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ABSTRACT
Distributed storage systems for large clusters typically use
replication to provide reliability. Recently, erasure codes
have been used to reduce the large storage overhead of three-
replicated systems. Reed-Solomon codes are the standard
design choice and their high repair cost is often considered
an unavoidable price to pay for high storage e�ciency and
high reliability.

This paper shows how to overcome this limitation. We
present a novel family of erasure codes that are e�ciently
repairable and o↵er higher reliability compared to Reed-
Solomon codes. We show analytically that our codes are
optimal on a recently identified tradeo↵ between locality
and minimum distance.

We implement our new codes in Hadoop HDFS and com-
pare to a currently deployed HDFS module that uses Reed-
Solomon codes. Our modified HDFS implementation shows
a reduction of approximately 2⇥ on the repair disk I/O and
repair network tra�c. The disadvantage of the new coding
scheme is that it requires 14% more storage compared to
Reed-Solomon codes, an overhead shown to be information
theoretically optimal to obtain locality. Because the new
codes repair failures faster, this provides higher reliability,
which is orders of magnitude higher compared to replica-
tion.
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MapReduce architectures are becoming increasingly pop-
ular for big data management due to their high scalabil-
ity properties. At Facebook, large analytics clusters store
petabytes of information and handle multiple analytics jobs
using Hadoop MapReduce. Standard implementations rely
on a distributed file system that provides reliability by ex-
ploiting triple block replication. The major disadvantage
of replication is the very large storage overhead of 200%,
which reflects on the cluster costs. This overhead is be-
coming a major bottleneck as the amount of managed data
grows faster than data center infrastructure.

For this reason, Facebook and many others are transition-
ing to erasure coding techniques (typically, classical Reed-
Solomon codes) to introduce redundancy while saving stor-
age [4, 19], especially for data that is more archival in na-
ture. In this paper we show that classical codes are highly
suboptimal for distributed MapReduce architectures. We
introduce new erasure codes that address the main chal-
lenges of distributed data reliability and information theo-
retic bounds that show the optimality of our construction.
We rely on measurements from a large Facebook production
cluster (more than 3000 nodes, 30 PB of logical data stor-
age) that uses Hadoop MapReduce for data analytics. Face-
book recently started deploying an open source HDFS Mod-
ule called HDFS RAID ([2, 8]) that relies on Reed-Solomon
(RS) codes. In HDFS RAID, the replication factor of “cold”
(i.e., rarely accessed) files is lowered to 1 and a new parity
file is created, consisting of parity blocks.

Using the parameters of Facebook clusters, the data blocks
of each large file are grouped in stripes of 10 and for each
such set, 4 parity blocks are created. This system (called
RS (10, 4)) can tolerate any 4 block failures and has a stor-
age overhead of only 40%. RS codes are therefore signifi-
cantly more robust and storage e�cient compared to repli-
cation. In fact, this storage overhead is the minimal possible,
for this level of reliability [7]. Codes that achieve this op-
timal storage-reliability tradeo↵ are called Maximum Dis-
tance Separable (MDS) [32] and Reed-Solomon codes [27]
form the most widely used MDS family.

Classical erasure codes are suboptimal for distributed en-
vironments because of the so-called Repair problem: When a
single node fails, typically one block is lost from each stripe
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that is stored in that node. RS codes are usually repaired
with the simple method that requires transferring 10 blocks
and recreating the original 10 data blocks even if a single
block is lost [28], hence creating a 10⇥ overhead in repair
bandwidth and disk I/O.

Recently, information theoretic results established that it
is possible to repair erasure codes with much less network
bandwidth compared to this naive method [6]. There has
been significant amount of very recent work on designing
such e�ciently repairable codes, see section 6 for an overview
of this literature.

Our Contributions: We introduce a new family of era-
sure codes called Locally Repairable Codes (LRCs), that are
e�ciently repairable both in terms of network bandwidth
and disk I/O. We analytically show that our codes are in-
formation theoretically optimal in terms of their locality,
i.e., the number of other blocks needed to repair single block
failures. We present both randomized and explicit LRC con-
structions starting from generalized Reed-Solomon parities.

We also design and implement HDFS-Xorbas, a module
that replaces Reed-Solomon codes with LRCs in HDFS-
RAID.We evaluate HDFS-Xorbas using experiments on Ama-
zon EC2 and a cluster in Facebook. Note that while LRCs
are defined for any stripe and parity size, our experimen-
tal evaluation is based on a RS(10,4) and its extension to a
(10,6,5) LRC to compare with the current production clus-
ter.

Our experiments show that Xorbas enables approximately
a 2⇥ reduction in disk I/O and repair network tra�c com-
pared to the Reed-Solomon code currently used in produc-
tion. The disadvantage of the new code is that it requires
14% more storage compared to RS, an overhead shown to be
information theoretically optimal for the obtained locality.

One interesting side benefit is that because Xorbas re-
pairs failures faster, this provides higher availability, due to
more e�cient degraded reading performance. Under a sim-
ple Markov model evaluation, Xorbas has 2 more zeros in
Mean Time to Data Loss (MTTDL) compared to RS (10, 4)
and 5 more zeros compared to 3-replication.

1.1 Importance of Repair
At Facebook, large analytics clusters store petabytes of

information and handle multiple MapReduce analytics jobs.
In a 3000 node production cluster storing approximately 230
million blocks (each of size 256MB), only 8% of the data is
currently RS encoded (‘RAIDed’). Fig. 1 shows a recent
trace of node failures in this production cluster. It is quite
typical to have 20 or more node failures per day that trig-
ger repair jobs, even when most repairs are delayed to avoid
transient failures. A typical data node will be storing ap-
proximately 15 TB and the repair tra�c with the current
configuration is estimated around 10�20% of the total aver-
age of 2 PB/day cluster network tra�c. As discussed, (10,4)
RS encoded blocks require approximately 10⇥ more network
repair overhead per bit compared to replicated blocks. We
estimate that if 50% of the cluster was RS encoded, the re-
pair network tra�c would completely saturate the cluster
network links. Our goal is to design more e�cient coding
schemes that would allow a large fraction of the data to be
coded without facing this repair bottleneck. This would save
petabytes of storage overheads and significantly reduce clus-
ter costs.

There are four additional reasons why e�ciently repairable
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Figure 1: Number of failed nodes over a single
month period in a 3000 node production cluster of
Facebook.

codes are becoming increasingly important in coded storage
systems. The first is the issue of degraded reads. Transient
errors with no permanent data loss correspond to 90% of
data center failure events [9, 19]. During the period of a
transient failure event, block reads of a coded stripe will be
degraded if the corresponding data blocks are unavailable.
In this case, the missing data block can be reconstructed by
a repair process, which is not aimed at fault tolerance but at
higher data availability. The only di↵erence with standard
repair is that the reconstructed block does not have to be
written in disk. For this reason, e�cient and fast repair can
significantly improve data availability.

The second is the problem of e�cient node decommis-
sioning. Hadoop o↵ers the decommission feature to retire
a faulty data node. Functional data has to be copied out
of the node before decommission, a process that is compli-
cated and time consuming. Fast repairs allow to treat node
decommissioning as a scheduled repair and start a MapRe-
duce job to recreate the blocks without creating very large
network tra�c.

