
Supporting Keyword Search in Product Database: A
Probabilistic Approach

Huizhong Duan1, ChengXiang Zhai2, Jinxing Cheng3, Rohit Kumar4

University of Illinois at Urbana-Champaign1,2

Walmart Labs3,4

{duan91, czhai2}@illinois.edu, {jim3, rohit4}@walmartlabs.com

ABSTRACT
The ability to let users search for products conveniently in
product database is critical to the success of e-commerce.
Although structured query languages (e.g. SQL) can be
used to effectively access the product database, it is very
difficult for end users to learn and use. In this paper, we
study how to optimize search over structured product en-
tities (represented by specifications) with keyword queries
such as “cheap gaming laptop”. One major difficulty in
this problem is the vocabulary gap between the specifica-
tions of products in the database and the keywords people
use in search queries. To solve the problem, we propose
a novel probabilistic entity retrieval model based on query
generation, where the entities would be ranked for a given
keyword query based on the likelihood that a user who likes
an entity would pose the query. Different ways to estimate
the model parameters would lead to different variants of
ranking functions. We start with simple estimates based on
the specifications of entities, and then leverage user reviews
and product search logs to improve the estimation. Multi-
ple estimation algorithms are developed based on Maximum
Likelihood and Maximum a Posteriori estimators. We eval-
uate the proposed product entity retrieval models on two
newly created product search test collections. The results
show that the proposed model significantly outperforms the
existing retrieval models, benefiting from the modeling of
attribute-level relevance. Despite the focus on product re-
trieval, the proposed modeling method is general and opens
up many new opportunities in analyzing structured entity
data with unstructured text data. We show the proposed
probabilistic model can be easily adapted for many interest-
ing applications including facet generation and review an-
notation.

1. INTRODUCTION
In e-commerce, being able to let users explore the inven-

tory conveniently has become a necessary and critical service
for online retailers. Usually, the product inventory is stored

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 14
Copyright 2013 VLDB Endowment 2150-8097/13/14... $ 10.00.

Table 1: Example laptop database

Brand Hard Drive Graphics Blu-ray
HP 750G Radeon HD 7690M XT No
Dell 782G NVIDIA N13P-GS Yes
Acer 500G Intel HD No
Asus 128G UMA No
Acer 500G Radeon HD 7640G Yes
Asus 750G Intel HD Graphics 3000 No
Sony 640G Intel HD Graphics 4000 No

in a structured/semi-structured database, where each entry
is an entity representing a particular product and each col-
umn describes an aspect of the product. Table 1 shows an
example database of laptops. In this example, we have seven
entities and four attributes. Each attribute may have one or
more values. We refer to each attribute-value pair as a spec-
ification (abbr. spec). Each entity is therefore represented
by a set of specifications (specs). Traditionally, such data
storage can be conveniently accessed by structured queries
(e.g. SQL). For example, the query

select * from laptop where hard-drive > 500G and blu-ray
= “Yes”
searches for laptops that have a large hard disk and blu-ray
player. However, end users rarely understand the semantics
of such structured queries, and even for a user who is familiar
with the query language, it is still a challenge to construct ef-
fective queries due to the lack of knowledge of the data. For
example, to search for laptops with dedicated graphics cards,
we may have to write a long query listing all types of graph-
ics cards except those integrated ones. It is thus necessary
to allow users to search for products using keyword queries
to express their preferences. Unfortunately, such natural
language keyword queries do not clearly specify which prod-
ucts should be returned, thus making it rather challenging
to accurately rank product entities so that highly relevant
products would be ranked on the top. Traditional methods
based on keyword matching are unlikely to work well due to
the vocabulary gap between the product specifications and
the keywords people use in search queries. Indeed, how to
optimize ranking of product entities in response to a keyword
preference query has not been well studied in the existing
work and is largely an open research question. (See Section
2 for more details.)

As repeatedly shown in many other information retrieval
(IR) tasks, the accuracy of a search system is largely de-
termined by the soundness of the retrieval model adopted.

1786

The lack of a sound retrieval model for product ranking,
thus, has hindered the progress in optimizing the ranking
accuracy of keyword search in product database. The main
goal of our work is thus to develop a sound general proba-
bilistic model for product entity retrieval that can be used in
all keyword-based product entity search engines to optimize
ranking accuracy. Since probabilistic retrieval models have
enjoyed much success for ad hoc text retrieval tasks and can
be well justified theoretically based on the probability rank-
ing principle [24], and the query likelihood retrieval model1,
which can be derived based on probability ranking principle
using query generation decomposition [18], is quite effective
[22, 26], we follow a similar process of probabilistic reason-
ing, and propose a novel probabilistic model for product
entity retrieval based on query generation.

In the proposed model, ranking is primarily based on the
probability that a user interested in an entity will pose the
query. The model attempts to simulate the query formula-
tion process of a user and score each entity e for a query q
based on the conditional probability p(q|e) which captures
the likelihood that a user who likes entity e would use query
q (to retrieve entity e). Essentially, we associate with each
candidate entity a hypothesis “user likes this entity” , and
use the observed query q as evidence to infer which hypoth-
esis is true (equivalently which entity is liked by the user).
The posterior probability of each hypothesis (equivalently
each entity) can then be used for ranking product entities
for a given query. Such a model can naturally incorporate
prior preferences over product entities into ranking in addi-
tion to modeling how well an entity matches a query; it can
also naturally separate the two subtasks, i.e., entity type
matching and entity preference scoring. As a first step in
studying probabilistic models for product entity ranking, in
this paper we focus on studying the second subtask of prefer-
ence scoring. This is mainly because many existing product
retrieval systems allow a user to choose a product category
(which is quite easy for a user to do) in addition to entering
keyword preferences, thus the main challenge in improving
such a system is to improve the preference modeling. Natu-
rally, an important future work would be to also study the
orthogonal problem of entity type matching using the pro-
posed general probabilistic framework.

A key component in our model from the perspective of
preference scoring is to model the probability of using a word
w in a query by a user who likes entity e, i.e., how we “gen-
erate” a query word from an entity. We propose to refine
this component based on the attributes of product entities,
which roughly models the following generation process of a
query. A query is generated by repeatedly sampling a word
as follows. A user who likes entity e would first sample an at-
tribute to query according to a specification selection model
p(s|e) where s is a spec of e, and then sample a word w from
an attribute-specific unigram language model p(w|s). Such
a decomposition allows us to model a user’s preferences at
the attribute level.

Different ways of estimating each component model will
lead to different variants of ranking functions. We propose
and study several ways to estimate the proposed model,

1In the IR literature, such a probabilistic model is often re-
ferred to as “language modeling approach” or a “language
model”, emphasizing the modeling of text data with a prob-
abilistic model.

leveraging the product specifications as well as the associ-
ated text data such as product reviews and logged search
queries. In particular, in contrast to the existing way of
using a text description as a whole for ranking entities, we
treat text data in a novel way by learning attribute-specific
language models from it, which can then be used to improve
ranking accuracy for product entity retrieval.

Since product entity retrieval has not been well studied,
there is no public available test collection that we can use for
evaluation. To address this challenge, we created our own
test collections from two major e-commerce systems. We run
comprehensive experiments to evaluate the proposed mod-
els. Our experimental results show that the attribute-level
modeling of relevance, enabled by the proposed model, is
more effective than the baseline approaches which straightly
model relevance at the entity level. Experiments also show
that the proposed model can effectively leverage review and
search log data to significantly improve product ranking ac-
curacy, and as in the case of text retrieval, smoothing of the
language models is critical and a robust estimate based on
interpolation of the proposed model with entity-level lan-
guage model works the best on our datasets.

