
PDiffView: Viewing the Difference in Provenance of
Workflow Results

Zhuowei Bao #1, Sarah Cohen-Boulakia ∗2, Susan B. Davidson #3, Pierrick Girard#4

#Department of Computer and Information Science, University of Pennsylvania, USA
1zhuowei, 3susan, 4pierrick@cis.upenn.edu

∗Laboratoire de Recherche en Informatique, Université Paris-Sud, France
2cohen@lri.fr

1. MOTIVATION
Scientific workflow systems are becoming increasingly im-

portant for managing in-silico experiments. Such exper-
iments are typically specified as directed flow graphs, in
which the nodes represent modules and edges represent data
flow between the modules. Each execution (a.k.a. run) of an
experiment may vary the parameters and data inputs to the
modules in the specification; furthermore, alternative paths
of the workflow may be followed. In this process, the scien-
tist’s goal is to identify parameter settings and approaches
which lead to good final results. Comparing workflow ex-
ecutions of the same specification and understanding the
difference between them is thus of paramount importance
for understanding the provenance of final results [4].

Although the problem of differencing directed acyclic graphs
is NP-hard, an analysis of most real workflows shows that
their structure can be captured as a series-parallel graph
overlaid with well-nested forking and looping (SPFL). For
this natural restriction, we have developed efficient, polyno-
mial time differencing algorithms [1]. Provenance Difference
Viewer (PDiffView) is a prototype based on these algo-
rithms for differencing runs of SPFL specifications (com-
parison with related works available in [1]).

12

1

2

3 4 5

6

7

8 9

10

11 13

14

15

getProteinSeq

FastaFormat

BlastPIRBlastSwP

BlastTrEMBL

collectTop1&Compare

getDomAnnot

getPFAMDomgetProDomDom

extractDomSeq

getGOAnnot

getFunCatAnnot

getBrendaAnnot

getEnzymeAnnot

exportAnnotSeq

12
a

1
a

2
a

4
a

3
a

3
b

6
a

7
a

8
a

9
a

10
a

11
a

11
b

12
b

15
a

12
c

7
b

10
b

11
c

13
a

14
a

12
a

1
a

10
a

11
a

11
b

12
b

15
a

2
b

4
b

5
a

7
a

2
a

3
a

4
a

6
a

(a) specification (G, F, L) (c) run R2(b) run R1

3
b

8
a

9
a

6
b

Figure 1: Protein annotation workflow
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

As an example, consider Figure 1(a) which represents
a classical scientific analysis involving protein annotation.
The aim of this analysis is to infer the biological function of
a new sequence from other sequences. While the details of
the scientific analysis are not important, the structure of the
workflow is, and is shown using a modified dataflow notation
annotated with control flow information for forks and loops.
A loop is indicated by a dotted backarrow, e.g., from mod-
ule 6 (collectTop1&Compare) to module 2 (FastaFormat),
and forking is indicated by a dotted oblong, e.g., the oblong
around module 3 (BlastSwP) indicates that similar proteins
can be searched for simultaneously. Multiple outgoing edges
from a node indicate a non-exclusive choice.

In a run, loops are unrolled and the number of fork exe-
cutions is given explicitly. In addition, a nonempty subset
of outgoing edges may be taken for each node. For example,
two runs of the protein annotation workflow specification
are shown in Figure 1(b) and (c). Observe that run R1 has
two executions of the loop from module 6 to module 2, while
run R2 has two fork executions between modules 6 and 15.1

The difference between a pair of runs is defined as a mini-
mum cost sequence of path edit operations (path edit script)
that transforms one run to the other.

PDiffView allows users to view, store, generate and im-
port/export SPFL specifications and their associated runs.
The user may then see the difference between two runs by
stepping through the edit script, or by seeing a graphical
overview of the difference.

Since runs may be very large, scientists may wish to see
the difference between runs at a more abstract level. We
therefore allow users to group modules of the specification
into composite modules. By applying grouping recursively,
a hierarchy of composite modules can be formed. When
the differencing is performed, composite steps within which
changes occur are highlighted. The user can then expand
composite steps to see details of the difference.

An equally important difference in the provenance of two
data products are the parameter settings and input datasets:
Two executions could have exactly the same control flow but
produce very different results due to the data used. We cap-
ture this in PDiffView by annotating nodes with parameter
settings, and edges with the data flowing between steps. An-
notations are revealed by clicking on nodes or edges.

