
Finding the Cost­Optimal Path with Time Constraint over
Time­Dependent Graphs

Yajun Yang 1,2, Hong Gao 3, Jeffrey Xu Yu 4, Jianzhong Li 3

1School of Computer Science and Technology, Tianjin University, China
2Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

3School of Computer Science and Technology, Harbin Institute of Technology, China
4The Chinese University of Hong Kong, China

yjyang@tju.edu.cn, honggao@hit.edu.cn, yu@se.cuhk.edu.hk, lijzh@hit.edu.cn

ABSTRACT

Shortest path query is an important problem and has been well s-

tudied in static graphs. However, in practice, the costs of edges

in graphs always change over time. We call such graphs as time-

dependent graphs. In this paper, we study how to find a cost-

optimal path with time constraint in time-dependent graphs. Most

existing works regarding the Time-Dependent Shortest Path (TD-

SP) problem focus on finding a shortest path with the minimum

travel time. All these works are based on the following fact: the

earliest arrival time at a vertex v can be derived from the earliest

arrival time at v’s neighbors. Unfortunately, this fact does not hold

for our problem. In this paper, we propose a novel algorithm to

compute a cost-optimal path with time constraint in time-dependent

graphs. We show that the time and space complexities of our algo-

rithm are O(kn log n + mk) and O((n + m)k) respectively. We

confirm the effectiveness and efficiency of our algorithm through

conducting experiments on real datasets with synthetic cost.

1. INTRODUCTION
Shortest path query is an important problem in graphs and has

been well studied in static graphs. However, graphs often evolve

over time. For example, the Vehicle Information and Communi-

cation System (VICS) and the European Traffic Message Channel

(TMC) are two transportation systems, which can provide real-time

traffic information to users. Such transportation networks are time-

dependent graphs, i.e., the travel time for a road varies with time

taking “rush hour” into account. Meanwhile, the toll fee of a road

is also time-dependent. For example, there are “London congestion

charge” and “Road pricing policy” to reduce traffic congestion and

control traffic pollution in the United Kingdom [14]. The vehicles

are charged if they pass through the major roads in rush hours. The

similar policies are also applied in Singapore. This results in the

variation of the toll fee of a road in different hours of a day and dif-

ferent days of a week, which shows the toll fee is time-dependent.

Moreover, there are several works that study the pricing mechanism

for the time-dependent toll fee [15, 12].

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st ­ 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 9
Copyright 2014 VLDB Endowment 2150­8097/14/05.

Consider an application in a road network. Someone has an ap-

pointment with her friends. The earliest departure time for her is

t1 and she has to arrive at rendezvous before time t2. In this road

network, there are two kinds of costs for every road, travel time

and toll fee, which are both time-dependent. According to the trav-

el time, it can be verified whether a path p satisfies time constraint

or not, i.e., whether one can arrive before time t2 along path p. It

is worth noting that there may be several paths from the source to

the destination satisfying the time constraint. Therefore, it is very

important to find an optimal path with the minimum cost from all

the paths satisfying the time constraint.

In the above example, the road network can be considered as

a large graph G with time information. Every edge (vi, vj) in G
has two kinds of costs: wi,j(t) and fi,j(t). wi,j(t) is the time

cost to specify how long it takes to travel through an edge (vi, vj),
and fi,j(t) is the toll fee for traveling through an edge (vi, vj).
Both wi,j(t) and fi,j(t) are the functions that are dependent on

the departure time t at the starting endpoint vi of the edge (vi, vj).
We call such graphs time-dependent graphs. The query of a cost-

optimal path with time constraint in time-dependent graphs can be

defined as follows. Given a source vs, a destination ve, the earli-

est departure time td and the latest arrival time ta, find an optimal

path p from vs to ve, satisfying the following two conditions: (1)

departing from vs after time td, one can arrive at ve before time ta
along path p; and (2) path p has the minimum cost (toll fee) among

all the paths satisfying the condition (1).

There are many works on the shortest path problem in time-

dependent graphs [13, 7]. Most of them are to find an optimal

path with the minimum travel time from the source to the destina-

tion, when the departure time from the source can be selected from

a user-given starting-time interval. These works assume there is

only one time function wi,j(t) on every edge in a time-dependent

graph. Let λi denote the earliest arrival time at vertex vi. λi can be

calculated by the following equation:

λi = min{(λj + ω(vj)) + wj,i(λj + ω(vj))|vj ∈ N−(vi)}

where vj ∈ N−(vi) represents that vj is an incoming neighbor of

vi and ω(vj) is the waiting time at vj . This equation indicates that

the earliest arrival time at a vertex can be obtained based on the

earliest arrival time at this vertex’s incoming neighbors. All these

works on the TDSP problem utilize this property to compute the

shortest paths with the minimum travel time. Unfortunately, this

property does not hold for our problem (detailed in Section 2.2).

Thus, the existing works on the TDSP problem cannot solve our

problem proposed in this paper.

In this paper, we study the problem of identifying a cost-optimal

path with time constraint in time-dependent graphs. Different to

673

the TDSP problem, we consider two kinds of costs for every edge

in this paper. To the best of our knowledge, our work is the first one

regarding this problem under the continuous time model. The main

contributions are summarized below. First, we propose a novel al-

gorithm to find a cost-optimal path with time constraint in time-

dependent graphs. Our algorithm can handle both undirected and

directed time-dependent graphs. Second, we show that the time

and space complexities of our algorithm are O(kn log n+mk) and

O((n+m)k) respectively, where n is the number of vertices, and

m is the number of edges, and k is the average number of piece-

wise constant values of the atmc-function (detailed in Section 3.1).

Third, we confirm the effectiveness and efficiency of our algorithm

through conducting experiments on real datasets. Compared with

the state of the art algorithm used for discrete time model, our al-

gorithm not only can find the optimal path but also makes at least

two orders of magnitude improvement in time and space overhead.

The rest of the paper is organized as follows. Section 2 defines

the problem. Section 3 proposes a two-step algorithm to find a

cost-optimal path with time constraint. The experiment results are

presented in Section 4. The related works are introduced in Section

5. We conclude this paper in Section 6.

2. PROBLEM STATEMENT

2.1 Time­Dependent Graph and Cost­Optimal
Path with Time Constraint

Definition 2.1: (Time-Dependent Graph) A time-dependent graph

is a simple graph, denoted as GT (V,E,W,F) (or GT for short),

where V = {vi} is the set of vertices; E ⊆ V × V is the set of

edges; W and F are two sets of non-negative value functions. For

every edge (vi, vj) ∈ E, there are two functions: time-function

wi,j(t) ∈W and cost-function fi,j(t) ∈ F , where t is a time vari-

able. A time function wi,j(t) specifies how much time it takes to

travel from vi to vj , if departing from vi at time t. A cost function

fi,j(t) specifies how much cost (e.g., toll fee) it takes to travel from

vi to vj , if departing from vi at time t. ✷

In this paper, we assume that wi,j(t) ≥ 0 and fi,j(t) ≥ 0. The

assumption is reasonable, because the travel time and travel cost

cannot be less than zero in real applications. Our work can be easily

extended to handle undirected graphs, in which an undirected edge

(vi, vj) is equivalent to two directed edges (vi, vj) and (vj , vi),
where wi,j(t) = wj,i(t) and fi,j(t) = fj,i(t). For simplicity, we

only consider directed graphs in the rest of this paper.

We assume that cost-function fi,j(t) is a piecewise constant func-

tion, which can be formalized as follows:

fi,j(t) =



















c1, t0 ≤ t < t1

c2, t1 ≤ t < t2

· · ·

cp, tσ−1 ≤ t ≤ tσ

Here, [t0, tσ] is the time domain of function fi,j(t). cx (1 ≤ x ≤
σ) is a constant value, which represents the value of fi,j(t) when

t ∈ [tx−1, tx]. The assumption is reasonable. In real applications,

the cost functions are always piecewise constant. For example, in

road networks, the toll fees for traveling through a road are distinct

constant values during day and night. It means the cost-function of

this road is a piecewise constant function.