The third reason is that repair influences the performance
of other concurrent MapReduce jobs. Several researchers
have observed that the main bottleneck in MapReduce is
the network [5]. As mentioned, repair network tra�c is cur-
rently consuming a non-negligible fraction of the cluster net-
work bandwidth. This issue is becoming more significant as
the storage used is increasing disproportionately fast com-
pared to network bandwidth in data centers. This increasing
storage density trend emphasizes the importance of local re-
pairs when coding is used.

Finally, local repair would be a key in facilitating geo-
graphically distributed file systems across data centers. Geo-
diversity has been identified as one of the key future direc-
tions for improving latency and reliability [13]. Tradition-
ally, sites used to distribute data across data centers via
replication. This, however, dramatically increases the total
storage cost. Reed-Solomon codes across geographic loca-
tions at this scale would be completely impractical due to
the high bandwidth requirements across wide area networks.
Our work makes local repairs possible at a marginally higher
storage overhead cost.

Replication is obviously the winner in optimizing the four
issues discussed, but requires a very large storage overhead.
On the opposing tradeo↵ point, MDS codes have minimal
storage overhead for a given reliability requirement, but suf-
fer in repair and hence in all these implied issues. One way
to view the contribution of this paper is a new intermediate
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point on this tradeo↵, that sacrifices some storage e�ciency
to gain in these other metrics.

The remainder of this paper is organized as follows: We
initially present our theoretical results, the construction of
Locally Repairable Codes and the information theoretic op-
timality results. We defer the more technical proofs to the
Appendix. Section 3 presents the HDFS-Xorbas architec-
ture and Section 4 discusses a Markov-based reliability anal-
ysis. Section 5 discusses our experimental evaluation on
Amazon EC2 and Facebook’s cluster. We finally survey re-
lated work in Section 6 and conclude in Section 7.

2. THEORETICAL CONTRIBUTIONS
Maximum distance separable (MDS) codes are often used

in various applications in communications and storage sys-
tems [32]. A (k, n � k)-MDS code1 of rate R = k

n
takes a

file of size M , splits it in k equally sized blocks, and then
encodes it in n coded blocks each of size M

k
. Here we as-

sume that our file has size exactly equal to k data blocks
to simplify the presentation; larger files are separated into
stripes of k data blocks and each stripe is coded separately.

A (k, n � k)-MDS code has the property that any k out
of the n coded blocks can be used to reconstruct the entire
file. It is easy to prove that this is the best fault tolerance
possible for this level of redundancy: any set of k blocks has
an aggregate size of M and therefore no smaller set of blocks
could possibly recover the file.

Fault tolerance is captured by the metric of minimum dis-
tance.

Definition 1 (Minimum Code Distance). The min-
imum distance d of a code of length n, is equal to the mini-
mum number of erasures of coded blocks after which the file
cannot be retrieved.

MDS codes, as their name suggests, have the largest possi-
ble distance which is d

MDS

= n � k + 1. For example the
minimum distance of a (10,4) RS is n � k + 1 = 5 which
means that five or more block erasures are needed to yield
a data loss.

The second metric we will be interested in is Block Local-
ity.

Definition 2 (Block Locality). An (k, n � k) code
has block locality r, when each coded block is a function of
at most r other coded blocks of the code.

Codes with block locality r have the property that, upon
any single block erasure, fast repair of the lost coded block
can be performed by computing a function on r existing
blocks of the code. This concept was recently and indepen-
dently introduced in [10, 22, 24].
When we require small locality, each single coded block

should be repairable by using only a small subset of existing
coded blocks r << k, even when n, k grow. The following
fact shows that locality and good distance are in conflict:

Lemma 1. MDS codes with parameters (k, n� k) cannot
have locality smaller than k.

1In classical coding theory literature, codes are denoted by
(n, k) where n is the number of data plus parity blocks,
classically called blocklength. A (10,4) Reed-Solomon code
would be classically denoted by RS (n=14,k=10). RS codes
form the most well-known family of MDS codes.

Lemma 1 implies that MDS codes have the worst possible lo-
cality since any k blocks su�ce to reconstruct the entire file,
not just a single block. This is exactly the cost of optimal
fault tolerance.

The natural question is what is the best locality possible
if we settled for “almost MDS” code distance. We answer
this question and construct the first family of near-MDS
codes with non-trivial locality. We provide a randomized
and explicit family of codes that have logarithmic locality on
all coded blocks and distance that is asymptotically equal to
that of an MDS code. We call such codes (k, n�k, r) Locally
Repairable Codes (LRCs) and present their construction in
the following section.

Theorem 1. There exist (k, n � k, r) Locally Repairable
codes with logarithmic block locality r = log(k) and distance
dLRC = n � (1 + �k) k + 1. Hence, any subset of k (1 + �k)
coded blocks can be used to reconstruct the file, where �k =

1

log(k)
� 1

k
.

Observe that if we fix the code rate R = k
n

of an LRC
and let k grow, then its distance d

LRC

is almost that of a
(k, n� k)-MDS code; hence the following corollary.

Corollary 1. For fixed code rate R = k
n
, the distance

of LRCs is asymptotically equal to that of (k, n � k)-MDS
codes

lim
k!1

dLRC

dMDS
= 1.

LRCs are constructed on top of MDS codes (and the most
common choice will be a Reed-Solomon code).

The MDS encoded blocks are grouped in logarithmic sized
sets and then are combined together to obtain parity blocks
of logarithmic degree. We prove that LRCs have the opti-
mal distance for that specific locality, due to an information
theoretic tradeo↵ that we establish. Our locality-distance
tradeo↵ is universal in the sense that it covers linear or
nonlinear codes and is a generalization of recent result of
Gopalan et al. [10] which established a similar bound for
linear codes. Our proof technique is based on building an
information flow graph gadget, similar to the work of Di-
makis et al.[6, 7]. Our analysis can be found in the Ap-
pendix.

2.1 LRC implemented in Xorbas
We now describe the explicit (10, 6, 5) LRC code we imple-

mented in HDFS-Xorbas. For each stripe, we start with 10
data blocks X

1

, X
2

, . . . , X
10

and use a (10, 4) Reed-Solomon
over a binary extension field F

2

m to construct 4 parity blocks
P
1

, P
2

, . . . , P
4

. This is the code currently used in production
clusters in Facebook that can tolerate any 4 block failures
due to the RS parities. The basic idea of LRCs is very
simple: we make repair e�cient by adding additional local
parities. This is shown in figure 2.

By adding the local parity S
1

= c
1

X
1

+c
2

X
2

+c
3

X
3

+c
4

X
5

,
a single block failure can be repaired by accessing only 5
other blocks. For example, if block X

3

is lost (or degraded
read while unavailable) it can be reconstructed by

X
3

= c�1

3

(S
1

� c
1

X
1

� c
2

X
2

� c
4

X
4

� c
5

X
5

). (1)

The multiplicative inverse of the field element c
3

exists as
long as c

3

6= 0 which is the requirement we will enforce for all
the local parity coe�cients. It turns out that the coe�cients
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4 RS parity blocks

5 file blocks
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c0
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3 c0

4
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5 c0

6

local parity block implied parity blocklocal parity block

Figure 2: Locally repairable code implemented in
HDFS-Xorbas. The four parity blocks P

1

, P
2

, P
3

, P
4

are constructed with a standard RS code and the
local parities provide e�cient repair in the case of
single block failures. The main theoretical challenge
is to choose the coe�cients ci to maximize the fault
tolerance of the code.

ci can be selected to guarantee that all the linear equations
will be linearly independent. In the Appendix we present a
randomized and a deterministic algorithm to construct such
coe�cients. We emphasize that the complexity of the de-
terministic algorithm is exponential in the code parameters
(n, k) and therefore useful only for small code constructions.

