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ABSTRACT

In this paper, we present VERTEXICA, a graph analytics tools on top
of a relational database, which is user friendly and yet highly efhi-
cient. Instead of constraining programmers to SQL, VERTEXICA of-
fers a popular vertex-centric query interface, which is more natural
for analysts to express many graph queries. The programmers sim-
ply provide their vertex-compute functions and VERTEXICA takes
care of efficiently executing them in the standard SQL engine. The
advantage of using VERTEXICA is its ability to leverage the relational
features and enable much more sophisticated graph analysis. These
include expressing graph algorithms which are difficult in vertex-
centric but straightforward in SQL and the ability to compose end-
to-end data processing pipelines, including pre- and post- process-
ing of graphs as well as combining multiple algorithms for deeper
insights. VERTEXICA has a graphical user interface and we outline
several demonstration scenarios including, interactive graph analy-
sis, complex graph analysis, and continuous and time series analysis.

1. INTRODUCTION

Graph analytics is getting increasingly popular with several new
application domains such as social networks, transportation net-
works, ad networks, e-commerce, and web search. These graph ana-
lytics workloads are seen as quite different from traditional database
analytics, largely due to the iterative nature of many of these com-
putations, and the perceived awkwardness of expressing graph an-
alytics as SQL queries (which typically involves multiple self-joins
on tables of nodes and edges). As a result, many new storage and
querying systems optimized for graph algorithms have been pro-
posed. In particular, a number of so-called “vertex-centric” systems
(e.g., Pregel [5], Giraph [3], GraphLab [4], GPS [6], and Trinity [7])
have been proposed in recent years.

Relational databases, on the other hand, are completely miss-
ing from this wave of new graph processing systems. Note that in
many real-world scenarios, data is collected and it resides in a rela-
tional database in the first place, e.g. [1, 2]. Using a different system
for graph analytics would mean that the users now need to dump
their data from the relational database to a graph database. This
involves stitching different systems together and is highly undesir-
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able. Furthermore, users might find several features from relational
databases, such as transactions, checkpointing and recovery, fault
tolerance, durability, integrity constraints, etc., hard to forego. In-
terestingly, relational databases have been highly optimized for rela-
tional data analytics in recent years, in particular column-oriented
data storage and query processing has emerged as an attractive tech-
nology. A natural question, therefore, is whether these techniques
can be leveraged for efficient graph analytics as well?

In this paper, we present VERTEXICA, a relational database sys-
tem which is friendly yet efficient over graph analytics. There have
been some early efforts to implement graph queries in relational
databases [8]. However, these works constrain the graph analysts
to SQL, the de facto query interface in relational databases. Unfor-
tunately, implementing graph queries in SQL can be tricky and time
consuming. This is because with SQL, the programmer must ma-
nipulate relational tables rather than graphs. In contrast, VERTEXICA
provides a vertex-centric query interface, wherein the programmers
writes his graph queries as vertex-compute functions and system
takes care of running it on the underlying relational engine. As a re-
sult, VERTEXICA allows programmers to easily express several graph
analytic queries such as PageRank, shortest path, connected com-
ponents, stochastic gradient descent, random walk with restart, and
other message passing algorithms. Apart from efficiently executing
vertex-centric programs, VERTEXICA also allows users to leverage
and combine the traditional strengths of the relational database. For
example, VERTEXICA allows ad-hoc mutations to the graph as well as
the associated metadata, which is simply impossible to do in many
new graph processing systems such as Giraph. Likewise, VERTEX-
1cA allows users to easily combine graph algorithms with relational
operators, thereby facilitating more advanced graph queries e.g. lo-
calized PageRank. Overall, our goal in this paper is to demonstrate
how VERTEXICA enables efficient, easy-to-use, and rich graph ana-
lytics right on top of a relational engine.

In the following, we first show the details of VERTEXICA. There-
after, we discuss the use-cases, for which VERTEXICA is a useful tool
(Section 3). Finally, we sketch our demonstration proposal describ-
ing the setup and demonstration scenarios, and highlight how the
users can interact and play with VERTEXICA (Section 4).