Given a path p, the cost of p is also time dependent. For any

edge (vi, vj) ∈ p, if the departure time from vi is different, the

travel cost for edge (vi, vj) is different too. In order to find a cost-

optimal path, some waiting time is allowed, denoted as ω(vi), at

v1

v2

v3

v4

10

15

5

10

20

(a) (V,E,W)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(b) f1,2(t)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(c) f1,3(t)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(d) f2,3(t)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(e) f2,4(t)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(f) f3,4(t)

Figure 1: Time-dependent graph

each vertex vi. That is, when arriving at vertex vi, one can wait

a time period ω(vi) if the cost of path p can be minimized. We

use arrive(vi) and depart(vi) to denote the arrival time at vi and

departure time from vi, respectively. For each vertex vi, we have

depart(vi) = arrive(vi) + ω(vi)

Let p = v1 → v2 → · · · → vh be a given path with the earliest

departure time td and the waiting time ω(vi) for each vertex vi,
then we have

arrive(v1) = td

arrive(v2) = depart(v1) + w1,2(depart(v1))

· · ·

arrive(vh) = depart(vh−1) + wh−1,h(depart(vh−1))

For any vertex vi ∈ p, we use costp(vi) to denote the cost from v1
to vi by path p. costp(vi) can be calculated recursively as follows:

costp(v1) = 0

costp(v2) = costp(v1) + f1,2(depart(v1))

· · ·

costp(vh) = costp(vh−1) + fh−1,h(depart(vh−1))

The cost of path p is defined as cost(p) = costp(vh). Next, we

give the definition of the problem of the cost-optimal path with

time constraint in time-dependent graphs.

Definition 2.2: (Cost-Optimal Path with Time Constraint) Giv-

en a time-dependent graph GT , a source vertex vs, a destination

vertex ve, the earliest departure time td and the latest arrival time

ta, the problem of the cost-optimal path with time constraint is to

find an optimal path p∗ and the optimal waiting time ω∗(vi) (ω
∗(vi)

≥ 0) for every vertex vi ∈ p∗, such that (1) depart(vs) ≥ td ∧
arrive(ve) ≤ ta; and (2) cost(p∗) is the minimum among all the

paths from vs to ve that satisfy the condition (1). ✷

Fig. 1 illustrates an example of time-dependent graph GT . Here,

Fig. 1(a) presents the structure of GT and the travel time wi,j(t)
for every edge (vi, vj) ∈ GT . In this example, the travel time for

every edge is a constant value. The cost-functions fi,j(t) for five

edges, (v1, v2), (v1, v3), (v2, v3), (v2, v4) and (v3, v4) are shown

in Fig. 1(b), (c), (d), (e) and (f), respectively.

Given a query of the cost-optimal path with time constraint: vs =
v1, ve = v4, td = 0 and ta = 60, a cost-optimal path is p∗ =
v1 → v2 → v3 → v4. The optimal waiting time are ω∗(v1) = 0,

ω∗(v2) = 5, and ω∗(v3) = 0, respectively. The cost of the optimal

path p∗ is cost(p∗) = 20.

674

2.2 Existing Solutions for the TDSP Problem
Most existing works for the TDSP problem are to find an optimal

path with the minimum travel time. We discuss two most recently

published efficient algorithms for the TDSP problem and give the

reasons that why they cannot be used to solve our problem.

A* Algorithm: Kanoulas et al. in [13] propose an extension

to A* algorithm for the TDSP problem. The main idea is to esti-

mate a lower bound of travel time from source to destination and

expand path utilizing this lower bound. The main problems of this

A*-extended algorithm are summarized below. (1) This algorithm

needs to compute the Euclidean distance between any two vertices

and the maximum speed in a road network to estimate the lower

bound by the equation “ distance
speed

”. However, for our problem, travel

cost cannot be estimated by this equation. Therefore, this algorithm

cannot be used to our problem. (2) The efficiency of this algorith-

m is dependent on the pruning power of the estimation of travel

time. This algorithm is efficient when source and destination are

close to each other in a graph. It is difficult to figure out such an

estimation in a large graph. When a graph is large or source is far

away from destination, the algorithm is inefficient. (3) In the worst

case, all paths from source to destination are enumerated and main-

tained, and then the time and space complexities of this algorithm

is exponential w.r.t. the size of GT .

2S Algorithm: Ding et al. in [7] propose a more efficient algo-

rithm to address the TDSP problem. This algorithm includes two

phases: (1) time-refinement phase; and (2) path-selection phase.

In the first phase, the algorithm refines the earliest arrival time for

every vertex vi by the following equation:

gi(t) = min
vj∈N−(vi),ω(vj)

{(gj(t) +ω(vj)) +wj,i(gj(t) +ω(vj))}

(1)

Here, gi(t) is the earliest arrival time for vi, if departing from

source vs at starting time t. N−(vi) is vi’s incoming neighbor

set, i.e., N−(vi) = {vj |(vj , vi) ∈ E}. The algorithm utilizes a

priority queue Q to maintain the earliest arrival time function gi(t)
and a time interval [ts, τi] for all the vertices in GT . The value of

gi(t) for t ∈ [ts, τi] is corrected. In each iteration, a vertex vi with

the minimum gi(τi) is dequeued from Q. The algorithm refines

gi(t) and [ts, τi] by Eq. (1). Let I denote the user-given starting

time interval. If [ts, τi] 6= I , then vi is inserted into Q again. The

algorithm terminates when the earliest arrival time function ge(t)
of destination ve has been refined in the whole time interval I .

The main problem of the 2S algorithm is that this algorithm

needs to compute the earliest arrival time function by Eq. (1). How-

ever, the rationale Eq. (1) based on does not hold for the cost-

optimal path problem proposed in this paper. We clarify this point

using the example in Fig. 1. Suppose our objective is to find a cost-

optimal path from v1 to v4. For an incoming neighbor v3 of vertex

v4, we find the minimum cost from v1 to v3 is g3(15) = 5, i.e., The

cost of path v1 → v3 is the minimum when departing from source

v1 at time t = 15. In this case, the arrival time at v3 is 30. In the

other words, the earliest departure time from v3 is 30 if one arrives

at v3 with cost g3(15) = 5. By Eq. (1), the minimum cost from

v1 to v4 by edge (v3, v4) is g3(15) + w3,4(30) = 5 + 35 = 40.

However, the cost-optimal path from v1 to v4 via v3 is v1 → v2 →
v3 → v4, and its cost is 20. In this path, the cost from v1 to v3 is 15,

which is larger than the minimum cost g3(15) = 5. This example

shows that a sub-path of the cost-optimal path may not be a cost-

optimal path. In the example, the cost-optimal path from v1 to v4 is

v1 → v2 → v3 → v4, but its sub-path v1 → v2 → v3 is not a cost-

optimal path from v1 to v3. Let ps j denote the cost-optimal path

from source vs to vj and tj denote the arrival time at vj along path

ps j . Note that there may exist another path p′s j from vs to vj .

Algorithm 1 TWO-STEP-SEARCH (GT , vs, ve, td, ta)

Input: GT , vs and ve, td and ta.
Output: an optimal path p∗ and ω∗(vi) for every vertex vi ∈ p∗.

1: COMPUTE-MINIMUM-COST (GT , vs, ve, td, ta);
2: if ge(te) 6=∞ then

3: PATH-SELECTION (ge(te), GT , vs, ve, td, ta);
4: return p∗ and ω∗(vi) for every vi ∈ p∗;
5: else

6: return ∅;

Similarly, t′j is the arrival time at vj along path p′j . The cost of path

p′s j is slightly larger than that of ps j . However, the minimum

cost to travel through edge (vj , vi) after time tj is far more than

after time t′j , i.e., min{wj,i(t)|t ≥ tj} ≫ min{wj,i(t)|t ≥ t′j}.
Thus, ps j→i is not a cost-optimal path from vs to vi. It means

the minimum arrival cost at a vertex vi cannot be computed based

on the minimum arrival costs at v’s incoming neighbors, which is

indicated by Eq. (1). It is because that a sub-path of a cost-optimal

path may not be the cost-optimal path.

Several studies in the field of operation research consider the op-

timal path problem under the discrete time model [3, 2]. In the

discrete time model, a whole time interval is discretized to a set

of time points, {t1, t2, · · · , tl}. For any edge (vi, vj), only one

specified time point tx to depart from vi can be selected. The main

disadvantages of these works are as follows: (1) An optimal path

may not be found under the discrete time model. Suppose one ar-

rives at vertex vi at time t, ti−1 < t < ti, where ti−1 and ti are

two consecutive time points in the given set of discrete time points.