The disadvantage of adding these local parities is the extra
storage requirement. While the original RS code was stor-
ing 14 blocks for every 10, the three local parities increase
the storage overhead to 17/10. There is one additional opti-
mization that we can perform: We show that the coe�cients
c
1

, c
2

, . . . c
10

can be chosen so that the local parities satisfy
an additional alignment equation S1+S2+S3 = 0. We can
therefore not store the local parity S

3

and instead consider
it an implied parity. Note that to obtain this in the figure,
we set c0

5

= c0
6

= 1.
When a single block failure happens in a RS parity, the

implied parity can be reconstructed and used to repair that
failure. For example, if P

2

is lost, it can be recovered by
reading 5 blocks P

1

, P
3

, P
4

, S
1

, S
2

and solving the equation

P
2

= (c0
2

)�1(�S
1

� S
2

� c0
1

P
1

� c0
3

P
3

� c0
4

P
4

). (2)

In our theoretical analysis we show how to find non-zero
coe�cients ci (that must depend on the parities Pi but are
not data dependent) for the alignment condition to hold.
We also show that for the Reed-Solomon code implemented
in HDFS RAID, choosing ci = 18i and therefore performing
simple XOR operations is su�cient. We further prove that
this code has the largest possible distance (d = 5) for this
given locality r = 5 and blocklength n = 16.

3. SYSTEM DESCRIPTION
HDFS-RAID is an open source module that implements

RS encoding and decoding over Apache Hadoop [2]. It
provides a Distributed Raid File system (DRFS) that runs
above HDFS. Files stored in DRFS are divided into stripes,
i.e., groups of several blocks. For each stripe, a number of
parity blocks are calculated and stored as a separate parity
file corresponding to the original file. HDFS-RAID is im-
plemented in Java (approximately 12,000 lines of code) and
is currently used in production by several organizations, in-
cluding Facebook.
The module consists of several components, among which

RaidNode and BlockFixer are the most relevant here:

• The RaidNode is a daemon responsible for the creation
and maintenance of parity files for all data files stored

in the DRFS. One node in the cluster is generally des-
ignated to run the RaidNode. The daemon periodi-
cally scans the HDFS file system and decides whether
a file is to be RAIDed or not, based on its size and
age. In large clusters, RAIDing is done in a distributed
manner by assigning MapReduce jobs to nodes across
the cluster. After encoding, the RaidNode lowers the
replication level of RAIDed files to one.

• The BlockFixer is a separate process that runs at the
RaidNode and periodically checks for lost or corrupted
blocks among the RAIDed files. When blocks are tagged
as lost or corrupted, the BlockFixer rebuilds them us-
ing the surviving blocks of the stripe, again, by dis-
patching repair MapReduce (MR) jobs. Note that
these are not typical MR jobs. Implemented under the
MR framework, repair-jobs exploit its parallelization
and scheduling properties, and can run along regular
jobs under a single control mechanism.

Both RaidNode and BlockFixer rely on an underlying com-
ponent: ErasureCode. ErasureCode implements the era-
sure encoding/decoding functionality. In Facebook’s HDFS-
RAID, an RS (10, 4) erasure code is implemented through
ErasureCode (4 parity blocks are created for every 10 data
blocks).

3.1 HDFS-Xorbas
Our system, HDFS-Xorbas (or simply Xorbas), is a

modification of HDFS-RAID that incorporates Locally Re-
pairable Codes (LRC). To distinguish it from the HDFS-
RAID implementing RS codes, we refer to the latter as
HDFS-RS. In Xorbas, the ErasureCode class has been ex-
tended to implement LRC on top of traditional RS codes.
The RaidNode and BlockFixer classes were also subject to
modifications in order to take advantage of the new coding
scheme.

HDFS-Xorbas is designed for deployment in a large-scale
Hadoop data warehouse, such as Facebook’s clusters. For
that reason, our system provides backwards compatibility:
Xorbas understands both LRC and RS codes and can incre-
mentally modify RS encoded files into LRCs by adding only
local XOR parities. To provide this integration with HDFS-
RS, the specific LRCs we use are designed as extension codes
of the (10,4) Reed-Solomon codes used at Facebook. First,
a file is coded using RS code and then a small number of
additional local parity blocks are created to provide local
repairs.

3.1.1 Encoding
Once the RaidNode detects a file which is suitable for

RAIDing (according to parameters set in a configuration
file) it launches the encoder for the file. The encoder initially
divides the file into stripes of 10 blocks and calculates 4 RS
parity blocks. Depending on the size of the file, the last
stripe may contain fewer than 10 blocks. Incomplete stripes
are considered as “zero-padded“ full-stripes as far as the
parity calculation is concerned

HDFS-Xorbas computes two extra parities for a total of
16 blocks per stripe (10 data blocks, 4 RS parities and 2
Local XOR parities), as shown in Fig. 2. Similar to the
calculation of the RS parities, Xorbas calculates all parity
blocks in a distributed manner through MapReduce encoder
jobs. All blocks are spread across the cluster according to
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Hadoop’s configured block placement policy. The default
policy randomly places blocks at DataNodes, avoiding col-
locating blocks of the same stripe.

3.1.2 Decoding & Repair
RaidNode starts a decoding process when corrupt files

are detected. Xorbas uses two decoders: the light-decoder
aimed at single block failures per stripe, and the heavy-
decoder, employed when the light-decoder fails.

When the BlockFixer detects a missing (or corrupted)
block, it determines the 5 blocks required for the recon-
struction according to the structure of the LRC. A special
MapReduce is dispatched to attempt light-decoding: a sin-
gle map task opens parallel streams to the nodes containing
the required blocks, downloads them, and performs a sim-
ple XOR. In the presence of multiple failures, the 5 required
blocks may not be available. In that case the light-decoder
fails and the heavy decoder is initiated. The heavy decoder
operates in the same way as in Reed-Solomon: streams to
all the blocks of the stripe are opened and decoding is equiv-
alent to solving a system of linear equations. The RS lin-
ear system has a Vandermonde structure [32] which allows
small CPU utilization. The recovered block is finally sent
and stored to a Datanode according to the cluster’s block
placement policy.

In the currently deployed HDFS-RS implementation, even
when a single block is corrupt, the BlockFixer opens streams
to all 13 other blocks of the stripe (which could be reduced
to 10 with a more e�cient implementation). The benefit of
Xorbas should therefore be clear: for all the single block fail-
ures and also many double block failures (as long as the two
missing blocks belong to di↵erent local XORs), the network
and disk I/O overheads will be significantly smaller.

