
DIADS: A Problem Diagnosis Tool for
Databases and Storage Area Networks∗

Nedyalko Borisov† Shivnath Babu† Sandeep Uttamchandani‡ Ramani Routray‡ Aameek Singh‡
†Duke University ‡IBM Almaden Research Center

{nedyalko, shivnath}@cs.duke.edu {sandeepu, routrayr, aameek.singh}@us.ibm.com

ABSTRACT
Many enterprise environments have databases running on
network-attached storage infrastructure (referred to as Stor-
age Area Networks or SANs). Both the database and the
SAN are complex subsystems that are managed by separate
teams of administrators. As often as not, database admin-
istrators have limited understanding of SAN configuration
and behavior, and limited visibility into the SAN’s run-time
performance; and vice versa for the SAN administrators. Di-
agnosing the cause of performance problems is a challenging
exercise in these environments. We propose to remedy the
situation through a novel tool, called Diads, for database
and SAN problem diagnosis. This demonstration proposal
summarizes the technical innovations in Diads: (i) a power-
ful abstraction called Annotated Plan Graphs (APGs) that
ties together the execution path of queries in the database
and the SAN using low-overhead monitoring data, and (ii) a
diagnosis workflow that combines domain-specific knowledge
with machine-learning techniques. The scenarios presented
in the demonstration are also described.

1. INTRODUCTION
Enterprise business-intelligence applications use databases

to store and process terabyte-scale data. Traditionally, stor-
age was attached directly to high-end database servers to
meet their capacity, throughput, and bandwidth require-
ments. However, under-utilization of statically-provisioned
hardware and high administration costs for islands of discon-
nected resources have transformed the direct-attached archi-
tectures into a network-attached setup with multiple appli-
cation servers (including databases) connected to a consol-
idated and virtualized storage pool; an architecture known
popularly as a Storage Area Network (SAN).

SANs are very complex systems. A typical SAN has a hi-
erarchy of core and edge fibre-channel switches with zoning
configuration that controls the connectivity of server ports

∗This work is supported by an NSF CAREER award and
faculty awards from IBM.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

with one or more heterogeneous storage controllers. The
storage controllers manage a large number of raw disks by
aggregating them into logical entities like pools and volumes.
Given this complexity, database administrators are forced to
treat the SAN as a black-box, entrusting SAN administra-
tors to configure the required CPU, network, and storage
resources for meeting the performance requirements of their
databases.

While this division of responsibility among database and
storage administrators reduces their routine workload, it
complicates the task of diagnosing performance problems.
In a typical scenario, a database administrator may open a
problem ticket for the SAN administrator to analyze and fix
issues related to poor performance: “Queries to the RepDB
database used for report generation have a 30% slowdown
in response time compared to performance two weeks back.”
Unless there is an obvious failure or degradation in the stor-
age hardware or the connectivity fabric, the SAN adminis-
trator’s response to this problem ticket could be: “The I/O
rate for RepDB tablespace volumes has increased 40%, with
increased sequential reads, but the response time is within
normal bounds.” This “blame game” may continue for sev-
eral weeks before the problem is actually fixed. In reality,
the query slowdown problem could be due to any num-
ber of causes including suboptimal plan selection by the
database due to incorrect cost models, lock contention for
the database tables, CPU saturation of a database server,
congestion in the controller ports, and others.

We are developing an integrated database and SAN man-
agement tool, called Diads1, that provides administrators
with a consistent view of end-to-end system performance as
well as the ability to diagnose performance problems auto-
matically. Diads achieves these goals by: (i) combining the
details of both database and SAN operations through a novel
abstraction called Annotated Plan Graphs (APGs); and (ii)
using a combination of machine-learning techniques and do-
main knowledge to guide problem diagnosis. Our demon-
stration will focus on using Diads to diagnose slowdowns of
report-generation queries in databases running over SANs.

2. DIADS
This section gives an overview of Diads. The details can

be found in recent Diads publications [1, 2].

