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ABSTRACT
We present ANGIE, a system that can answer user queries by com-
bining knowledge from a local database with knowledge retrieved
from Web services. If a user poses a query that cannot be answered
by the local database alone, ANGIE calls the appropriate Web ser-
vices to retrieve the missing information. This information is inte-
grated seamlessly and transparently into the local database, so that
the user can query and browse the knowledge base while appropri-
ate Web services are called automatically in the background.

1. INTRODUCTION
Recent advances on automated information extraction [6] from

textual and semistructured Web sources (e.g., Wikipedia) has en-
abled large-scale harvesting of entity-relationship-oriented facts
to build large-scale knowledge bases. Projects like DBpedia [3],
YAGO [19, 10], Freebase [20], KnowItAll [4], or Intelligence-in-
Wikipedia [25] have successfully created semantic databases with
many millions of facts about entities (e.g., persons, companies,
movies, locations) and relationships (e.g., bornOnDate, isCEOof ,
actedIn, shotAtLocation). A convenient representation for these
knowledge bases is the Semantic-Web data model RDF, and the
data can be queried by SPARQL-like languages and interactively
explored with user-friendly GUIs and visualization tools.

The knowledge stored in these databases is huge, but can never
be complete and inevitably exhibits gaps that may irritate the user
during interactive access. Consider for example a user who is inter-
ested in Frank Sinatra. Using the browser of the knowledge base,
she has already found biographic information about Frank Sina-
tra, such as birthdate and birthplace. But when she is also looking
for the albums of Frank Sinatra or for the movies that feature him,
the information in the database is probably incomplete. Crawling
additional Web sites on music and extracting the missing data is
often infeasible because of site restrictions and because the site’s
information is continuously changing. Moreover, some knowledge
needs are inherently ephemeral: for example, asking for the current
rating of a movie (by averaging user reviews) or the chart rank of a
song.

Fortunately, there is an increasing number of Web services that
could fill the gaps in the database. There are Web services that
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deliver information about albums and music, books, movies and
videos, etc. These services make their data available through an on-
line API in a semi-structured format. The eConsultant lists a total of
122 public Web services1 and Seekda even provides a search engine
for Web services2. Note that it is practically infeasible to material-
ize all the data provided by these services. However, if the relevant
data could be dynamically retrieved in the current user context, a
much larger number of user queries could be answered. This is our
vision of an active knowledge base. An active knowledge base is a
dynamic federation of knowledge sources where some knowledge
is maintained locally and other knowledge is dynamically mapped
into the local knowledge base on demand.

An active knowledge base poses several challenges – even if the
Web services are known to the system. First, different Web services
may have to be combined in order to retrieve the desired results. In
our example, a specific function of the MusicBrainz service has
to be called first to obtain an identifier for Frank Sinatra, before
another service function can be called to retrieve his albums. In
full generality, multiple Web services from multiple Web sites may
have to be combined with data that exists already in the database
in order to construct the desired result. If there are multiple Web
services that can deliver a certain piece of information, these Web
services may have to be prioritized by their response times or other
service-quality properties. Finally, the system has to integrate the
results from the Web services into the local database in a seamless
manner. This poses a data cleaning challenge. All of these pro-
cesses have to happen behind the scenes, so that the user still has
the impression that all answers are returned by the local knowledge
base.
Contribution. This paper presents ANGIE, a system that can
retrieve data from Web services on the fly whenever the lo-
cal knowledge base does not suffice to answer a user query.
In ANGIE, Web services act as dynamic components of the
knowledge base that deliver knowledge transparently on de-
mand. The current implementation uses YAGO [19] as lo-
cal knowledge and has seamless connections to a variety of
rich Web services on books (isbndb.org, librarything.
com), movies (api.internetvideoarchive.com), and
music (musicbrainz.org, lastfm.com). ANGIE comes
with a light-weight desktop tool for querying, browsing, and vi-
sualizing the active knowledge base. Users can combine data from
local and dynamic sources in an arbitrary manner, without having
to know where the data actually resides or is constructed.
Related Work. Several approaches have combined data from dif-
ferent sources: XML and Web services[1], RSS and Web ser-

1http://webdeveloper.econsultant.com/
web-services-api-services/
2http://seekda.com/



vices[18, 9], semantic databases[5], Web forms and Web services
[17]). However, the interaction of a semantic knowledge base with
dynamic Web services has not been studied before. Our work draws
inspiration from Web service composition [15], entity resolution on
the fly [18], the relationship between SPARQL and Datalog [13],
and schema mappings [2].