4. RELIABILITY ANALYSIS
In this section, we provide a reliability analysis by esti-

mating the mean-time to data loss (MTTDL) using a stan-
dard Markov model. We use the above metric and model to
compare RS codes and LRCs to replication. There are two
main factors that a↵ect the MTTDL: i) the number of block
failures that we can tolerate before losing data and ii) the
speed of block repairs. It should be clear that the MTTDL
increases as the resiliency to failures increases and the time
of block repairs decreases. In the following, we explore the
interplay of these factors and their e↵ect on the MTTDL.

When comparing the various schemes, replication o↵ers
the fastest repair possible at the cost of low failure resiliency.
On the other hand, RS codes and LRCs can tolerate more
failures, while requiring comparatively higher repair times,
with the LRC requiring less repair time than RS. In [9], the
authors report values from Google clusters (cells) and show
that, for their parameters, a (9, 4)-RS code has approxi-
mately six orders of magnitude higher reliability than 3-way
replication. Similarly here, we see how coding outperforms
replication in terms of the reliability metric of interest.

Along with [9], there exists significant work towards ana-
lyzing the reliability of replication, RAID storage [33], and
erasure codes [11]. The main body of the above literature
considers standard Markov models to analytically derive the
MTTDL for the various storage settings considered. Con-
sistent with the literature, we employ a similar approach
to evaluate the reliability in our comparisons. The values

obtained here may not be meaningful in isolation but are
useful for comparing the various schemes (see also [12]).

In our analysis, the total cluster data is denoted by C and
S denotes the stripe size. We set the number of disk nodes
to be N = 3000, while the total data stored is set to be
C = 30PB. The mean time to failure of a disk node is set at
4 years (= 1/�), and the block size is B = 256MB (the de-
fault value at Facebook’s warehouses). Based on Facebook’s
cluster measurements, we limit the cross-rack communica-
tion to � = 1Gbps for repairs. This limit is imposed to
model the real cross-rack communication bandwidth limita-
tions of the Facebook cluster. In our case, the cross-rack
communication is generated due to the fact that all coded
blocks of a stripe are placed in di↵erent racks to provide
higher fault tolerance. This means that when repairing a
single block, all downloaded blocks that participate in its
repair are communicated across di↵erent racks.

Under 3-way replication, each stripe consists of three blocks
corresponding to the three replicas, and thus the total num-
ber of stripes in the system is C/nB where n = 3. When RS
codes or LRC is employed, the stripe size varies according
to the code parameters k and n � k. For comparison pur-
poses, we consider equal data stripe size k = 10. Thus, the
number of stripes is C/nB, where n = 14 for (10, 4) RS and
n = 16 for (10, 6, 5)-LRC. For the above values, we compute
the MTTDL of a single stripe (MTTDL

stripe

). Then, we
normalize the previous with the total number of stripes to
get the MTTDL of the system, which is calculated as

MTTDL =
MTTDL

stripe

C/nB
. (3)

Next, we explain how to compute the MTTDL of a stripe,
for which we use a standard Markov model. The number of
lost blocks at each time are used to denote the di↵erent
states of the Markov chain. The failure and repair rates
correspond to the forward and backward rates between the
states. When we employ 3-way replication, data loss occurs
posterior to 3 block erasures. For both the (10, 4)-RS and
(10, 6, 5)-LRC schemes, 5 block erasures lead to data loss.
Hence, the Markov chains for the above storage scenarios
will have a total of 3, 5, and 5 states, respectively. In Fig. 3,
we show the corresponding Markov chain for the (10, 4)-RS
and the (10, 6, 5)-LRC. We note that although the chains
have the same number of states, the transition probabilities
will be di↵erent, depending on the coding scheme.

We continue by calculating the transition rates. Inter-
failure times are assumed to be exponentially distributed.
The same goes for the repair (backward) times. In general,
the repair times may not exhibit an exponential behavior,
however, such an assumption simplifies our analysis. When
there are i blocks remaining in a stripe (i.e., when the state
is n � i), the rate at which a block is lost will be �i = i�
because the i blocks are distributed into di↵erent nodes and
each node fails independently at rate �. The rate at which
a block is repaired depends on how many blocks need to be
downloaded for the repair, the block size, and the download
rate �. For example, for the 3-replication scheme, single
block repairs require downloading one block, hence we as-
sume ⇢i = �/B, for i = 1, 2. For the coded schemes, we
additionally consider the e↵ect of using heavy or light de-
coders. For example in the LRC, if two blocks are lost from
the same stripe, we determine the probabilities for invok-
ing light or heavy decoder and thus compute the expected
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Figure 3: The Markov model used to calculate the
MTTDLstripe of (10, 4) RS and (10, 6, 5) LRC.

Storage Repair MTTDL
Scheme overhead tra�c (days)

3-replication 2x 1x 2.3079E + 10
RS (10, 4) 0.4x 10x 3.3118E + 13

LRC (10, 6, 5) 0.6x 5x 1.2180E + 15

Table 1: Comparison summary of the three schemes.
MTTDL assumes independent node failures.

number of blocks to be downloaded. We skip a detailed
derivation due to lack of space. For a similar treatment,
see [9]. The stripe MTTDL equals the average time it takes
to go from state 0 to the “data loss state”. Under the above
assumptions and transition rates, we calculate the MTTDL
of the stripe from which the MTTDL of the system can be
calculated using eqn 3.

The MTTDL values that we calculated for replication,
HDFS-RS, and Xorbas, under the Markov model consid-
ered, are shown in Table 1. We observe that the higher
repair speed of LRC compensates for the additional storage
in terms of reliability. This serves Xorbas LRC (10,6,5) two
more zeros of reliability compared to a (10,4) Reed-Solomon
code. The reliability of the 3-replication is substantially
lower than both coded schemes, similar to what has been
observed in related studies [9].

Another interesting metric is data availability. Availabil-
ity is the fraction of time that data is available for use. Note
that in the case of 3-replication, if one block is lost, then one
of the other copies of the block is immediately available. On
the contrary, for either RS or LRC, a job requesting a lost
block must wait for the completion of the repair job. Since
LRCs complete these jobs faster, they will have higher avail-
ability due to these faster degraded reads. A detailed study
of availability tradeo↵s of coded storage systems remains an
interesting future research direction.

5. EVALUATION
In this section, we provide details on a series of experi-

ments we performed to evaluate the performance of HDFS-
Xorbas in two environments: Amazon’s Elastic Compute
Cloud (EC2) [1] and a test cluster in Facebook.

5.1 Evaluation Metrics
We rely primarily on the following metrics to evaluate

HDFS-Xorbas against HDFS-RS: HDFS Bytes Read, Net-
work Tra�c, and Repair Duration. HDFS Bytes Read cor-
responds to the total amount of data read by the jobs ini-
tiated for repair. It is obtained by aggregating partial mea-
surements collected from the statistics-reports of the jobs
spawned following a failure event. Network Tra�c repre-
sents the total amount of data communicated from nodes
in the cluster (measured in GB). Since the cluster does not

handle any external tra�c, Network Tra�c is equal to the
amount of data moving into nodes. It is measured using
Amazon’s AWS Cloudwatch monitoring tools. Repair Du-
ration is simply calculated as the time interval between the
starting time of the first repair job and the ending time of
the last repair job.

