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ABSTRACT

Driven by the emerging network applications, querying and mining
uncertain graphs has become increasingly important. In this paper,
we investigate a fundamental problem concerning uncertain graphs,
which we call the distance-constraint reachability (DCR) problem:
Given two vertices s and t, what is the probability that the distance
from s to t is less than or equal to a user-defined threshold d in
the uncertain graph? Since this problem is #P-Complete, we focus
on efficiently and accurately approximating DCR online. Our main
results include two new estimators for the probabilistic reachabil-
ity. One is a Horvitz-Thomson type estimator based on the unequal
probabilistic sampling scheme, and the other is a novel recursive
sampling estimator, which effectively combines a deterministic re-
cursive computational procedure with a sampling process to boost
the estimation accuracy. Both estimators can produce much smaller
variance than the direct sampling estimator, which considers each
trial to be either 1 or 0. We also present methods to make these esti-
mators more computationally efficient. The comprehensive exper-
iment evaluation on both real and synthetic datasets demonstrates
the efficiency and accuracy of our new estimators.

1. INTRODUCTION
Querying and mining uncertain graphs has become an increas-

ingly important research topic [13, 24, 25]. In the most common
uncertain graph model, edges are independent of one another, and
each edge is associated with a probability that indicates the likeli-
hood of its existence [13, 24]. This gives rise to using the possi-
ble world semantics to model uncertain graphs [13, 1]. A possible
graph of an uncertain graph G is a possible instance of G. A pos-
sible graph contains a subset of edges of G, and it has a weight
which is the product of the probabilities of all the edges it has. For
example, Figure 1 illustrates an uncertain graph G, and three of its
possible graphs G1, G2 and G3, each with a weight.

A fundamental question for uncertain graphs is to categorize and
compute reachability between any two vertices. In a determinis-
tic directed graph, the reachability query, which asks whether one
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(a) Uncertain Graph G. (b) G1 with 0.0009072.

(c) G2 with 0.0009072. (d) G3 with 0.0006048.

Figure 1: Running Example.

vertex can reach another one, is the basis for a variety of databases
(XML/RDF) and network applications (e.g., social and biological
networks) [8, 22]. For uncertain graphs, reachability is not a sim-
ple Yes/No question, but instead, a probabilistic one. Specifically,
reachability from vertex s to vertex t is expressed as the overall
probability of those possible graphs of G in which s can reach t.
For uncertain graph G in Figure 1, we can see that s can reach t in
its possible graphs G1 and G2 but not in G3; if we enumerate all
the possible graphs of G and add up the weights of those possible
graphs where s can reach t, we get s can reach t with probabil-
ity 0.5104. The simple reachability in uncertain graphs has been
widely studied in the context of network reliability and system en-
gineering [5].

In this paper, we investigate a more generalized and informative
distance-constraint reachability (DCR) query problem, that is:
Given two vertices s and t in an uncertain graph G, what is the
probability that the distance from s to t is less than or equal to a
user-defined threshold d? Basically, the distance-constraint reach-
ability (DCR) between two vertices requires them not only to be
connected in the possible graphs, but also to be close enough. For
the example in Figure 1, if the threshold d is selected to be 2, then,
t is considered to be unreachable from 2 in G2 (under this distance
constraint). Clearly, DCR query enables a more informative cat-
egorization and interrogation of the reachability between any two
vertices. At the same time, the simple reachability also becomes a
special case of the distance-constraint reachability (considering the
case where the threshold d is larger than the length of the longest
path, or simply the sum of all edge weights in G).

Distance-constraint reachability plays an important and even crit-
ical role in a wide range of applications. In a variety of real-world
emerging communication networks, DCR is essential for analyzing
their reliability and communication quality. For instance, in peer-
to-peer (P2P) networks, such as Freenet and Gnutella [4, 11], the
communication between two nodes is only allowed if they are sepa-
rated by a small number of intermediate hops (to avoid congestion).
In such situation, as the uncertain graph naturally models the link
failure probability, the DCR query serves as the basic tool to in-
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terrogate the probability whether one node can communicate with
another, and to study the network reliability in general. Indeed,
such diameter-constrained (or hop-constrained) reliability has been
proposed in the context of communication network reliability [12]
though its computation remains difficult.

Recently, there have been efforts to model the road network as
an uncertain graph due to the unexpected traffic jam [7]. Here, each
link in the road network can be weighted using the distance or the
travel time between them. In addition, a probability can be assigned
to model the likelihood of a traffic jam. Given this, one of the basic
problems is to determine the probability whether the travel distance
(or travel time) from one point to another is less than or equal to a
threshold considering the uncertainty issue. Clearly, this directly
corresponds to a DCR query.

The DCR query can also be applied to trust analysis in social
networks. Specifically, in a trust network, one person can trust an-
other with a probabilistic trust score. When two persons are not
directly connected, the trust between them can be modeled by their
distance (the number of hops between them). In particular, a real
world study [17] finds that people tend to trust others if they are
connected through some trust relationship; however, the number of
hops between them must be small. Thus, given a trust radius, which
constrains how far away can a trusted person be, the likelihood that
the distance between one person to another is within this radius can
be used to evaluate the trust between those non-adjacent pairs. In
the uncertain graph terminology, this is a DCR query.

1.1 Problem Statement
Uncertain Graph Model: Consider an uncertain directed graph
G = (V, E, p, w), where V is the set of vertices, E is the set of
edges, p : E → (0, 1] is a function that assigns each edge e a
probability that indicates the likelihood of e’s existance, and w :
E → (0,∞) associates each edge a weight (length). Note that
we assume the existence of an edge e is independent of any other
edges.

In our example (Figure 1), we assume each edge has unit-length
(unit-weight). Let G = (VG, EG) be the possible graph which is
realized by sampling each edge in G according to the probability
p(e) (denoted as G ⊑ G). Clearly, we have EG ⊆ E and the
possible graph G has Pr[G] sampling probability:

Pr[G] =
Y

e∈EG

p(e)
Y

e∈E\EG

(1 − p(e)).

There are a total of 2m possible graphs (for each edge e, there

are two cases: e exists in bG or not). In our example (Figure 1),
graph G has 29 possible graphs, and as an example for the graph
sampling probability, we have

Pr[G1] = p(s, a)p(a, b)p(a, t)p(s, c)(1 − p(s, b))(1 − p(b, t)) ×

(1 − p(s, c))(1 − p(b, c))(1 − p(c, b)) = 0.0009072

Distance-Constraint Reachability: A path from vertex v0 to ver-
tex vp in G is a vertex (or edge) sequence (v0, v1, · · · , vp), such
that (vi, vi+1) is an edge in EG (0 ≤ i ≤ p − 1). A path is
simple if no vertex appears more than once in the sequence. To
study distance-constraint reachability in uncertain graph, only sim-
ple paths need to be considered. Given two vertices s and t in G, a
path starting from s and ending at t is referred to as an s-t-path. We
say vertex t is reachable from vertex s in G if there is an s-t-path in
G. The distance or length of an s-t-path is the sum of the lengths
of all the edges on the path. The distance from s to t in G, denoted
as dis(s, t|G), is the distance or length of the shortest path from s
to t, i.e., minimal length of all s-t-paths. Given distance-constraint

d, we say vertex t is d-reachable from s if the distance from s to t
in G is less than or equal to d.

DEFINITION 1. (s-t distance-constraint reachability) Com-
puting s-t distance-constraint reachability in an uncertain graph
G is to compute the probability of the possible graphs G, in which
vertex t is d-reachable from s, where d is the distance constraint.
Specifically, let

I
d
s,t(G) =

(
1, if dis(s, t|G) ≤ d

0, otherwise

Then, the s-t distance-constraint reachability in uncertain graph G
with respect to parameter d is defined as

R
d
s,t(G) =

X

G⊑G

I
d
s,t(G) · Pr[G] . (1)

Note that the problem of computing s-t distance-constraint reach-
ability is a generalization of computing s-t reachability without
the distance-constraint, which is often referred to as the two-point
reliability problem [14]. Simply speaking, it computes the total
sampling probability of possible graphs G ⊑ G, in which vertex
t is reachable from vertex s. Using the aforementioned distance-
constraint reachability notation, we may simply choose an upper
bound such as W =

P
e∈E

w(e) (the total weight of the graph as

an example), and then RW
s,t(G) becomes simple s-t reachability.

Computational Complexity and Estimation Criteria The simple
s-t reachability problem is known to be #P-Complete [21, 2], even
for special cases, e.g., planar graphs and DAGs, and so is its gener-
alization, s-t distance-constraint reachability. Thus, we cannot ex-
pect the existence of a polynomial-time algorithm to find the exact
value of Rd

s,t(G) unless P=NP . The distance-constraint reacha-
bility problem is much harder than the simple s-t reachability prob-
lem as we have to consider the shortest path distance between s
and t in all possible graphs. Indeed, the existing s-t reachability
computing approaches have mainly focused on the small graphs (in
the order of tens of vertices) and cannot be directly extended to our
problem. Given this, the key problem this paper addresses is how to
efficiently and accurately approximate the s-t distance-constraint
reachability online.