2.1 Annotated Plan Graphs
Suppose a query Q that a report-generation application

issues periodically to the database system shows a slowdown

1DIAgnosis for Databases and SANs



Figure 1: APG visualization screen in DIADS

in performance. Diagnosing such a problem requires the
ability to understand the behavior of not only the database
and storage layers during the execution of Q, but also the
interaction between the two layers. The Annotated Plan
Graph (APG) abstraction provides this precise ability. At
a high level, an APG captures a comprehensive end-to-end
mapping of the database operators in the query plan for Q to
the physical disk details where the actual data resides, and
everything in between. The screenshot in Figure 1 shows an
APG visualized using Diads’s graphical interface.

Some of the novel features of APGs are:

• APGs are generated from light-weight monitoring data
that is readily available in most production environments.

• APGs are views on the monitoring data that combine
what database administrators see (e.g., data on query
plans) with what SAN administrators see (data from nu-
merous SAN components and interconnections). More
importantly, APGs show each administrator what she
typically does not get to see. However, APGs are much
more than a juxtaposition of these two pieces of data.

• APGs capture the dependency paths of their constituent
components. For example, the dependency path of an
operator O is the set of physical (e.g., CPU, database
cache, disk) and logical (e.g., volume, workload) system
components whose performance can impact O’s perfor-
mance. There are inner and outer dependency paths.
The performance of components in O’s inner dependency
path can affect O’s performance directly. O’s outer de-
pendency path consists of components that affect O’s
performance indirectly by affecting the performance of
components on the inner dependency path.

• Each component in an APG is annotated with appro-
priate monitoring data collected during the plan’s exe-
cution. For example, the annotation of an operator O
consists of the performance data collected for each com-
ponent C in O’s dependency path; this data is collected
in the [tb, te] time interval where tb and te are respectively
O’s (absolute) start and stop times for that execution.

The APG for a query execution is constructed based on a
mix of configuration data and run-time performance data

collected from both the database and SAN subsystems. Di-
ads correlates the database-level data with the SAN-level
data to construct the APG.

Data collected at run-time from the database subsystem
consists of:

• Query-level data: For each execution of plan P for a
query, Diads collects some low-overhead monitoring data
per operator O ∈ P . The relevant data includes: O’s
start time, stop time, and record-counts (estimated and
actual number of records in O’s output in the plan).

• Database-level data: This data includes common met-
rics like the number of buffer cache hits, full-table scans,
random I/Os, and locks held per monitoring interval.

Such data is easily available in most database systems.
The data collected from the SAN subsystem includes: (i)

configuration of components (both physical and logical), (ii)
connectivity among components, (iii) changes in configu-
ration and connectivity information over time, (iv) perfor-
mance metrics from components, (v) events generated by the
system (e.g., disk failure, RAID rebuild) and (vi) events gen-
erated by user-defined triggers (e.g., degradation in volume
performance, high workload on storage subsystem). This
data is collected using storage management tools like IBM
TotalStorage Productivity Center (TPC) [3].

The dependencies among plan operators and SAN compo-
nents are obtained in the following manner. The mappings
of the database tablespaces to the storage volumes in the
SAN are first extracted from the database configuration file.
There are two predominant approaches for associating phys-
ical storage to a logical tablespace defined by the database:
(a) System Managed Storage (SMS), where the tablespace
is mapped to a file system created on a SAN volume; (b)
Database Managed Storage (DMS), where the tablespace is
created on a raw physical SAN volume with space alloca-
tion and associated book-keeping managed directly by the
database. All operators in a query plan are related either di-
rectly or indirectly to operations on tables; and tables have
a one-to-one correspondence to tablespaces. Thus, for each
operator O, it is possible to map O to the SAN volumes
that O depends on. Combining this mapping with the SAN
configuration data, we can obtain the inner and outer de-
pendency paths for all plan operators. Each operator is
annotated with the performance data of components in its
dependency paths.