Although the probabilistic model introduced in this paper
is primarily proposed for the purpose of improving prod-
uct entity retrieval, it also serves as a general approach for
modeling structured/semi-structured entity data (e.g. prod-
uct specifications) coupled with unstructured text data (e.g.
user reviews). The model naturally leads to many other
interesting applications besides supporting keyword search.
We explore the use of the proposed model in two interesting
applications: facet generation and review annotation, and
demonstrate the effectiveness with promising results.

The main contributions of this paper are:

1. Probabilistic model for entity ranking: We pro-
posed the first probabilistic model for ranking product
entities based on how well they match a user’s key-
word preference query which goes beyond the existing
naive “black box” modeling of relevance in product
entity ranking and models relevance in more detail at
the level of attribute preferences. Although we only
studied the model for product search in this paper,
the proposed model is actually general and can be po-
tentially applicable to ranking of any type of entities
in response to keyword queries expressing preferences
on multiple attributes of an entity.

2. Learning attribute-level language model: We pro-
posed to adapt probabilistic topic model in a novel
way to model any associated text data and learn from
such data a set of attribute-level language models,
which can not only improve accuracy of product rank-
ing for keyword queries, but also support many other
important applications such as facet generation and
review annotation. We also proposed and studied mul-
tiple strategies for incorporating prior knowledge and
smoothing to further improve the accuracy and robust-
ness of the model.

3. Large Scale Evaluation of multiple product en-
tity ranking functions: We created two datasets
for evaluating keyword search in product databases.
Both datasets are prepared by extracting the popular
categories from major e-commerce systems. We made

1787

a systematic comparison of multiple variants of the
proposed general probabilistic model, and found that
going beyond the entity-level “black box” modeling of
relevance to achieve attribute-level modeling of rele-
vance is important and can significantly improve rank-
ing accuracy, and that text data such as user reviews
and logged queries can be effectively leveraged using
the proposed probabilistic model to improve product
entity ranking.

4. Exploring novel applications with the proba-
bilistic model: Beside supporting keyword search,
we also explored the use of the proposed probabilis-
tic model in novel applications for entity retrieval and
review mining. We found that our model can be eas-
ily adapted for many different purposes including facet
generation and review annotation, and achieved promis-
ing results. It is shown that the probabilistic model we
proposed is general and can lead to many interesting
studies in analyzing and mining structured entity data
coupled with unstructured text data.

2. RELATED WORK
There have been extensive study of supporting keyword

queries in databases, but most of the work assume that the
returned results are a set of tuples that match all the key-
words (see, e.g., [17, 1, 16]) without tackling the important
problem of modeling relevance, which is critical for a prob-
lem such as product entity search. Standard IR models have
been adapted to rank objects in databases (e.g., [15]), but
the application is a straightforward use of existing retrieval
models to score each single attribute, thus assuming the rel-
evance definition implied in a traditional IR model. Liu et
al. adapted existing IR model and optimized it for returning
results assembled from joining tuples from multiple tables
[21]. Demidova et al. proposed an incremental query con-
struction approach based on keyword queries by iteratively
obtaining feedback from users [9]. A main focus of this line
of work is to deal with complex schema of the database and
join tuples from different tables. It has not addressed the
special notion of relevance in product search where we must
model preferences of users.

Another major limitation of these previous work on sup-
porting keyword queries is that they have mainly focused
on lexical level of relevance. For instance, relevance is de-
termined by matching keywords with different attributes of
the entity. In this case, queries such as “radeon hd graphics
laptop” may work reasonably well, but “laptop with dedi-
cated graphics card” will clearly not work. As the method
depends on the description of the entity, keywords that are
not in the description cannot be matched well. This prob-
lem is commonly known as the “ vocabulary gap”. Some
work have attempted to go beyond this simple notion of rel-
evance and applied probabilistic models in IR to database
object ranking [6], but the focus was on leveraging workload
data to improve estimation of probabilistic models, and the
queries considered are restricted to structured queries rather
than plain natural language keyword queries as we address
in the paper. Integration of IR and database search has been
considered in some previous work, particularly in develop-
ing probabilistic models (see, e.g., [10, 11, 12]). A main goal
of this line of work to extend standard relational algebra

in such a way that it can handle probabilistic weights re-
quired for performing IR-style ranking, thus they have not
addressed how to optimize ranking of database objects for
unstructured keyword preference queries.

A significant amount of work has been done on XML re-
trieval, which is also related to our work in that the docu-
ments dealt with have weak structures and keyword queries
are handled. A comprehensive review of the work in this
line can be found in [19]. However, there are many impor-
tant differences between XML retrieval and product entity
retrieval. First, the unit of retrieval in XML retrieval is not
clearly defined, making it a challenge to rank variable units.
However, in product search, the units are very well defined
as objects in the database. Second, while XML retrieval also
deals with structured documents, the fields are not as well
defined in the case of entity attributes. Third, the queries in
XML retrieval tend to refer to structures whereas in prod-
uct search that we are considering in this paper, the queries
are pure keyword queries similar to those for Web search.
Finally, the notion of relevance has a unique and different
interpretation in product search, i.e., a relevant entity ob-
ject is one whose attribute values match the preferred at-
tribute values of a keyword query. A more general problem
of XML retrieval is graph search. The problem is considered
more difficult as it does not assume any schema or hierar-
chical property. Effort has been made to utilize the graph
structure to optimize the efficiency and accuracy of keyword
search on graphs [14]. But similar to XML retrieval, this line
of work differs distinctively from our work in problem setup
and research focus. Our work is also different from the en-
tity retrieval problem in the form of expert finding [2] or
entity search on the Web [25, 3, 8, 7] as we study explicitly
defined entities with well organized structures.

Our work is also related to recent work on leveraging re-
view data for ranking entities [13], in which the reviews as-
sociated with each entity are simply used as text represen-
tation of an entity, and keyword queries would be matched
with these reviews directly to rank entities. Such an ap-
proach has ignored the attribute value descriptions of prod-
uct entities completely, thus they do not offer any formal
model for ranking product entities in a database with prod-
uct specifications. Since it solely relies on product reviews, it
would suffer from the problem of data sparsity as reviews are
only available for some product entities, and even fewer of
them have enough content for estimating an accurate model.
In contrast, we leverage reviews as well as search queries as
supplementary data to improve estimation of probabilistic
models that would otherwise have to be based on product
specifications only.

There are also some studies on e-commerce related appli-
cations based on product search log mining. Li et al. pro-
posed a semi-supervised method trained with search queries
and matched products for tagging query keywords with prod-
uct meta-data [20]. Pound et al. studied facet discovery by
mining a search log that contain structured product infor-
mation [23]. These work are application oriented and utilize
task specific mining heuristics. In comparison, our work in
this paper is focused on optimizing the keyword search ac-
curacy for product databases. The model we use is general
for modeling structured entities for search.