Now, let us look at the key criteria for evaluating the quality of

an approximate approach (or the quality of an estimator). Let bR
be a general estimator for Rd

s,t(G). Intuitively, bR should be as

close to Rd
s,t(G) as possible. Mathematically, this property can be

captured by the mean squared error (MSE), E( bR − Rd
s,t(G))2,

which measures the expected difference between an estimator and
the true value. It can also be decomposed into two parts:

E( bR − R
d
s,t(G))2 = V ar( bR) + (E( bR) − R

d
s,t(G))2

= V ar( bR) + (Bias bR)2

An estimator is unbiased if the expectation of the estimator is

equal to the true value (Bias bR = 0), i.e., E( bR) = Rd
s,t(G) (for

our problem). The variance of estimator V ar( bR) measures the
average deviation from its expectation. For an unbiased estimator,
the variance is simply the MSE. In other words, the variance of
an unbiased estimator is the indicator for measuring its accuracy.
In addition, the variance is also frequently used for constructing
the confidence interval of an estimate for approximation and the
smaller the variance, the more accurate confidence interval estimate
we have [18]. All estimators studied in this paper will be proven to
be the unbiased estimators of Rd

s,t(G). Thus, the key criterion to
discriminate them is their variance [18, 6].
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Besides the accuracy of the estimator, the computational effi-
ciency of the estimator is also important. This is especially impor-
tant for online answering s-t distance-constraint reachability query.
In sum, in this paper, our goal is to develop an unbiased estimator
ofRd

s,t(G) with minimal variance and low computational cost.
Minimal DCR Equivalent Subgraph: Before we proceed, we
note that given vertices s and t, only subsets of vertices and edges
in G are needed to compute the s-t distance-constraint reachability.
Specifically, given vertices s and t, the minimal equivalent DCR
subgraph Gs = (Vs, Es, p, w) ⊆ G where

Vs = {v ∈ V |dis(s, v|G) + dis(v, t|G) ≤ d},

Es = {e = (u, v) ∈ E|dist(s, u|G) + w(e) + dis(v, t|G) ≤ d}.

Here, G is the complete possible graph with respect to G which
includes all the nodes and edges in G. Basically, Vs and Es con-
tain those vertices and edges that appear on some s-t paths whose
distance is less than or equal to d. Clearly, we have Rd

s,t(Gs) =

Rd
s,t(G). A fast linear method can help extract the minimal equiva-

lent DCR subgraph (See Appendix A). Since we only need to work
on Gs, in the remainder of the paper, we simply use G for Gs when
no confusion can arise.

2. BASIC MONTE­CARLO METHODS
In this section, we will introduce two basic Monte-Carlo meth-

ods for estimating Rd
s,t(G), the s-t distance-constraint reachability.

2.1 Direct Sampling Approach
A basic approach to approximate the s-t distance-constraint reach-

ability is using sampling: 1) we first sample n possible graphs,
G1, G2, · · · , Gn of G according to edge probability p; and 2) we
then compute the shortest path distance in each sample graph Gi,

and thus Id
s,t(Gi). Given this, the basic sampling estimator ( bRB)

is:

R
d
s,t(G) ≈ bRB =

Pn

i=1 Id
s,t(Gi)

n

The basic sampling estimator bRB is an unbiased estimator of

the s-t distance-constraint reachability, i.e., E( bRB) = Rd
s,t(G).

Its variance can be simply written as [6]

V ar( bRB) =
1

n
R

d
s,t(G)(1 − R

d
s,t(G)) ≈

1

n
bRB(1 − bRB)

The basic sampling method can be rather computationally ex-
pensive. Even when we only need to work on the minimal DCR
equivalent subgraph Gs, its size can be still large, and in order to
generate a possible graph G, we have to toss the coin for each edge
in Es. In addition, in each sampled graph G, we have to invoke
the shortest path distance computation to compute Id

s,t(G), which
again is costly.

We may speedup the basic sampling methods by extending the
shortest-path distance method, like Dijkstra’s or A∗ [15] algorithm
for sampling estimation. Recall that in both algorithms, when a
new vertex v is visited, we have to immediately visit all its neigh-
bors (corresponding to visiting all outgoing edges in v) in order to
maintain their corresponding estimated shortest-path distance from
the source vertex s. Given this, we may not need to sample all edges
at the beginning, but instead, only sample an edge when it will be
used in the computational procedure. Specifically, only when a ver-
tex is just visited, we will sample all its adjacent (outgoing) edges;

then, we perform the distance update operations for the end ver-

tices of those sampled edges in the graph; we will stop this process

either when the targeted vertex t is reached or when the minimal
shortest-distance for any unvisited vertex is more than threshold d.
A similar procedure on Dijkstra’s algorithm is applied in [13] for
discovering the K nearest neighbors in an uncertain graph.

2.2 Path­Based Approach
In this subsection, we introduce the paths (or cuts) based ap-

proach for estimating Rd
s,t(G). To facilitate our discussion, we first

formally introduce d-path from s to t. A s-t path in G with length
less than or equal to distance constraint d is referred to as d-path
between s and t. The d-path is closely related to the s-t distance-
constraint reachability: If vertex t is d-reachable from vertex s in a
graph G, i.e., dis(s, t|G) ≤ d, then, there is a d-path between s
and t. If not, i.e., dis(s, t|G) > d, then, for any s-t path in G, its
length is higher than d (there is no d-path).

Given this, the complete set of all d-paths in G (the complete
possible graph with respect to G which includes all the edges in G),
denoted as P = {P1, P2, · · · , PL}, can be used for computing the
s-t distance-constraint reachability:

Rd
s,t(G) = Pr[P1 ∨ P2 · · · ∨ PL] =

X
Pr[Pi]

−
X

i6=j

Pr[Pi ∩ Pj ] + · · ·+ (−1)LπPr[P1 ∩ P2 · · · ∩ PL]

Given this, we can apply the Monte-Carlo algorithm proposed
in [9] to estimating Pr[P1 ∨ P2 · · · ∨ PL] within absolute error
ǫ with probability at least 1 − δ. In sum, the path-based estimation
approach contains two steps:
1) Enumerating all d-paths from s to t in G (See Subsection E.1);
2) Estimating Pr[P1 ∨ P2 · · · ∨ PL] using the Monte-Carlo algo-
rithm [9].

This estimator, denoted as bRP , which is an unbiased estimator
of Rd

s,t(G) [9], has the following variance as [6]:

V ar( bRP ) =
1

n
R

d
s,t(G)(

LX

i=1

Pr[Pi] − R
d
s,t(G))

Thus, depending on whether
PL

i=1 Pr[Pi] is bigger than or less

than 1, the variance of bRP can be bigger or smaller than that of
bRB . The key issue of this approach is the computational require-
ment to enumerate and store all d-paths between s and t. This can
be both computationally and memory expensive (the number of d-
paths can be exponential).

Can we derive a faster and more accurate estimator for Rd
s,t(G)

than these two estimators, bRB and bRP ? In the next section, we
provide a positive answer to this question.

3. NEW SAMPLING ESTIMATORS
In this section, we will introduce new estimators based on un-

equal probability sampling (UPS) and an optimal recursive sam-
pling estimator. To achieve that, we will first introduce a divide-
and-conquer strategy which serves as the basis of the fast compu-
tation of s-t distance constraint reachability (Subsection 3.1).

3.1 A Divide­and­Conquer Exact Algorithm
Computing the exact s-t distance-constraint reachability (Rd

s,t(G))
is the basis to fast and accurately approximate it. The naive algo-
rithm to compute Rd

s,t(G) is to enumerate G ⊑ G, and in each
G, compute shortest path distance between s and t to test whether
d(s, t|G) ≤ d. The total running time of this algorithm is

O
“
2|E|(|E| + |V | log |V |)

”
assuming Dijkstra algorithm is used

for distance computation1. Here, we introduce a much faster ex-
act algorithm to compute Rd

s,t(G). Though this algorithm still has
the exponential computational complexity, it significantly reduces
our search space by avoiding enumerating 2m possible graphs of G.
The basic idea is to recursively partition all (2m) possible graphs

1Here, G is actually the minimal DCR equivalent subgraph Gs.
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of G into the groups so that the reachability of these groups can be
computed easily. To specify the grouping of possible graphs, we
introduce the following notation:

DEFINITION 2. ((E1, E2)-prefix group) The (E1, E2)-prefix
group of possible graphs from uncertain graph G, which is denoted
as G(E1, E2), includes all the possible graphs of G which contains
all edges in edge setE1 ⊆ E and does not contain any edge in edge
set E2 ⊆ E, i.e., G(E1, E2) = {G ⊑ G|E1 ⊆ EG ∧ E2 ∩ EG =
∅}. We refer to E1 and E2 as the inclusion edge set and the exclu-
sion edge set, respectively.