2.2 Diagnosis Workflow
When the administrator identifies a query Q as having

experienced a slowdown, Diads invokes the diagnosis work-
flow. This workflow “drills down” progressively from the
level of the query to plans and to operators, and then fur-
ther down to the level of performance metrics and events in
components. Finally, an impact analysis is done that “rolls
up” to tie potential root causes back to their impact on Q’s
slowdown. As we will show in this section, the workflow
applies a combination of statistical machine learning and
domain knowledge to the APGs collected for Q. This novel
combination provides built-in checks and balances to keep
Diads on the right track during diagnosis.

The administrator identifies a query Q as having experi-
enced slowdown by specifying declaratively or marking di-
rectly the runs of the query that were satisfactory and those
that were unsatisfactory. For example, runs with running



time below 100 seconds may be satisfactory, or all runs from
8 AM to 2 PM were satisfactory, and those from 2 PM to 3
PM were unsatisfactory.

Module Plan Diffing (PD): The first module in the
workflow looks for significant changes between the plans
used in satisfactory and unsatisfactory runs. For example,
a change in execution plan for the query could have caused
contention in a SAN volume due to the increased I/O in
the new plan. If such changes exist—e.g., if Diads finds
that plan P1 was used in satisfactory runs and a different
plan P2 was used in unsatisfactory runs—then Diads tries
to pinpoint the cause of the plan change (which includes,
e.g., index addition/dropping, changes in data properties,
or changes in configuration parameters used in plan selec-
tion). Our current implementation pinpoints each schema
or configuration change that occurred between the runs of
P1 and P2 that could have caused the plan change.

The remaining modules in the workflow are invoked if Di-
ads finds a plan P that is involved in both satisfactory and
unsatisfactory runs of the query.

Module Correlated Operators (CO): The objective
of this module is to find the subset of operators, called
the correlated operator set (COS), whose change in per-
formance best explains the slowdown of plan P . For ex-
ample, the slowdown may be due entirely to a sort op-
erator that exhibits increased running times due to a de-
crease in memory available to the plan. COS is identi-
fied by analyzing data from satisfactory and unsatisfactory
runs of P which can be seen as records with attributes
L, t(P ), t(O1), t(O2), . . . , t(On) for each run of P . Here, at-
tribute t(P ) is the total time for one complete run of P , and
attribute t(Oi) is the running time of operator Oi ∈ P for
that run. Attribute L is a label representing whether the
corresponding run of P was satisfactory or not.

Diads feeds this data to Kernel Density Estimation (KDE)
which is a statistical method to estimate the probability
density function of a random variable. KDE applies an es-
timator to the data to learn the probability density func-
tion fi(Si) of the random variable Si representing the run-
ning time of operator Oi when P ’s performance is satisfac-
tory. Let u be an observation of Oi’s running time when
P ’s performance was unsatisfactory. Consider the proba-
bility estimate prob(Si ≤ u) =

∫ u

−∞ fi(Si)dsi. Intuitively,
as u becomes higher than the typical range of values of Si,
prob(Si ≤ u) becomes closer to 1. Thus, a high value of
prob(Si ≤ u) represents a significant increase in Oi’s run-
ning time when plan performance was unsatisfactory; if so,
Oi belongs to COS. Prob(Si ≤ u) is called the anomaly score
of Oi, where u is the average of Oi’s running time over all
samples captured during unsatisfactory performance.