3. PROBABILISTIC MODELS FOR RANK-
ING PRODUCT ENTITY

1788

From the perspective of information retrieval, the problem
of keyword search in product database (i.e. product entity
retrieval) is related to several other retrieval tasks, but is
unique in many ways. First, it is different from a regular
text retrieval problem (e.g., ordinary Web search) in that
the “documents” are product entities, which are very well
structured and that the relevance of a product entity to a
query is primarily based on how well the attribute values
(i.e. specifications) of the product match the preferences of
the user expressed in the query. This calls for fine-grained
modeling of relevance at the attribute level. Second, it is
also different from the entity retrieval problem in the form
of expert finding [2] or entity search on the Web [8, 7] where
the data assumed available are free text data and informa-
tion extraction techniques are often used to extract relevant
entities. Third, it is different from XML retrieval in that
the schema for the entity database is generally assumed to
be fixed, while the queries are keyword preference queries
as opposed to the more structured XML queries. Finally, as
a special case of keyword search on databases, our problem
formulation has a clearly defined unit for retrieval and em-
phasizes on modeling relevance at a finer level to satisfy the
preferences expressed in fuzzy keyword queries.

While many product search systems exist on the Web,
there has been surprisingly little research on developing gen-
eral product entity retrieval models for optimizing ranking
accuracy in this special, yet important retrieval task. As
was shown in other search tasks, developing computational
retrieval models to model relevance accurately is the key to
optimizing ranking accuracy in a search task.

To systematically optimize accuracy for product entity
retrieval, we propose a novel general probabilistic model
adapted the general idea of query likelihood retrieval model,
study various ways to refine the model and estimate the com-
ponent probabilities, and evaluate multiple specific product
entity ranking functions obtained through using different
estimation methods. Below we first present the proposed
probabilistic entity retrieval model. Although our main mo-
tivation for developing this model is to optimize product en-
tity retrieval, the model is actually general and potentially
applicable to any entity retrieval problem where keyword
queries are used to express preferences on various attributes.

3.1 Probabilistic Entity Ranking Based on Query
Generation

Formally, we are given a set of entities E. Each entity e
in E is described by a list of specifications Se:

Se = {s|s ∈ S} (1)

where each specification s = (as, vs) is an attribute-value
pair represented by an attribute name as (e.g. “brand”)
and a value vs (e.g. “dell”), S is the set of all possible
attribute-value pairs. Given a user entered keyword query
q, our task is to rank the entities in E according to how
likely they will satisfy the user’s preferences encoded in q.

Following the derivation of the query likelihood retrieval
model in [4], we model the relevance of an entity with con-
ditional probability p(e|q), which can be interpreted as the
posterior probability that entity e is liked by the user after
we observe the user’s query q. With Bayes rule, we have:

p(e|q) =
p(q|e) · p(e)

p(q)
∝ p(q|e) · p(e) (2)

Since p(q) is only dependent on the query, it can be ig-
nored for the purpose of ranking entities. Therefore, the
ranking function only depends on two component probabil-
ities. The first is p(e), which is the prior probability that
entity e is liked by a user (the term “prior” can be inter-
preted as our belief about the relevance of entity e before
we even see a query). Intuitively, this prior probability may
prefer a popular entity to a non-popular one. The second is
p(q|e), which is the likelihood that we would observe query
q if e is indeed relevant (i.e., liked by the user). This con-
ditional probability can capture how well entity e matches
the query q in the sense that if a user likes entity e, the user
would likely pose a query matching the attribute values of
entity e. The posterior probability of relevance p(e|q) can be
regarded as our updated belief about the relevance of entity
e after observing the query q; ranking based on this pos-
terior probability would naturally prefer an entity that has
a high prior probability as well as matches the given query
well.

From retrieval perspective, the inclusion of a prior prob-
ability p(e) naturally enables us to incorporate any query-
independent factors into our ranking function (e.g. popular-
ity statistics of products). In this paper, however, we do not
assume any knowledge about the entities, thus we simply as-
sume a non-informative (uniform) prior. Our ranking func-
tion would then boil down to ranking solely based on p(q|e),
which is essentially the query likelihood retrieval function
which has proven quite effective for regular text retrieval
[22, 26]. However, the challenge is now how to further refine
p(q|e) so that we can accurately model the special notion of
relevance in product search.

Conceptually, we can refine p(q|e) by modeling the pro-
cess of query formulation of users. Imagine a user likes an
entity e, and we would examine the question how such a
user would formulate a query in order to retrieve entity e.
Intuitively, the user would have to specify two components
in the query: 1) the entity type (e.g., “laptop”), and 2)
preferences on attribute values for the target entity (e.g.,
“small”, “cheap”). We can thus assume our query has two
parts correspondingly, i.e., q = (qt, qp), where qt is a term
denoting the desired entity type and qp is a keyword query
expressing preferences on attribute values. A user’s choice
of qt is logically independent of the preferences qp. Thus we
have p(q|e) = p(qt, qp|e) = p(qt|e)p(qp|e). That is, our task
now is to model separately how a user expresses the desired
category of entity and how a user expresses preference of
values on each attribute.

While in general, the selection of entity category may also
be uncertain, in virtually all real applications of product
search, the categories of all the products in a database are
usually known. Indeed, a user is often asked to select a cate-
gory of products in addition to entering preference keywords.
That is, p(qt|e) is no longer uncertain in most applications
and we have p(qt = c|e) = 1 if c is the category of e, and
p(qt = c|e) = 0 for all other categories. The consequence of
this assumption is that we would only consider entities of the
same category as the category selected by the user (since all
other entities would have a zero probability for p(qt|e), thus
also a zero posterior probability p(e|q)). In the following,
we therefore focus on discussing how we further decompose
p(qp|e) and estimate the model. We want to stress, though,
that our proposed model can easily accommodate alterna-

1789

tive ways of refining p(qt|e) (e.g., to accommodate inexact
category matching based on ontology).

Again, we refine p(qp|e) by exploring how a user expresses
preferences if the user likes entity e. Intuitively, if a user
likes entity e, the user must have liked some of the spec-
ifications of e. Thus, it is reasonable to assume that the
user would formulate a preference query by first selecting
an interesting specification of e and then choosing appropri-
ate words to describe his/her preference on the value of the
chosen specification. That is, the probability that a user,
who likes entity e, would use word w in the query is given
by

p(w|e) =
∑
s∈S

p(w|s)p(s|e) (3)

where p(w|s) is the unigram language model probability that
a user would use word w in the query if the user likes speci-
fication s, satisfying the constraint

∑
w∈V p(w|s) = 1. Nat-

urally, p(s|e) captures the intensity that users are interested
in spec s, as opposed to other specs of the entity. It satisfies∑

s∈S p(s|e) = 1.
For example, if e is well known as a cheap small laptop,

then we could assume that both p(“size = small”|e) and
p(“price = under $250”|e) are reasonably high, likely higher
than other specifications on “RAM” or “warranty”. Also, we
would expect the language model conditioned on the spec-
ification “(size = small)” would give higher probabilities
to words such as “small”, “portable”, or “lightweight” than
other words such as “fast” or “powerful”.

Thus the probability of generating a multiword preference
query qp based on entity e would be

p(q|e) =
∏
w∈V

[
∑
s∈S

p(w|s)p(s|e)]c(w,q) (4)

where c(w, q) is the count of word w in q. Note that for
convenience, here we have dropped the subscript p in qp
and simply use q to denote preference query qp since there
is no concern of ambiguity.

Clearly, our model allows a user to include preferences on
multiple attributes in a single query as it should. Intuitively,
the model would favor those entities with attribute values
whose preference language model can explain the preference
words in the query well, effectively capturing the relevance
criterion for product ranking, i.e., ranking product entities
whose attribute values match the user’s preferences in the
query well on the top.