Note that for a nonempty prefix group, the inclusion edge set E1

and the exclusion edge set E2 are disjoint (E1 ∩ E2 = ∅). In Fig-
ure 1, if we want to specify those possible graphs which all include
edge (s, a) and do not contain edges (s, b) and (b, t), then, we may
refer those graphs as ({(s, a)}, {(s, b), (b, t)})-prefix group. To
facilitate our discussion, we introduce the generating probability of
the prefix group G(E1, E2) as:

Pr[G(E1, E2)] =
Y

e∈E1

p(e)
Y

e∈E2

(1 − p(e))

This indicates the overall sampling probability of any possible graph
in the prefix group.

Given this, the s-t distance-constraint reachability of a (E1, E2)-
prefix group is defined as

R
d
s,t(G(E1, E2)) =

X

G∈(G(E1,E2))

I
d
s,t(G) ·

Pr[G]

Pr[G(E1, E2)]
(2)

Basically, it is the overall likelihood that t is d-reachable from s
conditional on the fixed prefix G(E1, E2). It is easily derived that
Rd

s,t(G) = Rd
s,t(G(∅, ∅)).

The following lemma characterizes the s-t distance-constraint
reachability of (E1, E2)-groups and forms the basis for its efficient
computation. Its proof is omitted for simplicity.

LEMMA 1. (Factorization Lemma) For any (E1, E2)-prefix
group of uncertain G and any uncertain edge e ∈ E\(E1 ∪ E2),

Rd
s,t(G(E1, E2)) = p(e)Rd

s,t(G(E1 ∪ {e}, E2))

+ (1− p(e))Rd
s,t(G(E1, E2 ∪ {e})).

In addition, for any (E1, E2)-prefix group of uncertain G, if E1

contains a d-path from s to t, then, Rd
s,t(G(E1, E2)) = 1; if E2

contains a d-cut 2 between s and t, then, Rd
s,t(G(E1, E2)) = 0.

Also, E1 containing a d-path and E2 containing a d-cut cannot be
both true at the same time though both can be false at the same

time.

Algorithm 1R(G, E1, E2)

Parameter: G: Uncertain Graph;
Parameter: E1: Inclusion Edge List;
Parameter: E2: Exclusion Edge List;
1: if E1 contains a d-path from s to t then
2: return 1;
3: else if E2 contains a d-cut from s to t then
4: return 0;
5: end if
6: select an edge e ∈ E\(E1 ∪ E2) {Find a remaining uncertain edge}
7: return p(e)R(G, E1 ∪ {e}, E2) + (1− p(e))R(G, E1, E2 ∪ {e})

Algorithm 1 describes the divide-and-conquer computation pro-
cedure for Rd

s,t(G) based on Lemmas 1. To compute Rd
s,t(G), we

2An edge set Cd of G is a d-cut between s and t if G\Cd has a

distance greater than d, i.e., dis(s, t|G\Cd) > d.

will invoke the procedure R(G, ∅, ∅). Based on the factorization
lemma (Lemma 1), this procedure first partitions the entire set of
possible graphs of uncertain graph G into two parts (prefix groups)
using any edge e in G:

R
d
s,t(G(∅, ∅)) = p(e)Rd

s,t(G({e}, ∅))+(1−p(e))Rd
s,t(G(∅, {e})).

Then, it applies the same approach to partition each prefix group
recursively (Line 6 − 7) until either E1 contains a d-path or E2

contains a d-cut (Line 1 − 5) in the prefix group G(E1, E2).
The computational process of the recursive procedure R can be

represented in a full binary enumeration tree (Figure 2 (a)). In the
tree, each node corresponds to a prefix group G(E1, E2) (also an
invoke of the procedure R). Each internal node has two children,
one corresponding to including an uncertain edge e, another ex-
cluding it. In other words, the prefix group is partitioned into two
new prefix groups: G(E1 ∪ {e}, E2) and G(E1, E2 ∪ {e}). Fur-
ther, we may consider each edge in the tree is weighted with prob-
ability p(e) for edge inclusion and 1 − p(e) for edge exclusion.
In addition, the leaf node can be classified into two categories, L
which contains all the leaf nodes with E1 containing a d-path, and
L which contains the remaining leaf nodes, i.e., all those leaf nodes
with E2 include a d-cut.

Note that any uncertain edge e can be selected for each prefix
group (in Line 6) without affecting the correctness of the recursive
procedure. However, it does affect its computational complexity,
which is determined by average recursive depth (average prefix-
length), i.e., the average number of edges |E1 ∪ E2| we have to
select in order to determine whether t is d-reachable from s for all
the possible graphs in the prefix group. If the average recursive
depth is a, then, a total of O(2a) prefix groups need to be enumer-
ated, which can be significantly smaller than the complete O(2m)
possible graphs of G. An uncertain edge selection approach in Sec-
tion E is provided to minimize the average recursive depth.

3.2 UnequalProbability SamplingFramework
Now, we study an estimation framework of Rd

s,t(G) using the
unequal probability sampling scheme [18] based on Algorithm 1.
Unequal Probability Sampling (UPS) Framework: To estimate
Rd

s,t(G), we apply the unequal sampling scheme: 1) each leaf
node in the enumeration tree (Figure 2 (a)) is associated with a
leaf weight: the generating probability of the corresponding pre-
fix group, Pr[G(E1, E2)]; and 2) each leaf node G(E1, E2) in
the enumeration tree is sampled with a leaf sampling probabil-
ity q(G(E1, E2)), where the sum of all leaf sampling probability
(q(G(E1, E2)) is 1. Note that in the UPS framework, the leaf sam-
pling probability q can be different from the leaf weight.

Given this, we now study the well-known unequal sampling esti-
mator, theHansen-Hurwitz estimator [18]: assuming we sampled
n leaf nodes, 1, 2, · · · , n, in the enumeration tree, and let Pri be
the weight associated with the i-th sampled leaf node and let qi be
the leaf sampling probability, then the Hansen-Hurwitz estimator

(denoted as bRHH ) for Rd
s,t(G) is:

bRHH =
1

n

nX

i=1

PriI
d
s,t(G)

qi

(3)

In other words, we may consider each leaf node in L contributes
Pri and each leaf node in L contributes 0 to the estimation. It is
easy to show the Hansen-Hurwitz estimator ( bRHH ) is an unbiased
estimator for Rd

s,t(G), and its variance can be derived as

V ar( bRHH) =
1

n
(
X

i∈L

qi(
Pri

qi

− R
d
s,t(G))2 +

X

i∈L

qiR
d
s,t(G)2)
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(a) Enumeration Tree of Recursive Computation of Rd
s,t(G). (b) Divide and Conquer.

Figure 2: Divide-and-Conquer method.

Applying the Lagrange method, we can easily find that the op-

timal sampling probability for minimal variance V ar( bRHH) is

achieved when qi = Pri, and the minimal variance is V ar( bRHH) =
1
n
Rd

s,t(G)(1 − Rd
s,t(G)). In other words, the best leaf sampling

probability q to minimize the variance of bRHH is the one equal

to the leaf weight in L! Note that this is consistent with the gen-
eral UPS theory which suggests the sampling probability should be
proportional to the corresponding sampling weight [18].

Given this, we can sample a leaf node in the enumeration tree
as follows: Simply tossing a coin at each internal node in the enu-
meration tree to determine whether the uncertain edge e (also cor-
responding to Line 6 in Algorithm 1) should be included (in E1)

with probability q(e) = p(e) or excluded (in E2) with probability

1 − p(e); continuing this process until a leaf node is reached. Ba-
sically, we perform a random walk starting from the root node and
stopping at the leaf node in the enumeration tree (Figure 2 (a)), and
at each internal node, we randomly goes to its left (selecting the
edge e) with probability p(e) or goes to its right (excluding edge e)
with probability 1−p(e). Such random walk sampling can guaran-
tee that the leaf sampling probability is equal to the corresponding
leaf weight! Due to space limitation, the pseudocode of the random

walk sampling scheme for bRHH is sketched in Appendix C.
Interestingly, we note this UPS estimator is equivalent to the di-

rect sampling estimator, as each leaf node is counted as either 1 or

0 (like Bernoulli trial): bRHH = bRB . In other words, the di-
rect sampling scheme is simply a special (and optimal) case of the
Hassen-Hurvitz estimator! This leads to the following observation:

for any optimal Hassen-Hurvitz estimator (bRHH ) or direct sam-

pling estimator (bRB), their variance is only determined by n and
has no relationship to the enumeration tree size. This seems to be
rather counter-intuitive as the smaller the tree-size (or the smaller
number of the leaf nodes), the better chance (information) we have
for estimating Rd

s,t(G).
A Better UPS Estimator: Now, we introduce another UPS esti-

mator, theHorvitz-Thomson estimator ( bRHT ), which can provide

smaller variance than the Hansen-Hurvitz estimator bRHH and the

direct sampling estimator bRB under mild conditions. Assuming we
sampled n leaf nodes in the enumeration tree and among them there
are l distinctive ones 1, 2, · · · , l (l is also referred to as the effective
sample size), let the leaf inclusion probability πi be probability to
include leaf i in the sample, which is define as πi = 1− (1− qi)

n

where qi is the leaf sampling probability. The Horvitz-Thomson

estimator for Rd
s,t(G) is:

R̂HT =
lX

i=1

PriI
d
s,t(G)

πi

.

