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ABSTRACT
This paper describes Jaql, a declarative scripting language for an-
alyzing large semistructured datasets in parallel using Hadoop’s
MapReduce framework. Jaql is currently used in IBM’s InfoS-
phere BigInsights [5] and Cognos Consumer Insight [9] products.
Jaql’s design features are: (1) a flexible data model, (2) reusabil-
ity, (3) varying levels of abstraction, and (4) scalability. Jaql’s data
model is inspired by JSON and can be used to represent datasets
that vary from flat, relational tables to collections of semistructured
documents. A Jaql script can start without any schema and evolve
over time from a partial to a rigid schema. Reusability is provided
through the use of higher-order functions and by packaging related
functions into modules. Most Jaql scripts work at a high level of ab-
straction for concise specification of logical operations (e.g., join),
but Jaql’s notion of physical transparency also provides a lower
level of abstraction if necessary. This allows users to pin down the
evaluation plan of a script for greater control or even add new op-
erators. The Jaql compiler automatically rewrites Jaql scripts so
they can run in parallel on Hadoop. In addition to describing Jaql’s
design, we present the results of scale-up experiments on Hadoop
running Jaql scripts for intranet data analysis and log processing.

1. INTRODUCTION
The combination of inexpensive storage and automated data gen-

eration is leading to an explosion in data that companies would
like to analyze. Traditional SQL warehouses can certainly be used
in this analysis, but there are many applications where the rela-
tional data model is too rigid and where the cost of a warehouse
would be prohibitive for accumulating data without an immediate
need for it [12]. As a result, alternative platforms have emerged
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for large scale data analysis, such as Google’s MapReduce [14],
Hadoop [18], the open-source implementation of MapReduce, and
Microsoft’s Dryad [21]. MapReduce was initially used by Internet
companies to analyze Web data, but there is a growing interest in
using Hadoop [18], to analyze enterprise data.

To address the needs of enterprise customers, IBM recently
released InfoSphere BigInsights [5] and Cognos Consumer In-
sights [9] (CCI). Both BigInsights and CCI are based on Hadoop
and include analysis flows that are much more diverse than those
typically found in a SQL warehouse. Among other things, there are
analysis flows to annotate and index intranet crawls [4], clean and
integrate financial data [1, 36], and predict consumer behavior [13]
thru collaborative filtering.

This paper describes Jaql, which is a declarative scripting lan-
guage used in both BigInsights and CCI to analyze large semistruc-
tured datasets in parallel on Hadoop. The main goal of Jaql is to
simplify the task of writing analysis flows by allowing developers
to work at a higher level of abstraction than low-level MapReduce
programs. Jaql consists of a scripting language and compiler, as
well as a runtime component for Hadoop, but we will refer to all
three as simply Jaql. Jaql’s design has been influenced by Pig [31],
Hive [39], DryadLINQ [42], among others, but has a unique focus
on the following combination of core features: (1) a flexible data
model, (2) reusable and modular scripts, (3) the ability to spec-
ify scripts at varying levels of abstraction, referred to as physical
transparency, and (4) scalability. Each of these is briefly described
below.

Flexible Data Model: Jaql’s data model is based on JSON,
which is a simple format and standard (RFC 4627) for semistruc-
tured data. Jaql’s data model is flexible to handle semistructured
documents, which are often found in the early, exploratory stages
of data analysis, as well as structured records, which are often pro-
duced after data cleansing stages. For exploration, Jaql is able to
process data with no schema or only a partial schema. However,
Jaql can also exploit rigid schema information when it is available,
for both type checking and improved performance. Because JSON
was designed for data interchange, there is a low impedance mis-
match between Jaql and user-defined functions written in a variety
of languages.

Reusability and Modularity: Jaql blends ideas from program-
ming languages along with flexible data typing to enable encap-
sulation, composition, and ultimately, reusability and modularity.
All of these features are not only available for end users, but also
used to implement Jaql’s core operators and library functions. Bor-
rowing from functional languages, Jaql supports lazy evaluation
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and higher-order functions, i.e., functions are treated as first-class
data types. Functions provide a uniform representation for not only
Jaql-bodied functions but also those written in external languages.
Jaql is able to work with expressions for which the schema is un-
known or only partially known. Consequently, users only need to
be concerned with the portion of data that is relevant to their task.
Partial schema also allows a script to make minimal restrictions on
the schema and thereby remain valid on evolving input. Finally,
many related functions and their corresponding resources can be
bundled together into modules, each with their own namespace.

Physical Transparency: Building on higher order functions,
Jaql’s evaluation plan is entirely expressible in Jaql’s syntax. Con-
sequently, Jaql exposes every internal physical operator as a func-
tion in the language, and allows users to combine various levels
of abstraction within a single Jaql script. Thus the convenience of
a declarative language is judiciously combined with precise con-
trol over query evaluation, when needed. Such low-level control is
somewhat controversial but provides Jaql with two important ben-
efits. First, low-level operators allow users to pin down a query
evaluation plan, which is particularly important for well-defined
tasks that are run regularly. After all, query optimization remains a
challenging task even for a mature technology such as an RDBMS.
This is evidenced by the widespread use of optimizer “hints”. Al-
though useful, such hints only control a limited set of query eval-
uation plan features (such as join orders and access paths). Jaql’s
physical transparency goes further in that it allows full control over
the evaluation plan.

The second advantage of physical transparency is that it enables
bottom-up extensibility. By exploiting Jaql’s powerful function
support, users can add functionality or performance enhancements
(such as a new join operator) and use them in queries right
away. No modification of the query language or the compiler
is necessary. The Jaql rewriter exploits this design principle to
compile high-level declarative expressions to lower-level function
calls, which also have a valid representation in Jaql’s syntax. This
well-known compiler design pattern is called source-to-source
compilation [27] and, to the best of our knowledge, Jaql is the first
data processing language that exploits this technique and makes it
available to end users.

In summary, physical transparency offers users a complete spec-
trum of control: declarative expressions are preferable when they
work, hints cover the common lapses in optimization, and physical
transparency offers direct access to a Jaql plan when needed.

Scalability: Jaql is designed to parallelize scripts over large
collections of semistructured objects distributed among a cluster
of commodity servers. The achieved scalability is essential for
both large datasets and expensive per-object computations. By
focusing on large, partitionable collections, many of the innova-
tions developed for shared nothing databases are applicable. Some
of these techniques—such as parallel scan, repartitioning, and
parallel aggregation—are also present in MapReduce, along with
fault-tolerance and dynamic scheduling to circumvent hardware
and software failures. Given a script, Jaql translates it into an eval-
uation plan consisting of MapReduce jobs and, when necessary,
intermediate sequential steps. Results in Section 8 show that Jaql
scales well and illustrates how physical transparency enabled us to
parallelize typically sequential flows for analyzing large datasets.

In the remainder of the paper, we first review related work in
Section 2 and background in Section 3. Jaql’s data model and
schema is described in Section 4. Core language features, an ex-
ample of physical transparency, and the system implementation are
described in Sections 5, 6, and 7 respectively. Section 8 contains
the experimental results and we conclude in Section 9.

2. RELATED WORK
Many systems, languages, and data models have been developed

to process massive data sets, giving Jaql a wealth of technologies
and ideas to build on. In particular, Jaql’s design and implementa-
tion draw from shared nothing databases [15, 38], MapReduce [14],
declarative query languages, functional and parallel programming
languages, the nested relational data model, and XML. While Jaql
has features in common with many systems, we believe that the
combination of features in Jaql is unique. In particular, Jaql’s use of
higher-order functions is a novel approach to physical transparency,
providing precise control over query evaluation.