To avoid underflow caused by multiplication of small val-
ues, we can score an entity based on the log-likelihood of the
query given an entity, which leads to the following general
scoring function for product entity ranking:

score(q, e) = log p(q|e) =
∑
w∈V

c(w, q) log
∑
s∈S

p(w|s)p(s|e)

(5)
Since in general, the available data for model estimation

would be limited, appropriate smoothing is necessary to
avoid zero probabilities. To do this, we assume that there ex-
ists a “generic specification” (sg) whose corresponding spec-
ification preference language model is a general background
language model θB that would give a non-zero probability
to every word (token) in our specification database. By al-
lowing such a generic specification to be chosen potentially
for every entity, we can ensure that our estimated models
would not assign zero probability to any query word that

occurs in our database. Specifically, we can assume that
with probability λ, the user would choose this generic spec-
ification when formulating the query (i.e., p(sg|e) = λ), and
thus have

score(q, e)

=
∑
w∈V

c(w, q) log
[
λp(w|θB) + (1− λ)

∑
s∈S

p(w|s)p(s|e)
]

(6)
The background language model θB can be estimated based

on normalized word counts in the entire database.
It is now clear that in order to make such a general model

actually work for product ranking, we must be able to esti-
mate the following two component models:

1. specification selection model (p(s|e)): this is the
probability that a user who likes entity e would include
a preference on the specification s in the query.

2. specification preference language model (p(w|s)):
this is the probability that a user would use word w
in the query to describe a preference if the user likes
specification s.

By exploring different ways of estimating these two proba-
bilities, we can derive many interesting instantiations of this
general model, which would lead to distinct ranking func-
tions. In this sense, our model not only provides a theoreti-
cal foundation for optimizing product entity search, but also
serves as a constructive road map for exploring many inter-
esting ranking functions. In the following, we will first dis-
cuss how to estimate these component models based solely
on the product specifications, and then we study how to
leverage the available text data for product entities to solve
the vocabulary gap problem and improve the model estima-
tion.

3.2 Model Estimation Based on Entity Speci-
fications

As previously stated, the key question in model estimation
is to estimate the preference selection probability p(s|e) and
preference language model p(w|s). Without assuming any
further knowledge or search log data available, we can only
use the product specification data stored in the database to
estimate our model.

Let us first look at the specification selection probability.
Indeed, without additional knowledge, it is very difficult to
guess which attributes are more interesting to a user who
likes entity e. Therefore a conservative estimate would be
to assume each attribute of entity e is equally likely to be
selected. We refer to this estimate the
Uniform Specification Selection (USS):

p(s|e) =

{
1/|Se| s ∈ Se

o otherwise
(7)

Clearly, USS is a coarse estimation. As an alternative
estimate, rather than assuming a uniform posterior distri-
bution, we assume a uniform prior p(s) = 1/|S|u, where |S|u
is the count of unique specs in S. Then we can derive the
new estimate,
Uniform Prior Selection (UPS):

p(s|e) =
p(e|s)p(s)∑

s′∈S p(e|s′)p(s′)
=

p(e|s)∑
s′∈S p(e|s′)

(8)

1790

where p(e|s) is assumed to be uniform distributed over all
the entities containing spec s, and zero otherwise:

p(e|s) =

{
1/|Es| e ∈ Es

o otherwise
(9)

where Es is the set of entities that contain spec s.
In effect, this estimate is similar to the Inverse Document

Frequency (IDF) used in document retrieval. A specification
unique to entity e would be more likely chosen by a user to
express a preference in the query, at least more likely than
a very popular feature that is shared by many entities.

For the preference language model p(w|s), a reasonable
estimate would be to concatenate the attribute name and
value into a short text description and normalize the counts
of words in such a text description. That is,
Attribute-Value Text:

p(w|s) =
c(w, s)∑
w c(w, s)

(10)

where c(w, s) is the count of word w in the concatenated
text description of specification s.

These estimates can be plugged into our general entity
ranking model to obtain different specific ranking functions,
which we will evaluate later in the paper.

3.3 Improve Estimation by Leveraging Asso-
ciated Text Data

The estimators discussed above are based solely on the
entity database, which make them general. However, as the
text data in the entity database is quite limited, these es-
timates would unlikely be accurate in capturing users’ lan-
guage models. To solve the problem of vocabulary gap, we
propose to leverage the user generated text data to improve
the estimation of our model. The most useful data is the
search log of product search engine, where we can associate
user queries with entities by looking at user engagement be-
havior. However, this requires a product search engine that
have already works reasonably well and moreover, the search
log data is usually proprietary and thus can only be lever-
aged inside industry labs. User reviews, on the other hand,
are public, easy to obtain and does not have any prerequi-
site on search engines. Indeed, product reviews have become
increasingly available on the Web. They are composed by
users and is thus a homogenous datasource of search queries.

In this paper, we propose a general method for taking
advantage of any kind of text data associated with prod-
uct entities to improve keyword search in product database,
including both logged queries and user reviews, by treat-
ing them as data samples generated from the models of the
corresponding entities.

3.3.1 A Mixture Model of Review Text Data
Without loss of generality, let us consider a “training set”

(for our model) composing of a set of entities E and a set
of text descriptions R. Each entity e ∈ E is associated with
a text based description re ∈ R. If more than one such de-
scriptions are available for an entity, we can combine them
to form a long description if they are of the same type, or
use them separately to estimate parallel models if they are
different. Our key insight in leveraging text descriptions
for estimating both the specification selection model and
the preference language model is that we can assume the

text associated with entity e, re, is generated based on en-
tity e through a similar generation process of an expected
query. For previous queries that resulted in clicking the en-
tity, this is obvious; for user reviews, we assume that when
a reviewer writes a review, the reviewer would first sample
a specification of the entity to discuss in the review, and
then sample words discussing the selected corresponding at-
tribute and value. Formally, the log-likelihood of observing
text description re is thus:

log p(re|e)

=
∑
w∈V

c(w, re) log
[
λp(w|θB) + (1− λ)

∑
s∈S

p(w|s)p(s|e)
]

(11)
We can then use the Maximum Likelihood estimator to es-

timate both the specification selection model p(s|e) and the
specification preference language model p(w|s) by maximiz-
ing the following likelihood function of the entire dataset:

F =
∑
e∈E

∑
w∈V

c(w, re) log
[
λp(w|θB)+(1−λ)

∑
s∈S

p(w|s)p(s|e)
]

(12)
To do so we employ an Expectation-Maximization (EM)

algorithm. In the E-step, we compute the contribution of
each specification in generating each word in the text data:

p(s|w, e) =
p(w|s)p(s|e)∑

s′∈S

p(w|s′)p(s′|e)
(13)

p(θB |w, e) =
λp(w|θB)

λp(w|θB) + (1− λ)
∑
s∈S

p(w|s)p(s|e)
(14)

In the M-step, we re-estimate the model parameters:

p(s|e) =

∑
w∈V

c(w, re)(1− p(θB |w, e))p(s|w, e)∑
s′∈S

∑
w∈V

c(w, re)(1− p(θB |w, e))p(s′|w, e)
(15)

p(w|s) =

∑
e∈E

c(w, re)(1− p(θB |w, e))p(s|w, e)∑
w′∈V

∑
e∈E

c(w′, re)(1− p(θB |w′, e))p(s|w′, e)
(16)

where V is the vocabulary set, c(w, re) is the count of word
w in re.