1To avoid confusion, in the runs we annotate each node
label with a superscript to generate unique identifiers for
the module executions. For example, 3a indicates that the
step is an execution of module 3, BlastSwP.

2. PDIFFVIEW OVERVIEW
We have implemented the prototype system PDiffView in

Java, whose architecture is shown in Figure 2. The process
of comparing two workflow runs of the same specification
is described as follows: The user starts by specifying two
runs and optionally a well-nested hierarchy over the underly-
ing specification through the graphical user interface (GUI).
The differencing algorithm (implemented in the Diff engine)
is then called to compute the minimum-cost edit script be-
tween two given runs at the lowest level of the workflow. If a
user-specified hierarchy is present, the projection algorithm
(implemented in the Group engine) is also applied to pro-
duce the corresponding hierarchy projected over the runs.
Finally, combining these results by hiding internal changes
inside composite modules, we present the user with an in-
duced edit script at a high level view of the workflow as a
compact description of the difference between two runs. A
workflow generator is also provided to randomly generate
a synthetic specification, or to simulate the execution of a
given specification. In the remainder of this section, we will
describe each of these building blocks in more detail.

GUI

Diff

Engine

Group

Engine

Workflow

Generator

Library

PDiffView

Figure 2: PDiffView system architecture

2.1 SPFL Workflow Model
An SPFL workflow specification is defined by a triple

(G,F ,L), where G is a series-parallel graph with unique
labels on the nodes, and F and L are two sets of subgraphs
of G describing the well-nested set of allowed forks and loops
respectively. A workflow run R is then produced by applying
a sequence of series, parallel, fork and loop executions recur-
sively on the given specification. Intuitively, a series execu-
tion executes its sequential components in series; a parallel
execution chooses a nonempty subset of all branches and ex-
ecutes them in parallel; a loop execution unfolds the cycle
and executes all iterations of the loop in series; and a fork
execution replicates one or more copies of the subgraph and
executes them in parallel.

Example 2.1. Figure 1 shows two runs, R1 and R2, that
are produced from the specification, (G,F ,L), in which the
loop is defined over the subgraph (2, 3, 4, 5, 6), while the forks
are defined over the subgraphs (2, 3, 6), (2, 4, 6), (2, 5, 6) and
etc. Note that only nodes inside the dotted oblong are repli-
cated by an execution of the corresponding fork.

Snapshot 2.1. Figure 3 shows a snapshot of viewing the
specification depicted in Figure 1 using PDiffView. The big
pane in the middle shows the specification graph G on which

Figure 3: Viewing the specification (G,F ,L) using PDif-

fView

allowed forks and loops are highlighted in user-specified col-
ors; this is done using the pane to the immediate right which
lists the forks and loops. For instance, F3 has been selected
on the small pane (in yellow). Consequently, the modules
involved in F3 are highlighted in the big pane: getGOAnnot
and getFunCatAnnot can have multiple parallel executions
taking inputs from extractDomSeq and producing outputs
sent to exportAnnotSeq. Similarly, the loop from FastaFor-
mat to collectTop1Compare involving other three Blast mod-
ules has also been highlighted (in red). The small pane on the
bottom left corner gives a miniature of this specification, and
the small panes on the bottom right corner show the minia-
tures of two most recently visited runs of this specification.
The users can view the detailed description of a run in a
new window by double-clicking the corresponding miniature.

2.2 Differencing Workflow Runs
The goal of differencing two runs is to find the minimum

changes that transforms the first run to the second. We
consider four kinds of path edit operations: (1) Path Inser-
tion: Create a new path between two existing nodes; (2)
Path Deletion: Remove a path (inverse of path insertion);
(3) Path Expansion: Create a new iteration of a loop by in-
serting a path between two existing consecutive iterations;
and (4) Path Contraction: Remove an iteration of a loop by
contracting the last path (inverse of path expansion). Note
that edit paths must be elementary such that each internal
node has exactly one incoming edge and one outgoing edge,
and must transform one valid run to another valid run.

Example 2.2. Consider the runs R1 and R2 in Figure 1.
A path edit script that transforms R1 to R2 is shown in Fig-
ure 4. Note that each intermediate run is valid with respect
to the specification in Figure 1(a).