Jaql is most similar to the data processing languages and sys-
tems that were designed for scale-out architectures such as Map-
Reduce and Dryad [21]. In particular, Pig [31], Hive [39], and
DryadLINQ [42] have many design goals and features in common.
Pig is a dynamically typed query language with a flexible, nested
relational data model and a convenient, script-like syntax for de-
veloping data flows that are evaluated using Hadoop’s MapReduce.
Hive uses a flexible data model and MapReduce with syntax that
is based on SQL (so it is statically typed). Microsoft’s Scope [10]
has similar features as Hive, except that it uses Dryad as its paral-
lel runtime. In addition to physical transparency, Jaql differs from
these systems in three main ways. First, Jaql scripts are reusable
due to higher-order functions. Second, Jaql is more composable:
all language features can be equally applied to any level of nested
data. Finally, Jaql’s data model supports partial schema, which as-
sists in transitioning scripts from exploratory to production phases
of analysis. In particular, users can contain such changes to schema
definitions without a need to modify existing queries or reorganize
data (see Section 4.2 for an example).

ASTERIX Query Language (AQL) [3] is also composable, sup-
ports “open” records for data evolution, and is designed for scal-
able, shared-nothing data processing. Jaql differs in its support for
higher-order functions and physical transparency.

While SQL, Jaql, and Pig are data processing languages, Mi-
crosoft’s LINQ [28], Google’s FlumeJava [11], the PACTs pro-
gramming model [2], and the Cascading project [8] offer a pro-
grammatic approach. We focus on LINQ, due to its tighter integra-
tion with the host language (e.g., C#). LINQ embeds a statically
typed query language in a host programming language, providing
users with richer encapsulation and tooling that one expects from
modern programming environments. DryadLINQ is an example
of such an embedding that uses the Dryad system for its parallel
runtime. Jaql differs in three main ways. First, Jaql is a scripting
language and lightweight so that users can quickly begin to ex-
plore their data. Second, Jaql exploits partial schema instead of a
programming language type system. Finally, it is not clear whether
DryadLINQ allows its users to precisely control evaluation plans to
the same degree that is supported by Jaql’s physical transparency.

Sawzall [34] is a statically-typed programming language for
Google’s MapReduce, providing domain specific libraries to easily
express the logic of a single MapReduce job. In comparison, Jaql
can produce data flows composed of multiple MapReduce jobs.

A key ingredient for reusability is for functions to be poly-
morphic, often through table-valued parameters [22]. Examples
of systems that support such functionality include AsterData’s
SQL/MapReduce [16] and Oracle’s pipelined table functions [32].
AT&T’s Daytona [17] is a proprietary system that efficiently
manages and processes massive flat files using SQL and procedural
language features. NESL [6] is a parallel programming language
specialized for nested data. In contrast to these systems, Jaql
is designed to process semistructured data and its support for
higher-order functions offers more options for reusability.
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RDBMS’ and native XML data management systems offer a
wide range of flexibility for processing semistructured data and
have had a significant influence on Jaql’s design. For reusability,
Jaql includes many of the features found in XQuery [41] such as
functions, modules/namespaces, and higher-order functions [37].
In addition, except for DB2’s PureXML [20] and MarkLogic
Server [30], most XQuery systems have not been implemented for
shared-nothing architectures. Finally, Jaql’s physical transparency
is a significant departure from such declarative technology.

3. HADOOP BACKGROUND
Jaql relies on Hadoop’s MapReduce infrastructure to provide

parallelism, elasticity, and fault tolerance for long-running jobs on
commodity hardware. Briefly, MapReduce is a parallel program-
ming framework that breaks a job into map and reduce tasks. In
Hadoop, each task is managed by a separate process, all tasks on
a single node are managed by a TaskTracker, and all TaskTrackers
in a cluster are managed by a single JobTracker. The input data
set– e.g., an HDFS file spread across the cluster– is partitioned into
splits. Each map task scans a single split to produce an intermedi-
ate collection of (key, value) pairs. If appropriate, the map output
is partially reduced using a combine function. The map output is
redistributed across the cluster by key in the shuffle phase so that
all values with the same key are processed by the same reduce task.
Both the combine function and reduce phase are optional. For the
remainder of the paper, the term MapReduce is used interchange-
ably with the Hadoop MapReduce implementation and we distin-
guish between the general MapReduce programming framework
where needed.

Unlike traditional databases, MapReduce clusters run on less re-
liable hardware and are significantly less controlled; for example
MapReduce jobs by definition include significant amounts of user
code with their own resource consumption, including processes and
temporary files. Hence, MapReduce nodes are less stable than a
DBA managed database system, which means that nodes frequently
require a reboot to clean out remnants from previous tasks. As a
result, the system replicates input data, materializes intermediate
results, and restarts failed tasks as required.

4. JAQL’S DATA MODEL AND SCHEMA
Jaql was designed to process large collections of semistructured

and structured data. In this section, we describe Jaql’s data model
(JDM) and schema language.

4.1 The Data Model
Jaql uses a very simple data model: a JDM value is either an

atom, an array, or a record. Most common atomic types are sup-
ported, including strings, numbers, nulls, and dates. Arrays and
records are compound types that can be arbitrarily nested. In more
detail, an array is an ordered collection of values and can be used to
model data structures such as vectors, lists, sets, or bags. A record
is an unordered collection of name-value pairs– called fields– and
can model structs, dictionaries, and maps.

Despite its simplicity, JDM is very flexible. It allows Jaql to op-
erate with a variety of different data representations for both input
and output, including delimited text files, JSON files, binary files,
Hadoop’s SequenceFiles, relational databases, key-value stores, or
XML documents. Jaql often uses binary representations of JDM,
but the textual representation expresses Jaql literals and is useful
for debugging and interoperating with other languages.

Textual Representation. Figure 1 shows the grammar for the
textual representation of JDM values. The grammar unambigu-

<value> ::= <atom> | <array> | <record>
<atom> ::= <string> | <binary> | <double> |

<date> | <boolean> | ’null’ | ...
<array> ::= ’[’ ( <value> (’,’ <value>)* )? ’]’
<record> ::= ’{’ ( <field> (’,’ <field>)* )? ’}’
<field> ::= <name> ’:’ <value>

Figure 1: Grammar for textual representation of Jaql values.

ously identifies each data type from the textual representation. For
example, strings are wrapped into quotation marks ("text"), num-
bers are represented in decimal or scientific notation (10.5), and
booleans and null values are represented as literals (true). As
for compound types, arrays are enclosed in brackets ([1,2]) and
records are enclosed in curly braces ({a:1, b:false}). Exam-
ple 1 models a collection of product reviews as an array of records;
we interchangeably refer to such top-level arrays as collections.
Since JDM textual representation is a part of Jaql grammar, we use
the terms JDM value and Jaql value interchangeably. Also note that
this representation closely resembles JSON. In fact, Jaql’s gram-
mar and JDM subsumes JSON: Any valid JSON instance can be
read by Jaql. The converse it not true, however, as JDM has more
atomic types. Since JSON is a useful format for data exchange
between programs written in many programming languages (e.g.,
Java, Python, Ruby, . . . ), JDM’s closeness to JSON simplifies data
exchange with all those languages.

Example 1 Consider a hypothetical company KnowItAll, Inc.
that maintains a collection of product reviews. The following is an
excerpt in JDM’s textual representation.

[
{ uri: "http://www.acme.com/prod/1.1reviews",
content: "Widget 1.1 review by Bob ...",
meta: { author : "Bob",

contentType: "text",
language: "EN" } },

{ uri: "file:///mnt/data/docs/memo.txt",
content: "The first memo of the year ...",
meta: { author: "Alice",

language: "EN" } },
...

