 

an XML schema into a parser-validator, including XML Screamer 

[7] and work by Chiu and Liu [2].  These approaches demonstrate 

the performance advantage of schema-specific parser-validators 

over standard parsers and validators.  Our approach differs from 

those research projects in that the compiled automata are specific 

to both the XML schema and the schema mapping, and that data 

that either is not schematized or does not match the schema is 

saved and made available in the delta representation. 

Clio [15] and Oracle TopLink [14] are two tools that map to XML 

schemas and have flexible mapping schemes that allow a 

developer to customize mappings.  Oracle TopLink uses XPath 

expressions as its mapping language, while Clio uses a graphical 

mapping tool that is roughly equivalent to using Component 

Designator expressions.  Both tools are designed to marshal and 

unmarshal data from XML and thus do not handle query or update 

translation or full-fidelity representation. 

9. CONCLUSION 
In this paper, we introduced an architecture that allows queries 

and updates expressed in an object-oriented language to be pushed 

to the server for processing.  Object types and XML types are 

associated using a flexible mapping scheme.  Query results are 

made available through custom types or generic types based on 

the developer‘s needs.  Query results also include a delta 

representation that allows object-oriented access to the parts of the 

XML document not addressed by mappings.  Component 

designator expressions are the key to both the mapping language 

and the delta representation.  Performance numbers strongly 

indicate the benefit of pushing XML queries to the server. 

One area of future work that remains to be considered is query 

optimization between relational and XML components.  For 

instance, depending on the circumstance, it may be more efficient 

to evaluate conditions on XML nodes using SQL functions or 

comparators, or push as much as possible into XQuery processing.  

Other future work includes incremental updates to the delta repre-

sentation (currently, updating the delta triggers full re-serial-

ization of the enclosing element) and translating keyref or idref 

nodes in XML into client-side object pointers. 
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