The earliest departure time from vi is ti. However, the best depar-

ture time is t′, because the cost to travel through edge (vi, vj) is

the minimum if one departs from vi at time t′. Here, t < t′ < ti.
(2) These works need to compute the arriving cost for every vertex

at every time point. The time and space costs are expensive.

3. TWO­STEP ALGORITHM
We propose an efficient TWO-STEP-SEARCH algorithm. We

first introduce what is the ”arrival-time and the minimum-cost func-

tion” (or atmc-function for simplicity) and how to compute atmc-

function for a vertex vi in GT . Second, we introduce the first step

of the TWO-STEP-SEARCH algorithm, i.e., how to compute the

minimum cost from source vs to destination ve . Third, we intro-

duce the second step of the TWO-STEP-SEARCH algorithm, i.e.,

how to find a cost-optimal path and the optimal waiting time for

every vertex in the optimal path. Finally, we discuss the time com-

plexity and space complexity. The TWO-STEP-SEARCH algorithm

is shown in Algorithm 1.

In the following, we first focus on the case where the travel

time for every edge (vi, vj) in GT is a constant value wi,j , i.e.,

wi,j(t) = wi,j . We will discuss how to deal with the general case

where the travel time for every edge is a function wi,j(t) in Section

3.5. wi,j(t) is related to the departure time t from vi.

3.1 Arrival­Time and Min­Cost Function
Given a time-dependent graph GT , for any vertex vi ∈ GT ,

there may exist several paths that depart from source vs after time

td and arrive at vi at time point t. Let Pi(t) denote the set of all

such paths and gi(t) denote the minimum cost among all the paths

in Pi(t), that is,

gi(t) = min{cost(p)|p ∈ Pi(t)}

Note that some waiting time is allowed, as long as a path p satisfies

the time constraint: (1) departp(vs) ≥ td, it means that one departs

675

Table 1: Important notations

Notation Description

GT , vs, ve time-dependent graph, source, destination

td, ta earliest departure time, latest arrival time

fi,j(t), wi,j(t) cost-function, time-function

gi(t) atmc-function of vertex vi
gj→i(t) atmc-function by edge (vj , vi)

λj earliest arrival time at vj

from source vs after time td by path p; and (2) arrivep(vi) = t, it

means that one arrives at vi at time t by path p. gi(t) is a function

related to arrival time t for vi. We call gi(t) the atmc-function of

vertex vi. gi(t) represents the minimum cost that one can arrive at

vi at time t from source vs.

Given a time-dependent graph GT , if the cost function fi,j(t) is

a piecewise constant function for every edge (vi, vj) in GT , then

for any vertex vi ∈ V , it is obvious that gi(t) of vi is also a piece-

wise constant function.

Based on the atmc-function, the minimum cost from vs to ve
can be defined as ge(te) = min{ge(t)|t ∈ [λe, ta]}, where te is a

time point that minimizes ge(t) for t ∈ [λe, ta] and λe represents

the earliest arrival time for ve if departing from vs after the earliest

departure time td.

The main idea in the first step of the TWO-STEP-SEARCH algo-

rithm is to update atmc-function gi(t) iteratively for every vertex

vi ∈ GT until the minimum cost from source vs to destination ve
is derived. Note that in each iteration, the current gi(t) of vi may

not be an optimal (or correct) atmc-function. We need to update

gi(t) using its incoming neighbors’ atmc-functions such that gi(t)
is closer to the optimal atmc-function.

Next, we discuss how to update gi(t) for a vertex vi. Let vj be

an incoming neighbor of vi, i.e., vj ∈ N−(vi). Suppose gj(t) is

the current atmc-function of vj . The updating process includes t-

wo phases: (1) compute gj→i(t), gj→i(t) is a function as similar

as atmc-function, which represents the minimum cost that one de-

parting from vs can arrive at vi at time point t by edge (vj , vi); and

(2) update gi(t) using gj→i(t).
If the waiting time is not allowed, i.e., ω(vj) = 0, we have:

gj→i(t) = gj(t− wj,i) + fj,i(t− wj,i) (2)

The meaning of Eq. (2) is that: if the arrival time for vertex vi is

t, then one need to depart from vj at time t − wj,i. Because there

is no waiting time, the arrival time for vj is t − wj,i. gj(t − wj,i)
is the minimum cost from vs to vj for arrival time t − wj,i and

fj,i(t− wj,i(t)) is the cost to travel edge (vj , vi), then gj→i(t) is

the sum of gj(t− wj,i) and fj,i(t− wj,i(t)).
In this paper, some waiting time is allowed, then we have

gj→i(t) = min
t′,ω(vj)

{gj(t
′) + fj,i(t

′ + ω(vj))}

t = t′ + ω(vj) + wj,i

(3)

Here, t′ + ω(vj) is the departure time from vj and t′ is the arrival

time for vj . It means after arriving at vj , one needs to wait for

ω(vj) time before departure from vj . To guarantee that the arrival

time for vi is t, an appropriate waiting time is necessary to satisfy

that t = t′ + ω(vj) + wj,i. Therefore, to compute gj→i(t) is

equivalent to find the optimal arrival time t′ and the waiting time

ω(vj), which satisfies t = t′ + ω(vj) + wj,i, such that gj→i(t) is

minimized in Eq. (3).

Given the arrival time t for vertex vi, the departure time from

vj is fixed to t − wj,i. Then, the cost to travel the edge (vj , vi) is

fj,i(t − wj,i). By the definition of the function gj→i(t), we have

the following equation:

gj→i(t) = min
t′≤t−wj,i

{gj(t
′) + fj,i(t− wj,i)}

= min
t′≤t−wj,i

{gj(t
′)}+ fj,i(t− wj,i)

(4)

By Eq. (4), we find that computing gj→i(t) is equivalent to find

the optimal time t′ (t′ ≤ t−wj,i), such that gj(t
′) is the minimum.

In the other words, for any departure time point t − wj,i, we only

need to find the minimum gj(t
′) for t′ ≤ t− wj,i to minimize the

sum of gj(t
′) and fj,i(t− wj,i).

We use λj to denote the earliest arrival time at vertex vj if de-

parting from vs at the earliest departure time td. It indicates that

one cannot arrive at vj before λj if departing from vs at (or after)

time td. Thus, the time domain of gj(t) is [λj , ta]. Similarly, the

time domain of gj→i(t) is [λj→i, ta], where λj→i = λj + wj,i.

λj→i is the earliest time that one can arrive at vi by edge (vj , vi) if

departing from vs at time td.

The procedure to compute gj→i(t) is as follows. We find the

minimum gj(t
′) iteratively to minimize gj→i(t) in Eq. (4) until

gj→i(t) is computed for t ∈ [λj→i, ta]. To compute gj→i(t), the

whole time interval of gj(t) is set as Tj,i = [λj , ta−wj,i], because

one cannot arrive at vi before time ta if departing from vj after

ta − wj,i. We use Sj,i to denote the processed time interval for

gj(t) in each iteration. It means that the minimum gj(t
′) in Eq. (4)

has been found to minimize gj→i(t) for t ∈ Sj,i ⊕ wj,i. Here,

Sj,i ⊕ wj,i represents the time interval derived by adding wj,i to

all the time points in Sj,i. For example, if Sj,i = [ta, tb], then

Sj,i⊕wj,i = [ta +wj,i, t
b +wj,i]. Sj,i is initialized as ∅. We use

τj to denote the minimum value of gj(t) for t ∈ Tj,i − Sj,i, i.e.,

τj = min{gj(t)|t ∈ Tj,i − Sj,i}

We use tj to denote the minimum time point t such that gj(t) equals

to τj for t ∈ Tj,i − Sj,i, i.e.,

tj = min{t|gj(t) = τj , t ∈ Tj,i − Sj,i}

We use Rj,i to denote time interval [tj , ta − wj,i]. Then, τj is the

minimum value of gj(t), i.e., gj(t
′) in Eq. (4), which minimizes

gj→i(t) for t ∈ (Rj,i − Sj,i) ⊕ wj,i. gj→i(t) for t ∈ (Rj,i −
Sj,i)⊕ wj,i can be computed by the following equation:

gj→i(t) = fj,i(t− wj,i) + τj

After computing gj→i(t) for t ∈ (Rj,i − Sj,i) ⊕ wj,i, Sj,i is

updated as Sj,i ← Rj,i and the procedure to compute gj→i(t) is

repeated. This procedure terminates when Sj,i = Tj,i. At this

moment, gj→i(t) is computed for any time point t ∈ [λj→i, ta]
because Tj,i ⊕ wj,i = [λj→i, ta].