2. VERTEXICA

The core idea of VERTEXICA is to bring user-friendly and high-
performance graph analytics capability to a relational database.
VERTEXICA does this by injecting data storage, query processing,
and query interface support to enable efficient vertex-centric graph
analytics. Currently, VERTEXICA sits on top of an industry strength
column-oriented database system. However, it could be extended
to other relational databases as well. Below, we discuss the vertex-
centric interface, the implementation details, and the optimization
techniques employed in VERTEXICA.
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Figure 1: VERTEXICA Architecture

2.1 Vertex-centric Interface

Relational databases have SQL query interface and although one
can imagine implementing graph queries in SQL, crafting and tun-
ing the SQL can be tedious and time consuming. This is because
manipulating relational tables is not really intuitive for expressing
graph queries. In contrast, the concept of vertex-centric program-
ming allows programmers to think in terms of graphs. This interface
allows programmers to specify their computations as UDFs, which
are executed as supersteps on the graph vertices. The UDFs commu-
nicate by sharing messages with neighboring nodes. In most im-
plementations, this sharing is done after a synchronization barrier
at the end of every superstep. As a result of the vertex-centric in-
terface, programmers do not have to worry about details such as
partitioning the graph, distributing the computing across multiple
machines, and coordinating the message passing. This is analogous
to MapReduce where the programmers simply provide the map and
reduce functions and the framework takes care of the system details.

VERTEXICA provides a vertex-centric interface on top of SQL. The
interface exposes the same API as in Pregel and manages paralleliz-
ing the vertex compute function, the passing of messages, and syn-
chronizing the supersteps. As in Pregel, programmers simply pro-
vide their vertex compute function, and VERTEXICA takes care of
running it as standard SQL (with UDFs) in an unmodified relational
database. Thus, with the vertex-centric interface, VERTEXICA allows
programmers to actually think in terms of a graph while still run-
ning their queries in a relational engine.

2.2 Implementation Details

Let us now look at the implementation details of VERTEXICA.
Figure 1 shows the architecture of VERTEXICA. It has four ma-
jor components: (1) the physical graph storage, (2) the coordina-
tor to drive the vertex-computations, (3) the workers which run the
vertex-computations, and (4) the actual compute function provided
by the user. We describe each of these below.

Physical Storage. VERTEXICA stores all data in three relational ta-
bles: (1) the vertex table to store the vertex id, the vertex value, and
the vertex state, (2) the edge table to store the edge source and the
edge destination, and (3) the message table to store the sender ver-
tex, the receiver vertex, and the message value.

Coordinator. The coordinator is the driver program that manages
the supersteps. It is responsible for running the vertex computa-
tions in parallel and passing messages from one superstep to the
next superstep. We implement the coordinator as a stored proce-
dure; it runs as long as there is any message for the next superstep.
As shown in Figure 1, in each superstep, the coordinator invokes a
set of worker UDFs to run the vertex program.

Worker. The worker is the container for the vertex-compute func-
tion. It is responsible for sending and receiving messages with the
coordinator. Additionally, the worker exposes similar API methods
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as in Pregel, e.g. getVertexValue(), getMessages(), getOutEdges(),
modifyVertexValue(), sendMessage(), and voteToHalt(). The work-
ers run as database UDFs and typically there are as many parallel
workers as the number of cores on the machine or nodes in the clus-
ter. Conceptually, the worker is analogous to mapper, which is the
container for map function in MapReduce. As shown in Figure 1,
the workers invoke the actual vertex program provided by the user
as well as propagate the output of the vertex program, such as new
vertex values and the messages, to the coordinator.

Vertex Computation. Finally, the vertex computation is the user
provided graph query that runs once per superstep for every ver-
tex that has at least one incoming message. Typically, the vertex-
compute function gets a set of incoming messages, performs some
computation, modifies the vertex state, and outputs a set of outgoing
messages. This is a simple yet powerful model for graph analytics.

2.3 Optimizations

VERTEXICA applies several optimizations to make the vertex-
centric computations efficient. Let us look at some of these below.
Table Unions. In order to run the vertex computations, VERTEX-
ICA needs to read all vertices having incoming messages, the corre-
sponding outgoing edges, and the messages themselves. Traditional
database wisdom will tell us to simply join the vertex, edge, and mes-
sage tables. However, for large graphs and/or for large number of
messages (every vertex could send a message to every other vertex
in the worst case), this three-way join could be very expensive and
kill the performance. Since we only need to extend the message ta-
ble with the vertex values and edges of every receiving vertex, we
can union the three tables instead of joining them. These three in-
puts are renamed to a common schema and the union is then fed to
the workers, which are responsible for parsing and identifying the
message, vertex, and edge tuples from each other.