Note that if qi is very small, then πi ≈ nqi. The Horvitz-

Thomson estimator (R̂HT ) is an unbiased estimator for the popu-

lation total (Rd
s,t(G)). Its variance can be derived as follows [18],

where πij is the probability that both leafs i and j are included in
the sample: πij = 1 − (1 − qi)

n − (1 − qj)
n + (1 − qi − qj)

n:

V ar( bRHT ) =
X

i∈L

„
1− πi

πi

«
Pr2

i

+
X

i,j∈L,i6=j

„
πij − πiπj

πiπj

«
PriPrj .

Using Taylor expansions and Lagrange method, we can find the
minimal variance can be approximated when qi = Pri. This basi-
cally suggests the similar leaf sampling strategy (the random walk
from the root to the leaf) for the Hansen-Hurwitz estimator can be
applied to the Horvitz-Thomson estimator as well. However, dif-
ferent from the Hansen-Hurwitz estimator, the Horvitz-Thomson
estimator utilizes each distinctive leaf once. Though in general the
variances between the Hansen-Hurwitz estimator and the Horvitz-
Thomson estimator are not analytically comparable, in our tree-
based sampling framework and under reasonable approximation,
we are able to prove the latter one has smaller variance.

THEOREM 1. (V ar( bRHT ) ≤ V ar( bRHH)) When for any sam-

ple leaf node i, nPri ≪ 1, V ar( bRHH)−V ar( bRHT )=Ω(
P

i∈L Pr2
i ).

The proof of this theorem can be found in Appendix B. This
result suggests that for small sample size n and/or when the gen-
erating probability of the leaf node is very small, then the Horvitz-
Thomson estimator is guaranteed to have smaller variance. In Sec-
tion 4, the experimental results will further demonstrate the effec-
tiveness of this estimator. A reason for this estimator to be effective
is that it directly works on the distinctive leaf nodes which partly
reflect the tree structure. In the next subsection, we will introduce a
novel recursive estimator which more aggressively utilizes the tree
structure to minimize the variance.

3.3 Optimal Recursive Sampling Estimator
In this subsection, we explore how to reduce the variance based

on the factorization lemma (Lemma 1). Then, we will describe a
novel recursive approximation procedure which combines the de-
terministic procedure with the sampling process to minimize the
estimator variance.
Variance Reduction: Recall that for the root node in the enumer-
ation tree, we have the following results based on the the factoriza-
tion lemma (Lemma 1):

Rd
s,t(G) = p(e)Rd

s,t(G({e}, ∅)) + (1− p(e))Rd
s,t(G(∅, {e}))

To facilitate our discussion, let τ = Rd
s,t(G), τ1 = Rd

s,t(G({e}, ∅))

and τ2 = Rd
s,t(G(∅, {e})).
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Now, instead of directly sampling all the leaf nodes from the root
(like suggested in last subsection), we consider to estimate both τ1

and τ2 independently, and then combine them together to estimate
τ . Specifically, for n total leaf samples, we deterministically allo-
cate n1 of them to the left subtree (including edge e, τ1), and n2 of
them to the right subtree (excluding edge e, τ2); then, we can apply

the aforementioned sampling estimators, such as bRHH , or equiv-

alently bRB), to both subtrees. Let bR1 and bR2 be the estimators
for τ1 (left subtree) and τ2 (right subtree), respectively. Thus, the

combined estimator for Rd
s,t(G) is

bR = p(e) bR1 + (1− p(e)) bR2 (4)

Clearly, this combined estimator is unbiased as both bR1 and bR2

are unbiased estimators for τ1 and τ2, respectively. Why this might
be a better way to estimate Rd

s,t(G)? Intuitively, this is because
we eliminate the “uncertainty” of edge e from the estimation equa-
tion. Of course, the important question is how such elimination can
benefit us, and to answer this, we need address this problem: what
are the optimal sample allocation strategy to minimize the overall

estimator variance?
The variance of the combined estimator depends on the variance

of the two individual estimators (they are independent and their
covariance is 0):

V ar( bR) = p(e)2V ar( bR1) + (1− p(e))2V ar( bR2)

= p(e)2
τ1(1− τ1)

n1
+ (1− p(e))2

τ2(1− τ2)

n2

When τ1 and τ2 are known, we clearly can find the optimal sam-
ple allocation (n1 and n2 are functions of τ1 and τ2) for minimiz-

ing V ar( bR). However, in this problem, such prior knowledge is
clearly unavailable. Given this, can we still allocate samples to re-
duce the variance? An interesting discovery we made is when the
sample size allocation is proportional to the edge inclusion proba-
bility, i.e., n1 = p(e)n and n2 = (1 − p(e))n, the variance of the

original optimal Hassen-Hurvitz estimator V ar( bRHH) = τ(1−τ)
n

can be reduced!

THEOREM 2. (Variance Reduction) When, n1 = p(e)n and

n2 = (1−p(e))n, V ar( bR) ≤ V ar( bRHH), and more specifically,
the variance is reduced by

V ar( bRHH)− V ar( bR) =
p(e)(1− p(e))(τ1 − τ2)2

n
.

For its simplicity, we omit the proof for the above theorem.
Recall τ1 is the overall probability of those leaf nodes in the left

subtree (G({e}, ∅)) and in L, i.e., when edge e is included and t is
d-reachable from s and τ2 is the overall probability of those possi-
ble graphs where e is excluded. Clearly, when edge e is included,
the probability for t is d-reachable from s is greater. Especially, this
theorem suggests the bigger the impact for edge e being included or
excluded, the greater the variance reduction effect (directly propor-
tional to (τ1−τ2)

2). In addition, this sample size allocation method
can be generalized and applied at the root node of any subtree in the
enumeration tree for reducing the variance.
Recursive Sampling Estimator: Given this, we introduce our re-

cursive sampling estimator bRR, which is outlined in Algorithm 2.
Basically, it follows the exact computational recursive procedure
(Algorithm 1) and recursively split the sample size n to ⌊np(e)⌋
and n − ⌊np(e)⌋ for estimating Rd

s,t(G(E1 ∪ {e}, E2)) and

Rd
s,t(G(E1, E2 ∪ {e})), respectively (Line 10). In addition, when

the sample size n is smaller than the threshold (typically the thresh-
old is very small, less than 5), we can avoid the recursive allocation
by perform the direct sampling (Line 1 and 2). Note that when the

Algorithm 2 OptEstR(G, E1, E2, n)

Parameter: E1: Inclusion Edge List;
Parameter: E2: Exclusion Edge List;
Parameter: n: sample size;
1: if n ≤ threshold {Stop recursive sample allocation} then

2: return bRHH(G, E1, E2, n); {apply non-recursive sampling esti-
mator}

3: end if
4: if E1 contains a d-path from s to t then
5: return 1;
6: else if E2 contains a d-cut from s to t then
7: return 0;
8: end if
9: select an edge e ∈ E\(E1 ∪ E2) {Find a remaining uncertain edge}

10: return p(e)OptEstR(G, E1 ∪ {e}, E2, ⌊np(e)⌋)+
(1− p(e))OptEstR(G, E1, E2 ∪ {e}, n− ⌊np(e)⌋);

Table 1: Relative Error (in %)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

15-25 3.42 3.00 0.98 0.90 0.96 0.71
26-35 2.52 2.80 1.50 1.08 0.90 0.72
36-45 2.30 1.75 1.17 1.77 1.36 1.33
46-55 1.79 1.42 1.59 1.39 1.33 1.30

Table 2: Relative Variance Efficiency
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

15-25 1.00 0.81 0.15 0.12 0.12 0.08
26-35 1.00 0.77 0.44 0.23 0.27 0.17
35-45 1.00 0.58 0.58 0.45 0.23 0.20
45-55 1.00 0.73 0.82 0.80 0.44 0.43

Table 3: Query Time (in ms)

R∗ bRB
bRD

B
bRP

bRHT
bRRHH

bRRHT

15-25 2 314 314 532 193 11 15
26-35 53 358 345 564 233 20 34
35-45 1828 314 313 535 234 23 42
45-55 91748 344 345 565 251 23 45

sample size is very small, all the non-recursive sampling estima-

tors, including bRHT , bRHH , and bRB , all become equivalent.
The computational complexity of this recursive sampling esti-

mator is O(na), where a is the average recursive depth or the av-
erage length from the root node to the leaf node in the enumeration
tree. But it tends to be more computationally efficient than the UPS

estimators bRHH and bRHT . This is because the recursively sam-
pling estimator visits the upper-part of the enumeration tree (for
the recursive sample size allocation) only once and does not need
perform any coin-toss for the each node at this part of the tree.
However, the UPS estimators have to perform coin-toss for each
node and may repetitively revisit the same node in the upper-level
of the tree, where this new estimator visits each node only once.
Finally, we note that the analytically comparison between the vari-

ance of the Horvitz-Thomson estimator bRHT and the recursively

estimator bR is not conclusive (See further analysis in Appendix D),
though the experimental evaluation demonstrates the superiority of
the new sampling estimator (Section 4).