Note that it cannot find the minimum time point tj such that

gj(t) = τj if gj(t) = τj for an open time interval, i.e., gj(t) = τj
for t ∈ (ta, tb]. In this case, tj is set as the left endpoint ta and

Rj,i is also an open time interval (tj , ta − wj,i].
We illustrate the procedure to compute gj→i(t) by the exam-

ple in Fig. 2. In Fig. 2, the solid line represents the cost-function

fj,i(t) and the dash line represents the atmc-function gj(t). Ini-

tially, Sj,i = ∅ and Tj,i − Sj,i = [λj , ta − wj,i]. We find the

minimum value of gj(t) is 15 for t ∈ [λj , ta −wj,i], i.e., τj = 15.

tj is the earliest time point such that gj(t) = τj , and thus Rj,i =
[tj , ta − wj,i]. Then, we have gj→i(t) = fj,i(t − wj,i) + τj =
10+15 = 25 for t ∈ [tj+wj,i, ta]. Next, Sj,i ← Rj,i. We find the

minimum value of gj(t) is 20 for t ∈ Tj,i−Sj,i and λj is the earli-

est time point such that gj(t) = 20. We have Rj,i = [λj , ta−wj,i]
and Rj,i − Sj,i = [λj , tj). Thus, gj→i(t) = 20 + 10 = 30 for

676

t ∈ (Rj,i − Sj,i) ⊕ wj,i = [λj→i, tj + wj,i). At this moment,

gj→i(t) has been computed for the whole time interval [λj→i, ta].

lambdaj tj ta-wj,i

gj(t)

fj,i(t)

10

15

20

25

Figure 2: Computing gj→i(t)

The following theorem guarantees the correctness of the proce-

dure to compute gj→i(t).

Theorem 3.1: Given a time-dependent graph GT , vi, vj ∈ GT

and vj ∈ N−(vi). Let gj(t) be the atmc-function of vj . The

gj→i(t) computed in the above procedure is correct, i.e., for ∀t ∈
[λj→i, ta], gj→i(t) is the minimum cost that one can arrive at vi
at time point t by edge (vj , vi) if departing from vs after (or at) the

earliest departure time td. ✷

PROOF. For ∀t ∈ [λj→i, ta], we use g∗j→i(t) to denote the min-

imum cost that one can arrive at vi via vj at time point t by edge

(vj , vi) if departing from vs after (or at) time point td. We only

need to prove gj→i(t) = g∗j→i(t). Because g∗j→i(t) is the min-

imum cost, then we have g∗j→i(t) ≤ gj→i(t). Next, we prove

gj→i(t) ≤ gj→i(t)
∗. By the definitions of gj→i(t) and g∗j→i(t),

we have the equation:

g∗j→i(t) = gj(t
′∗) + fj,i(t− wj,i)

and the equation:

gj→i(t) = gj(t
′) + fj,i(t− wj,i)

where gj(t
′∗) and gj(t

′) are the costs that one arrives at vj for

g∗j→i(t) and gj→i(t) respectively. It is obvious that t′∗ ≤ t− wj,i

and t′ ≤ t − wj,i. To compute gj→i(t), gj(t
′) is selected as the

minimum value of gj(t) for t′ ≤ t− wj,i. Then we have gj(t
′) ≤

gj(t
′∗) and gj→i(t) ≤ g∗j→i(t). ✷

After computing gj→i(t), we can utilize gj→i(t) to update gi(t)
by the following equation:

gi(t) = min{gj→i(t), gi(t)|t ∈ [λj→i, ta]} (5)

In Section 3.2.1, we show that a vertex vj is dequeued iteratively

from queue Q according to τj in the first step of the TWO-STEP-

SEARCH algorithm. Therefore, in each iteration, we only need to

compute gj→i(t) and update gi(t) for t ∈ (Rj,i−Sj,i)⊕wj,i, for

every outgoing neighbor vi of vj .

3.2 Compute the Minimum Cost
In this section, we introduce the first step of the TWO-STEP-

SEARCH algorithm, i.e., how to compute the minimum cost from

source vs to destination ve.

3.2.1 Main idea

We pre-compute the earliest arrival time λi for every vertex vi ∈
V . The minimum travel time to every vertex vi from vs can be

computed by executing the single-source shortest path algorithm

on GT according to the time cost wi,j on every edge (vi, vj). The

earliest arrival time λi of vi is the sum of the earliest departure time

td and the minimum travel time to vi. The time complexity of the

single-source shortest path algorithm is O(n log n+m).

Algorithm 2 COMPUTE-MINIMUM-COST (GT , vs, ve, td, ta)

Input: GT , vs and ve, td and ta.
Output: minimum cost ge(te) from vs to ve.

1: gs(t)← 0; τs ← 0; Ss ← Ts; vi ← vs;
2: Let Q be the priority queue initially containing V ;
3: while vi 6= ve do

4: Let ti be the earliest time point such that gi(ti) = τi;
5: Si ← [ti, ta];
6: for each vj ∈ N+(vi) do

7: if ti ≤ ta − wi,j then

8: Ri,j ← [ti, ta − wi,j];
9: gi→j(t)← fi,j(t−wi,j)+τi for t ∈ (Ri,j−Si,j)⊕wi,j ;

10: Si,j ← Ri,j ;
11: gj(t)← min{gj(t), gi→j(t)|t ∈ (Ri,j − Si,j)⊕ wi,j};
12: τj ← min{gj(t)|t ∈ Tj − Sj};
13: if Si 6= Ti then

14: τi ← min{gi(t)|t ∈ Ti − Si};
15: enqueue(Q, vi);
16: vi ←dequeue(Q);
17: ge(te)← τe;
18: return ge(te), te

We use ge(te) to denote the minimum value of ge(t) of destina-

tion ve, where te is any time point such that ge(t) is minimized.

Obviously, ge(te) is the minimum cost from vs to ve with time

constraint. Our objective in this section is to compute ge(te).
The algorithm to compute ge(te) is shown in Algorithm 2. For

every vertex vi ∈ GT , we use Ti to denote the time interval be-

tween the earliest arrival time of vi and the latest arrival time ta,

i.e., Ti = [λi, ta]. Algorithm 2 updates gi(t) iteratively for ev-

ery vertex vi ∈ GT . We use Si to represent the processed time

interval for gi(t) in which the minimum value of gi(t) has been

found to update gj(t) for every outgoing neighbor vj of vi. Dif-

ferent from Si,j discussed in Section 3.1, Si is updated as [ti, ta]
in every iteration, but Si,j is updated as Ri,j = [ti, ta − wi,j] for

every outgoing neighbor vj of vi. Let τi denote the minimum val-

ue of the current gi(t) for t ∈ Ti − Si. It is obvious that τi is also

the minimum value of the current gi(t) for t ∈ Ti,j − Si,j when

ti ≤ ta − wi,j . Note that the current gi(t) may not be an optimal

(or correct) atmc-function. Algorithm 2 updates gi(t) iteratively

such that gi(t) approaches to its correct value.

For source vs, gs(t), Ss and τs are initialized as gs(t) ← 0,

Ss ← Ts and τs ← 0 respectively. Obviously, the cost from vs
to vs is zero for any arrival time t. It means the atmc-function

gs(t) of vs equals to zero for any t ∈ [td, ta]. For any other vertex

vi 6= vs, gi(t), Si and τi are initialized as gi(t)←∞, Si ← ∅ and

τi ←∞ respectively.

Algorithm 2 utilizes a priority queue Q to maintain the vertices

in time-dependent graph GT . All vertices vi ∈ GT are sorted in

Q according to τi. Algorithm 2 repeatedly dequeues the top vertex

in Q, which has the minimum τi. Initially, the top vertex in Q is

vs because τs = 0. The algorithm terminates when destination ve
is dequeued from Q for the first time. It means that the minimum

cost from source to destination has been computed.