Parallel Workers. VERTEXICA exploits multiple cores or multiple
machines by running multiple instances of the worker in parallel
and speed-up the computation. In practice, we have as many work-
ers as the number of cores. After each superstep, VERTEXICA syn-
chronizes the workers during the synchronization barrier.

Vertex Batching. The extreme case could be to run each active ver-
tex in a different worker. However, this leads to many UDFs calls,
which are relatively expensive in most database systems. Therefore,
VERTEXICA batches several vertices together and runs them serially
on a worker, i.e. it tries to balance serial and parallel execution of
vertex-programs. To do this, VERTEXICA hash partitions the table
union on the vertex id into a fixed number of partitions. Each par-
tition is sorted on the vertex id. The worker is responsible for iden-
tifying different vertices in the partition and executing the vertex
program on each of them serially.

Update Vs Replace. VERTEXICA involves two kinds of updates:
(1) updating vertices, e.g. vertex value, and (2) updating messages,
e.g. deleting old messages and inserting new ones from the current
superstep. However, vertex-centric computations could easily in-
cur large number of updates and can slow down the performance
significantly. To handle this, instead of updating the vertices and
messages in the existing tables, VERTEXICA creates new vertex and
message tables. This is done by left joining the old vertex/message
table with the new vertex/message values from the current superstep
and replacing the old table with the new one. Such modifications via
replace are much faster. Still, if the number of updated tuples is be-
low a fixed threshold, then VERTEXICA updates the existing tables.

Let us now compare the performance of VERTEXICA with Apache
Giraph [3], a popular vertex-centric graph processing system, and
a transactional graph database system. Figure 2 shows the perfor-
mance of graph database, Giraph, and VERTEXICA for two popular
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Figure 2: Vertex-centric Graph Algorithm Performance.

graph algorithms, PageRank and Shortest Paths, over three different
graphs, Twitter (81K nodes, 1.7M edges), GPlus (107K nodes, 13.6 M
edges), and LiveJournal (4.8 M nodes, 68 M edges).

We can see from Figure 2 that the graph database runs only for the
smallest graph and both Giraph and VERTEXICA outperform it sig-
nificantly. Furthermore, VERTEXICA outperforms Giraph by more
than 4 times on the small graph and has very similar performance
as Giraph on larger graphs. Figure 2 also shows the performance
of VERTEXICA(SQL), the hand-coded and meticulously optimized
SQL implementations of graph algorithms in VERTEXICA. We can
see that the SQL implementation in VERTEXICA significantly out-
performs all other approaches. Thus, VERTEXICA combines the best
of both worlds, an easy-to-use vertex-centric interface having com-
parable performance as Giraph as well a high performance SQL in-
terface which significantly outperforms all other approaches.

VERTEXICA facilitates analysts to perform a large variety of graph
analytics. We outline several such use cases below.

3. USE CASES

Let us now look at the use-cases supported by VERTEXICA.

3.1 Vertex-centric Graph Queries

VERTEXICA supports several vertex-centric graph analysis algo-
rithms, including: (i) PageRank - a ranking algorithm to compute
the relative importance of every vertex, (ii) Single Source Short-
est Path - a reachability query to compute the shortest path from a
given vertex to every other vertex, (iii) Connected Components —
also a reachability query to find subgraphs in which any two vertices
are connected to each other, and (iv) Collaborative Filtering - a
recommendation technique to predict the edge weights in a bipartite
graph. In general, VERTEXICA supports any graph algorithm which
can be expressed as message-passing iterative vertex-computations.

3.2 Hybrid Graph Queries

While the vertex-centric computations works well for graph
queries accessing local neighborhood, they do not work very well,
if at all, for queries which involve 1-hop neighborhood. This is be-
cause the vertex-centric approaches needs to first collect the 1-hop
neighborhood, which is expensive both in terms of time and mem-
ory, before doing the actual analysis.