5.2 Amazon EC2
On EC2, we created two Hadoop clusters, one running

HDFS-RS and the other HDFS-Xorbas. Each cluster con-
sisted of 51 instances of type m1.small, which corresponds to
a 32-bit machine with 1.7 GB memory, 1 compute unit and
160 GB of storage, running Ubuntu/Linux-2.6.32. One in-
stance in each cluster served as a master, hosting Hadoop’s
NameNode, JobTracker and RaidNode daemons, while the
remaining 50 instances served as slaves for HDFS and MapRe-
duce, each hosting a DataNode and a TaskTracker daemon,
thereby forming a Hadoop cluster of total capacity roughly
equal to 7.4 TB. Unfortunately, no information is provided
by EC2 on the topology of the cluster.

The clusters were initially loaded with the same amount
of logical data. Then a common pattern of failure events was
triggered manually in both clusters to study the dynamics
of data recovery. The objective was to measure key proper-
ties such as the number of HDFS Bytes Read and the real
Network Tra�c generated by the repairs.

All files used were of size 640 MB. With block size config-
ured to 64 MB, each file yields a single stripe with 14 and 16
full size blocks in HDFS-RS and HDFS-Xorbas respectively.
We used a block size of 64 MB, and all our files were of size
640 MB. Therefore, each file yields a single stripe with 14
and 16 full size blocks in HDFS-RS and HDFS-Xorbas re-
spectively. This choice is representative of the majority of
stripes in a production Hadoop cluster: extremely large files
are split into many stripes, so in total only a small fraction
of the stripes will have a smaller size. In addition, it allows
us to better predict the total amount of data that needs to
be read in order to reconstruct missing blocks and hence
interpret our experimental results. Finally, since block re-
pair depends only on blocks of the same stripe, using larger
files that would yield more than one stripe would not a↵ect
our results. An experiment involving arbitrary file sizes, is
discussed in Section 5.3.

During the course of a single experiment, once all files were
RAIDed, a total of eight failure events were triggered in each
cluster. A failure event consists of the termination of one or
more DataNodes. In our failure pattern, the first four fail-
ure events consisted of single DataNodes terminations, the
next two were terminations of triplets of DataNodes and fi-
nally two terminations of pairs of DataNodes. Upon a failure
event, MapReduce repair jobs are spawned by the RaidNode
to restore missing blocks. Su�cient time was provided for
both clusters to complete the repair process, allowing mea-
surements corresponding to distinct events to be isolated.
For example, events are distinct in Fig. 4. Note that the
Datanodes selected for termination stored roughly the same
number of blocks for both clusters. The objective was to
compare the two systems for the repair cost per block lost.
However, since Xorbas has an additional storage overhead,
a random failure event would in expectation, lead to loss of
14.3% more blocks in Xorbas compared to RS. In any case,
results can be adjusted to take this into account, without
significantly a↵ecting the gains observed in our experiments.
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(a) HDFS Bytes Read per failure event.
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(b) Network Out Tra�c per failure event.
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(c) Repair duration per failure event.

Figure 4: The metrics measured during the 200 file experiment. Network-in is similar to Network-out and so
it is not displayed here. During the course of the experiment, we simulated eight failure events and the x-axis
gives details of the number of DataNodes terminated during each failure event and the number of blocks lost
are displayed in parentheses.

In total, three experiments were performed on the above
setup, successively increasing the number of files stored (50,
100, and 200 files), in order to understand the impact of
the amount of data stored on system performance. Fig. 4
depicts the measurement from the last case, while the other
two produce similar results. The measurements of all the
experiments are combined in Fig. 6, plotting HDFS Bytes
Read, Network Tra�c and Repair Duration versus the num-
ber of blocks lost, for all three experiments carried out in
EC2. We also plot the linear least squares fitting curve for
these measurements.

5.2.1 HDFS Bytes Read
Fig. 4a depicts the total number of HDFS bytes read by

the BlockFixer jobs initiated during each failure event. The
bar plots show that HDFS-Xorbas reads 41% � 52% the
amount of data that RS reads to reconstruct the same num-
ber of lost blocks. These measurements are consistent with
the theoretically expected values, given that more than one
blocks per stripe are occasionally lost (note that 12.14/5 =
41%). Fig. 6a shows that the number of HDFS bytes read
is linearly dependent on the number of blocks lost, as ex-
pected. The slopes give us the average number of HDFS
bytes read per block for Xorbas and HDFS-RS. The average
number of blocks read per lost block are estimated to be
11.5 and 5.8, showing the 2⇥ benefit of HDFS-Xorbas.

5.2.2 Network Traffic
Fig. 4b depicts the network tra�c produced by Block-

Fixer jobs during the entire repair procedure. In particular,
it shows the outgoing network tra�c produced in the clus-
ter, aggregated across instances. Incoming network tra�c is
similar since the cluster only communicates information in-
ternally. In Fig. 5a, we present the Network Tra�c plotted
continuously during the course of the 200 file experiment,
with a 5-minute resolution. The sequence of failure events
is clearly visible. Throughout our experiments, we consis-
tently observed that network tra�c was roughly equal to
twice the number of bytes read. Therefore, gains in the num-
ber of HDFS bytes read translate to network tra�c gains,
as expected.

5.2.3 Repair Time

Fig. 4c depicts the total duration of the recovery proce-
dure i.e., the interval from the launch time of the first block
fixing job to the termination of the last one. Combining
measurements from all the experiments, Fig. 6c shows the
repair duration versus the number of blocks repaired. These
figures show that Xorbas finishes 25% to 45% faster than
HDFS-RS.

The fact that the tra�c peaks of the two systems are dif-
ferent is an indication that the available bandwidth was not
fully saturated in these experiments. However, it is consis-
tently reported that the network is typically the bottleneck
for large-scale MapReduce tasks [5, 14, 15]. Similar behavior
is observed in the Facebook production cluster at large-scale
repairs. This is because hundreds of machines can share a
single top-level switch which becomes saturated. Therefore,
since LRC transfers significantly less data, we expect net-
work saturation to further delay RS repairs in larger scale
and hence give higher recovery time gains of LRC over RS.

From the CPU Utilization plots we conclude that HDFS
RS and Xorbas have very similar CPU requirements and
this does not seem to influence the repair times.

5.2.4 Repair under Workload
To demonstrate the impact of repair performance on the

cluster’s workload, we simulate block losses in a cluster exe-
cuting other tasks. We created two clusters, 15 slave nodes
each. The submitted artificial workload consists of word-
count jobs running on five identical 3GB text files. Each job
comprises several tasks enough to occupy all computational
slots, while Hadoop’s FairScheduler allocates tasks to Task-
Trackers so that computational time is fairly shared among
jobs. Fig. 7 depicts the execution time of each job under
two scenarios: i) all blocks are available upon request, and
ii) almost 20% of the required blocks are missing. Unavail-
able blocks must be reconstructed to be accessed, incurring
a delay in the job completion which is much smaller in the
case of HDFS-Xorbas. In the conducted experiments the
additional delay due to missing blocks is more than doubled
(from 9 minutes for LRC to 23 minutes for RS).

We note that the benefits depend critically on how the
Hadoop FairScheduler is configured. If concurrent jobs are
blocked but the scheduler still allocates slots to them, delays
can significantly increase. Further, jobs that need to read
blocks may fail if repair times exceed a threshold. In these
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(a) Cluster network tra�c.
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(b) Cluster Disk Bytes Read.
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(c) Cluster average CPU utilization.