The Diff engine computes the minimum-cost edit script
using the algorithm in [1]. This polynomial-time algorithm
relies on a well-known tree representation of SP-graphs [5]
with extra annotations for forks and loops, and adopts a
very general cost model: Each path edit operation is as-
signed a cost of lε, where ε is a user-specified real number

12
a

1
a

2
a

4
a

3
a

3
b

6
a

7
a

8
a

9
a

10
a

11
a

11
b

12
b

15
a

12
c

7
b

10
b

11
c

12
a

1
a

10
a

11
a

11
b

12
b

15
a

2
b

4
b

5
a

7
a

2
a

3
a

4
a

6
a

R1

3
b

8
a

9
a

6
b

12
a

1
a

10
a

11
a

11
b

12
b

15
a

2
b

4
b

7
a

2
a

3
a

4
a

6
a

3
b

8
a

9
a

6
b

12
a

1
a

10
a

11
a

11
b

12
b

15
a

7
a

2
a

3
a

4
a

6
a

3
b

8
a

9
a

12
a

1
a

2
a

4
a

3
a

3
b

6
a

7
a

8
a

9
a

10
a

11
a

11
b

12
b

15
a

12
c

7
b

10
b

11
c

13
a

14
a

R2

Delete

(2
b
,5

a
,6

b
)

Contract

(2
b
,4

b
,6

b
)

Insert

(6
a
,7

b
,10

b
,11

c
,12

c
,15

a
)

Insert

(10
b
,13

a
,14

a
,15

a
)

Figure 4: A path edit script from R1 to R2

no greater than one and l is the length of path to be edited.
This feature allows users to capture a variety of application-
specific notions of edit distance. For example, by setting
ε to 0 (unit cost model) users will get an edit script with
the minimum number of edit operations, and by setting ε to
1 (length cost model) users will get an edit script with the
minimum number of inserted or deleted edges.

Figure 5: Viewing the difference between R1 and R2

using PDiffView

Snapshot 2.2. Figure 5 shows a snapshot comparing R1

and R2 using PDiffView. Users may see the difference by
stepping through the minimum-cost edit script, or by seeing
an overview. The edit script is the same as that given in
Figure 4. The big pane on the left-hand side shows the source
run R1, with green edges indicating inserted paths and red
edges indicating deleted paths in the edit script. The target
run R2 is shown in the big pane on the right-hand side.
The small pane on top shows the specification, and the small
pane on the top right gives the context for the edit operation
being applied. The small panes on the bottom right and left
corners display miniatures of the respective runs, and brief
summaries of their statistics are listed above.

2.3 Forming a Hierarchical View
Modules in a specification can be grouped together by

the user to form composite modules. By recursively group-
ing modules, the user can create a well-nested hierarchy of
composite modules over the specification, defining the levels
at which differences between runs can be viewed.

While users are free to define composite modules over any
set of modules, some groupings may give counter-intuitive
results. Returning to the example in Figure 1(a), if nodes
3 and 8 were grouped together, the induced specification
would have the cycle (3, 8) → 6 → 7 → (3, 8). This group-
ing would also break the loop defined over (2, 3, 4, 5, 6) by
merging a node (i.e., 3) inside of this loop with a node (i.e.,
8) outside of the loop. To avoid such bad groupings, we
suggest that users utilize the given forks and loops to form
a more intuitive hierarchy.

Example 2.3. Using the forks and loops associated with
the specification (G,F ,L) shown in Figure 1(a), we cre-
ate a well-nested hierarchy H = (1, A,B, 15), where A =
(2, 3, 4, 5, 6) and B = (7, 8, 9, 10, (11, 12), (13, 14)) are two
composite modules that represent the highest-level loop and
fork respectively. Note that (11, 12) and (13, 14) are grouped
together due to the inner forks. The induced specification
(G,F ,L)H is shown in Figure 6(a). Observe that the well-
nested hierarchy constructed from forks and loops always
gives a reasonable and meaningful partition of modules, re-
sulting in a simplified specification graph that helps users
better understand the differencing results.

The user-defined hierarchy over the specification is au-
tomatically projected onto the runs so that the data and
modules involved within any composite modules are hid-
den. A naive approach for doing this is to group together
all instances of the same module in the run. Although this
approach is straightforward, it suffers from two disadvan-
tages: 1) it may introduce cycles or change the reachability
between modules in the induced run graph; and 2) it may
break the forking and looping semantics by partially merg-
ing different execution copies. The Group engine therefore
uses an SPFL-aware hierarchy projection algorithm, which
is a best effort approach to avoid the above two problems.
The key idea is to find the minimum fork or loop which
contains all nodes of a group, and then project this group
onto the run by grouping together all module instances only
within the same copy of this fork or loop.