VERTEXICA allows analysts to easily combine vertex-centric anal-
ysis with 1-hop analysis. For example, the analyst may want to find
all nodes which act as ties between otherwise disconnected nodes
and have PageRank greater than a threshold, i.e. find sufficiently im-
portant nodes which act as bridges. Similarly, the analyst may want
to compute the single source shortest path with the source node be-
ing the node with the maximum local clustering coefficient, i.e. find
the distance from the most clustered node to every other node. VER-
TEXICA supports several 1-hop algorithms for such analysis:
Triangle Counting: count the number (total or per-node) of trian-
gles. This could be used for computing clustering coefficients.
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Strong Overlap: find pairs of nodes having strong overlap between
them. Overlap could be defined as number of common neighbors.
Weak Ties: find nodes which act as bridges between otherwise dis-
connected pair of nodes.

Such analysis is very difficult or even not possible on traditional
graph processing systems.

3.3 Dynamic Graph Analyses

Graphs are not static in nature. Over time, we need to add, re-
move, or modify the nodes and edges in the graph. Similarly, we may
need to update the metadata associated with the nodes and edges.
VERTEXICA is naturally suited to handle updates and therefore al-
lows for dynamic graph analysis. However, graph processing sys-
tems, such as Giraph, have no clear method of updating the graphs
it analyzes. One might think of using HBase for updates and Giraph
for analytics, but then we have the additional overhead of stitching
two systems together and coordinating between them.

Using VERTEXICA, an analyst can easily do graph mutations,
metadata updates, as well as perform temporal analysis. For ex-
ample, the analyst may be interested in knowing the nodes whose
PageRanks have changed over last one year, or to see all node-pairs
whose shortest paths have decreased by at least a threshold. Such
dynamic graph analysis allows VERTEXICA users to treat graph ana-
lytics as a continuos process rather than an offline one-time activity.

3.4 Richer Graph Analytics

Real-world graphs have vertices and edges accompanied by rich
metadata, e.g. vertices may describe each person in the social net-
work and edges may be of types family, friends, or classmates. Given
such metadata, an analyst would typically do some ad-hoc relational
analysis in addition to the graph analysis. For instance, the analyst
may want to select a subset of the graph before running the actual
graph algorithm. Similarly, he may want to compute aggregates or
build histograms over the output of the graph analysis. Further-
more, in many cases, the graphs may be implicit in the relational
data and need to be extracted in the first place.

Above pre- and post- processing of graph data would typically
require relational operators such as selection, projection, aggrega-
tion, join, something which VERTEXICA inherits by default. As a
result, VERTEXICA allows analysts to easily combine graph analysis
with relational analysis and produce more complete data processing
pipelines. Thus, graph analytics on VERTEXICA is not just running a
particular graph algorithm on the bare graph skeleton, rather it in-
cludes the end-to-end data processing, starting from raw data and
right up to deriving meaningful insights.

4. DEMONSTRATION

In this section, we describe our demonstration proposal and show
how the audience can play with VERTEXICA.
Hardware. The demonstration runs on 4 machines, each with 2GHz
Xeon with 2-socket, 12-core, 24-threads, with Hyper-threading,
48GB of memory, 1.4T disk, and running on RHEL Santiago 6.4.
Datasets. We use several social network graphs of different sizes
and both directed as well as undirected from http://snap.
stanford.edu/data/. These include graphs from Twitter,
GPlus, LiveJournal, Amazon, and Youtube, with sizes varying from
a few million edges to a billion edges.
Metadata. We also extend the graph datasets with the following
metadata. For each node, we added 24 uniformly distributed integer
attributes with cardinality varying from 2 to 10?, 8 skewed (zipfian
distribution) integer attributes with varying skewness, 18 floating
point attributes with varying value ranges, and 10 string attributes
with varying size and cardinality. For each edge, we added three ad-
ditional attributes: the weight, the creation timestamp, and an edge
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type (friend, family, or classmate), chosen uniformly at random.

4.1 Audience Interaction

In our demonstration, we let the audience interact with VERTEX-
ICA via a graphical user interface. Figure 3 shows a snapshot of the
interface. It has six main components:

Graph Visualization. The interface allows users to load any raw
graph data and visualize the nodes and edges in the graph. Users can
interact with the visualization by clicking on the nodes and edges
and performing actions such as viewing and/or modifying the prop-
erties, e.g. node value, edge weight, etc., of a node or edge. Users can
also customize the visualization to show one or more properties for
all nodes and edges by default.