It is important to note that p(s|e) should be non-zero only
when s ∈ Se. That is, when selecting attribute specifica-
tions to generate words, we can only select from those valid
specifications for the particular entity e, and for different
entities, this “feasible” set of specifications would generally
be different (since products differ from each other on at least
one attribute). We can ensure this property by initializing
p(s|w, e) in the following way:

p(s|w, e) =

{
1/|Se| s ∈ Se

o otherwise
(17)

It is also worth noting that the background language model
θB is a necessary component in the estimation in order to
ensure the learned language models p(w|s) are discrimina-
tive.

1791

3.3.2 Maximum a Posterior (MAP) Estimation of the
Mixture Model

One problem with the MLE is that the EM algorithm can
be easily trapped in local maxima. To alleviate this issue, we
need to provide some “guidance” to the estimator. Indeed,
in practice, we usually have some prior knowledge of the
language people use to describe certain attributes of entities.
For instance, we expect to see words such as “cheap” and
“expensive” when people talk about “price”. If such prior
knowledge can be incorporated into the estimator, it can
guide the algorithm to find more accurate models.

To do this we employ Maximum a Posterior (MAP) esti-
mator. We assume the knowledge is given in the same for-
mat as our model, and consider them as conjugate priors.
Specifically, we use p(w|ã) to denote the prior probability of
using word w to describe attribute a, reflecting our belief in
the language people use in general. We then maximize the
posterior probability of the model. This is done by applying
Dirichlet prior to Equation 16:

p(w|s)

=

µp(w|ãs) +
∑
e∈E

c(w, re)(1− p(θB |w, e))p(s|w, e)

µ+
∑
w′∈V

∑
e∈E

c(w′, re)(1− p(θB |w′, e))p(s|w′, e)

(18)

where as is the attribute (name) of spec s.
Generating Prior Knowledge. Clearly, it is infeasible to
manually create all priors. To automatically discover such
knowledge, we employ a co-occurrence analysis algorithm.
More specifically, we analyze the co-occurrences of attribute
names and all keywords in the text data. We use normalized
pointwise mutual information (NPMI) [5] to compute the
pseudo counts. NPMI for word w and attribute a is defined
as:

in(w, a) =
log p(w,a)

p(w)p(a)

− log p(w, a)
=

log N·c(w,a)
c(w)c(a)

log N
c(w,a)

(19)

where c(w) and c(a) are counts of sentences that word w
and (the name of) attribute a appear, respectively; c(w, a)
is the count of sentences that w and a co-occur; N is the total
number of sentences in the text data. It is worth noting that
an attribute name could be a multi-word phrase. Therefore,
we allow partial counts when dealing with occurrences. For
instance, if a sentence contains word “screen” but not “size”,
we count it as 1/2 times of occurrence for attribute “screen
size”.

One nice property of NPMI is that its range of values
is [−1,+1]. The upper bound and lower bound indicate
perfect positive and negative correlation, respectively; value
0 indicates complete independence. We only keep words
that have positive correlation to the attributes:

i′n(w, a) =

{
in(w, a) in(w, a) > 0

o otherwise
(20)

Then we compute p(w|ã) by normalizing the above con-
currence measure over all the words:

p(w|ã) =
i′n(a,w)∑

w′∈V i
′
n(a,w′)

(21)

3.3.3 Smoothing and Interpolation

While the estimated p(s|e) and p(w|s) can be directly
plugged into the general ranking model, the specification
selection model cannot be used for “unseen” entities that
are not associated with any text data, because the above
estimation methods do not estimate p(s|e) for them. One
way to circumvent this issue is to “back off” to p(s) for these
entities, where p(s) is computed as:

p(s) =
∑
e∈E

p(s|e)p(e) (22)

With the assumption of uniform distribution of p(e), this
back-off model can be easily computed based on the learned
parameters.

An even better solution is to combine these estimates with
the estimates discussed in Section 3.2 through interpolation.
In general, such an interpolation would allow us to utilize all
the available evidence and has been shown to be an effective
strategy in our experiments.

Note that given the text data, we could also build a lan-
guage model directly for each entity. Indeed, such a “black-
box” strategy could give us a query generation model (i.e.,
p(w|e)) directly, which we can use to compute the likeli-
hood of a query q conditioned on entity e, thus allowing us
to rank these entities that have text data. Unfortunately,
the model estimated using this strategy can only be used
to rank entities that have associated text data. In other
words, this model is not generalizable. In contrast, our pro-
posed mixture model above enables us to learn generalizable
component models since p(w|s) can be used for ranking any
product entities with specification s. (Clearly such products
do not have to have their own reviews/queries). However,
for an entity with sufficient text data, the blackbox strat-
egy may help alleviate the potential errors introduced by
attempting to infer the latent specification selection pro-
cess. Thus, a combination of this strategy with the mixture
model estimation can potentially improve the robustness of
the retrieval model, which is confirmed in our experiments.

3.4 Indexing and Search
With the estimated model parameters, we can use Equa-

tion 6 to rank product entities given any query. However,
due to efficiency concern, we usually cannot afford to score
every product entity for each query. Therefore, we need
to build an indexing structure to allow the most promising
candidate to be retrieved efficiently.

To do so, we first aggregate the specification selection
model and the preference language model offline and com-
pute a multinomial word distribution for each product en-
tity:

p(w|e) =
∑
s∈S

p(w|s)p(s|e) (23)

Then we threshold p(w|e) to get a set of index words for
each entity:

We = {w|p(w|e) > σ}

That is, we drop the binding between a term and an entity
if we are not confident enough, in order to avoid unnecessary
computation wasted on non-promising candidates.

We then build inverted index for words and product enti-
ties, based on We and p(w|e). In the meanwhile, we rewrite
Equation 6 in the same way as in classic language modeling

1792

approach, leading to the following scoring function:

score(q, e) =
∑

w∈q∩We

c(w, q) log
[
1 +

(1− λ)p(w|e)
λp(w|θB)

]
+ αq

∝
∑

w∈q∩We

c(w, q) log
[
1 +

(1− λ)p(w|e)
λp(w|θB)

]
(24)

where

αq =
∑
w∈V

c(w, q) log λp(w|θB)

is a factor only dependent on query q. Therefore it does
not affect ranking of product entities and can be omitted
in scoring. With this setup, we can efficiently retrieve the
candidates through the word-entity index and score them
for ranking.

4. EXPERIMENTS

4.1 Datasets and Evaluation Metrics
Evaluation of the proposed models is challenging since

no previous work has studied our problem setup and as a
result, there is no existing test collection that we can use for
evaluation. We thus had to construct our own datasets.