]

Relationship to other data models. JDM consciously avoids
many complexities that are inherent in other semistructured data
models, such as the XQuery Data Model (XDM) and the Object
Exchange Model (OEM). For example, JDM does not have node
identity or references. As a consequence, Jaql does not have to
deal with multiple equality semantics (object and value) and Jaql
values are always trees (and not graphs). These properties not only
simplify the Jaql language, but also facilitate parallelization.

4.2 The Schema
Jaql’s ability to operate without a schema, particularly in con-

junction with self-describing data, facilitates exploratory data anal-
ysis because users can start working with the data right away, with-
out knowing its complete type. Nevertheless, there are many well
known advantages to schema specification, including static type
checking and optimization, data validation, improved debugging,
and storage and runtime optimization. For these reasons, Jaql al-
lows and exploits schema specifications. Jaql’s schema and schema
language are inspired by XML Schema [40], RELAX NG [35],
JSON schema [25], and JSONR [24]. The schema information
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<schema> ::= <basic> ’?’? (’|’ <schema>)*
<basic> ::= <atom> | <array> | <record>

| ’nonnull’ | ’any’
<atom> ::= ’string’ | ’double’ | ’null’ | ...
<array> ::= ’[’ ( <schema> (’,’ <schema>)*

’...’? )? ’]’
<record> ::= ’{’ ( <field> (’,’ <field>)* )? ’}’
<field> ::= (<name> ’?’? | ’*’) (’:’ <schema>)?

Figure 2: Grammar for schema language.

does not need to be complete and rigid because Jaql supports partial
schema specification.

Jaql uses a simple pattern language, shown in Figure 2, to de-
scribe schemas. The schema of an atomic type is represented by
its name, e.g., boolean or string. The schema of an array is rep-
resented by using a list of schemas in brackets, e.g., [boolean,
string]. Optionally, usage of ... indicates that the last array
element is repeatable, e.g., [string, double ...]. The schema
of records are defined similarly, e.g., {uri: string} describes a
record with a single field uri of type string. Question marks indi-
cate optionality (for fields) or nullability (otherwise). We refer to a
schema as regular if it can be represented with the part of the lan-
guage just described. Regular schemas give a fairly concise picture
of the actual types in the data. In contrast, irregular schemas make
use of wildcards such as nonnull or any for values of arbitrary
type, * for fields of arbitrary name, or omission of a field’s type, or
to specify different alternative schemas (using |). In general, irreg-
ular schemas are more vague about the data. The simplest irregular
schema is any; it matches any value and is used in the absence of
schema information.

Example 2 The excerpt of the KnowItAll data shown in Example 1
conforms to the following regular schema (the ? marks optional
fields):

[ { uri: string, content: string,
meta: { author: string, contentType?: string,

language: string }
} ... ],

This schema is unlikely to generalize to the entire dataset, but the
following irregular schema may generalize:

[ { uri: string, content: any, meta: {*: string} }
... ].

The ability to work with regular and irregular schemas allows Jaql
to exploit schema information in various degrees of detail. In con-
trast to many other languages, Jaql treats schema as merely a con-
straint on the data: A data value (and its type) remains the same
whether or not its schema is specified.1 This makes it possible to
add schema information– whether partial or complete– as it be-
comes available without changing the data type or any of the ex-
isting Jaql scripts. For example, initial screening of the Know-
ItAll dataset might be performed using schema [{*}...], which
indicates that the data is a collection of arbitrary records. When
in later phases, as more and more information becomes available,
the schema is refined to, say, [{uri:string,*}...], all existing
scripts can be reused, but will benefit from static type checking and
increased efficiency. In contrast, refinement of schema often re-
quires a change of data type, and consequently query, in many other
languages. For example, a dataset of arbitrary records is modeled
1In contrast, parsing the same XML document with or without an
XML Schema may result in different XQuery data model instances
with different data types.

[

{ uri: ‘file..’, content, …},

{ uri: ‘http…’, meta: {…},… },

…

] [

[ ‘uri’, ‘content’ ],

[ ‘uri’, ‘meta’ ],

…

]

read

Example Data

Data Flow

HDFS

[

{ name: ‘uri’, num: 27},

{ name: ‘content’, num: 23},

{ name: ‘meta’, num: 15},  

…

]

[

‘uri’, 

‘content’,

‘uri’, 

‘meta’,

…

]

transform expand group write

countFields

(a)

(b)

(c) (d)

HDFS

Figure 3: Conceptual data flow for counting fields.

as [{fields:map}...] in Pig [31] and LINQ [28], which both
support flexible map containers that can store heterogeneous data.
When information about field uri becomes available, it is propa-
gated by pulling uri out of fields. The schema and data type
becomes [{uri:string, fields:map}...] and all references
to uri in the query have to be modified.

5. JAQL LANGUAGE OVERVIEW
This section describes the core features of the Jaql language. A

series of examples is used to emphasize how the language meets its
design goals of flexibility and reusability.

5.1 Core Expressions
Jaql is a scripting language. A Jaql script is simply a sequence of

statements, and each statement is either an import, an assignment,
or an expression. The following example describes a simple task
and its Jaql implementation.

Example 3 Consider a user who wants to gain some familiarity
with the KnowItAll data by learning which fields are present and
with what frequency. Figure 3 shows a conceptual data flow that
describes this task. The data flow consists of a sequence of “op-
erators”; example data is shown at various intermediate points.
The read operator loads raw data, in this case from Hadoop’s
Distributed File System (HDFS), and converts it into Jaql values.
These values are processed by the countFields subflow, which
extracts field names and computes their frequencies. Finally, the
write operator stores the result back into HDFS.

This task is accomplished by the following Jaql script:

1. import myrecord;
2.
3. countFields = fn(records) (
4. records
5. -> transform myrecord::names($)
6. -> expand
7. -> group by fName = $ as occurrences
8. into { name: fName, num: count(occurrences) }
9. );
10.
11. read(hdfs("docs.dat"))
12. -> countFields()
13. -> write(hdfs("fields.dat"));

Working our way from the bottom of the script to the top, the
conceptual data flow of Figure 3 is specified on lines 11–13. read,
hdfs, countFields, and write are functions; their composition
and invocation constitutes an expression. Lines 3–9 constitute
the assignment that defines the countFields function. The
countFields function depends on an externally defined function,
names, which is imported on line 1 from the myrecord module.
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Unix pipes inspired Jaql’s syntax “->” for flowing the output of
one expression to the next. Although this symbol “->” has multiple
interpretations in Jaql, the expression to the left of “->” always pro-
vides the context for what is on the right-hand side. Thus, e1->e2
can be read as “e1 flows into e2”. The pipe syntax explicitly shows
the data flow in a Jaql script, making it easier to read and debug.
We chose this syntax to avoid defining variables (as in Pig[31]),
or WITH clauses (as in SQL), for every computational step. The
pipe syntax is also more readable than the functional notation (as in
XQuery[41]), when a series of functions are invoked back-to-back.

Jaql has several expressions for manipulating data collections
(also referred to as arrays), including transform, expand,
filter, join, sort, group by, multi-input group by, merge,
and tee. Note that some of these expressions (such as join,
group by, filter,transform, merge) are found in database
management systems, while others (such as tee) are typical for
ETL engines. This section illustrates some of the core expressions
using our running example and we refer the reader to [23] for
further details.

transform: The transform expression applies a function (or
projection) to every element of an array to produce a new array. It
has the form e1->transform e2, where e1 is an expression that
describes the input array, and e2 is applied to each element of e1.