(G,F,L)
H R1

H
R2

H

1

A

B

15

1

A
a

B
a

15

A
b

1

A
a

B
b

15

B
a

R1
H

1

A
a

B
a

15

A
b

1

A
a

B
b

15

B
a

1

A
a

15

B
a

1

A
a

B
a

15

A
b

modify A
b

1

A
a

B
b

15

B
a

contract A
b

Insert

(A
a
, B

b
,15) modify B

b R2
H

(a) induced workflow

specification and runs
(b) induced edit script from R1

H
 to R2

H

Figure 6: Induced workflow and edit script

Example 2.4. The induced workflow runs RH1 and RH2
produced by our projection algorithm are shown in Figure 6(a).
We can easily observe that R1 executes two iterations of the
loop A in series, while R2 executes two copies of the fork B
in parallel. Figure 6(b) then shows an abstract edit script
from RH1 to RH2 induced by the hierarchy H defined above.
Note that the first operation edits a path inside the composite
module Ab. We denote this internal operation by shading Ab

in the resulting run. Comparing Figure 4 with Figure 6(b)
shows that the induced edit script under a high-level view
hides a large amount of details of internal edit operations
that are irrelevant to the users, thus providing them with a
compact description of provenance difference that can later
be explored by expanding composite modules in the hierarchy.

Figure 7: Viewing the difference at a high-level view

using PDiffView

Snapshot 2.3. Figure 7 shows a snapshot comparing R1

and R2 under a high-level view H using PDiffView. The
induced minimum-cost edit script shown here is the same
as that given in Figure 6(b). We color a composite module
green if an internal path insertion or expansion operation
has been applied somewhere inside. In addition, if two inci-
dent edges are both colored green, then the entire composite
module is newly inserted. Similarly, we use red to indicate
internal path deletion and contraction. Since the grouping
is performed interactively on the specification, the user may
zoom in or zoom out of the current view by opening or group-
ing the modules in the specification. In this way, the user
can easily adjust the level of granularity at which he wishes
to view the differencing results.

3. DEMONSTRATION
Our demo will be done using several selected workflows

inspired from real workflows available on repositories such
as myExperiments [1]. The demo will highlight the follow-
ing features: 1) Loading/Saving Data: Users may load/save
workflow specifications and runs to/from the local library,
or import/export them to/from external XML files. We will
also show how to generate synthetic specifications and runs

given user-specified parameters; 2) Viewing SPFL Work-
flows: Users may zoom in and out of the workflow, and
highlight forks and loops in different colors. Coloring helps
users see the correspondence between the modules in the
specification and those in the run; 3) Differencing Workflow
Runs: Users may step through the minimum-cost edit script
using the cost function of their choice; and 4) Forming a Hi-
erarchical View: Users may recursively group modules in the
specification to form a well-nested hierarchy that defines the
level at which differences can be viewed. The hierarchy is
then projected onto the runs, providing users with a com-
pact representation of differencing results in which irrelevant
changes are hidden inside the composite modules.

Our prototype system PDiffView and a demonstratation
video are available at:

http://www.cis.upenn.edu/~zhuowei/diff

Why this demo is of interest to the db commu-
nity? Provenance is of great interest to the database com-
munity (e.g., the PODS 2008 keynote talk by Peter Bune-
man [2], and the SIGMOD 2008 tutorial by Davidson and
Freire [3]). Since scientific workflows move data into and
out of databases, understanding the difference in provenance
between two data items in a database entails understanding
their provenance through workflows.

4. ACKNOWLEDGEMENTS
This work was supported by NSF grant number IIS 0513778,

SEII 0612177 and IIS 0803524.

5. REFERENCES
[1] Z. Bao, S. Cohen-Boulakia, S. B. Davidson, A. Eyal,

and S. Khanna. Differencing provenance in scientific
workflows. In ICDE, pages 808–819, 2009.

[2] P. Buneman, J. Cheney, W. C. Tan, and
S. Vansummeren. Curated databases. In PODS, pages
1–12, 2008.

[3] S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD,
pages 1345–1350, 2008.

[4] L. Moreau and B. Ludäscher, editors. Concurrency and
Computation: Practice & Experience, Special Issue on
the First Provenance Challenge, volume 20. Wiley,
2007. http://twiki.ipaw.info/bin/view/Challenge/.

[5] J. Valdes, R. E. Tarjan, and E. L. Lawler. The
recognition of series parallel digraphs. In STOC, pages
1–12, 1979.