For this purpose we developed two different evaluation
datasets. The first dataset consists of a full crawl of the
“Laptop & Netbook Computers” category of Bestbuy.com2,
a popular e-commerce website for electronics. Our crawl in-
cludes all the specs and reviews of each laptop. There are
in total 864 laptops in the database; on average, each en-
tity has 44 specifications. Among these laptops, only 260
of them have user reviews. For evaluation we construct a
query set with the following procedure. We first extract a
set of simple queries by sampling “laptop” queries from a
commercial query log. We filter these queries so that each
query contains a well written descriptor on a single attribute.
Examples in this query set are “thin laptop”, “quad core
laptop”. We then use the strategy introduced by Ganesan
and Zhai [13] to develop a relatively harder query set, sim-
ulating long and comprehensive preference queries that we
expect users to enter. This is done by randomly combining
multiple descriptors from the simple queries. As discussed
in [13], because current product search engines cannot sup-
port such queries very well, it is difficult to find them in
the search log. Thus it is necessary to simulate the query
set in such a manner. An example of “difficult” query is
“large screen quad core backlit keyboard laptop”. To quan-
titively evaluate the performance of product entity retrieval,
we pool together the retrieval results from several baseline
models and our proposed models. A well trained industrial
annotator is then asked to label the pool of candidates with
5 levels of relevance. On average, 60 entities are judged for
each query. In total we obtained 40 queries with annota-
tions for this dataset. On average there are 2.8 keywords
per query, and 3.8 keywords per query for the hard queries.

The second dataset consists of several major categories in
electronics from another popular e-commerce website, Wal-
mart.com3. This includes the categories of laptop, camera,
camcorder, TV and ebook reader. In total, the database

2http://www.bestbuy.com
3http://www.walmart.com

consists of 1066 entities; on average, each entity has 14.0
specifications. Each product entity is associated with a set
of queries by thresholding the number of clicks observed in
a search log accumulated for over a year. Queries are ran-
domly sampled from commercial queries in Walmart search
engine, and are annotated in the same way as the first
dataset. In total we obtain 425 queries with annotations.
On average, each query has 2.4 keywords.

The two datasets are referred to as the Bestbuy dataset
and the Walmart dataset, and they are used to evaluate
the effectiveness of our model estimated with review data
and search log data, respectively. The evaluation is based
on the metric of Normalized Discounted Cumulative Gain
(NDCG). We use cutoff at 5, 10 and 20 as our primary
metrics. Since the first impression is usually delivered by
the top results, NDCG@5 measures the immediate satis-
faction to the users’ search. While NDCG@10 is a widely
used metric for the quality of first page results, on product
search engines, each result page usually contains more than
10 items (e.g. 15 on Bestbuy.com and 16 on Walmart.com).
This is because users are more willing to explore in product
search as compared to Web search. Therefore, we include
NDCG@20 to measure the long-range user satisfaction.

4.2 Experiment Results
Table 2 shows the comparison between the baseline mod-

els and our proposed probabilistic models that are estimated
solely based on entity specs data. LM is the baseline lan-
guage model estimated by treating all the specs of each en-
tity as a single document. Language model is a well es-
tablished model for document retrieval [22, 26]. In this
work, we use query likelihood language model with Jelinek-
mercer smoothing [26]. Another baseline method we com-
pare with is the Query Aspect Modeling (QAM) method
proposed by Ganesan and Zhai [13]. In this method, the
search query is assumed to be pre-segmented into multiple
preference queries, each covering one aspect of the prod-
uct. Then the method evaluates each of these preference
queries separately and combine the results to obtain the
ranking for the original query. The best combining method,
i.e. average score method, is implemented in our evaluation
(denoted QAM). All the other models tested are attribute-
value-based models (AM) under the same general frame-
work proposed in this paper. The spec preference language
models p(w|s) of all AM models are estimated with the
Attribute-Value Text method (see Section 3.2). AM-USS
uses Uniform Specification Selection as the estimate of spec-
ification selection model (see Section 3.2). We consider AM-
USS as another baseline system (where the estimations are
not optimized). These baseline models largely represent the
state-of-the-art methods for supporting keyword queries in
probabilistic databases based on keyword matching.

AM-UPS refines the estimation of specification selection
model by adopting the Uniform Prior Selection estimate
(Section 3.2). AM-Base-LM and AM-UPS-LM are the weighted
interpolation models with AM-Base and LM, AM-UPS and
LM, respectively. The best performance on each metric is
shown in bold font. We use †, ‡ and § to mark the models
that show statistically significant improvement on all evalu-
ation metrics over LM, QAM and AM-Base, respectively.

From the table we can see that when used alone, LM
is a relatively strong baseline compared to AM-USS. QAM
slightly improves over LM, especially on hard queries. This

1793

Table 2: Entity retrieval models based on estimation with entity specs on Bestbuy dataset

All Queries Hard Queries
NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

LM 0.542 0.574 0.612 0.579 0.636 0.701
QAM 0.546 0.577 0.616 0.588 0.642 0.707
AM-USS 0.476 0.520 0.527 0.528 0.592 0.616
AM-UPS§ 0.525 0.564 0.604 0.567 0.614 0.671
AM-USS-LM§ 0.533 0.577 0.613 0.570 0.640 0.702
AM-UPS-LM†‡§ 0.579 0.611 0.640 0.630 0.672 0.727

Table 3: Entity retrieval models based on estimation with entity specs and reviews on Bestbuy dataset

All Queries Hard Queries
NDCG@5 NDCG@10 NDCG@20 NDCG@5 NDCG@10 NDCG@20

LM 0.680 0.706 0.732 0.592 0.621 0.675
QAM 0.697 0.726 0.757 0.626 0.663 0.726
AM-Base 0.591 0.638 0.696 0.491 0.558 0.639
AM-MLE§ 0.686 0.721 0.738 0.625 0.653 0.688
AM-MAP§ 0.697 0.721 0.742 0.625 0.676 0.710
AM-Base-UPS § 0.662 0.718 0.784 0.587 0.651 0.743
AM-MLE-UPS†§ 0.698 0.736 0.797 0.637 0.682 0.764
AM-MAP-UPS†§ 0.711 0.755 0.803 0.666 0.710 0.771
AM-Base-LM§ 0.685 0.710 0.734 0.589 0.623 0.671
AM-MLE-LM†§ 0.702 0.730 0.743 0.633 0.655 0.694
AM-MAP-LM†§ 0.705 0.734 0.758 0.626 0.668 0.715
AM-Base-UPS-LM†‡§ 0.722 0.761 0.796 0.661 0.705 0.768
AM-MLE-UPS-LM†§ 0.708 0.752 0.797 0.651 0.706 0.768
AM-MAP-UPS-LM†‡§ 0.729 0.774 0.811 0.684 0.734 0.784

is in accordance with the findings in [13]. AM-UPS signifi-
cantly improves over AM-USS with the more accurate esti-
mation for specification selection. Although AM-UPS used
alone does not show improvement over LM and QAM, the
interpolated model AM-UPS-LM significantly outperforms
all three baseline methods. This verifies that the proposed
models and the traditional language modeling approach are
complementary to each other in effect. While LM method
estimates accurate language models for entities with suf-
ficient data, our model provides the generalizability with
language models estimated on the attribute level.

Table 3 shows the comparison of different methods based
on product review data. Here the LM method is estimated
with both specs and review data. AM-Base is another base-
line method, where each spec preference language model
is estimated using MLE on a long review document con-
structed by pooling together all the reviews of entities with
this spec. In fact, this is just the result of the first iteration
of our EM estimation algorithm. AM-MLE and AM-MAP
are the MLE estimate (Section 3.3.1) and MAP estimate
(Section 3.3.2) of the query generation model, respectively.
The ∗-UPS models use UPS estimate (Section 3.2) to inter-
polate with the corresponding specification selection model.
The ∗-LM models are models interpolated with general LM.
Again, we use bold font to show the best performance for
each metric. †, ‡ and § are used to mark the models that
have statistically significant improvement on all evaluation
metrics over LM, QAM and AM-Base, respectively.