Consider lines 4–8 of Example 3 as well as the correspond-
ing data shown in Figure 3. In lines 4 and 5 of the example, e1
refers to the records variable, and e2 invokes the names func-
tion from the myrecord module. The names function takes as in-
put a record and produces an array of field names (represented as
strings). The output after transform is shown Figure 3(b). By
default, transform binds each element of e1 to a variable named
$, which is placed in e2’s scope. As with most Jaql expressions,
the each keyword is used to override the default iteration variable.
For example, ...->transform each r myrecord::names(r)
... renames $ to r. Example 5 illustrates how such renaming is
useful when iterating over nested data.

expand: The expand expression is most often used to unnest its
input array. It differs from transform in two primary ways: (1)
e2 must produce a value v that is an array type, and (2) each of the
elements of v is returned to the output array, thereby removing one
level of nesting.

The expand expression in line 6 unnests the array of field names,
cf. Figure 3(c). In this case, e2 is assumed to be the identity
function. That is, each element in the output from the previous
transform operator is assumed to be an array (of strings, in this
case). If needed, the iteration variable $ (or override) is in scope
for e2.

group by: Similar to SQL’s GROUP BY, Jaql’s group by
expression partitions its input on a grouping expression and applies
an aggregation expression to each group. In contrast to SQL,
Jaql’s group by operates on multiple input collections (e.g.,
co-group [31]), supports complex valued grouping keys, and
provides the entire group to the aggregation expression.

In the example, the group by expression on lines 7–8 counts the
number of occurrences of each distinct field name and returns an
array of records. The grouping key, fName, is assigned to $, which
is bound to each value from the input (e.g., a string). The group,
occurrences, is assigned to the array of values (e.g., string array)
associated with each distinct key. Both fName and occurrences
are in scope for the into clause on line 8, where they are used to
construct a record (denoted by {name, num}) per group. The name
field is set to fName and a count is computed over occurrences.

filter: The filter expression, e->filter p, retains input val-
ues from e for which predicate p evaluates to true. The following

example modifies Example 3 by retaining only those field names
that belong to an in-list:
...
5. -> transform myrecord::names($)
6. -> expand
7. -> filter $ in [ "uri", "meta" ]
...

join: The join expression supports equijoin of 2 or more in-
puts. All of the options for inner and outer joins are also supported.
See Example 9 for an example of a join between two collections.

union: The union expression is a Jaql function that merges
multiple input arrays into a single output array. It has the form:
union(e1, . . .) where each ei is an array.

tee: The tee expression is a Jaql function that takes an array
as input that it outputs “as-is”, along with broadcasting it to one or
more expressions. It is a generalization of Unix teewhere a stream
can be redirected to a file and consumed by another process. Jaql’s
tee has the form: e0->tee(e1, . . . en). Each of the expressions,
e1, . . . en consume e0 and tee outputs e0. Typically, e1, . . . , en
terminate in a write so are side-effecting. The following modifies
Example 3 by transforming the result of the group by on lines 7–
8 and writing out two additional files, ”low” and ”high”. Note that
the countFields function still returns the same result since tee
passes through its input.
...
9. -> transform $.num
10. -> tee( -> filter $ <= 10 -> write(hdfs("low")),
11. -> filter $ > 10 -> write(hdfs("high")))
...

Control-flow: The two most commonly used control-flow ex-
pressions in Jaql are if-then-else and block expressions. The
if-then-else expression is similar to conditional expressions
found in most scripting and programming languages. A block
establishes a local scope where zero or more local variables can
be declared and the last statement provides the return value of the
block. The block expression is similar to XQuery’y LET clause.
The following modifies the group by expression in Example 3.
Now, the record that is returned per group computes a count and a
classification that is based on the count.
...
7. -> group by fName = $ as occurrences
8. into ( n = count(occurrences),
9. b = if( n <= 10 ) "low" else "high",
10. { name: fName, num: n, bin: b }
11. )
...

5.2 Functions
Functions are first-class values in Jaql, i.e., they can be assigned

to a variable and are high-order in that they can be passed as param-
eters or used as a return value. Functions are the key ingredient for
reusability: Any Jaql expression can be encapsulated in a function,
and a function can be parameterized in powerful ways. Also, func-
tions provide a principled and consistent mechanism for physical
transparency (see Section 6).

In Example 3, the countFields function is defined on lines
3–9 and invoked on line 12. In Jaql, named functions are cre-
ated by constructing a lambda function and assigning it to a
variable. Lambda functions are created via the fn expression;
in the example, the resulting function value is assigned to the
countFields variable. The function has one parameter named
records. Although not shown, parameters can be constrained by
a schema when desired. Note that the definition of countFields
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is abstracted from the details of where its input is stored and how
its formatted. Such details are only specified during invocation
(lines 11–12), which makes countFields reusable.

Jaql makes heavy usage of the pipe symbol -> in its core expres-
sions. Lines 12 and 13 in the example script show a case where the
right-hand side is not a core expression but a function invocation.
In this case, the left-hand side is bound to the first argument of the
function, i.e., e->f(. . .) ≡ f(e, . . .). This interpretation unifies
core expressions and function invocations in that input expressions
can occur up front. User-defined functions, whether they are de-
fined in Jaql or an external language, thus integrate seamlessly into
the language syntax.

To see this, compare the Jaql expressions

read(e1) -> transform e2 -> myudf() -> group by e3

to the equivalent but arguably harder-to-read expression

myudf(read(e1) -> transform e2) -> group by e3.

5.3 Extensibility
Jaql’s set of built-in functions can be extended with user-defined

functions (UDF) and user-defined aggregates (UDA), both of which
can be written in either Jaql or an external language. Such functions
have been implemented for a variety of tasks, ranging from simple
string manipulation (e.g., split) to complex tasks such as infor-
mation extraction (e.g., via System T [26]) or statistical analysis
(e.g., via R [13] and SPSS2). As mentioned before, the exchange
of data between Jaql and user code is facilitated by Jaql’s use of a
JSON-based data model.

Example 4 Continuing from Example 3, suppose that the user
wants to extract names of products mentioned in the content field.
We make use of a UDF that, given a document and a set of extrac-
tion rules, uses System T for information extraction. The following
Jaql script illustrates UDF declaration and invocation:

1. systemt = javaudf("com.ibm.ext.SystemTWrapper");
2. rules = read(hdfs("rules.aql"));
3
4. read(hdfs("docs.dat"))
5. -> transform { author: $.meta.author,
6. products: systemt($.content, rules) };
When run on the example data, the script may produce

[ { author: "Bob", products: ["Widget 1.1",
"Service xyz",...] },

{ author: "Alice", products: [ ... ] }, ... ].

Example 4 illustrates how functions and semistructured data are
often used in Jaql. The javaudf function shown on line 1 is a func-
tion that returns a function which is parameterized by a Java class
name c, and when invoked, knows how to bind invocation param-
eters and invoke the appropriate method of c. By leveraging Jaql
functions, Jaql does not distinguish between native Jaql functions
and external UDFs and UDAs—both can be assigned to variables,
passed as parameters, and returned from functions. The externalFn
function provides a similar wrapping of external programs (run in
separate a process) with which Jaql can exchange data.

5.4 Processing Semistructured Data
While Jaql’s nested data model and partial schemas let users flex-

ibly represent their data, Jaql’s language features enable powerful
processing of semistructured data. In this section, we highlight the
2See http://www.r-project.org and http://www.spss.com.