Several works [11, 14, 7, 16] proposed to use views for answer-
ing queries. Different from views, Web services deliver incomplete
information, require certain pre-conditions and cannot be fully ma-
terialized. [21] considered a different scenario where the source
itself has specific querying capabilities. With such a functional
view of the data, query translation needs to observe the specific
constraints of a source’s interface. There is ample work on data in-
tegration systems, but most prior work used an object oriented rep-
resentation (e.g., [8]) or XML [26], which are both less adequate
for the RDF knowledge bases that we consider.

2. FRAMEWORK
2.1 RDF graphs

In tune with recent work [19, 3, 10], we represent our knowl-
edge base as an RDF graph [22]. An RDF graph is a directed la-
beled graph, in which the nodes are entities (such as individuals and
literals) and the labeled edges represent relationships between the
entities. A fragment of a sample RDF graph is shown in Figure 1.
We refer to an edge and its two adjacent nodes also as a fact or an
RDF statement (aka. subject-property-object triple).
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Figure 1: An excerpt of an RDF graph

RDFS allows reifing a statement [22]. This means that a state-
ment can in turn be an entity in the RDF graph. This allows other
statements to have that statement as an argument, and is convenient
for representing ternary relations like events or temporal or prove-
nance annotations of facts.
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$x type Album
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Q1 ) Q2 )

Figure 2: Two sample queries

For querying, we consider a subset of the SPARQL standard
query language [24]. We can view a query as a small RDF graph
(template) that can have variables as node or edge labels. Figure 2
shows two example queries. The first one asks for albums released
by Frank Sinatra. The album is represented by a variable. The
second query asks for Frank Sinatra’s relationship to Mia Farrow.

An answer for a query is a subgraph of the knowledge base
that matches the query. For instance, consider again the RDF
graph shown in Figure 1. The query Q2 has an answer in the
RDF graph because there is the substitution σ($r)=marriedTo.
σ(Q2)=(FrankSinatra, marriedTo, MiaFarrow) is a sub-graph of

the RDF graph. There is, however, no answer to Q1 in the current
database. Therefore, a Web service has to be called.

2.2 Functions
In the ANGIE framework, we view a Web service as a function,

which, given input parameters, returns output values. We model
a function definition also as an RDF graph that can contain vari-
ables like a query. The edges of the function definition are par-
titioned into pre-conditions and post-conditions. Figure 3 shows
a sample function definition with the pre-conditions depicted us-
ing continous lines and the post-conditions depicted using dashed
lines.

  

$artist $id
hasMBID

Artist MBID

type type

Figure 3: A sample function definition

Intuitively speaking, the pre-condition edges have to be fulfilled
before the function can be called. In the example, an instance of
the class artist has to be provided. The post-conditions specify
the results of the function. In the example, a new node is added
to the knowledge graph that represents the id of the artist in the
MusicBrainz world. The function tells us that the artist and the id
are linked by an edge hasMBID and that the id is a MusicBrainz id.

In our setting, the function definitions are given. We do not con-
sider retrieving them automatically. Rather, we assume that the ap-
propriate WSDL or REST interfaces have already been identified
and cast into functions represented by RDF graphs. Technically,
the pre-conditions and the post-conditions of a function definition
are RDF statements (with variables). Using reification, these state-
ments can be represented in the knowledge base. This way, func-
tion definitions become first-class citizens of the knowledge base.