From the table, we can see that LM is a stronger base-
line than AM-Base, and QAM outperforms LM on the hard
queries, which are in accordance with previous findings in

Table 2. Similarly, we also see AM-Base-LM slightly out-
performs LM. This shows that even though sometimes the
estimation is not good enough to improve the baseline lan-
guage model by itself, it still captures a different level of
relevance signals that could be used to alleviate the impact
of data sparsity.

The proposed estimation methods, i.e. AM-MLE and
AM-MAP, improve over the simple estimation method (AM-
Base) significantly. This verifies the effectiveness of the MLE
and MAP estimation. We can also see that both MLE and
MAP outperforms ML slightly, especial for the hard queries.
Between the two estimation methods, MAP estimation per-
forms slightly better than MLE. This validates the positive
effect of incorporating prior knowledge in model estimation.

The UPS interpolated models (∗-UPS) all show significant
performance boost from the original models. This is also in
accordance with our previous finding in Table 2. These find-
ings confirm that the “IDF” effect in specification selection
is indeed positively correlated with real users’ preferences.

We see improvements in almost all LM interpolated mod-
els (∗-LM) (over their base models). The best performance is
achieved by AM-MAP-UPS-LM. The results show that with
the use of advanced estimates and product review data, we
can train effective models to capture the attribute level of
relevance. Compared with the entity language model which
models a coarse level of relevance, our models are superior.
By interpolating the two types of models, we can achieve
even more robust and accurate estimates.

It is worth noting that in the evaluation, the “hard” queries
do not necessarily have lower NDCG values compared to the

1794

Table 4: Entity retrieval models based on estimation
with entity specs on Walmart dataset

NDCG@5 NDCG@10
LM 0.384 0.303
AM-USS 0.381 0.299
AM-UPS 0.392 0.308
AM-USS-LM 0.386 0.306
AM-UPS-LM 0.393 0.310

Table 5: Entity retrieval models based on estimation
with entity specs and logged queries on Walmart
dataset

NDCG@5 NDCG@10
LM 0.501 0.392
AM-Base 0.507 0.394
AM-Base-UPS 0.509 0.401
AM-MAP 0.509 0.401
AM-MAP-UPS 0.515 0.406
AM-MAP-UPS-LM†§ 0.518 0.411

“easy” queries, as NDCG is a metric normalized by the ideal
DCG value on each query.

In Table 4 and Table 5 we run similar experiments with
the Walmart dataset. Again, the experiments confirm that
UPS is a better estimate for specification selection model
p(s|e) as compared with USS. In general, the use of text
data clearly improves the search performance. The experi-
ments also confirm that the mixture model (AM-MAP-∗) is
a superior method for utilizing text data, as it outperforms
all baseline systems including LM, AM-Base and AM-Base-
UPS. We also observe that the combination of our model and
language model would always lead to a performance boost.
As in consistent with the evaluation on the Bestbuy dataset,
the best performance is achieved by AM-MAP-UPS-LM.

It is worth mentioning that although in this work we sep-
arated the product type detection from product preference
matching and focused on modeling the latter component,
the model we use can actually provide a natural solution to
product type detection, by treating product type as a special
attribute in product specification. Indeed, this method is
used in the experiments with Walmart dataset and achieved
good performance.

4.3 Search Efficiency
As discussed in Section 3.4, we can build index to ensure

the efficiency of the proposed models by computing an in-
dexing word set for each entity using threshold σ. In this
section, we study the impact of the threshold on search effi-
ciency and search accuracy. In Figure 1 we plot the average
running time (milliseconds) of AM-MAP-UPS model for dif-
ferent threshold σ. For comparison we also plot the average
running time of language model (LM). Both models are ran
on a single machine with Intel core i7 2.7GHZ processor and
8GB Ram.

We can see that our model is much more efficient than
language modeling approach in general. This is because the
learned model is able to capture the most discriminative
topical words for each entity and demote/discard the mean-
ingless general words. We also observe that both the running
time and the retrieval performance (in Figure 2) stabilized

Figure 1: Average search time for different thresh-
old σ

Figure 2: NDCG@10 for different threshold σ

after σ < 1e−4 This indicates we have included most of the
word-entity associations produced by our model.

5. OTHER APPLICATIONS
Although the query generation model is primarily pro-

posed for entity retrieval, it provides a general probabilistic
framework which could also lead to many useful applica-
tions. In this section, we demonstrate the usability of our
model by exploring two novel applications: facet genera-
tion and review annotation. We show the parameters in our
model can be easily adapted for these tasks and achieve very
encouraging results.

5.1 Facet Generation
Facet Generation is an important application for e-comme-

rce websites. Its purpose is to engage users and help them
clarify their preferences for the product search engine. To
do this, the result page of a product search system usually
provides a list of facets, i.e. attributes of products, on a
sidebar by the search results. Traditionally, the facet list
is generated by hiring experienced analysts to manually se-
lect a subset of attributes. The task is very laborious as
we need to generate facets for each category of products.

1795

Table 6: Query independent facet generation for lap-
top category

Most Popular Facets Least Popular Facets
Graphics Card ENERGY STAR Qualified
Pointing Device Multi-Carrier
Audio Built-in Webcam
Hard Drive Type Product Height
Brand Wi-Fi Built In
Computer Hard Drive Size System Bus
Operating System BBY Software Installer
Processor Green Compliance
Video Memory Color Category
Battery Life Touchscreen

Table 7: Query specific facet generation

q1: surround sound laptop
a1: Audio log p = −6.5
q2: gaming laptop
a1: Graphics Card log p = −7.3
a2: Gaming Series log p = −11.2
q3: ssd large screen laptop
a1: Computer Hard Drive Size log p = −12.5
a2: Screen Size log p = −18.1
q4: quad core blu ray laptop
a1: Graphics Card log p = −11.7
a2: Processor log p = −14.2
a3: Blu-ray Player log p = −14.4
a4: Optical Drive log p = −17.3

Moreover, the manually generated facets do not necessarily
match users’ interests and cannot reflect the change of such
interests over time.

In this section we show how we can use the parameters
of our proposed model as a building block to automatically
generate the facets based on popular interests. Besides the
traditional (query independent) facet generation, we further
show that our model can also be used for generating facets
tailored to the search intent of each query.

5.1.1 Query Independent Facet Generation
Let us use p(a) to denote the probability that a user is

interested in attribute a when searching for products. p(a)
can be computed by summing over the marginal probability
p(s) of all the specifications defined on attribute a:

p(a) =
∑

s∈{s|as=a}

p(s) =
∑

s∈{s|as=a}

∑
e∈E

p(s|e)p(e) (25)

With the assumption of uniform p(e), we can easily com-
pute p(a) from our learned models. In Table 6 we show
the most and least popular attributes for the laptop cat-
egory. The results are intuitively very meaningful, as the
attributes ranked at the top of the facet list (e.g. Graphics
Card, Audio, Hard Drive, Brand) are mostly the commonly
concerned aspects when users shop for laptop computers,
while the facets at the bottom are product features that do
not affect buying decisions very much.