Figure 5: Measurements in time from the two EC2 clusters during the sequence of failing events.
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(a) HDFS Bytes Read versus blocks lost
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(b) Network-Out Tra�c
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(c) Repair Duration versus blocks lost

Figure 6: Measurement points of failure events versus the total number of blocks lost in the corresponding
events. Measurements are from all three experiments.

All Blocks ⇠ 20% of blocks missing
Avail. RS Xorbas

Total Bytes Read 30 GB 43.88 GB 74.06 GB
Avg Job Ex. Time 83 min 92 min 106 min

Table 2: Repair impact on workload.

experiments we set the scheduling configuration options in
the way most favorable to RS. Finally, as previously dis-
cussed, we expect that LRCs will be even faster than RS in
larger-scale experiments due to network saturation.

5.3 Facebook’s cluster
In addition to the series of controlled experiments per-

formed over EC2, we performed one more experiment on
Facebook’s test cluster. This test cluster consisted of 35
nodes configured with a total capacity of 370 TB. Instead
of placing files of pre-determined sizes as we did in EC2, we
utilized the existing set of files in the cluster: 3, 262 files,
totaling to approximately 2.7 TB of logical data. The block
size used was 256 MB (same as in Facebook’s production
clusters). Roughly 94% of the files consisted of 3 blocks and
the remaining of 10 blocks, leading to an average 3.4 blocks
per file.

For our experiment, HDFS-RS was deployed on the cluster
and upon completion of data RAIDing, a random DataN-
ode was terminated. HDFS Bytes Read and the Repair
Duration measurements were collected. Unfortunately, we
did not have access to Network Tra�c measurements. The
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Figure 7: Completion times of 10 WordCount jobs:
encountering no block missing, and ⇠ 20% of blocks
missing on the two clusters. Dotted lines depict av-
erage job completion times.

Blocks HDFS GB read Repair
Lost Total /block Duration

RS 369 486.6 1.318 26 min
Xorbas 563 330.8 0.58 19 min

Table 3: Experiment on Facebook’s Cluster Results.

332



experiment was repeated, deploying HDFS-Xorbas on the
same set-up. Results are shown in Table 3. Note that in this
experiment, HDFS-Xorbas stored 27% more than HDFS-RS
(ideally, the overhead should be 13%), due to the small size
of the majority of the files stored in the cluster. As noted
before, files typically stored in HDFS are large (and small
files are typically archived into large HAR files). Further,
it may be emphasized that the particular dataset used for
this experiment is by no means representative of the dataset
stored in Facebook’s production clusters.

In this experiment, the number of blocks lost in the second
run, exceed those of the first run by more than the storage
overhead introduced by HDFS-Xorbas. However, we still
observe benefits in the amount of data read and repair du-
ration, and the gains are even more clearer when normalizing
by the number of blocks lost.

6. RELATED WORK
Optimizing code designs for e�cient repair is a topic that

has recently attracted significant attention due to its rele-
vance to distributed systems. There is a substantial volume
of work and we only try to give a high-level overview here.
The interested reader can refer to [7] and references therein.

The first important distinction in the literature is between
functional and exact repair. Functional repair means that
when a block is lost, a di↵erent block is created that main-
tains the (n, k) fault tolerance of the code. The main prob-
lem with functional repair is that when a systematic block
is lost, it will be replaced with a parity block. While global
fault tolerance to n � k erasures remains, reading a single
block would now require access to k blocks. While this could
be useful for archival systems with rare reads, it is not prac-
tical for our workloads. Therefore, we are interested only in
codes with exact repair so that we can maintain the code
systematic.

Dimakis et al. [6] showed that it is possible to repair
codes with network tra�c smaller than the naive scheme
that reads and transfers k blocks. The first regenerating
codes [6] provided only functional repair and the existence
of exact regenerating codes matching the information theo-
retic bounds remained open.

A substantial volume of work (e.g. [7, 25, 31] and refer-
ences therein) subsequently showed that exact repair is pos-
sible, matching the information theoretic bound of [6]. The
code constructions are separated into exact codes for low
rates k/n  1/2 and high rates k/n > 1/2. For rates below
1/2 (i.e. storage overheads above 2) beautiful combinato-
rial constructions of exact regenerating codes were recently
discovered [26, 30]. Since replication has a storage over-
head of three, for our applications storage overheads around
1.4�1.8 are of most interest, which ruled out the use of low
rate exact regenerating codes.

For high-rate exact repair, our understanding is currently
incomplete. The problem of existence of such codes re-
mained open until two groups independently [3] used Inter-
ference Alignment, an asymptotic technique developed for
wireless information theory, to show the existence of exact
regenerating codes at rates above 1/2. Unfortunately this
construction is only of theoretical interest since it requires
exponential field size and performs well only in the asymp-
totic regime. Explicit high-rate regenerating codes are a
topic of active research but no practical construction is cur-
rently known to us. A second related issue is that many of

these codes reduce the repair network tra�c but at a cost of
higher disk I/O. It is not currently known if this high disk
I/O is a fundamental requirement or if practical codes with
both small disk I/O and repair tra�c exist.

Another family of codes optimized for repair has focused
on relaxing the MDS requirement to improve on repair disk
I/O and network bandwidth (e.g. [17, 20, 10]). The metric
used in these constructions is locality, the number of blocks
that need to be read to reconstruct a lost block. The codes
we introduce are optimal in terms of locality and match the
bound shown in [10]. In our recent prior work [23] we gener-
alized this bound and showed that it is information theoretic
(i.e. holds also for vector linear and non-linear codes). We
note that optimal locality does not necessarily mean optimal
disk I/O or optimal network repair tra�c and the fundamen-
tal connections of these quantities remain open.

The main theoretical innovation of this paper is a novel
code construction with optimal locality that relies on Reed-
Solomon global parities. We show how the concept of im-
plied parities can save storage and show how to explicitly
achieve parity alignment if the global parities are Reed-
Solomon.

7. CONCLUSIONS
Modern storage systems are transitioning to erasure cod-

ing. We introduced a new family of codes called Locally
Repairable Codes (LRCs) that have marginally suboptimal
storage but significantly smaller repair disk I/O and net-
work bandwidth requirements. In our implementation, we
observed 2⇥ disk I/O and network reduction for the cost of
14% more storage, a price that seems reasonable for many
scenarios.

One related area where we believe locally repairable codes
can have a significant impact is purely archival clusters. In
this case we can deploy large LRCs (i.e., stipe sizes of 50 or
100 blocks) that can simultaneously o↵er high fault tolerance
and small storage overhead. This would be impractical if
Reed-Solomon codes are used since the repair tra�c grows
linearly in the stripe size. Local repairs would further allow
spinning disks down [21] since very few are required for single
block repairs.

In conclusion, we believe that LRCs create a new oper-
ating point that will be practically relevant in large-scale
storage systems, especially when the network bandwidth is
the main performance bottleneck.
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APPENDIX
A. DISTANCE AND LOCALITY THROUGH

ENTROPY
In the following, we use a characterization of the code

distance d of a length n code that is based on the entropy
function. This characterization is universal in the sense that
it covers any linear or nonlinear code designs.

Let x be a file of size M that we wish to split and store
with redundancy k

n
in n blocks, where each block has size M

k
.