3. QUERY PROCESSING
Given a query that needs to be resolved by a function call to a

Web service, the ideal case would be to map bind the query’s out-
put variable (a node of a post-condition edge) to a single function
provided by the service. However, as pointed out earlier, services
or the user’s queries are often not that simple, and instead we may
have invoke multiple functions in an appropriately composed man-
ner. Our goal then is to combine the function definitions into a valid
sequence of function calls to answer the query. Formally, a family
of calls to a function with certain parameters is defined as a function
instantiation: a function instantiation for a function definition f is
a substitution σ for the variables of the function definition. Some
variables can be mapped to constants. Other variables are simply
renamed by σ. This is necessary, because f may be instantiated
multiple times and naming conflicts have to be avoided. Intuitively
speaking, a function instantiation creates a copy of the function
definition in which all variables have been replaced.

We combine function instantiations into function compositions.
A function composition for a query Q with a set of function defini-
tions F is a set of function instantiations σf1 , ...σfn for the func-
tions f1, ..., fn ∈ F on a common set of fresh variable names, so
that (1) for each pre-condition edge pre of any function fi,

∃fj , post postcondition of fj : σfj (post) = σfi(pre)

and (2)

∀q ∈ Q, ∃fi, post postcondition of fi : σfi(post) = q

A function composition is a set of function instantiations such that
each edge in the query and each pre-condition of a function in-



stantiation is satisfied by the post-conditions of another function
instantiation.

For uniformity, let us also consider the triples in the database as if
they were given by a function. For this purpose, we introduce an ar-
tificial function fdb. fdb is the function definition that consists of no
pre-conditions and one post-condition edge in which all three com-
ponents are variables. Whenever this function is “called”, it issues
a query to the local RDF knowledge base. One query can be an-
swered by several function compositions. Therefore, we translate a
query into a (possibly infinite) sequence of function compositions.
This way we can incrementally retrieve a larger set of results, as
some results are returned only be particular function compositions.
For example, a function composition based on an actor’s name or
id may retrieve only a partial list of the actor’s albums (e.g., be-
cause of service restrictions on result sizes). So one could identify,
in the local knowledge base, other actors or directors that the actor
of interest has often worked with, retrieve their movies and those
movies’ actors by a different function composition, and test the re-
sults whether for the originally given actor. Alternatively, multiple
services each with incomplete but complementary data could be in-
voked in a similar manner, again to obtain higher recall.

Algorithm 1 translate(F , Q, R)
Input: F : the set of function definitions
Input: Q: a list of query edges
Input: R: the current function composition
1: if Q = ∅ then
2: Output R
3: return
4: end if
5: q := Q.poll()
6: for all f ∈ {fdb} ∪ F do
7: for all post-conditions p ∈ f do
8: if ∃ σ : σ(p) = q then
9: σ′ := a substitution for the free variables in f

10: σ′′ := σ′ o σ
11: translate(F, Q ∪ σ′′(pre(f)) \ {q}, R ∪ {(f, σ′′)})
12: end if
13: end for
14: end for

Algorithm 1 computes and outputs the function compositions for
a query in the spirit of the top-down strategy used in Prolog. The
algorithm takes as input a set F of function definitions, a list Q of
query edges and a current query translation into a function com-
position R. In the initial call, R = ∅. The algorithm implements
a recursive search on all possible function compositions. In each
recursion step, one edge is removed from Q and one function in-
stantiation is added to R.

In Line 6, the algorithm tries all available function definitions.
We are currently developing a model to estimate the cost of σ in-
stantiations. This way, the algorithm can prioritize functions that
are expected to yield results faster or with lower execution costs.
In our current implementation, the database function fdb is always
preferred over other functions. This way, the algorithm outputs a
(possibly infinite) sequence of function compositions, starting with
the most promising compositions. Each function composition will
be evaluated and will return a set of results. We set a limit on the
maximum number of function calls.