In every iteration, Algorithm 2 first dequeues the top vertex from

Q, denoted as vi. τi is the minimum value of current gi(t) for

t ∈ Ti − Si. Let ti be the earliest time point such that gi(t) = τi.
Here, gi(t) is the current atmc-function of vi. We update Si to

Si ← [ti, ta]. For each outgoing neighbor vj of vi, if ti ≤ ta −
wi,j , we update gj(t) for t ∈ (Ri,j−Si,j)⊕wi,j . τj is also updated

at the same time. Note that it cannot find the earliest time point ti
if gi(t) = τi for an open interval, i.e., gi(t) = τi for t ∈ (ta, tb].
In this case, ti is set as ta and Si is updated to (ti, ta]. Let [ta, tb]

677

(or (ta, tb]) denote the time interval such that gi(t) = τi, then

τi is the value of the optimal (or correct) atmc-function gi(t) for

t ∈ [ta, tb]. We will prove it in section 3.2.3.

After updating gj(t) for all the outgoing neighbors vj ∈ N+(vi),
Algorithm 2 checks whether the processed time interval equals to

the whole time interval, i.e., Si = Ti. If Si = Ti, vi is not neces-

sary to update gj(t) for every outgoing neighbor vj of vi. Then vi
can be removed safely from Q. If Si 6= Ti, Algorithm 2 computes

the minimum value τi of current gi(t) for t ∈ Ti − Si and then

enqueues vi back into Q for further process.

When the destination ve is dequeued from the queue Q for the

first time, τe is the minimum value of ge(t) for t ∈ [λe, ta]. We

will prove it in Section 3.2.3. Therefore, Algorithm 2 terminates

because τe is the minimum cost from the source vs to the destina-

tion ve with time constraint.

3.2.2 Running example

We use the example in Fig. 1 to illustrate the process to compute

ge(te). In this example, vs = v1, ve = v4, td = 0 and ta = 60.

We first utilize the single-source shortest path algorithm to compute

the earliest arrival time for all vertices v1, v2, v3 and v4 in GT .

We have λ1 = 0, λ2 = 10, λ3 = 15 and λ4 = 25. Then the

time domain of g1(t), g2(t), g3(t) and g4(t) are [0, 60], [10, 60],
[15, 60] and [25, 60] respectively.

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(a) g2(t)(1st iteration)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(b) g3(t)(1st iteration)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(c) g4(t)(2nd iteration)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(d) g3(t)(3rd iteration)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(e) g4(t)(3rd iteration)

10

20

30

40

50

0 10 20 30 40 50 60

C
o

s
t

Time

(f) g4(t)(4th iteration)

Figure 3: Running Example

Fig. 3 illustrates how to compute ge(te). Initially, the priority

queue Q contains all vertices v1, v2, v3 and v4. For source v1,

τ1 = 0, S1 = T1 and g1(t) = 0. For other vertices vi(i = 2, 3, 4),
gi(t) =∞, τi =∞ and Si = ∅. It implies gi(t) is unknown.

In the first iteration, source v1 is dequeued from the priority

Q, because τ1 = 0 is the minimum in Q. Algorithm 2 com-

putes g1→2(t) and g1→3(t) and updates g2(t) and g3(t) for v1’s

two outgoing neighbors v2 and v3. The resulting atmc-functions

g2(t) and g3(t) are shown in Fig. 3(a) and Fig. 3(b). Because

S1 = T1 = [0, 60], v1 is removed from queue Q in this iteration.

In the second iteration, v3 is the top vertex dequeued from Q,

because τ3 = 5 is the minimum in Q. As shown in Fig. 3(b),

t3 = 30 is the earliest time such that g3(t) = τ3. S3 is updated

as S3 ← [30, 60]. v4 is the outgoing neighbor of v3 and t3 <
ta − w3,4 = 50, then Algorithm 2 computes g3→4(t) and updates

g4(t). The resulting g4(t) is shown in Fig. 3(c). Because S3 6= T3,

v3 is enqueued into Q again. Here, the minimum value of current

g3(t) for t ∈ T3 − S3 = [15, 30) is 20, then τ3 is updated to 20.

In the third iteration, the top vertex dequeued from Q is v2, be-

cause τ2 = 10 is the minimum in Q. As shown in Fig. 3(a), g2(t)
equals to 10 for the whole time interval t ∈ [10, 60], then S2 is

updated as S2 ← T2. For v2’s two outgoing neighbors v3 and

v4, Algorithm 2 computes g2→3(t) and g2→4(t) and updates g3(t)
and g4(t). The resulting atmc-functions g3(t) and g4(t) are shown

in Fig. 3(d) and Fig. 3(e) respectively. Because S2 = T2, v2 is

removed from Q in this iteration.

In a similar way, v3 is dequeued from Q in the fourth iteration

and v4 is dequeued from Q in the fifth iteration. Because v4 is

the destination, Algorithm 2 terminates. The minimum cost from

source v1 to destination v4 is 20. As shown in Fig. 3(f), g4(t)
equals to 20 for t ∈ [30, 35). The arrival time te at v4 can be any

time point in [30, 35).

3.2.3 Correctness

Next, we prove the correctness of Algorithm 2. Let [ta, tb] de-

note the time interval during which the current gi(t) equals to τi,
when vi is dequeued from queue Q. The following theorem guar-

antees that the value of the optimal (or correct) atmc-function gi(t)
is τi for t ∈ [ta, tb].

Theorem 3.2: Given a time-dependent graph GT , let vi be the

vertex dequeued from Q with τi in the k-th iteration and [ta, tb] be

the time interval such that gi(t) = τi. Here, gi(t) is the current

atmc-function of vi. Then the value of the optimal (or correct)

atmc-function gi(t) is τi for t ∈ [ta, tb]. ✷

PROOF. For any t0 ∈ [ta, tb], we only need to prove gi(t
0) =

τi, where gi(t) is the optimal (or correct) atmc-function of vi. By

the definition of the atmc-function, we have gi(t
0) ≤ τi. Next, we

need to prove τi ≤ gi(t
0). Without loss of generality, let p denote

the path along which one can arrive at vertex vi at time point t0

with the cost cost(p) = gi(t
0):

p : vs → v1 → v2 → · · · → vh → vi

We use tx to denote the arrival time at vx(1 ≤ x ≤ h) in path p
and gx(tx) to denote the cost that one arrives at vx from vs along

path p. To distinguish, we use gkx(t) to denote the current atmc-

function of vx in the k-th iteration. It is worth noting that gkx(t)
may not be the optimal (or correct) atmc-function gx(t). In the

k-th iteration, the value of gh(t) for t = th is gh(th). Consider

two cases: (1) gkh(th) = gh(th); and (2) gkh(th) > gh(th). Note

that gh(th) is the value of the optimal (or correct) atmc-function of

vh at time point th, then there does not exist the case of gkh(th) <
gh(th). In case (1), there are also two cases for fh,i(t

0 − wh,i):
(a) fh,i(t

0 − wh,i) = 0, and (b) fh,i(t
0 − wh,i) 6= 0. In case

(a), if th ∈ Sh, then vh has been dequeued from Q with τh ≤
gkh(th). Thus gi(t) has been updated as τh + fh,i(t − wh,i). By

Theorem 3.1 and fh,i(t
0−wh,i) = 0, we have τi ≤ τh+fh,i(t

0−
wh,i) ≤ gkh(th) = gh(th). If th /∈ Sh, then τi = gkh(th) =
gh(th). Otherwise, gkh(th) < τi, vh should be dequeued from

Q in the k-th iteration, which is in contradiction with that vi is

dequeued from Q in the k-th iteration. Note that gkh(th) cannot

be larger than τi. Because gkh(th) = gh(th), gh(th) ≤ gi(t
0)

and gi(t
0) ≤ τi, then gkh(th) ≤ τi. Then for case (a), we have

τi ≤ gh(th) = gh(th) + fh,i(t
0 − wh,i) = gi(t

0). In case (b),

fh,i(t
0 − wh,i) 6= 0, then gkh(th) = gh(th) < gi(t

0). It indicates

that vh has been dequeued from Q with τh ≤ gkh(th) and gi(t) has

been updated as τh + fh,i(t− wh,i). By Theorem 3.1, we have

τi ≤ τh + fh,i(t
0 − wh,i)