4. EXPERIMENTAL EVALUATION
In the experimental study, we will focus on studying the accuracy

and computational efficiency of different sampling estimators on
both synthetic and real datasets. Specifically, the sampling estima-

tors include: 1) bRB : this is the direct sampling estimator using A∗

algorithm for searching shortest path distance [15]. The sampling
process is also combined with the search process to maximize its

computational efficiency; 2) bRD
B : we apply a state-of-the-art vari-

ance reduction method, Dagger Sampling [10, 6], on top of bRB to

boost the estimation accuracy; 3) bRP : this is the path-based esti-
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mator based on [9] which needs to enumerate all the d-paths from

s to t; 4) bRHT : this is the Horvitz-Thomson estimator based on the
unequal probabilistic sampling framework; 5) bRRHH : this is the
optimal recursive sampling estimator OptEstR and when the num-
ber of samples in the recursive sampling process is less than the

threshold (set to be 5), the non-recursive sampling estimator bRHH

(Hansen-Hurwitz estimator) is used; 6) bRRHT : this is the opti-
mal recursive sampling estimator OptEstR and when the number of
samples in the recursive sampling process is less than the threshold

(5), the non-recursive sampling estimator bRHT (Horvitz-Thomson
estimator) is used. For all the last three estimators, they all utilize
the FindDPath procedure to select the next edge in the recursive

computation procedure. In addition, we omit the results for bRHH

(Hansen-Hurwitz estimator) because it is equivalent to the direct

sampling estimator bRB .
To compare the accuracy of these different sampling estimators,

we utilize two criteria: the relative error and the estimation vari-
ance. For the relative error, we apply R∗ procedure to compute the
exact distance-constraint reachability. Let R be the exact result and
bR be the estimation result. Then, the relative error ǫ is computed as

ǫ = | bR−R|
R

. For the estimation variance, for each query, we will run
each estimator K times, and thus, we have 100 different estimating

results: bR1, bR2, · · · , bRK (in this work, we set K = 100). The

estimation variance σ is estimated as: σ =
P

K
i=1

( bRi−R)2

K−1
. Here R

is the estimation average (
PK

i=1
bRi)/K. The computational effi-

ciency is evaluated by the running time of each estimator.
All algorithms are implemented by using C++ and the Standard

Template Libaray (STL) and were conducted on a 2.0GHz Dual
Core AMD Opteron CUP with 4.0GB RAM running Linux.

4.1 ExperimentalResults onSyntheticDatasets
We first report the experimental results on synthetic uncertain

graphs. Here, the graph topologies are generated by either Erdös-
Rényi random graph model or power law graph generator [3]. The
edge weight is randomly generated between 1 to 100 according to
uniform distribution. The edge probability is randomly generated
between 0 to 1 according to uniform distribution.
Random Graph: In this experiment, we generate an Erdös-Rényi
random graph with 5000 vertices and edge density 10. We report
the relative error, estimation variance, and the query time with re-
spect to the edge number ofminimal DCR equivalent subgraph size
Gs. Recall Gs is the uncertain subgraph which will be used for
the sampling estimator. We partition the queries into four groups
15−25, 26−35, 36−45 and 46−55. This is because for any graph
with edge number no larger than 15, the exact computation can be
done very efficiently; and when the graph size is larger than 55,
it becomes too expensive to compute the exact distance-constraint
reachability. Since in this experiment, we would like to report the
relative error, we limit ourselves to the smaller Gs. For each of the
four groups, we generate 1000 random queries. In addition, the
sample size is set to be 1000 for each estimator.

Table 1 shows the relative errors of six different estimators. Over-
all, the two recursive estimators bRRHH and bRRHT are the clear
winners and bRRHT is slightly better than bRRHH . They can cut

the relative error of the direct sampling estimator bRB by more than
half. The Dagger sampling method can only reduce the relative er-

ror of bRB by less than 10%. The path-based sampling estimator
bRP and bRHT are comparable though the latter is slightly better.
They can reduce the relative error of the direct sampling estimator
by around 45%. However, as we will see the path-based sampling
is much more computationally expensive as it has to enumerate all

Table 4: Relative Error with Real Graphs (in %)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

DBLP 4.40 3.23 1.66 1.71 1.94 1.74
Yeast PPI 3.85 3.47 1.36 2.22 2.21 1.73
Fly PPI 3.62 3.22 1.40 1.92 2.08 1.64

Table 5: Query Time with Real Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

DBLP 51.65 55.50 5915.12 26.08 5.93 10.08
Yeast PPI 1.15 1.97 4959.37 0.50 0.11 0.21
Fly PPI 2.55 4.77 215.98 1.13 0.45 0.67

the d-paths from the source vertex s to the destination vertex t.
Table 2 reports the relative variance efficiency of different ap-

proaches using the variance of σ bRB
as the baseline. In the second

column under bRB , we have the value to be 1, and the second col-
umn under bRD

B , the values are σ bRD

B

/σ bRB
. The relative variance ef-

ficiency is consistent with the results on relative error. The Dagger

sampling estimator bRD
B , the path-based estimator bRP , the Horvitz-

Thomson estimator bRHT on average has only 72%, 50% and 40%

of the baseline variance; the recursive sampling operators bRRHH

and bRRHT reduces the variance by almost 5 times (with 26% and
22% of the baseline variance)!

Table 3 shows the computational time of different sampling op-
erators. First, we can see that when the extracted subgraph Gs is
fairly small (less than 35 edges), the exact recursive algorithm R∗

is quite fast (even faster than most of the sampling approach). How-
ever, when the subgraph grows, the exact computational cost grows
exponentially. Second, the path-based method is the slowest one
as we expected (it is on average 1.65 times slower than the direct
sampling approach with A∗ search); and the unequal sampling es-

timator bRHT is around 1.5 times faster than the direct sampling
estimator. Finally, very impressively, the two recursively estima-

tors are much faster than other estimators: especially, bRRHH is on
an average 20 times faster than the direct sampling estimator and
bRRHT is around 10 times faster!

Note that additional experimental results on how sample size af-
fect the estimation accuracy and performance, and on the scalabil-
ity of different estimators are reported in Appendix F.

4.2 Experimental Results on Real Data
We study different estimators on three real uncertain graphs:

DBLP and two Protein-Protein Interaction (PPI) networks. The
DBLP is a coauthor graph with 226, 000 vertices and 1, 400, 000
edges (provided by authors in [13]). The Yeast PPI network has
almost 5499 vertices and 63796 edges and Fly PPI network 7518
vertices and 51660 edges. They are constructed by combining data
from BioGrid [20] and MIPS [19]. In this experiment, we ran 1000
random queries with sample size 1000. Table 4 and 5 report the
relative error and the running time of the different approaches, re-
spectively. In order to report the relative error, we limit the ex-
tracted subgraphs with number of edges from 20 to 50. In Table

4, we can see that the bRP , bRHT , bRRHH and bRRHT reduced the
relative errors by half of the bRB and bRD

B estimators; and bRP is
slightly better than our methods. However, as shown in Table 5, the

query time of bRP is several hundred times slower than the bRHT

and bRRHT and even 1000 times slower than bRRHH estimator.

5. RELATEDWORK
Managing and mining uncertain graphs has recently attracted

much attention in the database and data mining research commu-
nity [13, 23, 24, 25]. Especially, Potamias et. al. recently studied
the k-Nearest Neighbors in uncertain graphs [13]. They provide a
list of alternative shortest-path distance measures in the uncertain
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graph in order to discover the k closest vertices to a given vertex.
They also combine sampling with Dijkstra’s single source shortest-
path distance algorithm for estimation. The estimator used in [13]
is based on direct sampling.

Our work on distance-constraint reachability query is a general-
ization of the two point reliability problem, or the simple s-t reach-
ability problem [14]. There has been an extensive study on comput-
ing the two points reliability exactly and no known exact methods
can handle networks with one hundred vertices except for certain
special topologies [14]. Note that the recursive method proposed in
this paper can be considered as a generalization of [16] for the two
point reliability problem. Monte-Carlo methods have been stud-
ied to estimate the two point reliability on large graphs [6]. From
the users’ point of view, the quality of a Monte-Carlo method is
measured by both its computational efficiency and its accuracy (es-
timator variance). The basic method is based on directly sampling,

just like the bRB estimator used in this paper. Since its variance
is quite high, researchers have developed methods in trying to im-
prove its accuracy. However, most of the methods for variance re-
duction need the per-computation of path or cut sets [6, 9], which

clearly are too expensive for online query. The bRP estimator is an
extension of this type of efforts. Though the methods proposed in
this paper even target on the general distance-constraint reachabil-
ity, they can be applied to the simple reachability. To the best of

our knowledge, the Horvitz-Thomson estimator bRHT and the re-

cursive estimator bRR have not been studied or discovered for the
simple reachability.