Scope of Analysis. Apart from visualizing, users can also select por-
tions of the graph for analysis, i.e. they can interactively define the
scope of their graph analysis. This includes visual selection by click-
ing on one or more nodes or by drawing a minimum bounding rect-
angle. Alternatively, users can also apply filters based on node/edge
metadata, e.g. select all edges of type “Family”. By defining the scope
of analysis, users can easily specify their regions of interest.
Toolbar. We allow the users to play with several graph algorithms
and operators. The toolbar provides four vertex-centric algorithms
(PageRank, shortest paths, connected components, collaborative fil-
tering), five SQL graph algorithms (PageRank, shortest paths, trian-
gle counting, strong overlap, weak ties), and four relational opera-
tors (selection, projection, aggregation, and join). These algorithms
and operators allow for a very rich graph analysis.

Graph processing pipelines. Users can not only run a standalone
algorithm, but they can also compose a set of algorithms and oper-
ators into a graph processing pipelines. The Dataflow panel in Fig-
ure 3 is used for designing the graph pipelines. Users can drag and
drop the algorithms/operators, chain and combine them, and even
inspect and modify the code of each of them.

Running mode. After selecting the graph and picking the algo-
rithm (or pipeline), users can run their analysis as: (i) a single run,
(iii) time series run to see how the results change over time, and
(ii) continuous run to monitor how the analysis changes in response
to changes such as graph mutations. Also, the users can compare the
query runtimes with Giraph, in case of vertex-centric algorithm.
Output Display. Finally, the interface produces two outputs from
the user interactions. First, we show the actual output of the graph
analysis, e.g. outputting the shortest path, triangle counts, etc., on
the console. Second, we plot the time taken to run the analysis in
the time monitor. In case of continuous analysis, both the console
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and the time monitor show running results.

4.2 Demonstration Scenarios

We invite the audience to play with several demonstrations sce-
narios of VERTEXICA. We describe some of these below.

4.2.1 Interactive Graph Analysis

Since VERTEXICA has very good runtime performance, it al-
lows the audience to perform interactive graph analysis on small to
medium-sized graphs, i.e. around 10s of millions of edges. The au-
dience can interactively select the regions of interest in the graph by
click on nodes or by drawing a rectangle. They can also set the scope
of their analysis by considering only those nodes and edges that have
specific properties (e.g. edge types). Once a region or a subgraph is
selected, users can interactively run the graph algorithms as well.
For example, users can click on a node and ask for its PageRank, or
the number of triangles that the node participates in. Internally, this
triggers a PageRank or a triangle counting query over the region of
interest and produces the result in the console. Similarly, users can
click on two nodes and ask for the shortest path between them or
check if the node-pairs have strong overlap between them.

4.2.2 Complex Graph Analysis

In addition to running the graph algorithms, the audience can
pre- or post- process the graphs, such as applying selection predi-
cates to select ad-hoc subgraphs, assigning weights and/or labels to
nodes and edges, and computing statistics on the output of graph
algorithm. For example, the users might be interested in looking at
the distribution of PageRank values. Additionally, the audience can
combine multiple graph analyses. For example, users might com-
bine PageRank and shortest path to emit nodes which are either very
near (path distance less than a threshold) or are relatively very im-
portant (PageRank greater than a threshold). Similarly, the users can
ask for global clustering coefficient (combining triangle counting
with weak ties). By combining and composing different graph al-
gorithms and operators, VERTEXICA allows users to play with much
more sophisticated graph analysis.

4.2.3 Continuous & Time Series Analysis

We invite the audience to describe a graph analysis task and run
it in a continuous mode. Thereafter, the users can change the scope
of the graph analysis, e.g. change the edge filter from “Family” to
“Classmates’, and observe how runtimes and the console output
changes. Furthermore, users can also click and modify nodes and
edges and observe the impact of change on the graph analysis.

Similarly, we invite the audience to compare how the graph anal-
ysis has evolved over time. For example, users might ask how the
PageRank of a given node has changed in the last 5 years. Or, which
nodes have come closer (smaller path distance) in the last one year.
Such analysis will internally trigger graph algorithms on different
versions of nodes and edges. VERTEX1CA makes these possible.
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