Jaql features that are most commonly exploited. First, Jaql’s ex-
pressions are composable— expressions that can be applied to top-
level, large collections can also be applied to data that is deeply
nested. For example, transform can be used on a deeply nested
array as easily as it can be used on a large, top-level array. Next,
Jaql includes a path language that lets users “dig into” nested data,
along with complex constructors to generate complex data. Finally,
higher-order functions, schema inference, control-flow, and various
syntactic conveniences are often combined for rich, reusable func-
tionality.

5.4.1 Language Composability
The sample result from Example 4 illustrates a common usage

pattern: per string (e.g., $.content), SystemT enriches each
record with extracted data (also called annotations). In this case,
the SystemT rules found multiple products. More generally,
extracted data is more deeply nested. For example, multiple types
of annotations can be found (e.g., “products” and “services”)
where each type includes zero or more annotations, and each
annotation includes where in the source document it was found.
As a result, the relatively “flat” input data is transformed into more
nested data. Often, the script shown in Example 4 is followed
by additional steps that filter, transform or further classify the
extracted data. Jaql’s composability is crucial to support such
manipulation of nested data.

Example 5 Consider a wroteAbout dataset that contains pairs
of authors and product names (similar to Example 4), and a
products dataset that contains information about individual
products. The wroteAbout dataset is defined as follows:

1. wroteAbout = read(hdfs("docs.dat"))
2. -> transform { author: $.meta.author,
3. products: systemt($.content, rules) }
4. -> transform each d (
5. d.products -> transform { d.author, product: $ }
6. )

7. -> expand;

The definition in Example 5 is similar to the one used in
Example 4, but unnests the products array. The pairing of
author’s with products makes use of Jaql’s composability by
nesting transforms. The transform on Line 4 iterates over
annotated documents (outer) and associates the author with each
nested product (inner). The products per document are iterated
over using a nested transform on Line 5, and the each from Line
4 lets the user access the outer context.

Jaql treats all its expressions uniformly. In particular, there is
no distinction between “small” expressions (such as additions) and
“large” expressions (such as a group by). As a consequence, all ex-
pressions can be used at both the top-level and within nested struc-
tures. Jaql is similar to XQuery [41] and LINQ [28] in this respect,
but differs from Pig [31] and Hive [39] which provide little support
for manipulating nested structures without prior unnesting. Lim-
iting the language to operate on mostly the top level or two may
simplify the implementation and early learning of the language but
becomes tedious when manipulating richer objects.

5.4.2 Path Expressions and Constructors
Example 5 also illustrates basic accessors and constructors

for nested data. The $.meta.author is an example of a field
access. There are numerous syntactic short-hands to “dig into”
nested data. For example, wroteAbout[*].product projects
product from each record, producing an array of products
(with duplicates). These can easily be deduplicated and counted
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as follows: wroteAbout[*].product -> distinct() ->

count().
Records and arrays are constructed by combining the JSON-

like representation with expressions. In Line 5, a record is con-
structed, { ...} and populated with two fields. The first field
inherits its name from d.author and a new field, product, is
declared. Record construction also includes syntax for optionally
dropping a field name in the event that its value expression evalu-
ates to null. Another common task that is supported is to retain all
fields except a few which are either dropped or replaced.

5.5 Error Handling
Errors are common place when analyzing large, complex data

sets. A non-exhaustive list of errors includes corrupt file formats,
dynamic type errors, and a myriad of issues in user-defined code
that range from simple exceptions, to more complicated issues such
as functions that run too long or consume too much memory. The
user must be able to specify how such errors effect script evaluation
and what feedback the system must supply to improve analysis.

Jaql handles errors by providing coarse-grained control at the
script level and fine-grained control over individual expressions.
For coarse-grained control, core expressions (e.g., transform,
filter) have been instrumented to adhere to an error policy. The
policies thus far implemented control if a script is aborted when
there is: (1) any error, or (2) more than k errors. When an error
occurs, the input to the expression is logged, and in the case where
errors are permitted, the expression’s output is skipped.

For fine-grained control, the user can wrap an arbitrary expres-
sion with catch, fence, or timeout functions. The catch func-
tion allows an error policy to be specified on a specific expression
instead of at the script level. The fence function evaluates its in-
put expression in a forked process. Similar to externalFn, Jaql
supports the option to send and receive data in bulk or per value to
the forked process. The timeout function places a limit on how
long its input expression can run. If exceeded, the expression is
terminated and an exception is thrown.

Since fine-grained error handling is implemented using Jaql
functions, composing them and having them work in parallel using
MapReduce comes for free. Consider the following expression:
read(hdfs("docs.dat"))
-> transform catch( timeout( fence(

fn(r) myudf(r.content)
), 5000), $.uri);

This expression is evaluated as a parallel scan (e.g., a Map-only
job). Each map task (e.g., parent process) processes a partition of
the input and evaluates myudf in a child process that it forks (once
per map task). Each invocation of myudf is passed an input record,
r, and limited to 5 seconds. If an exception occurs or the operation
times out, the script-level error policy is used and $.uri is logged.

6. JAQL’S PHYSICAL TRANSPARENCY
Physical transparency, i.e., the ability for all Jaql plans to be

expressed in Jaql’s syntax, enables users to hard-wire plans (e.g.,
force a join order or strategy) as well as bottom-up extensibility to
get functionality first and abstraction later. The sophisticated Jaql
user can add a new run-time operator by means of a new (perhaps
higher-order) function. The new operator can be used immediately,
without requiring any changes to Jaql internals. If the operator
turns out to be important enough to the Jaql community, a Jaql de-
veloper can add new syntax, rewrites, statistics, or access methods
to Jaql itself. In a traditional database system design, all of these
tasks must be accomplished before new run-time functionality is
exposed, which makes adding new operators a daunting task.

This section illustrates the extensibility aspect of physical trans-
parency through a scenario where Jaql was used for log processing
(Section 7.4 discusses the plan language aspect). While the full de-
tails are out of scope for this paper, we explain the overall approach
and highlight the key functions required to provide a scalable solu-
tion that needed to be aware of the time-ordered log records.

Example 6 Consider a log dataset that resembles many Apache
HTTP Server error logs or Log4J Java application logs. This
dataset contains a sequence of log records with the following
schema:

{ date: date, id: long, host: string, logger: string,
status: string, exception?: string, msg?: string,
stack?: string }

The data in our example log is stored in a text file and originally
intended for human consumption. The log records are generated
in increasing date order, so the files are sorted by the timestamp.
There are two types of log records in the file based on the sta-
tus field: a single line ’success’ record or a multi–line ’exception’
record. All records have the first five fields separated by a comma.
When the status is ’exception’, the next line contains the type of ex-
ception and a descriptive message separated by a colon. The next
several lines are the stack trace.

To form a single logical record, multiple consecutive lines need
to be merged into single record. The following script uses Jaql’s
built–in tumbling window facility to glue the exception lines with
the standard fields to create a single line per record for easy pro-
cessing in later steps:

1. read(lines(’log’))
2. -> tumblingWindow( stop = fn(next) isHeader(next) )
3. -> transform cleanRec($)
4. -> write(lines(’clean’));

The read in line (1) reads the file as a collection of lines.
Next in line (2), the function tumblingWindow is a higher–order
function that takes an ordered input and a predicate to define the
points where the window breaks3. The isHeader function returns
true when the next line starts with a timestamp and has at least 5
fields. The cleanRec function combines the header and all the ex-
ception lines into a single line by escaping the newlines in the stack
trace.