Finally, we note that the approaches developed in this paper can
be applied to answer reachability problems with other types of con-
straints. For instance, in [23], the authors studied to discover the
shortest paths in uncertain graph with the condition that each such
shortest path has probability no less than certain threshold. Inspired
by this, in Appendix G, we describe a simple extension of DCR
(Distance-Constraint Reachability) query and discuss how our ap-
proaches can be applied to the new problem.

6. CONCLUSIONS
In this paper, we study a novel s-t distance-constraint reachabil-

ity problem in uncertain graphs. We not only develop an efficient
exact computation algorithm, but also present different sampling
methods to approximate the reachability. Specifically, we introduce
a unified unequal probabilistic sampling estimation framework and
a novel Monte-Carlo method which effectively combines the deter-
ministic recursive computational procedure and sampling process.
Both can significantly reduce the estimation variance. Especially,
the recursive sampling estimator is accurate and computationally
efficient! It can on average reduce both variance and running time
by an order of magnitude comparing with the direct sampling esti-
mators. In the future work, we would like to investigate how the es-
timation method can be applied into other graph mining and query
problem in uncertain graphs.
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APPENDIX

A. COMPUTINGMINIMALDCREQUIVA­

LENT SUBGRAPH
Given vertices s and t, only subsets of vertices and edges in G

are needed to compute the s-t distance-constraint reachability. In-
tuitively, those edges and vertices have to be on some s-t paths
whose distance is less than or equal to d. Because if they are not,
their existence will not affect the s-t distance-constraint reachabil-
ity in the possible graph G. Thus, we can simply exclude them
from G when generating the possible graph. Formally, we have the
following observations:

LEMMA 2. LetG be the complete possible graph with respect
to G which includes all the nodes and edges in G. Given vertices
s and t, let the the minimal equivalent DCR subgraph Gs =
(Vs, Es, p, w) ⊆ G be:

Vs = {v ∈ V |dis(s, v|G) + dis(v, t|G) ≤ d},

Es = {e = (u, v) ∈ E|dist(s, u|G) + w(e) + dis(v, t|G) ≤ d}.

Basically, Vs and Es contain those vertices and edges that ap-

pear on some s-t paths whose distance is less than or equal to d.
Given this, we have Gs is the minimal subgraph of G such that

R
d
s,t(Gs) = R

d
s,t(G) (∗)

Here, the minimal subgraph mean that we cannot further remove

any vertices or edges in Gs to still hold (∗).

The proof is omitted for simplicity. This result suggests that we
can directly work on Gs instead of G for the s-t distance-constraint
reachability computation. The lemma also directly suggests a sim-
ple method (Bread-First-Search from s) to extract Gs from G if we
precompute the distance matrix on G. If the distance matrix is not
available, we can perform an online discovery:
1. Starting from s, run the single-source Dijkstra algorithm within
diameter d (discover all vertices from s with distance less than or
equal to d);
2. In the induced subgraph computed in the first step, run the re-
verse single-source Dijkstra algorithm from vertex t within diame-
ter d (discover those vertices in the first step to t with distance no
higher than d);
3. Starting from s again, using a BFS to visit those vertices gener-
ated in the second step to compute Vs and Es. Note that the first
two steps have already computed dis(s, u|G) and dis(u, t|G) for
any vertices generated in the second step.

B. PROOF OF THEOREM 1.
Proof Sketch:Let τ = Rd

s,t(G). When qi = Pri, we have

V ar( bRHH) =
1

n
(
X

i∈L

qi(1− τ)2 +
X

i∈L

qi(τ)2) =
τ(1− τ)

n
.

The variance of Horvitz-Thomson estimator can be simplified by
considering

πi ≈ nqi −
n(n − 1)

2
q2

i ; πij ≈ n(n − 1)qiqj .

In addition, when qi = Pri and nqi = nPri ≪ 1, V ar( bRHT )

=
X

i∈L

1− πi

πi

Pr2
i +

X

i∈L

X

j∈L,j 6=i

πij − πiπj

πiπj

PriPrj

≈
X

i∈L

(
1

nqi(1−
n−1

2
qi)
− 1)Pr2

i −
X

i∈L

X

j∈L,6=i

1

n
PriPrj

=
X

i∈L

(
1

nqi

+
n− 1

2n− n(n− 1)qi

− 1)Pr2
i −

X

i∈L

1

n
Pri(τ − Pri)

≈
X

i∈L

(
1

nqi

+
n− 1

2n
− 1)Pr2

i −
1

n
τ2 +

1

n

X

i∈L

Pr2
i

=
τ − τ2

n
−

X

i∈L

(n− 1)Pr2
i

2n

Thus, V ar( bRHH) − V ar( bRHT )=Ω(
P

i∈L Pr2
i ), and then we

have V ar( bRHT ) ≤ V ar( bRHH). 2

C. SAMPLINGENUMERATIONTREEFOR

HANSEN­HURWITZESTIMATOR (bRHH)

Algorithm 3 SamplingR(G, E1, E2, P r, q)

Parameter: G: Uncertain Graph;
Parameter: E1: Inclusion Edge List;
Parameter: E2: Exclusion Edge List;
Parameter: Pr: leaf weight;
Parameter: q: leaf sampling probability;
1: if E1 contains a d-path from s to t then

2: return Pr/q; {for optimal bRHH , Pr/q = 1}
3: else if E2 contains a d-cut from s to t then
4: return 0;
5: end if
6: select an edge e ∈ E\(E1 ∪ E2) {Find a remaining uncertain edge}
7: Random Toss a Coin with Head Probability q(e); for optimal

bRHH , q(e) = p(e);
8: if Head {Case I (including e):} then
9: return SamplingR(G, E1 ∪ {e}, E2, p(e)Pr, q(e)q);

10: else if Tail {Case II (excluding e):} then
11: return R(G, E1, E2 ∪ {e}, (1− p(e))Pr, (1− q(e))q)
12: end if

D. COMPARISON BETWEEN bRHT AND bR
In the following, we compare the variance (estimation accuracy)

of Horvitz-Thomson estimator bRHT to that of recursive estimator
bR. We utilize our earlier results for variance comparison to the

Hansen-Hurwitz estimator. bRHH .

From Theorem 1, we have (nPri ≪ 1)

V ar( bRHH)− V ar( bRHT ) ≈
X

i∈L

(n− 1)Pr2
i

2n
≈

1

2

X

i∈L

Pr2
i .

From Theorem 2, we have

V ar( bRHH)− V ar( bR) =
p(e)(1− p(e))(τ1 − τ2)2

n
.

Putting these together, we have

V ar( bRHT )− V ar( bR) ≈
p(e)(1− p(e))(τ1 − τ2)2

n
−

1

2

X

i∈L

Pr2
i .

Since
p(e)(1−p(e))(τ1−τ2)2

n
in general is not correlated with the

size of minimal DCR equivalent subgraph, the variance difference
is mainly determined by

P
i∈L Pr2

i . When
P

i∈L Pr2
i is relatively

large, V ar( bRHT ) will be smaller than V ar( bR). When
P

i∈L Pr2
i

is relatively small, V ar( bRHT ) will be larger than V ar( bR). In
addition, when the size of the uncertain subgraph with respect to
the query is small, Pri tends to be relatively large and so doesP

i∈L Pr2
i . As the subgraph size increases, Pri becomes smaller

and so does
P

i∈L Pr2
i .
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The experimental results in Tables 1 and 2 (Section 4) also
provide evidence to support the above analysis. We can see that
when the minimal DCR uncertain subgraph size (the number of
edges) is less than 35, the relative error and variance of Horvitz-

Thomson estimator bRHT are significantly smaller than those of the

Hansen-Hurwitz estimator bRHH . Recall in Theorem 1, the vari-
ance of the difference between them is approximately on the order
of

P
i∈L Pr2

i . In this case, the relative error and variance of the

recursive estimator bRRHH ( bR in above discussion) are compara-
ble to or even higher than those of the Horvitz-Thomson estimator
bRHT . However, as the minimal DCR uncertain subgraph size in-
creases (higher than 35), the advantage of the recursive estimator
becomes quite apparent.

E. CONSTRUCTINGFASTEXACTANDAP­

PROXIMATION ALGORITHM
In this section, we will discuss a method for edge selection and

quickly test the distance-constraint reachability. Then we will com-
bine this method with our aforementioned recursive algorithm to
construct both exact and approximate algorithms.

E.1 Recognizing d­path or d­cut
In this subsection, we focus on the following problem: given a
resulting graph G of G, how can we quickly determine whether t is
d-reachable from s or not? Specifically, we would like to visit as
few number of edges in G as possible for this task. This is because
later we will apply the developed procedure for this task to selecting
the next edge in the recursive computation procedure (Algorithm 1
and 2).