≤ gkh(th) + fh,i(t
0 − wh,i)

= gh(th) + fh,i(t
0 − wh,i) = gi(t

0)

Thus for case (1), we have τi ≤ gi(t
0). Next, we prove that case

(2) does not exist. Consider vh−1. There are also two cases for

678

gkh−1(th−1) in the k-th iteration: gkh−1(th−1) = gh−1(th−1) and

gkh−1(th−1) > gh−1(th−1). In a similar way as proving τi =

gi(t
0) for case (1), we can prove gkh(th) = gh(th) if gkh−1 =

gh−1(th−1). Then we only need to prove that there does not ex-

ist the case of gkh−1(th−1) > gh−1(th−1). Similarly, we only

need to prove that there does not exist the case of gkh−2(th−2) >
gh−2(th−2). Recursively, we only need to prove that there does

not exist the case of gk1 (t1) > g1(t1). Because g1(t1) has been

computed when source vs is dequeued from Q in the first iteration,

then gk1 (t1) = g1(t1). This is a contradiction. Then case (2) does

not exist and we prove τi ≤ gi(t
0). Theorem 3.2 is proved. ✷

Next, we give Theorem 3.3 to guarantee that τi is the minimum

value of the optimal (or correct) atmc-function gi(t) for t ∈ Ti−Si

when vi is dequeued from Q with τi.

Theorem 3.3: Given a time-dependent graph GT , let vi be the

vertex dequeued from Q with τi in the k-th iteration, then τi is the

minimum value of the optimal (or correct) atmc-function gi(t) of

vi for t ∈ Ti − Si. ✷

PROOF. We prove it by contradiction and assume that there exist

t0 ∈ Ti − Si such that gi(t
0) < τi. Without loss of generality, let

p denote the path along which one can arrive at vertex vi at time

point t0 with the cost cost(p) = gi(t
0):

p : vs → v1 → v2 → · · · → vh → vi

We use tx to denote the arrival time at vx (1 ≤ x ≤ h) in path p and

gx(tx) to denote the cost that one arrives at vx from vs along path

p. We also use gkx(tx) to denote the current atmc-function of vx in

the k-th iteration. Similar to that in Theorem 3.2, there are only two

cases for gki (t
0): (1) gki (t

0) = gi(t
0); and (2) gki (t

0) > gi(t
0). For

case (1), gki (t
0) = gi(t

0) < τi, then vi should be dequeued from

Q with gki (t
0) in the k-th iteration, which is in contradiction with

that vi is dequeued from Q with τi. Then we only need to prove

that case (2) does not exist. We can prove that in a similar way as

proving that case (2) does not exist in Theorem 3.2. Because there

is contradiction for case (1) and case (2) does not exist, then the

assumption does not hold. Theorem 3.3 is proved. ✷

Theorem 3.3 indicates that τi is the minimum value of the op-

timal (or correct) atmc-function gi(t) for t ∈ Ti − Si when vi
is dequeued from Q. Therefore, when destination ve is dequeued

from Q for the first time, τe is the minimum value of ge(t) for

t ∈ Te, i.e., τe is the minimum cost from source vs to destination

ve with time constraint.

Corollary 3.1: Given a time-dependent graph GT , for any vertex

vi in GT , let τp
i and τ q

i be the τi when vi is dequeued from Q for

the p-th and q-th time respectively. If p < q, then τp
i < τ q

i . ✷

PROOF. Let Sp
i and Sq

i be the Si when vi is dequeued from

Q for the p-th and q-th time respectively. Because p < q, then

Sp
i ⊂ Sq

i and Ti − Sp
i ⊃ Ti − Sq

i . By Theorem 3.3, τp
i and τ q

i are

the minimum values of the optimal (or correct) gi(t) for t ∈ Ti−S
p
i

and t ∈ Ti − Sq
i , then τp

i < τ q
i . ✷

3.3 Finding the Optimal Path and the Optimal
Waiting Time

In this section, we introduce the second step of the TWO-STEP-

SEARCH algorithm, i.e., how to find the optimal path p∗ from source

vs to destination ve and the optimal waiting time ω∗(vi) for every

vertex vi ∈ p∗ such that cost(p∗) = ge(te).
Algorithm 3 shows the algorithm to compute p∗ and ω∗(vi) for

every vi ∈ p∗. The main idea is to find the predecessor iteratively

Algorithm 3 PATH-SELECTION (GT , vs, ve, td, ta, ge(te))

Input: GT , ge(te), vs and ve, td and ta.
Output: the optimal path p∗ and ω∗(vi) for every vertex vi ∈ p∗.

1: vi(t)← ve; p∗ ← ∅; gi(ti)← ge(te); ti ← t∗;
2: while vi 6= vs do

3: for each vj ∈ N−(vi) do

4: if ∃tj ≤ ti − wj,i, gi(ti) = gj(tj) + fj,i(ti − wj,i) then

5: p∗ ← p∗ + vj ; ω∗(vi) = ti − wj,i − tj ;
6: vi ← vj ; ti ← tj ;
7: break;
8: return p∗ and ω∗(vi) for each vi ∈ p∗.

for every vertex vi ∈ P ∗ backward from destination ve to source

vs. Initially, vi ← ve.

In every iteration, we find the predecessor vj of vi in the optimal

path p∗. Let ti be the arrival time at vi in path p∗ and gi(ti) be the

cost that one arrives at vi along path p∗. We initialize gi(ti) and

ti as ge(te) and te respectively. For each vj ∈ N−(vi), if there

exists a time point tj , tj ≤ ti − wj,i, such that

gi(ti) = gj(tj) + fj,i(ti − wj,i) (6)

then vj is the predecessor of vi in path p∗ and tj is the arrival time

at vj in path p∗. Such a predecessor vj must exist, because gi(ti) is

computed by Algorithm 2 using gj(tj). Then the optimal waiting

time at vj is:

ω∗(vj) = ti − wj,i − tj (7)

Algorithm 3 terminates when source vs is found as a predecessor,

i.e., vi = vs. Here, all the vertices in p∗ are found and the optimal

waiting time ω∗(vi) for every vertex vi ∈ p∗ is computed.

We use the example in Fig. 3 to illustrate the process to compute

p∗ and ω∗(vi) for every vertex vi ∈ p∗. From Fig. 3, we find that

the minimum cost from v1 to v4 is g4(t4) = 20. Here, g4(t) = 20
for t ∈ [30, 35), then t4 can be any time point in [30, 35), e.g.,

t4 = 30. For a v4’s incoming neighbor v3, the departure time from

v3 is t4 − w3,4 = 30 − 10 = 20. We find that g3(t3) = 15 when

t3 = 20 and then we have:

g3(t3)+f3,4(t4−w3,4) = g3(20)+f3,4(30−10) = 20 = g4(t4)

Thus v3 is the predecessor of v4 in the optimal path p∗. The optimal

waiting time at v3 is ω∗(v3) = t4 − w3,4 − t3 = 0.

In the second iteration, for a v3’s incoming neighbor v2, the de-

parture time from v2 is t3 − w2,3 = 20 − 5 = 15. g2(t2) = 10
when t2 = 10 and then we have:

g2(t2) + f2,3(t3 − w2,3) = 10 + 5 = 15 = g3(t3)

Thus v2 is the predecessor of v3 in the optimal path p∗ and the

optimal waiting time at v2 is ω∗(v2) = t3 − w2,3 − t2 = 5.

In the similar way, v1 is found as the predecessor of v2 in path

p∗. Because v1 is the source vertex, Algorithm 3 terminates. Then

the optimal path p∗ is v1 → v2 → v3 → v4. The optimal waiting

time for all the vertices in the optimal path p∗ are ω∗(v1) = 0,

ω∗(v2) = 5 and ω∗(v3) = 0 respectively.

3.4 Time and Space Complexities
We first analyze the time complexities of Algorithm 2 and Al-

gorithm 3 and then give the time complexity of the TWO-STEP-

SEARCH algorithm (Algorithm 1). Let n and m be the number of

vertices and edges in GT respectively, and k be the average number

of piecewise constant values of atmc-function gi(t) in GT .