At this stage, Jaql is not clever enough to automatically paral-
lelize this script, so it runs sequentially. For small logs, this is
acceptable, but for large logs we clearly need to do better. Physi-
cal transparency allows the power user to implement a solution at
a lower level of abstraction immediately. In contrast, a user of a
traditional database system might make a feature request and wait
several years for a solution to be delivered.

Order–sensitive operations like tumbling windows are notori-
ously more difficult to parallelize than multi–set operations. The
high-level description of MapReduce in Section 3 uncovers the
main challenge that we deal with here. The input to a Hadoop Map-
Reduce job is partitioned into splits that are simply determined by
byte offsets into the original file. The log file in Figure 4 is par-
titioned into four splits, S0 − S3. Since each split is processed
by a separate map task, the challenge is in handling those records
that span split boundaries, for example, the “exception” record that
straddles splits S1 and S2.

The key idea needed to parallelize tumblingWindows is the
ability to manipulate splits. If all mappers can peek into the next
3A complete discussion of all the window facilities is not in this
paper’s scope.
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mapper’s split, then all records would be processed. Fortunately,
Hadoop’s API’s are very flexible, making it easy to re-define how a
given input is partitioned into splits. tumblingWindows was par-
allelized by a new function called ptumblingWindow which directly
accesses the splits to pair them into consecutive splits as shown by
S′
0 − S′

2. This allows mappers to peek into the “next” split.

S
0

S
1

S
2

S
3

S
0
’

S
1
’

S
2
’

Figure 4: A partitioned log file with “success” (white) and “ex-
ception” (shaded) records.

Example 7 The following script is very similar to the previous one
that is shown n Example 6, but the read and tumblingWindow have
been composed into a single function, ptumblingWindow, that has
been designed to run in parallel:

ptumblingWindow(lines(’log’), isHeader)
-> transform cleanRec($)
-> write(lines(’clean’));

The new script remains at a fairly high level, but uses a new
parallel version of tumblingWindow implemented in Jaql using
low–level primitives for split manipulation. Next, we describe the
low level operations needed for ptumblingWindow, but omit the full
Jaql source for conciseness.

Building Blocks: Split manipulation in Jaql is accom-
plished through three low-level functions: 1) inputSplits, 2)
readSplit, and 3) worklist. The inputSplits function takes
an I/O descriptor as input (see Section 7.1) and returns an array of
split descriptors. The readSplit function takes a split descriptor
as input and returns an iterator over the split’s content. So far, these
two functions emulate how a map task iterates over its partition
of the input. The missing piece is to assign splits to map tasks.
The worklist gives us such control by providing a virtual input
to MapReduce where the user controls the number of map tasks
to run and what data to pass to each map task. A worklist takes
an array as input—given n values, n map tasks will be started
where the ith map task, 0 ≤ i < n, is assigned the array’s ith
input value. For example, worklist is used for synthetic data
generation where all that is needed for a given map task is a seed
value and distribution parameters.

Putting it Together: inputSplits is used to obtain the phys-
ical splits (e.g., S0 − S3). These splits are paired into logical splits
(e.g., S′

0 = (S0, S1), S′
1 = (S1, S2), . . . )) that are given as input

to worklist. For each such split, the map task uses readSplit
to read the first physical split while running tumblingWindow se-
quentially. If needed, the mapper will peek into the first part of the
next physical split to find the end of its last record. While we as-
sume that a log record does not span more than two physical splits,
it would be straightforward to generalize to larger log records.

While the implementation of ptumblingWindow consists of a
handful of simple functions, these functions access very low-level
Hadoop API’s so it is unlikely to be understood by the casual
user. The level of abstraction that is needed is comparable to
directly programming a MapReduce job. However, physical
transparency enabled a solution to the problem and functions
allowed these details to be hidden in the implementation of the
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Figure 5: System architecture.

top-level ptumblingWindow function. In addition, ptumbling-
window is sufficiently abstract so that it can be applied to any
collection. Using features like the ones described here, we have
built parallel enumeration, sliding windows, sampling, and various
join algorithms, to name a few.

7. JAQL’S SYSTEM IMPLEMENTATION
At a high-level, the Jaql architecture depicted in Figure 5 is sim-

ilar to most database systems. Scripts are passed into the system
from the interpreter or an application, compiled by the parser and
rewrite engine, and either explained or evaluated over data from the
I/O layer. Jaql modules provide organization and abstraction over
reusable components, which are introspected during compilation.
Scripts may bind variables to values, or more often to expressions
that serve as temporary views. This section describes the major
components of the architecture, starting from the lowest layer.

7.1 I/O Layer
The storage layer is similar to a federated database. Rather than

requiring data to be loaded into a system-specific storage format
based on a pre-defined schema, the storage layer provides an API to
access data in-situ in other systems, including local or distributed
file systems (e.g., Hadoop’s HDFS, IBM’s GPFS), database sys-
tems (e.g., DB2, Netezza, HBase), or from streamed sources like
the Web. Unlike federated databases, however, most of the ac-
cessed data is stored within the same cluster and the I/O API de-
scribes data partitioning, which enables parallelism with data affin-
ity during evaluation. Jaql derives much of this flexibility from
Hadoop’s I/O API.

Jaql reads and writes many common file formats (e.g., delimited
files, JSON text, Hadoop Sequence files). Custom adapters are eas-
ily written to map a data set to or from Jaql’s data model. The input
can even simply be values constructed in the script itself. Adapaters
are parameterized through descriptor records which exploit Jaql’s
flexible data model to represent a wide variety of configurations.

7.2 Evaluation
The Jaql interpreter evaluates the script locally on the computer

that compiled the script, but spawns interpreters on remote nodes
using MapReduce. A Jaql script may directly invoke MapReduce
jobs using Jaql’s mapReduceFn, but more often, developers use
high-level Jaql and depend on the compiler to rewrite the Jaql script
into one or more MapReduce jobs, as described in Section 7.3.2.

The mapReduceFn function is higher-order; it expects in-
put/output descriptors, a map function, and an optional reduce
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function. Jaql includes a similar function, mrAggregate, that is
specialized for running algebraic aggregate functions4 in parallel
using MapReduce. mrAggregate requires an aggregate parame-
ter that provides a list of aggregates to compute. During evaluation
of mapReduceFn or mrAggregate, Jaql instructs Hadoop to start
a MapReduce job, and each map (reduce) task starts a new Jaql
interpreter to execute its map (reduce) function.

Of course, not everything can be parallelized, either inherently
or because of limitations of the current Jaql compiler. Therefore,
some parts of a script are run on the local computer. For example,
access to files in the local file system run locally.

7.3 Compiler
The Jaql compiler automatically detects parallelization oppor-

tunities in a Jaql script and translates it to a set of MapReduce
jobs. The rewrite engine generates calls to mapReduceFn or
mrAggregate, moving the appropriate parts of the script into the
map, reduce, and aggregate function parameters. The challenge is
to peel through the abstractions created by variables, higher-order
functions, and the I/O layer. This section describes the salient
features used during the translation.

7.3.1 Internal Representation
Like the internal representation of many programming lan-

guages, the Jaql parser produces an abstract syntax tree (AST)
where each node, called an Expr, represents an expression of the
language (i.e., an operator). The children of each node represent
its input expressions. Other AST nodes include variable definitions
and references, which conceptually create cross-links in the AST
between each variable reference and its definition. Properties
associated with every Expr guide the compilation. The most
important properties are described below.

Each Expr defines its result schema, be it regular or irregular,
based on its input schemas. The more complete the schema, the
more efficient Jaql can be. For example, when the schema is fully
regular, storage objects can record structural information once
and avoid repeating it with each value. Such information is used
to write out smaller temporary files between the map and reduce
stage, thereby using disk and network resources more efficiently.
However, even limited schema information is helpful; e.g., simply
knowing that an expression returns an array enables streaming
evaluation in our system.