Module Dependency Analysis (DA): This module
identifies the subset of system components, called the cor-
related component set (CCS), such that each component in
CCS: (i) is in the dependency path of at least one operator
O ∈ COS, and (ii) has at least one performance metric that
is significantly correlated with O’s running time. An exam-
ple of the usefulness of this module is when a scan operator
performs poorly due to an unexpected RAID rebuild hap-
pening in the SAN volume from which the scan fetches its
data. The fact that a component C is in the dependency
path of an operator O ∈ COS (Property (i) above) does not
necessarily mean that O’s performance has been affected
by C’s performance. Hence, Diads checks additionally for

Property (ii) which is implemented using KDE.
Module Correlated Record-counts (CR): In this mod-

ule, Diads checks whether the change in performance of op-
erators in COS correlates with their record-counts. Signif-
icant correlations mean that data properties have changed
between satisfactory and unsatisfactory runs of P . Once
again, correlation analysis is implemented using KDE to find
the correlated record-count set CRS ⊆ COS.

Module Symptoms Database (SD): COS, CCS, and
CRS along with other observed SAN and database events
may only be symptoms of the true root cause of P ’s slow-
down. Module SD seeks to map the observed symptoms to
the actual root cause. Diads generates this mapping using a
symptoms database whose main purpose is to streamline the
use of domain knowledge to (i) create more accurate results
by dealing with event propagation, and (ii) generate seman-
tically meaningful results (e.g., reporting lock contention as
a cause instead of reporting some performance metrics only).

Diads’s implementation of the symptoms database is mo-
tivated by an intuitive and commercially-used format called
the Codebook. The original format assumes a finite set of
symptoms such that each distinct root cause R has a unique
signature in this set. However, Diads needs to consider com-
plex symptoms such as symptoms with temporal properties
(e.g., contention occurred before failure). Diads’s symp-
toms database is a collection of root cause entries each of
which has the format Cond1 & Cond2 & . . . & Condz, for
some z > 0 which can differ across entries. Each Condi is a
condition of the form ∃sympj (denoting presence of sympj)
or ¬∃sympj (denoting absence of sympj). Symptom sympj

is represented in a declarative language used to express com-
plex symptoms. Each Condi is associated with a weight wi

such the sum of the weights for each individual root cause
entry is 100%. From the symptoms observed currently, Di-
ads calculates a confidence score for each root cause R as
the sum of the weights of R’s conditions that evaluate to
true. We further divide the confidence score into three cat-
egories: (i) high (score ≥ 80%), (ii) medium (80% > score
≥ 50%), and (iii) low (score < 50%).

Module Impact Analysis (IA): For each root cause
R identified by Module SD with high confidence, an impact
score is calculated as the percentage of the query slowdown
(time) that can be contributed to R individually. When mul-
tiple problems coexist in the system, impact scores can sep-
arate out high-impact causes from the less significant ones.
Also, they serve as a safeguard against misdiagnoses result-
ing from spurious correlations due to noise.

Diads has multiple implementations of this module. One
implementation is an “inverse dependency analysis”. First,
IA starts from a root cause (R) and identifies all system
components affected by R, denoted comp(R). The next step
is to find the subset of operators (op(R)) whose performance
is affected by comp(R). The impact score is calculated as the
percentage of extra running time of op(R) with respect to the
extra plan running time; where extra time is the difference
between the average running times across unsatisfactory and
satisfactory runs. Another implementation of IA leverages
the plan cost models used by database query optimizers.
More details are in [1, 2].

3. DEMONSTRATION OVERVIEW
Our demonstration will present Diads in action on prob-

lems injected in a realistic DB/SAN environment. The demon-



Figure 2: Demonstration setup

stration setup, depicted in Figure 2, consists of:

• Data-warehousing queries from the TPC-H benchmark
running on a PostgreSQL database server configured to
access tables on two Ext3 file-system volumes V1 and V2

created on an enterprise-class IBM storage controller.

• The IBM TotalStorage Productivity Center (TPC) tool
running on a separate machine recording configuration
details, statistics, and events from the SAN as well as
from PostgreSQL (which was instrumented to report the
data to TPC). The monitoring data is stored as time-
series data in a DB2 database.

• Diads’s graphical front-end supports APG-oriented dis-
play and browsing of data collected in the DB2 database.
Recall that APGs are views on the monitoring data that
combine what database administrators see with what
SAN administrators see. APG-oriented visualization was
implemented due to feedback from administrators that
all they need to see is the APG diagram to diagnose a
large fraction of DB/SAN performance problems.