Without loss of generality, we assume that the file is split in

k blocks of the same size x
4
= [X

1

. . . Xk] 2 F1⇥k, where F is
the finite field over which all operations are performed. The
entropy of each file block isH(Xi) = M

k
, for all i 2 [k], where

[n] = {1, . . . , n}.2 Then, we define an encoding (generator)
map G : F1⇥k 7! F1⇥n that takes as input the k file blocks
and outputs n coded blocks G(x) = y = [Y

1

. . . Yn], where
H(Yi) = M

k
, for all i 2 [n]. The encoding function G defines

a (k, n� k) code C over the vector space F1⇥n.
The distance d of the code C is equal to the minimum

number of erasures of blocks in y after which the entropy of
the remaining blocks is strictly less than M

d = min
H({Y1,...,Yn}\E)<M

|E| = n� max
H(S)<M

|S|, (4)

where E 2 2{Y1,...,Yn} is a block erasure pattern set and
2{Y1,...,Yn} denotes the power set of {Y

1

, . . . , Yn}, i.e., the
set that consists of all subset of {Y

1

, . . . , Yn}. Hence, for a
code C of length n and distance d, any n�d+1 coded blocks
can reconstruct the file, i.e., have joint entropy at least equal
to M . It then follows that n� d is the maximum number of
coded variables that have entropy less than M .

The locality r of a code can also be defined in terms of
coded block entropies. When a coded block Yi, i 2 [n], has
locality r, then it is a function of r other coded variables
2Equivalently, each block can be considered as a random
variable that has entropy M

k
.
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Yi = fi(YR(i)), where R(i) indexes the set of r blocks Yj ,
j 2 R(i), that can reconstruct Yi, and fi is some function
(linear or nonlinear) on these r coded blocks. Hence, the
entropy of Yi conditioned on its repair group R(i) is iden-
tically equal to zero, i.e., H(Yi|fi(YR(i))) = 0, for i 2 [n].
This functional dependency of Yi on the blocks in R(i) is
fundamentally the only code structure that we assume in
our derivations.3 For a code C of length n and locality r, a
coded block Yi along with the blocks that can generate it,
YR(i), form a repair group �(i) = {i,R(i)}, for all i 2 [n].
We refer to these repair groups, as (r + 1)-groups. We are
able to provide a bound by considering a single property:
each block is a member of a repair group of size r + 1. It is
easy to check that the joint entropy of the blocks in a single
(r + 1)-group is at most as much as the entropy of r file
blocks H

�
Y
�(i)

�
H
�
YR(i)

�  P
j2R(i) H(Yj) = rM/k, The

above entropy characterization is key to providing universal
information theoretic bounds on the distance of (k, n � k)
linear, or nonlinear, codes that have locality r. Our fol-
lowing bound can be considered as generalizations of the
Singleton Bound on the code distance when locality is taken
into account.

Theorem 2. For a code C of length n, where each coded
block has entropy M

k
and locality r, the minimum distance

is bounded as d  n� ⌃
k
r

⌥� k + 2.

Proof Sketch: We find an upper bound on the distance by
bounding the size of the largest set S of coded blocks whose
entropy is less than M , i.e., a set that cannot reconstruct
the file. E↵ectively, we solve the following optimization
problem that needs to be performed over all possible codes
C and yields a best-case minimum distance minC maxS |S|
s.t.: H(S) < M,S 2 2{Y1,...,Yn}. for all i 2 [n]. To deter-
mine the upper bound on minimum distance of C, we con-
struct the maximum set of coded blocks S that has entropy
less than M . A detailed proof can be found in our extended
technical report [29]. 2

In [10], it was proven that (k, n � k) linear codes have
minimum code distance that is bounded as d  n � k �⌃
k
r

⌥
+ 2. As we see from our distance-locality bound, the

limit of linear codes is information theoretic optimal, i.e.,
linear codes su�ce to achieve it.

B. ACHIEVABILITY OF THE BOUND
In this section, we assume (r + 1)|n and show that the

bound of Theorem 2 is achievable using a random linear
network coding (RLNC) approach as the one presented in
[16]

Our proof uses a variant of the information flow graph that
was introduced in [6]. We show that a distance d is feasible
if a cut-set bound on this new flow graph is su�ciently large
for some multicast session to run on it. The information
flow graph represents a network where the k input blocks
are depicted as sources, the n coded blocks are represented
as intermediate nodes of the network, and the sinks of the
network are nodes that need to decode the k file blocks. The
innovation of the new flow graph is that it is “locality aware”
by incorporating an appropriate dependency subgraph that
accounts for the existence of repair groups of size (r + 1).
3In the following, we consider codes with uniform locality,
i.e., (k, n�k) codes where all encoded blocks have locality r.
These codes are referred to as non-canonical codes in [10].

The specifications of this network, i.e., the number and
degree of blocks, the edge-capacities, and the cut-set bound
are all determined by the code parameters k, n� k, r, d. For
coding parameters that do not violate the distance bound
in Theorem 2, the minimum s � t cut of such a flow graph
is at least M . The multicast capacity of the induced net-
work is achievable using random linear network codes. This
achievability scheme corresponds to a scalar linear code with
parameters k, n� k, r, d.
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Figure 8: The G(k, n� k, r, d) information flow graph.

In Fig. 8, we show the general structure of an information
flow graph. We refer to this directed graph as G(k, n�k, r, d).
The source vertices {Xi; i 2 [k]} correspond to the k file
blocks and

�
Y out

j ; j 2 [n]
 
correspond to the coded blocks.

The edge capacity (which equals ↵ = 1) between the in- and
out- Yi vertices corresponds to the entropy of a single coded
block. When, r + 1 blocks are elements of a group, their
“joint flow,” or entropy, cannot exceed rM

k
. To enforce this

entropy constraint, we bottleneck the in-flow of each group
by a node that restricts it to be at most rM

k
. For a group

�(i), we add node �in

i that receives flow by the sources and is
connected with an edge of capacity rM

k
to a new node �out

i .
The latter connects to the r+ 1 blocks of the i-th group. A
DC needs to connect to as many coded blocks as such that
it can reconstruct the file. This is equivalent to requiring
s � t cuts between the file blocks and the DCs that are at
least equal to M . When a single block is lost, the functional
dependence among the blocks in an (r + 1)-group allow a
newcomer block to compute a function on the remaining r
blocks and reconstruct what was lost.

Observe that if the distance of the code is d, then there
are T =

�
n

n�d+1

�
DCs, each with in-degree n� d+ 1, whose

incident vertices originate from n � d + 1 blocks. The cut-
set bound of this network is defined by the set of minimum
cuts between the file blocks and each of the DCs. When d is
consistent with the bound of Theorem 2, the minimum of all
the s�t cuts is at least as much as the file size M . A detailed
proof of the above can be found in [29]. Then, a successful
multicast session on G(k, n� k, r, d) is equivalent to all DCs
decoding the file. If a multicast session on G(k, n � k, r, d)
is feasible, then there exist a (k, n � k) code C of locality r
and distance d .
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Hence, the random linear network coding (RLNC) scheme
of Ho et al. [16] achieves the cut-set bound of Gr(k, n �
k, r, d), i.e., there exist capacity achieving network codes,
which implies that there exist codes that achieve the dis-
tance bound of Theorem 2. In our technical report, we show
how a finite field of order 2n su�ces for the randomized con-
structions. Instead of the RLNC scheme, we could use the
deterministic construction algorithm of Jaggi et al. [18] to
construct explicit codes. Although, we ommit the details
due to lack of space, we can calculate the complexity order
of the deterministic algorithm, which is O �

T 3k2

�
.