5.1.2 Query Specific Facet Generation

Table 8: Sample review annotation for HP - ENVY
Spectre Ultrabook

t1: Excellent display
s: Graphics Card: Intel HD Graphics 3000
t2 : the best sound on the planet for a notebook
s: Audio: Beats Audio
t3: very fast SSD hard drive
s: Hard Drive Type: SSD (Solid State Drive)
t4: WiFi is super fast
s: Networking: Built-in 10/100/1000 Gigabit
t5: and the weight is perfect for long use on a trip
s: Pointing Device: Multitouch Imagepad
t6: Touchpad is a bit skiddish
s: Pointing Device: Multitouch Imagepad

The facets are useful for engaging users and helping users
refine their shopping preferences, but the static facets are
not very effective as they cannot capture the user intentions
in the search query. To solve this problem, we further study
query specific facet generation.

Let p(a|q) denote the probability that users are concerned
about attribute a when issuing query q. p(a|q) can be com-
puted as:

p(a|q) =
∑

s∈{s|as=a}

p(s|q)

∝
∑

s∈{s|as=a}

p(s)p(q|s)

∝
∑

s∈{s|as=a}

p(s)
∏
w∈q

[λp(w|θB) + (1− λ)p(w|s)]

(26)
Using p(a|q) as a scoring function, we can dynamically

discover the important facets for each query. Table 7 shows
the top most suggestions with their probabilities (log p(a|q))
for several example queries. In general we find our model
performs very well, especially for short queries. For all the
queries in the examples, the most related facet (i.e. at-
tribute) is ranked at the top or the second position; for
queries with multiple focuses (query q3, q4), all the related
facets are successfully discovered.

5.2 Review Annotation
Another interesting application we explore is review anno-

tation. In this task, we want to automatically detect what
feature(s) of the product each review sentence is comment-
ing on. This is done by matching the review sentences with
the specs of the corresponding product. With our learned
model, we use the conditional probability of p(s|t, e) to rank
each sentence t in the review of entity e:

p(s|t, e) ∝ p(s|e)p(t|s, e)
∝ p(s|e)

∏
w∈t [λp(w|θB) + (1− λ)p(w|s)]

(27)
Table 8 shows an example of annotated review. We can

see that despite some mistakes (e.g. sentence t5), the model
works reasonably well for the task. Indeed, we observe the
model performs very well in annotating short review sen-
tences. Such annotations can be used to better organize the
reviews and generate useful opinion summarizations.

6. CONCLUSIONS

1796

This paper is primarily focused on optimizing the accu-
racy of search for keyword queries in product database, a
very important problem not well addressed in the existing
work. We proposed a novel probabilistic entity retrieval
model based on query generation, and studied different ways
of estimating the model parameters based on entity specifi-
cation and associated text data. The proposed models were
evaluated on two newly created test set, and it was shown
that they significantly outperformed the baseline systems
representing the state-of-the-art keyword matching meth-
ods, benefiting from the modeling of relevance at the at-
tribute level. It was shown that with the combined use of
the advanced estimates and the associated text data, the
accuracy of entity retrieval can be significantly improved
from the simple estimates. A robust estimate based on the
interpolation of the attribute level language model and the
entity level language model achieved the best performance in
the experiments. The probabilistic model we proposed also
serves as a general approach for modeling structured entity
data associated with unstructured text data, as its usabil-
ity was demonstrated in several novel applications including
facet generation and review annotation.

Our work is a first step toward exploring a new family of
retrieval models for ranking entities based on keyword pref-
erence queries. An obvious future work is to further study
the generality of the model and explore the use of the model
on different kinds of entities. Our work also opens many
doors for further optimization of product search. It would
be interesting to see if other IR models can be adapted to
achieve even better performance. Another interesting direc-
tion is to study how to capture term dependencies, which
has been shown to be an important factor in IR, to enhance
our model and optimize product search. Finally, as external
knowledge bases have matured over the years, an interesting
follow-up work would be to study how such data can be in-
corporated in our model to further improve search accuracy.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational
databases. In Proceedings of ICDE 2002, 2002.

[2] K. Balog, Y. Fang, M. de Rijke, P. Serdyukiv, and
L. Si. Expertise finding. Foundations and Trends in
Information Retrieval, 6(3), 2012.

[3] K. Balog, P. Serdyukov, A. P. D. Vries, P. Thomas,
and T. Westerveld. Overview of the trec 2009 entity
track. 2009.

[4] A. Berger and J. Lafferty. Information retrieval as
statistical translation. In Proceedings of SIGIR, pages
222–229, 1999.

[5] G. Bouma. Normalized (pointwise) mutual
information in collocation extraction. Proceedings of
GSCL, pages 31–40, 2009.

[6] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for
ranking of database query results. ACM Trans.
Database Syst., 31(3):1134–1168, 2006.

[7] T. Cheng, H. W. Lauw, and S. Paparizos. Entity
synonyms for structured web search. IEEE
Transactions on Knowledge and Data Engineering,
24(10):1862–1875, 2012.

[8] T. Cheng, X. Yan, and K. C.-C. Chang. Entityrank:
Searching entities directly and holistically. In VLDB,
pages 387–398, 2007.

[9] E. Demidova, X. Zhou, and W. Nejdl. A probabilistic
scheme for keyword-based incremental query
construction. IEEE Transactions on Knowledge and
Data Engineering, 24(3):426–439, 2012.

[10] N. Fuhr. A probabilistic framework for vague queries
and imprecise information in databases. In VLDB,
pages 696–707, 1990.

[11] N. Fuhr. A probabilistic relational model for the
integration of ir and databases. In SIGIR, pages
309–317, 1993.

[12] N. Fuhr and T. Rölleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1):32–66,
1997.

[13] K. Ganesan and C. Zhai. Opinion-based entity
ranking. Inf. Retr., 15(2):116–150, 2012.

[14] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks:
ranked keyword searches on graphs. In Proceedings of
SIGMOD, pages 305–316. ACM, 2007.

[15] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient ir-style keyword search over relational
databases. In Proceedings of the 29th VLDB
conference, pages 850–861, 2003.

[16] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In Proceedings
of VLDB 2002, 2002.

[17] A. Hulgeri and C. Nakhe. Keyword searching and
browsing in databases using banks. In Proceedings of
the 18th ICDE conference, 2002.

[18] J. Lafferty and C. Zhai. Probabilistic relevance models
based on document and query generation. 2003.

[19] M. Lalmas. XML Retrieval (Synthesis Lectures on
Information Concepts, Retrieval, and Services).
Morgan and Claypool, 2009.

[20] X. Li, Y.-Y. Wang, and A. Acero. Extracting
structured information from user queries with
semi-supervised conditional random fields. In
Proceedings of SIGIR, pages 572–579, 2009.

[21] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective
keyword search in relational databases. In Proceedings
of SIGMOD, pages 563–574. ACM, 2006.

[22] J. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the ACM SIGIR, pages 275–281, 1998.

[23] J. Pound, S. Paparizos, and P. Tsaparas. Facet
discovery for structured web search: a query-log
mining approach. In Proceedings of SIGMOD, pages
169–180, 2011.

[24] S. E. Robertson. The probability ranking principle in
IR. Journal of Documentation, 33(4):294–304, 1977.

[25] A. P. D. Vries, A. marie Vercoustre, J. A. Thom,
M. Lalmas, and I. rocquencourt Le Chesnay Cedex.
Overview of the inex 2007 entity ranking track. In In
INEX 2007, pages 245–251. Springer-Verlag, 2008.

[26] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of SIGIR’2001,
pages 334–342, Sept 2001.

1797