• Diads’s diagnosis workflow which is invoked on demand.
Figure 3 shows a screenshot of the workflow. Each mod-
ule in the workflow is implemented using a combination
of R scripts (for KDE) and Java. Diads uses a symp-
toms database that was developed in-house to handle
query slowdowns.

• A fault injector used for testing and verifying Diads’s re-
sults. The injector can cause a variety of faults at both
the database and SAN levels, e.g., SAN misconfigura-
tion, server, disk, or volume contention, RAID rebuilds,
changes in data properties, and table-locking problems.

Diads will be demonstrated through several scenarios that
keep increasing in diagnosis complexity. (Table 1 in [2] gives
our complete list of demonstration scenarios.) Our base sce-
nario consists of a SAN misconfiguration caused by a stor-
age administrator. This misconfiguration places an external
workload on volume V1 that affects query performance. We
then complicate this base scenario by introducing: (i) prob-
lems that propagate through the different components in
the system, (ii) concurrent problems, and (iii) noise in the
monitoring data. We have designed Diads to work with
monitoring data that is stored in a database outside the
system being monitored. This property allows Diads to run
and analyze query slowdowns offline; the required APG data
from satisfactory and unsatisfactory runs has already been
captured in the monitoring database.

Diagnosis in each scenario starts with the administrator
identifying a query that has experienced a slowdown, as
well as satisfactory and unsatisfactory runs of that query.
The diagnosis workflow is then invoked. By default, the
workflow is run in a batch mode where all modules are ex-

Figure 3: DIADS’s diagnosis workflow being invoked

ecuted one after the other, and only the final results are
displayed to the administrator. However, Diads supports
an interactive mode where results are displayed after each
module completes, and the administrator can edit these re-
sults before they are fed to the next module. In this mode,
the administrator can also re-execute or bypass modules, as
well as stop the execution if the desired result is obtained
quickly. Our demonstration will use the step-by-step inter-
active mode—which enables drilling down to intermediate
results like anomaly, confidence, and impact scores—to give
the audience maximum insight into how Diads works.

Based on viewer interest, we will present how Diads han-
dles the base scenario along any of the following scenarios:
• Dealing with event propagation: A query slowdown is

caused through extra I/O on volume V2 by changing data
properties in a table. The overall size of all tables remain
unchanged. There are no external causes of contention
on the volumes. In this scenario, Module CR identifies
all the operators whose record-counts are correlated with
plan performance, causing Module SD to list changes
in data properties as a high-confidence cause. Module
IA gives the final confirmation that the change in data
properties is the root cause, and rules out the presence
of high-impact external causes of volume contention.

• Dealing with multiple concurrent problems: A bursty work-
load is introduced on Volume V2 to create multiple con-
current causes of problems. This scenario illustrates the
importance of modules DA and IA.

• Dealing with noisy monitoring data: Noise is added to
the system either by synthetically perturbing the moni-
toring data or by varying the monitoring interval (which
flattens out real spikes in the data, causing correlations
to be missed). This scenario illustrates how Diads per-
forms robustly even in noisy environments.

4. REFERENCES
[1] S. Babu, N. Borisov, S. Uttamchandani, R. Routray,

and A. Singh. DIADS: Addressing the
“My-Problem-or-Yours” Syndrome with Integrated
SAN and Database Diagnosis. In Proc. of Usenix Conf.
on File and Storage Technologies (FAST), 2009.

[2] N. Borisov, S. Uttamchandani, R. Routray, and
A. Singh. Why Did My Query Slow Down? In Proc. of
Fourth Conf. on Innovative Data Systems Research
(CIDR), 2009.

[3] IBM TotalStorage Productivity Center.
http://www-306.ibm.com/software/tivoli/

products/totalstorage-data/.