4. SYSTEM IMPLEMENTATION
The overall architecture of the ANGIE system is illustrated in

Figure 4. The system uses the existing YAGO ontology [19], which

consists of 2 million entities and 20 million facts extracted from
various encyclopedic Web sources. In addition, ANGIE includes
a built-in collection of function definitions for the following Web
services: MusicBrainz, LastFM, Library Thing, ISBNdb, and IVA
(Internet Video Archive). In our envisioned long-term usage, the
function definitions would either be automatically acquired from a
Web-service broker/repository or they could be semi-automatically
generated by a tool, e.g., [2].
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Figure 4: System architecture of ANGIE

Query Translation Module. This is the core component of the
ANGIE project. The module takes as input a user query, and trans-
lates it into a sequence of function compositions. Each function
composition takes the form of an extended SPARQL query. In such
a query, calls to the database function fdb are simple triples. Calls
to other functions are embedded function-call declarations. The
following sample query retrieves the id of Frank Sinatra from the
knowledge base and his albums from Music Brainz:

PREFIX y : <http://mpii.de/yago/resource/>
SELECT ?album WHERE {

y:Frank Sinatra y:hasMBId ?id
FUNCTION(getMBAlbums, ?id, ?album)

}

RDF-3X processor. The generated SPARQL queries are sent to
the RDF-3X processor [12]. The processor has been modified to ac-
commodate the Web service calls. It is also responsible for schedul-
ing the execution of the function calls. The calls are executed via
the Mapping Tool (discussed below), which is in charge of remote
invocation of the Web services. The Mapping Tool responds to the
processor with the list of triples representing the answers of the
calls. The RDF-3X processor combines the triples from the local
knowledge base and the triples received from the mapping tool to
produce a uniform output. The query translation and the query ex-
ecution are interleaved. The translation module continuously sends
SPARQL queries to the RDF-3X processor, which responds with
new results.
The Mapping Tool. This component executes the Web service
calls. It mediates between the function declarations in the knowl-
edge base and the schema of the XML documents that the func-
tion call returns. For this purpose, every function has two map-
pings associated with it: The lowering mapping defines how the
pre-conditions of a function are translated to the parameters of a
REST (or SOAP) call. The call is sent to the remote site that pro-
vides the Web service. ANGIE supports the parallel execution of
multiple calls. A call will yield values for the output variables in an
XML fragment. The lifting mapping defines how the XML nodes
in the answer are mapped to entities in the knowledge base. We use
the XSLT standard [23] for this purpose. The entities can then be
handled by the RDF-3X processor.
User Interface. The user interface allows the user to query the
knowledge base in the language described in Section 2.1. Queries



are sent to the query translator module and answers are retrieved
from there. Furthermore, the user can also display the knowledge
base as a hyperbolic graph. One exploration step in this GUI re-
trieves and visualizes the neighborhood around a given entity. Such
a browsing step translates into a simple query that retrieves the
neighbors of that entity.

5. DEMO SCENARIO
ANGIE is a light-weight desktop tool for querying, browsing,

and visualizing the active knowledge base. Expert users can query
the knowledge base using complex queries. Since the answers to
the queries are graphs, they are visualized in ANGIE, in a frame.
For traceability, the rewriting and the query processing steps are
presented to the user in a separate frame. Casual users can browse a
hyperbolic visualization of the complete knowledge base. Starting
from one node in the graph, the user can explore further entities.
For example, when the user clicks on the Frank Sinatra node, all
facts about Frank Sinatra are displayed. At the same time, Web ser-
vice function compositions are called in the background to retrieve
more information about the singer. In Figure 5, the albums of Frank
Sinatra (marked here in green for illustration purposes) have been
retrieved on demand from the MusicBrainz Web service. Analo-
gously, when the user clicks on Mia Farrow, facts about her movies
are retrieved from a service like InternetVideoArchive. If appro-
priate services were available, one could even retrieve the music
featured in Mia Farrow’s movies and check if it includes a Sinatra
song.

Figure 5: Screenshot of ANGIE after calling service functions

This is one possible scenario that demo visitors can try online.
ANGIE supports seamless connections with various other services
for music, books, and movies. Thus, many other scenarios are pos-
sible to interactively explore the active knowledge base and dis-
cover interesting facts about favorite musicians, writers, actors, di-
rectors, songs, movies, and their cross-relationships.
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