Lemma 3.1: The time complexity of COMPUTE-MINIMUM-COST

(Algorithm 2) is O(kn log n+mk). ✷

679

PROOF. In every iteration of Algorithm 2, there are at most n
vertices maintained in Q at the same time. Using Fibonacci Heap

[6], dequeue(Q) and enqueue(Q) require O(log n) and O(1) amor-

tized time respectively. When a vertex vi is dequeued from Q,

Algorithm 2 needs to compute gi→j(t) and update gj(t) for ev-

ery outgoing neighbor vj of vi. To compute gi→j(t), Algorithm 2

needs to add τi to every constant value of fi,j(t) for t ∈ Ri,j−Si,j .

We use ki,j [I
p] to denote the number of piecewise constant values

of fi,j(t) for t ∈ Ri,j − Si,j when vi is dequeued from Q for the

p-th time. Here Ip = Ri,j − Si,j . Then the time complexity is

O(ki,j [I
p]) for computing gi→j(t) and updating gj(t). When vi

is dequeued from Q for the p-th time, the time complexity for this

iteration is O(
∑d+(vi)

x=1 ki,jx [I
p] + log n), where vjx is the x-th

outgoing neighbor vj of vi. We call tpi as an ”connection point” of

Ip and Ip+1, where tpi is ti when vi is dequeued from Q for the p-th

time. For a constant value cx of fi,j(t), assume cx’s corresponding

time interval is [tx−1, tx], i.e., fi,j(t) = cx for t ∈ [tx−1, tx]. Note

that cx is counted in both k[Ip] and k[Ip+1] if the connection point

tpi ∈ (tx−1, tx). Here, cx is the first constant value of fi,j(t) for

t ∈ Ip and the last one of fi,j(t) for t ∈ Ip+1. Let li be the num-

ber of times that vi is dequeued from Q in total. There are at most

(li−1) connection points, then
∑li

p=1 ki,j [I
p] ≤ ki,j [Ti]+(li−1).

Thus for vi, the time complexity is:

O(

li
∑

p=1

(

d+(vi)
∑

x=1

ki,jx [I
p] + log n))

≤O(

d+(vi)
∑

x=1

(ki,jx [Ti] + (li − 1)) +

li
∑

p=1

log n)

and the total time complexity is:

O(
∑

vi∈V

(

d+(vi)
∑

x=1

(ki,jx [Ti] + (li − 1)) +

li
∑

p=1

log n))

=O(
∑

vi∈V

d+(vi)
∑

x=1

(ki,jx [Ti] + (li − 1)) +
∑

vi∈V

li
∑

p=1

log n)

It is obvious that
∑

vi∈V

∑d+(vi)
x=1 ki,jx [Ti] equals to the total num-

ber of constant values of all the cost functions on all the edges in

Gt. Let k′ be the average number of constant values of cost func-

tion fi,j(t) in GT , then mk′ =
∑

vi∈V

∑d+(vi)
x=1 ki,jx [Ti]. Let ki

denote the number of constant values of atmc-function gi(t). By

Theorem 3.3 and Corollary 3.1, we know that vi is dequeued from

Q repeatedly according to the different constant values (i.e., τi) of

gi(t) in Algorithm 2. Thus vi is dequeued from Q at most ki times,

then li ≤ ki and
∑

vi∈V

∑d+(vi)
x=1 (li − 1) <

∑d+(vi)
x=1

∑

vi∈V
ki.

Here,
∑

vi∈V
ki equals to the total number of constant values of

all the atmc-functions in GT . Thus we have
∑

vi∈V
ki = nk

and
∑d+(vi)

x=1

∑

vi∈V
ki = mk. Similarly,

∑

vi∈V

∑li
p=1 log n =

nk log n. Then the total complexity is O(m(k′ + k) + nk log n).
Because every gi(t) are computed by different fi,j(t), then k′ ≤ k.

Thus the total time complexity is O(nk log n+mk). ✷

Lemma 3.2: The time complexity of PATH-SELECTION (Algorithm

3) is O(mk). ✷

PROOF. In every iteration of Algorithm 3, for a vertex vi in the

optimal path p∗, all vi’s incoming neighbors need to be examined.

For every incoming neighbor vj of vi, Algorithm 3 needs to check

whether there exists a time tj (tj ≤ ti − wj,i), such that Eq. (6)

holds. This operation requires O(k) time. Thus the time complex-

ity of computing predecessor for vi is d−(vi)k in every iteration.

Because there is no loop in the optimal path p∗, then Algorithm 3

needs to compute predecessor for vi at most once. Thus, the time

complexity of Algorithm 1 is O(
∑

vi∈V
(d−(vi)k)) = O(mk). ✷

By Lemma 3.1 and Lemma 3.2, then we have the time complex-

ity of Algorithm 2.

Theorem 3.4: The time complexity of TWO-STEP-SEARCH (Algo-

rithm 1) is O(kn log n+mk). ✷

PROOF. Algorithm 2 and Algorithm 3 are two steps of Algo-

rithm 1. By Lemma 3.1 and Lemma 3.2, the time complexity of

Algorithm 1 (TWO-STEP-SEARCH) is O(kn log n+mk). ✷

Next,we analyze the space complexity of Algorithm 1.

Theorem 3.5: The space complexity of TWO-STEP-SEARCH (Al-

gorithm 1) is O((n+m)k). ✷

PROOF. Algorithm 2 and Algorithm 3 are two steps of Algorith-

m 1. Algorithm 2 needs to maintain at most n vertices in Q. For

every vertex vi, Algorithm 2 and Algorithm 3 need to maintain its

atmc-function gi(t). For every edge (vi, vj) in GT , Algorithm 2

and Algorithm 3 need to maintain its cost function fi,j(t). There-

fore, the space complexity of Algorithm 1 is O((n+m)k). ✷

3.5 Discussion about Time Function
In the above discussion, we assume that travel time for every

edge (vi, vj) is a constant value wi,j . Next, we discuss how to

handle the case where travel time is a function wi,j(t) which is

related to the departure time t from vi. In this paper, we assume

that GT has the FIFO property. FIFO property for an edge (vi, vj)
implies that if departing earlier from vi, one arrives earlier at vj .

Definition 3.1: (FIFO) Given a time-dependent graph GT , we say

GT is a FIFO graph if and only if the time function wi,j(t) of every

edge (vi, vj) has the FIFO property, i.e., wi,j(t0) < ∆t+wi,j(t0+
∆t) for ∆t > 0, or t1 + wi,j(t1) < t2 + wi,j(t2) for t1 < t2. ✷

The restriction of the FIFO property is reasonable and many pre-

vious works also make this assumption [16, 13]. Consider a road

network, for two cars towards the same road segment, the first one

reaching the starting point should leave the end point first.

We use arrivei,j(t) to denote the arrival-time function of edge

(vi, vj), arrivei,j(t) = t+wi,j(t). arrivei,j(t) indicates the arrival

time at vj if one departs from vi at time point t. It is obvious that

arrivei,j(t) is a one-one mapping function. Given an arrival time t
at vj , we can compute the departure time from vi by arrive−1

i,j (t),

where arrive−1
i,j (t) is the inverse function of arrivei,j(t).

As similar as Eq. (4) in Section 3.1, for every edge (vj , vi), giv-

en the arrival time t for vi, the departure time from vj is fixed as

arrive−1
j,i (t) and the cost to travel edge (vj , vi) is fj,i(arrive

−1
j,i (t)).