An Exprmay be partitionable over any of its array inputs, which
means that the expression can be applied independently over par-
titions of its input: e(I, ...) ≡ ]P∈parts(I)e(P, ...). In the ex-
treme, an Expr may be mappable over an input, which means that
the expression can be applied equally well to individual elements:
e(I, ...) ≡ ]i∈Ie([i], ...). These properties are used to determine
whether MapReduce can be used for evaluation. The transform
and expand expressions are mappable over their input. Logically,
any expression that is partitionable should also be mappable, but
there are performance reasons to distinguish these cases. For ex-
ample, Jaql includes a broadcast join strategy that loads the inner
table to an in-memory hashtable. Loading and repeated probing are
implemented by a function called lookup. In this case, lookup is
only partitionable over its probe input (outer) because we do not
want to load the build input (inner) for each key probe.

An Expr may deny remote evaluation. For example, the
mapReduceFn function itself is not allowed to be invoked from
within another MapReduce job because it would blow up the
4Algebraic aggregation functions are those that can be incremen-
tally evaluated on partial data sets, such as sum or count. As a
result, we use combiners to evaluate them.

number of jobs submitted and could potentially cause deadlock if
there are not enough resources to complete the second job while
the first is still holding resources.

7.3.2 Rewrites
At present, the Jaql compiler simply consists of a heuristic

rewrite engine that greedily applies approximately 100 trans-
formation rules to the Expr tree. The rewrite engine fires rules
to transform the Expr tree, guided by properties, to another
semantically equivalent tree. In the future, we plan to add dynamic
cost-based optimization to improve the performance of the declar-
ative language features, but our first priority is providing physical
transparency to a powerful run-time engine.

The goal of the rewrites is to simplify the script, discover paral-
lelism, and translate declarative expressions into lower-level opera-
tors. This task is complicated by higher order functions, variables,
and modules. In essence, the rewriter enables database–style op-
timization while supporting common programming language fea-
tures. We first describe the most important rules used for sim-
plification through an example, then show sample database-style
rewrites (e.g., filter pushdown), and finally describe the rewrite to
MapReduce.

Example 8 Steps in rewriting a function call.

f = fn(r) r.x + r.y; // declare function f
f({x:1,y:2}); // invoke f
// Rewriter transformation:
1. (fn(r) r.x + r.y)({x:1,y:2}); // variable inline
2. (r = {x:1,y:2}, r.x + r.y); // function inline
3. {x:1,y:2}.x + {x:1,y:2}.y; // variable inline
4. 1 + 2; // constant field access
5. 3; // compile-time computable

Variable inlining: Variables are defined by expressions or val-
ues. If a variable is referenced only once in a expression that is
evaluated at most once, or the expression is cheap to evaluate, then
the variable reference is replaced by its definition. Variable inlining
opens up the possibility to compose the variable’s definition with
the expressions using the variable. In Example 8, variables f and r
are inlined.

Function inlining: When a function call is applied to a Jaql
function, it is replaced by a block in which parameters become lo-
cal variables: (fn(x) e1)(e2) ⇒ (x = e2, e1). Variable in-
lining may further simplify the function call. In Example 8, the
body of function f is inlined.

Filter push-down: Filters that do not contain non-deterministic
or side-effecting functions are pushed down as low as possible in
the expression tree to limit the amount of data processed. Filter
pushdown through transform, join, and group by is similar to
relational databases [15], whereas filter pushdown through expand
is more similar to predicate pushdown through XPath expressions
[33], as expand unnests its input data. For example, the following
rule states that we can pushdown the predicate before a group by
operator if the filter is on the grouping key.

e -> group by x = $.x into { x, n: count($)}
-> filter $.x == 1
≡

e -> filter $.x == 1
-> group into { $.x, n: count($) }

Field access: When a known field of a record is accessed, the
record construction and field access are composed: {x: e,
...}.x ⇒ e . A similar rule applies to arrays. This rule forms
the basis for selection and projection push-down as well. The im-
portance of this property was a major reason to move away from
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Figure 6: Data-flow diagram for Example 9.

XML. Node construction in XQuery includes several effects that
prevent a simple rewrite rule like this: node identity, node order,
parent axis, sibling axis, and changing of primitive data types when
an item is inserted into a node.

To MapReduce: After simplifying the script, Jaql searches for
sequences of expressions that can be evaluated in a single Map-
Reduce job. It looks for a read followed by a second sequence of
partitionable expressions, followed by a write to a distributed out-
put. If the group is not present, a map-only job is produced. If the
group is only used inside of algebraic aggregates, an mrAggregate
call is produced5. Otherwise, a mapReduceFn call is produced.
The partitionable expressions before the group and the grouping
key expression are placed in the map function. The map function
is called once to process an entire partition, not per element. Any
expressions after the aggregates and the second sequence of parti-
tionable expressions are placed in the reduce function. The group
may have multiple inputs (i.e., co-group), in which case each in-
put gets its own map function, but still a single reduce function is
created. The rewrite must consider expressions that are nondeter-
ministic, are side-effecting, or disallow remote evaluation.

Via these and the remaining rules, scripts are conceptually trans-
lated into a directed-acyclic graph (DAG), where each node is a
MapReduce job or a sequential step.

Example 9 Consider wroteAbout as defined in Example 5 and
the product dataset that is defined as:

products = read(hdfs("products.dat"));

The following Jaql script computes two summary files for cate-
gories and authors. Lines 1–3 join the wroteAbout and products
collections. Lines 5–8 count the distinct product categories men-
tioned by each author. Lines 10–13 count the distinct authors
for each product category. The notation R[*].f is short-hand to
project a field from an array of records. The cntDist function is a
user-defined aggregate that computes a count of distinct values in
parallel.

1. joinedRefs = join w in wroteAbout, p in products
2. where w.product == p.name
3. into { w.author, p.* };
4.
5. joinedRefs
6. -> group by author = $.author as R
7. into {author, n: cntDist(R[*].prodCat)}
8. -> write(hdfs(’catPerAuthor’));
9.
10. joinedRefs
11. -> group by prodCat = $.prodCat as R
12. into {prodCat, n: cntDist(R[*].author)}
13. -> write(hdfs(’authorPerCat’));

Compilation produces a DAG of three MapReduce jobs as shown
in Figure 6. The DAG is actually represented internally as a block
of mapReduceFn and mrAggregate calls, with edges created by
data-flow dependencies, variables, and read/write conflicts. The
complete compilation result is given in Example 10.

5Note that in this case a combiner with the same aggregation func-
tion is also produced.

Although our current focus is on generating MapReduce jobs,
Jaql should not be categorized simply as a language only for Map-
Reduce. New platforms are being developed that offer different
(e.g., Pregel [29]) and more general operators (e.g., Nephele [7],
Hyracks [3]). Our long-term goal is to glue many such paradigms
together using Jaql.

7.4 Decompilation and Explain
Every expression knows how to decompile itself back into a se-

mantically equivalent Jaql script, thus providing the aspect of phys-
ical transparency needed for pinning down a plan. Immediately af-
ter parsing and after every rewrite rule fires, the Expr tree (e.g.,
evaluation plan) can be decompiled. The explain statement uses
this facility to return the lower-level Jaql script after compilation.
This process is referred to as source-to-source translation [27].

Example 10 The following is the result of explain for the script
of Example 9. The list of jobs can be visualized as the DAG in
Figure 6.