Hence, there exists random linear codes over F with lo-
cality r and length n, such that (r+ 1)|n, that has distance
d = n � ⌃

k
r

⌥ � k + 2, for finite field orders |F| = q = 2n

Moreover, we can construct explicit code in time O �
Tk3

�
.

Observe that by setting r = log(k), we obtain Theorem 1.

C. AN EXPLICIT LRC USING REED-
SOLOMON PARITIES

We design a (10, 6, 5)-LRC based on Reed-Solomon codes
and interference alignment. We use as a basis for our con-
struction a (10, 4)-RS code defined over a binary extension
field F

2

m . We concentrate on these specific instances of
RS codes since these are the ones that are implemented in
practice and in particular in the HDFS RAID component of
Hadoop. We continue introducing a general framework for
the desing of (k, n � k) Reed-Solomon Codes. The k ⇥ n
(Vandermonde type) parity-check matrix of a (k, n� k)-RS
code, defined over an extended binary field F

2

m , of order
q = 2m, is given by [H]i,j = ai�1

j�1

, where a
0

, a
1

, . . . , an�1

are n distinct elements of the field F
2

m . The order of the
field has to be q � n. The n� 1 coe�cients a

0

, a
1

, . . . , an�1

are n distinct elements of the field F
2

m . We can select ↵
to be a generator element of the cyclic multiplicative group
defined over F

2

m . Hence, let ↵ be a primitive element of the
field F

2

m . Then, [H]i,j = ↵(i�1)(j�1), for i 2 [k], j 2 [n].
The above parity check matrix defines a (k, n� k)-RS code.
It is a well-known fact, that due to its determinant struc-
ture, any (n � k) ⇥ (n � k) submatrix of H has a nonzero
determinant, hence, is full-rank. This, in terms, means that
a (k, n�k)-RS defined using the parity check matrix H is an
MDS code, i.e., has optimal minimum distance d = n�k+1.
We refer to the k ⇥ n generator matrix of this code as G.

Based on a (14, 10)-RS generator matrix, we will introduce
2 simple parities on the first 5 and second 5 coded blocks
of the RS code. This, will yield the generator matrix of our
LRC

G
LRC

=

"
G

�����

5X

i=1

gi

10X

i=6

gi

#
, (5)

where gi denotes the i-th column of G, for i 2 [14]. We
would like to note that even if G

LRC

is not in systematic
form, i.e., the first 10 blocks are not the initial file blocks,
we can easily convert it into one. To do so we need to apply a
full-rank transformation on the rows of G

LRC

in the follow-
ing way: AG

LRC

= A [G
:,1:10 G

:,11:15] = [I
10

AG
:,11:15],

where A = G�1

:,1:10 and G
:,i:j is a submatrix of G that con-

sists of columns with indices from i to j. This transforma-
tion renders our code systematic, while retaining its distance
and locality properties. We proceed to the main result of
this section.

Theorem 3. The code C of length 16 defined by GLRC

has locality 5 for all coded blocks and optimal distance d = 5.

Proof: We first prove that all coded blocks of G
LRC

have locality 5. Instead of considering block locality, we can
equivalently consider the locality of the columns of G

LRC

,
without loss of generality. First let i 2 [5]. Then, gi can be
reconstructed from the XOR parity

P
5

j=1

gj if the 4 other
columns gi, j 2 {6, . . . , 10}\i, are subtracted from it. The
same goes for i 2 {6, . . . , 10}, i.e., gi can be reconstructed by
subtracting gj , for j 2 {6, . . . , 10}\i, from the XOR parityP

10

j=6

gj . However, it is not straightforward how to repair
the last 4 coded blocks, i.e., the parity blocks of the sys-
tematic code representation. At this point we make use of
interference alignment. Specifically, we observe the follow-
ing: since the all-ones vector of length n is in the span of
the rows of the parity check matrix H, then it has to be or-
thogonal to the generator matrix G, i.e., G1T = 0k⇥1

due
to the fundamental property GHT = 0k⇥(n�k). This means

that G1T = 0k⇥1

, P
14

i=1

gi = 0k⇥1

and any columns
of G

LRC

between the 11-th and 14-th are also a function
of 5 other columns. For example, for Y

11

observe that we
have g

11

=
�P

5

i=1

gi

�
+
�P

10

i=6

gi

�
+ g

12

+ g
13

+ g
14

, where�P
5

i=1

gi

�
is the first XOR parity and

�P
10

i=6

gi

�
is the sec-

ond and “�”s become “+”s due to the binary extended field.
In the same manner as g

11

, all other columns can be repaired
using 5 columns of G

LRC

. Hence all coded blocks have lo-
cality 5.

It should be clear that the distance of our code is at least
equal to its (14, 10)-RS precode, that is, d � 5. We prove
that d = 5 is the maximum distance possible, for a length
16 code that has block locality 5. Let all codes of local-
ity r = 5 and length n = 16 for M = 10. Then, there
exist 6-groups associated with the n coded blocks of the
code. Let, Y

�(i) be the set of 6 coded blocks in the repair
group of i 2 [16]. Then, H(Y

�(i))  5, for all i 2 [16].
Moreover, observe that due to the fact that 5 6 |16 there
have to exist at least two distinct overlapping groups Y

�(i1)

and Y
�(i2), i

1

, i
2

2 [16], sharing at least one coded block,
such that

��Y
�(i1) \ Y

�(i2)

�� � 1. Let for example and with-
out loss of generality Y

�(i1) = {Y
1

, . . . , Y
6

} and Y
�(i2) =

{Y 0
1

, . . . , Y 0
6

}, where Y
1

= Y 0
1

. Hence, although the cardi-
nality of

��Y
�(i1) [ Y

�(i2)

�� is 11 its joint entropy is equal to

H(Y
�(i1), Y�(i2))  5+

P
6

i=2

H(Y 0
i |Y 0

i�1

, . . . , Y 0
1

)  5+5� ✏,
where we used the chain rule for entropy, the fact that there
are functional dependencies, and the fact that Y

1

= Y 0
1

. Ob-
serve that it is assumed that the sixth coded block of each
group is cpnsidered to be the one that is dependent on the
rest. However, due to the symmetry of the chain rule this
is not necesary. Moreover, we have assumed that the repair
groups do not contain redundant symbols, i.e., all coded
blocks in YR(i) have “some” (even ✏) entropy for Yi (since
every coded block has locality exactly 5). Hence, in this
collection of 11 coded blocks at least one additional coded
block has to be included to reach an aggregate entropy of
M = 10. This means that for any encoding function tha
generates a code of length 16 and distance 5, there exists at
least a group of 11 codes elements that cannot reconstruct
the file, i.e., the distance is upper bounded by n � 11 = 5.
Therefore, any code of length n = 16 and locality 5 can
have distance at most 5, i.e., d = 5 is optimal for the given
locality. 2
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