A straightforward solution to this problem is to utilize Dijkstra
or A∗ algorithm to compute the shortest-path distance from s to t
in G. However, in these types of algorithms, when we visit a new
vertex v in G, we have to immediately visit all its neighbors (cor-
responding to visiting all outgoing edges in v) in order to maintain
the estimated shortest-path distance from s to them so far. This
“eager” strategy thus requires us to visit a large number of edges
in G and it is also the essential step in the shortest-path distance
computation. Fortunately, in our problem, we do not need to com-
pute the exact distance between s and t. Indeed, we only need to
determined whether there is a d-path from s to t or not.

Algorithm 4 FindDPath(G, v, path, plen)

Parameter: G: Graph Defined by Selected Existence Edges;
Parameter: v: the current vertex;
Parameter: path: the current active path;
Parameter: plen: the current active path length;
1: if v = t {Find a d-path} then
2: return path;
3: end if
4: for each v′ ∈ N(v) {visit v′ from closest to farthest} do
5: if (plen + w(v, v′) < gdis(s, v′)) {(a) gdis(s, v′) is reduced}

∧(gdis(v′, t) + plen + w(v, v′) ≤ d) {(b) estimated total length
no larger than d} then

6: gdis(s, v′)← plen + w(v, v′); {update gdis(s, v′) }
7: FindDPath(G,v′, path ∪ {v′}, plen + w(v, v′));
8: end if
9: end for

10: gdis(v, t) ← minv′∈N(v){w(v, v′) + g(v′, t)}; {update

gdis(v, t)}

Given this, we design a DFS fashion procedure to discover the
d-path from s to t. This DFS procedure is “lazy” compared with
the Dijkstra or A∗ algorithm. Basically, a new edge is needed to
expand only if it should be visited along the depth-first-search pro-
cess and it is promising to be on a d-path. The DFS procedure is

sketched in Algorithm 4. Starting from vertex s, we will start to
explore its first neighbor (its next neighbor will be explored only if
there is no d-path which can be find going through the earlier ones,
Line 5), and then recursively visit the neighbors of this neighbor.
Pruning Search Space: To reduce the number of edges which
need to visited, we design a pruning technique which can deter-
mine whether an edge (v, v′) should be expanded at a given time
(Line 5). The condition is based on whether the new edge (v, v′)
has the potential to be on a d-path. Note that all the vertices in G
(including all edges in G) satisfy dis(s, v|G) + dis(v, t|G) < d
which suggests that every vertex has the potential to be on a d-path
in G. However, for G ⊆ G, since some edges are not selected
in the resulting graph G, some vertices may not appear in any d-
path. To perform the pruning, we maintain two values gdis(s, v)
and gdis(v, t) associated with each vertex v, which records the
current shortest path distance from s to v on the partial graph
visited by DFS so far (gdis(s, v)) and the lower bound estimate
on the shortest path distance from v to t (gdis(v, t)).

Initially, gdis(s, v) has an infinite value (∞) for each vertex ex-
cept vertex s (gdis(s, s) = 0), and gdis(v, t) = dis(v, t|G). The
maintenance of g(s, v′) is straightforward (Line 6): if the new path
from s to v′ has smaller length, we update g(s, v′). The g(v, t)
is defined recursively and is updated (at traceback) when we have
visited each of its neighbors (Line 10): g(v, t) is chosen as the min-
imal one of the weights between v to its neighbors v′ plus their es-

timated shortest distance to t, i.e., g(v, t) = minv′∈N(v) w(v, v′)
+g(v′, t).

For the currently visited vertex v, we will check each of its
neighbors v′ according to the increasing order of the edge weight
w(v, v′). This order can help minimize the number of times to re-
visit any given node. If any of the neighbors v′ can be visited, i.e.,
edge (v, v′) may be part of a d-path, it has to satisfy two condi-
tions (Line 5): a) it decreases the gdis(s, v′), i.e., the new path
from s to v′ has smaller length than the earlier ones; and b) the

new path from s to v′ together with the updated lower bound of the

shortest-path distance from v′ to t is no higher than d. Basically
these two conditions are the necessary ones for the new edge (v, v′)
may occur in a d-path. The FindDPath algorithm has the following
property:

LEMMA 3. If Algorithm 4 returns a path, it is the d-path from
s to t defined in the order of DFS procedure; if it does not return
a path, there is no d-path from s to t. Also, if we allow this proce-
dure to continue search after its discovery of the first d-path, this
procedure can eventually enumerate all the d-path from s to t inG.

We note that we can utilize this algorithm to enumerate all the d-
paths in G, which is the first step in the path-based estimator for
the Rd

s,t(G) (Subsection 2.2). In the next subsection, we will fuse
this algorithm with Algorithm 1 for a fast exact computation of
Rd

s,t(G).

E.2 The Complete Algorithm
In this subsection, we will combine recursive computation pro-

cedures R(Algorithm 1) and FindDPath(Algorithm 4) together to
calculate Rd

s,t(G) efficiently. The combination of OptEstR with
FindDPath is similar and thus is omitted for simplicity. Recall in
procedure R, the first key problem is how to select an uncertain
edge e for any G(E1, E2) prefix group of possible graphs. To solve
this problem, we choose the edge e to be the one which needs to
be visited once all edges in E1 (and E2) have been visited in the

process of identifying the first d-path according to the FindDPath
procedure. Note that the edges in the exclusion set E2 are explic-
itly marked as the “forbidden” edges when they are in the line to be
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Algorithm 6R∗(G, E1, E2, Sv, Si)

Parameter: Sv : Vertex Stack for DFS;
Parameter: Si: Edge Index Stack for DFS;
1: if Sv .top() = t {Condition 1: E1 contains a d-path} then
2: return 1;
3: end if
4: (e,x,Xlist,Ylist)← NextEdge(G,E1,E2,Sv,Si) (∗)
5: if e = ∅ {Condition 2: E2 contains a d-cut} then
6: return 0
7: end if
8: store and then update gdis(s, v′) with x; (*)

9: R1 ← R∗(G, E1 ∪ {e},E2,Sv .push(w), Si.push(1));
10: restore gis(s, v′); (*)
11: R2 ← R∗(G, E1,E2 ∪ {e},Sv ,Si);
12: restore gdis(s, v) and gdis(v, t) for those vertices in Xlist and

Y list, respectively; (*)
13: return p(e)R1 +(1− p(e))R2;

Procedure NextEdge(G, E1, E2, Sv , Si)
1: while !Sv .empty() do
2: v ← Sv .top();
3: Xlist← ∅;Ylist← ∅; (∗)
4: for i from Si.top() to |N(v)| do
5: v′ ← v[i] {v’s i-th neighbor}; e = (v, v′); Si.top() + +;
6: if e /∈ E2 ∧ plen(Sv)+w(v, v′) < gdis(s, v′)∧gdis(v′, t)+

plen(Sv) + w(v, v′) ≤ d {conditions (a) and (b)} then
7: if e ∈ E1 {Determined earlier} then
8: Xlist← Xlist ∪ {(v′,dis(s,v′)} {for v′ /∈ Xlist};

dis(s,v′)← plen(Sv) + w(v,v′) (∗)
9: Sv .push(v′); Si.push(1); goto 2;

10: else
11: return (e,plen(Sv) + w(v,v′),Xlist,Ylist) (∗)
12: end if
13: end if

14: end for
15: Ylist← Ylist ∪ {(v,dis(v, t))} {for v not in Y list};

dis(v, t)← min(v,v′)∈E1
w(v,v′) + gdis(v′, t) (∗)

16: Sv .pop(), Si.pop() {DFS trace back};
17: end while
18: return ∅

Algorithm 5R∗(G, E1, E2, Sv, Si)

Parameter: Sv : Vertex Stack for DFS;
Parameter: Si: Edge Index Stack for DFS;
1: if Sv .top() = t {Condition 1: E1 contains a d-path} then
2: return 1;
3: end if
4: e← NextEdge(G, E1, E2, Sv , Si)
5: if e = ∅ {Condition 2: E2 contains a d-cut} then
6: return 0
7: end if
8: return p(e)R∗(G, E1 ∪ {e},E2,Sv .push(w), Si.push(1))

+(1− p(e))R∗(G, E1,E2 ∪ {e},Sv ,Si);

Procedure NextEdge(G, E1, E2, Sv , Si)
1: while !Sv .empty() do
2: v ← Sv .top();
3: for i from Si.top() to |N(v)| do
4: v′ ← v[i] {v’s i-th neighbor}; e = (v, v′); Si.top() + +;
5: if e /∈ E2 {not in excluding edge list} ∧ plen(Sv)+w(v, v′) <

gdis(s, v′)∧gdis(v′, t)+plen(Sv)+w(v, v′) ≤ d {conditions
(a) and (b)} then

6: if e ∈ E1 {Determined earlier} then
7: Sv .push(v′); Si.push(1); goto 2;
8: else

9: return e
10: end if
11: end if

12: end for
13: Sv .pop(), Si.pop() {DFS trace back};
14: end while
15: return ∅

visited for identifying the d-path, i.e., they cannot be utilized dur-
ing the search process. In other words, we may also consider edge
e is the next edge to be visited for the G(E1, E2) prefix group.