(// Extract products from docs, join with access log
tmp1 = mapReduce({
input: [ { location: ’docs.dat’, type: ’hdfs’ },

{ location: ’products’, type: ’hdfs’ } ],
output: HadoopTemp(),
map: [fn(docs) (

docs
-> transform
{ w: { author: $.meta.author,

products: systemt(
$.content, ’rules...’ ) }}

-> transform [$.w.product, $] ),
fn(prods) (prods

-> transform { p: $ }
-> transform [$.p.name, $] )

],
reduce: fn(pname, docs, prods) (
if( not isnull(pname) ) (
docs -> expand each d (
prods -> transform each p { d.*, p.* } ))

-> transform { $.w.author, $.p.* } )
}),

// Count distinct product categories per author
mrAggregate({
input: tmp1,
output: { location: ’catPerAuthor’, type: ’hdfs’ },
map: fn(vals) vals -> transform [$.author, $],
aggregate: fn(author, vals)
[ vals -> transform $.prodCat -> cntDist() ],

final: fn(author, aggs) { author, n: aggs[0] },
}),

// Count distinct authors per product category
mrAggregate({
input: tmp1,
output: { location: ’authorPerCat’, type: ’hdfs’ },
map: fn(vals) vals -> transform [$.prodCat, $],
aggregate: fn(author, vals)
[ vals -> transform $.prodCat -> cntDist() ],

final: fn(prodCat, aggs) { prodCat, n: aggs[0] },
})

)

Since the plan in Example 10 is a valid Jaql query, it can be
modified with a text editor and submitted “as-is” for evaluation. In
certain situations where a particular plan was required, the capabil-
ity to edit the plan directly, as opposed to modifying source code,
was invaluable. In addition, Example 10 illustrates how higher-
order functions, like mapReduceFn, are represented in Jaql. Note
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Figure 7: Scale-up using intranet analysis workload.

that run-time operators of many database systems can be viewed as
higher-order functions. For example, hash-join takes two tables as
input, a key generation function for each table, and a function to
construct the output. Jaql simply exposes such functionality to the
sophisticated user.

Support for decompilation was instrumental in bridging Jaql to
MapReduce and in implementing error handling features (see Sec-
tion 5.5). The MapReduce map and reduce functions are Jaql func-
tions that are written into a configuration file and parsed when
the MapReduce job is initialized. For error handling, the fence
function decompiles its input expression, forks a child process and
sends the decompiled expression to the child.

Jaql’s strategy is for a user to start with a declarative query, add
hints if needed, and move to low-level operators as a last resort.
Even when a declarative query is producing the right plan, the user
can use explain to get a low-level script for production use that
ensures a particular plan over changing input data.

8. EXPERIMENTAL EVALUATION
In this section, we describe our experiments and summarize

the results. We focused on Jaql’s scalability while exercising
its features to manage nested data, compose data flows using
Jaql functions, call user-defined functions, and exploit physical
transparency. We considered two workloads that are based on: a
real workload that is used to analyze intranet data sources, and the
log processing example that is described in Example 7.

Hardware: The experiments were evaluated on a 42-node IBM
SystemX iDataPlex dx340. Each server consisted of two quad-core
Intel Xeon E5540 64-bit 2.8GHz processors, 32GB RAM, 4 SATA
disks, and interconnected using 1GB Ethernet.

Software: Each server had Ubuntu Linux (kernel version
2.6.32-24), IBM Java 1.6, Hadoop 0.20.2, and Jaql 0.5.2.
Hadoop’s “master” processes (MapReduce JobTracker and HDFS
NameNode) were installed on one server and another 40 servers
were used as workers. All experiments were repeated 3 times and
the average of those measurements is reported here.

8.1 Intranet Data Analysis
Jaql is used at IBM to analyze internal data sources to create

specialized, high-quality indexes as described in [4]. The steps
needed for this process are: (1) crawl the sources (e.g., Web servers,
databases, and Lotus Notes), (2) pre-process all inputs, (3) analyze
each document (Local Analysis), (4) analyze groups of documents
(Global Analysis), and (5) index construction. Nutch [19] is used
for step (1) and Jaql is used for the remaining steps.

For the evaluation, we took a sample of the source data and eval-
uated how Jaql scales as both the hardware resources and data are
proportionally scaled up. Per server, we processed 36 GB of data,
scaling up to 1.4 TB for 40 servers. We focused on steps (2) and
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Figure 8: Scale-up using application log workload.

(3) since these steps manage the most data. The preprocess step (2)
transforms the input into a common schema, and for Web data, re-
solves redirections, which requires an aggregation. The local anal-
ysis step (3) analyzes each document, for example, identifying lan-
guage and extracting structured information using SystemT. These
steps exercise many of Jaql’s features, which range from standard
data processing operators (e.g., group-by, selection, projection), to
extensibility (e.g., Jaql and Java functions), and semistructured data
manipulation.

The results are shown in Figure 7. The pre-process phase (step 2)
reads directly from Nutch crawler output and resolves redirections
in the reducer tasks. The time needed to shuffle all data across
the network dominated overall run-time, which explains why the
result for scale-factor 1 was much faster— the shuffle looped back
to the same machine. Most of the other steps used Map-only jobs
so scaling was more predictable. The one exception was at scale
factor 30 where the Local Analysis step was more selective for that
sample of data. Overall, the results illustrate that Jaql scales well
for the given workload.

8.2 Log Processing
We evaluated the scale-up performance of the log cleansing task

from Section 6 that relied on physical transparency for paralleliza-
tion. We generated 30M records per CPU core of synthetic log data
with 10% of the records representing exceptions with an average
of 11 additional lines per exception record, which resulted in ap-
proximately 3.3 GB / core. We varied the number of servers from
1 to 40, which varied the number of cores from 8 to 320 and data
from 26GB to 1TB. The result in Figure 8 shows that the original
sequential algorithm works well for small data, but quickly gets
overwhelmed. Interestingly, the parallel algorithm also runs signif-
icantly faster at small scale than at the high end (from 1 machine
to 2). However, the parallel algorithm scales well from 2 to 40 ma-
chines, drastically outperforming the sequential algorithm even at
a single machine because of its use of all 8 cores.

9. CONCLUSION
We have described Jaql, an extensible declarative scripting lan-

guage that uses Hadoop’s MapReduce for scalable, parallel data
processing. Jaql was designed so that users have access to the sys-
tem internals—highlighting our approach to physical transparency.
As a result, users can add features and solve performance prob-
lems when needed. For example, we showed how tumbling win-
dows and physical transparency can be exploited to scalably pro-
cess large logs. A key enabler of physical transparency is Jaql’s
use of (higher-order) functions, which addresses both composition
and encapsulation so that new features can be cleanly reused.

Jaql’s design was also molded by the need to handle a wide va-
riety of data. The flexibility requirement guided our choice of data
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model and is evident in many parts of the language design. First,
all expressions can be uniformly applied to any Jaql value, whether
it represents the entire collection or a deeply nested value. Sec-
ond, the schema information at every expression can range from
none, through partial schema, to full schema. Thus, Jaql balances
the need for flexibility with optimization opportunities. The per-
formance results illustrate that Jaql scales on a variety of work-
loads that exercise basic data processing operations, extensibility
features, and nested data manipulation.

Jaql is still evolving, and there are many challenges that we plan
to pursue as future work. A non-exhaustive list includes: further
investigation of errors handling and physical transparency, adap-
tive and robust optimization, exploitation of materialized views,
discovery-based techniques for storage formats and partition elimi-
nation, and novel aspects for tools that assist with design as well as
runtime management.
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