A major difficulty to implementing the aforementioned edge se-
lection strategy is that we have to couple two recursive procedures
(R and FindDPath) together. To solve this problem, we use two
stacks Sv and Si to simulate the DFS process for FindDPath: stack
Sv records the current active vertices (the active path) of the Find-
DPath for the partial group (G, E1, E2), and Si records the index
of the next edge in the line to be visited for the corresponding ver-
tex in stack Sv . To start with the search, we always store vertex s
in the bottom of stack Sv and put index 1 in Si as the first edge of
s needs to be visited first.

Using stacks Sv , Si, the procedure NextEdge describes how we
can get the next uncertain edge to be visited according to the Find-
DPath procedure (Algorithm 5). Basically, we apply the stacks and
iterations (Line 1, 3) to simulate the recursive process. Specifi-
cally, the top of stack Sv records the current active vertex v (Line
2) and we iterate on each of its remaining neighbors from Si.top()
to |N(v)| to search for the next candidate edge, which has the po-
tential to be a d-path(condition (a) and (b), Line 5 in FindDPath and
in NextEdge). Note that we do not consider those edges which have
been determined to be excluded from the resulting graph e /∈ E2

(Line 5). However, edge e = (v, v′) may be selected more than
once and after the first time is being visited, this edge is not uncer-
tain any more, i.e., e ∈ E1 (Line 6). In this case, we will continue
the search process by adding v′ to stack Sv and planning to visit its
first edge (Line 7). For any vertex v, if we exhaust all its outgoing
edges (or neighbors), we have to trace back (pop up the vertices in
the stack) to find the next edge (Line 13). Finally, when there are
no edges that can be selected to further extend the search (Sv is
empty, Line 1), empty edge ∅ is returned.

The complete algorithm using the NextEdge procedure is illus-
trated in R∗ (Algorithm 5). Here, we not only utilize the NextEdge
procedure for selecting the next edge e, but also use it to answer
whether E1 contains a d-path or E2 contains a d-cut for Algo-
rithm 1: if the top element of stack Sv is vertex t, then we basically
find a d-path from s to t using edges inE1; if the returned edge e is
∅ which suggests that there is no way to further extend the search,
then we can determine there is no d-path from s to t. Line 1−7 are
based on these two conditions to determine whether the recursion
can be stopped.

The enumeration process in Figure 2(b) illustrates the compete
algorithm (R∗) which uses the DFS procedure for selecting next
edge. The correctness of the R∗ is easily established by Lemma 1
and 3, and

R
d
s,t(G) = R∗(G, ∅, ∅, Sv.push(s), Si.push(1)),

where stacks Sv and Si are empty initially.
The total computational complexity of R∗ can be written as

O(2aL), where a is the average height of enumeration tree gener-
ated by R∗ and L is the average number of edges (vertices) visited
by FindDPath procedure for determining whether there is a d-path
in E1 or a d-cut in E2. Note that a is the lower bound of L as some
edges in the inclusion set (E1) can be visited more than once by the
NextEdge procedure (Line 7 in NextEdge).

Finally, in Algorithm 5, for simplification, we omit the details on
how to handle the two cost functions g(s, v) and g(v, t) associated
with each vertex v in order to prune the search process. Their up-
dates also need a stack-like mechanism to maintain, which are sim-
ilar to Sv and Si. The complete description of R∗ which includes
the details of maintaining these two cost functions can be found in
Algorithm 6 where the (*) lines maintain g(s, v) and g(v, t).

561



Table 6: Scalability: Query Time with Random Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

100k-300k 503 550 677 148 38 71
300k-500k 649 645 1978 174 51 92
500k-700k 691 745 4783 199 59 106
700k-900k 742 756 - 211 64 119
900k-1.1m 809 - - 215 64 115

Table 7: Query Time with Power-Law Graphs (in Seconds)
bRB

bRD
B

bRP
bRHT

bRRHH
bRRHT

100k-300k 245 287 15312 123 36 59
300k-500k 353 437 - 162 61 92
500k-700k 456 682 - 210 102 151
700k-900k 473 675 - 234 117 159
900k-1.1m 497 780 - 243 122 168
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F. EXPERIMENTALRESULTSONSAMPLE

SIZE AND SCALABILITY
Varying Sample Size: In this experiment, we study how sample
size affect the estimation accuracy and performance. Here, we vary
the sample size from 200 to 2000 and run different sampling esti-
mators on the same uncertain graph as in the first experiment. Fig-
ure F illustrates the relative variance efficiency of different sam-
pling estimator with respect to different sample size. In general,
we can see that most of the sampling operators tend to have better
variance efficiency as the sample size increases compared with the
baseline direct sampling estimator. However, such trend does not
hold for the path-based estimator. Based on their variance analysis,
we can see both path-based estimator and the direct sampling esti-
mator reduce the variance in the similar rate when the sample size
increases. Again, the two recursively sampling estimators are the
clear winner as they can reduce the baseline variance by almost 10
times! Figure F shows the computational time of different sampling
estimators. In general, as the sample size increases, their running
time also increases. However, we can see that the increase of the
recursive sampling estimator is the smallest.
Scalability: To study the scalability of different estimators, we
generate queries with very large minimal equivalent DCR subgraphs
Gs with the number of edges ranging from 100, 000 (100k) to
1, 100, 000 (1.1m) on a random graph with 1m vertices and 13m

edges and on a power-law graph with 1m vertices and around 2m
edges. Specifically, we group all the queries into five categories
based on the number of edges in Gs: 100k − 300k, 300k − 500k,
500k − 700k, 700k − 900k and 900k − 1.1m and each category
has 1000 queries. Further, for each estimator, the sample size is
1000. Table 6 reports the query time for large queries on the ran-
dom graph. In general, we observe that the query time increases
with the size of the subgraphs. However, for most of estimators

except for bRP , the query time has shown to have sub-linear growth

with respect to the subgraph size. The query time of bRP increases
exponentially due to its computational cost to enumerate all the
d-paths, which becomes very expensive as the number of edges in-

creases. The estimators bRRHH and bRRHT were 10 times faster
than the estimators bRB and bRD

B . Table 7 reports the query time for
large queries on the power-law graph. Similarly, we observe that
generally the query time increases as the subgraph size increases.

However, the bRP estimator scales poorly and cannot process the
subgraph with number of edges is higher than 300k (the cost of
computing and storing all d-paths is too large). It is almost 100

times slower than all other methods. The bRRHH and bRRHT esti-
mators are almost 5 times faster than the bRB and bRD

B estimators,

G. AN EXTENSION OF DCR QUERY
Here, we consider strengthening the DCR (Distance-Constraint

Reachability) query with an additional constraint introduced in [23].
Recall that a s-t path in G with length less than or equal to distance
constraint d is referred to as a d-path between s and t. If there is
a d-path between s and t, then vertex t is d-reachable from vertex
s in graph G, i.e., dis(s, t|G) ≤ d. If there is no d-path from s to
t, then, t is not d-reachable from s (dis(s, t|G) > d). However,
even when there is a d-path P between s and t, if this path has very
small probability Pr[P ], we may not be able to utilize such a path,
i.e., we cannot take such a route from s to t because of its low prob-
ability. Note that the probability of a path P is simply the product
of all its edge existence probabilities. Given this, we introduce the
ǫ-d-path from s to t to be a path P with its length no higher than d
and its probability no less than ǫ (Pr[P ] ≥ ǫ).

DEFINITION 3. (Distance Constraint ǫ-Path Reachability)

I
d
ǫ (G) =

(
1, if there is a ǫ-d-path from s to t in G

0, otherwise

Then, the Distance-constraint ǫ-path reachability (DCPR) in un-
certain graph G with respect to parameter d is defined as

Rd
ǫ (G) =

X

G⊑G

Id
ǫ (G) ·Pr[G] . (5)

Basically, if a possible graph G ⊑ G is considered to be distance-
constraint ǫ-path reachable from s to t, it must contain a d-path with
probability no less than ǫ (ǫ-d-path). Given this, we note that Al-
gorithm 1 (exact), Algorithm 3 (unequal sampling estimator), and
Algorithm 2 (recursive sampling estimator) all can be easily ex-
tended to handle the DCPR query. Basically, a straightforward test
can determine whether the inclusion edge list E1 contains a ǫ-d-
path or E2 contains a ǫ-d-cut (defined similarly as d-cut) and these
algorithms can easily adopt to the new test condition. More specif-
ically, we can simply extend FindDPath to incorporate the addi-
tional constraint for the path probability. Thus, we can see that our
approaches can be extended to the more constrained DCPR query.
Finally, we note that the estimation accuracy results (Theorem 1
and 2) also hold for the new queries.

562