Therefore, gj→i(t) can be computed by the following equation:

gj→i(t) = min
t′≤arrive

−1

j,i
(t)

{gj(t
′)}+ fj,i(arrive

−1
j,i (t)) (8)

There is a special case where wj,i(t) is a non-continuous func-

tion. For example, wj,i(t) is a function w1
j,i(t) for t ≤ t† and

another function w2
j,i(t) for t > t†. Here w1

j,i(t) is always smaller

than w2
j,i(t). Obviously, wj,i(t) is broken at t†. Then the arrival-

time function for edge (vj , vi) is non-continuous, because one can-

not arrive at vi between time t† + w1
j,i(t

†) and t† + w2
j,i(t

†). We

call t† as a ”break point” of wj,i(t). Suppose there exists a ”break

point” t† in time interval [ta, tb] during which fj,i(t) = c, then

gj→i(t) equals to c + τj for t ∈ [arrive1j,i(t
a), arrive1j,i(t

†)] and

680

10
-2

10
-1

10
0

10
1

10
2

10
3

2k 5k 10k 20k 100k

R
u

n
n

in
g

 t
im

e
(s

e
c
)

Number of nodes

TCSP-AWT
TWO-STEP

(a) querying time

128K

1M

8M

64M

512M

4G

32G

2k 5k 10k 20k 100k

M
e
m

o
ry

 (
b
y
te

)

Number of nodes

TCSP-AWT
TWO-STEP

(b) memory overhead

 0

 2

 4

 6

 8

 10

 12

 14

2k 5k 10k 20k 100k

A
v
e

ra
g

e
 d

e
q

u
e

u
e

 t
im

e
s

Number of nodes

TWO-STEP

(c) average dequeue times

 0

 1

 2

 3

 4

 5

 6

 7

2k 5k 10k 20k 100k

E
rr

o
r

ra
ti
o

Number of nodes

TCSP-AWT

(d) relative error

Figure 4: Impact of vertex size

10
-2

10
-1

10
0

10
1

10
2

10
3

10k 20k 40k 80k

R
u
n
n
in

g
 t
im

e
(s

e
c
)

Number of edges

TCSP-AWT
TWO-STEP

(a) querying time

256k

2M

16M

128M

1G

8G

10k 20k 40k 80k

M
e

m
o

ry
 (

b
y
te

)

Number of edges

TCSP-AWT
TWO-STEP

(b) memory overhead

 0

 2

 4

 6

 8

 10

 12

 14

10k 20k 40k 80k

A
v
e

ra
g

e
 d

e
q

u
e

u
e

 t
im

e
s

Number of edges

TWO-STEP

(c) average dequeue times

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

10k 20k 40k 80k

E
rr

o
r

ra
ti
o

Number of edges

TCSP-AWT

(d) relative error

Figure 5: Impact of edge size

t ∈ (arrive2j,i(t
†), arrive2j,i(t

b)], respectively. Here arrive1j,i(t) =

t+w1
j,i(t) and arrive2j,i(t) = t+w2

j,i(t). In addition, gj→i(t) =∞

for t ∈ (arrive1j,i(t
†), arrive2j,i(t

†)]. Note that arrive1j,i(t
†) <

arrive2j,i(t
†). It indicates one cannot arrive at vi by edge (vj , vi)

between time arrive1j,i(t
†) and arrive2j,i(t

†).
As similar as Eq. (6), Algorithm 3 can compute the predecessor

vj for a vertex vi in the optimal path p∗ by the following equation

if travel time is a function wi,j(t) for every edge (vi, vj) ∈ GT .

gi(ti) = gj(tj) + fj,i(arrive
−1
j,i (ti)) (9)

The optimal waiting time for vj can be computed as follows:

ω∗(vj) = ti − wj,i(arrive
−1
j,i (ti))− tj (10)

4. PERFORMANCE EVALUATION
We compare the TWO-STEP-SEARCH algorithm with the TCSP-

AWT (Time Constraint Shortest Path Allow Waiting Time) algo-

rithm [2] based on two real datasets. TCSP-AWT is the state of the

art algorithm to compute the cost-optimal path with time constraint

in time-dependent graphs. However, TCSP-AWT can be only used

for the discrete time model. All the experiments are conducted on

a 3.0GHz Intel Core i5 CPU PC with the 32GB main memory, run-

ning on Windows 7.

4.1 Dataset and Experiment Setup
We employ the following two real road networks:

CARN: This dataset is California road network including 23,718

vertices and 33,561 edges. A vertex represents an intersection or a

road endpoint and an edge represents a road segment.

EURN: This network describes Eastern USA road network and it

includes 3,598,623 vertices and 8,778,114 edges. As the same as

the CARN, a vertex represents an intersection or a road endpoint

and an edge represents a road segment.

We generate four time-dependent graphs with different sizes us-

ing the CARN dataset and five time-dependent graphs with differ-

ent sizes using the EURN datasets. For graphs of CARN dataset,

the number of vertices ranges from 2k to 20k. For graphs of EU-

RN dataset, the number of vertices ranges from one million to three

millions. We generate travel time according to the road length. The

travel time for an edge (vi, vj) is more if the road represented by

(vi, vj) is longer. To simulate the real traffic case, we compute

the betweenness centrality for every edge in Gt and sort all the

edges in descending order of betweenness. We select the top 20%
edges as the traffic hubs in a road network. We assign the more

expensive travel cost and the more travel time on these edges. The

time domain is set as T = [0, 2000], i.e., the departure time t can

be selected from [0, 2000] for any vertex in a graph. Here, 2000

means 2000 time units. For every fi,j(t), we split the time domain

T to k subintervals and assign a constant value randomly for ev-

ery subinterval and then it is a piecewise constant function. For

every wi,j(t), the time domain T is also randomly divided to k
subintervals ([t0, t1], [t1, t2], · · · , [tk−1, tk]), where t0 and tk are

the start and the end of the time domain T respectively. The val-

ue of wi,j(t0) is first generated as a random number from [0, w̄],
where w̄ is a number to restrict the max value of wi,j(t). Within

each subinterval [tx−1, tx] (1 ≤ x ≤ k), wi,j(t) is a linear func-

tion wx
i,j(t), w

x
i,j(tx−1) = wx−1

i,j (tx−1) and wx
i,j(tx) is generated

as a random number from [max(0, wx
i,j(tx−1) −∆tx), w̄], where

∆tx = tx − tx−1. Then the time function wi,j(t) is guaranteed to

be non-negative and FIFO. For TCSP-AWT, we sample one discrete

time point every other time unit from the whole time interval. For

example, if the whole time interval is [0, 1000], then the sampled

discrete time points are [1, 3, 5, · · · , 999]. We randomly generate

1,000 pairs of vertices and query the cost-optimal path between

every pair of vertices. The reported querying time is the average

time on each dataset. We use TWO-STEP to denote TWO-STEP-

SEARCH in the experimental results.

We are interested in the following aspects to evaluate the perfor-

mance of TWO-STEP-SEARCH: (1) the impact of number of ver-

tices; (2) the impact of number of edges; (3) the impact of distances

between source and destination; (4) the impact of the length of time

interval [td, ta] between the earliest departure time td and the latest

arrival time ta; and (5) the impact of the average number of piece-

wise intervals of fi,j(t). The parameters to be evaluated are: (1)

querying time; (2) memory overhead; (3) average number of times

that a vertex is dequeued from Q; (4) relative error (c − c∗)/c∗ of

TCSP-AWT. Note that TCSP-AWT can be only used for the discrete

681

10
-2

10
-1

10
0

10
1

10
2

10
3

5 10 15 20

R
u

n
n

in
g

 t
im

e
(s

e
c
)

Distance

TCSP-AWT
TWO-STEP

(a) querying time

256k

2M

16M

128M

1G

8G

5 10 15 20

M
e
m

o
ry

 (
b
y
te

)

Distance

TCSP-AWT
TWO-STEP

(b) memory overhead

 0

 2

 4

 6

 8

 10

 12

 14

5 10 15 20

A
v
e

ra
g

e
 d

e
q

u
e

u
e

 t
im

e
s

Distance

TWO-STEP

(c) average dequeue times

 0

 1

 2

 3

 4

 5

 6

5 10 15 20

E
rr

o
r

ra
ti
o

Distance

TCSP-AWT

(d) relative error

Figure 6: Impact of distance between source and destination

10
-1

10
0

10
1

10
2

600 800 1000 1200

R
u

n
n

in
g

 t
im

e
(s

e
c
)

Time interval

TCSP-AWT
TWO-STEP

(a) querying time

256k

2M

16M

128M

1G

8G

600 800 1000 1200

M
e
m

o
ry

(b
y
te

)

Time interva

TCSP-AWT
TWO-STEP

(b) memory overhead

 0

 2

 4

 6

 8

 10

 12

 14

600 800 1000 1200

A
v
e

ra
g

e
 d

e
q

u
e

u
e

 t
im

e
s

Time interval

TWO-STEP

(c) average dequeue times

0

1

2

3

4

600 800 1000 1200

E
rr

o
r

ra
ti
o

Time interval

TCSP-AWT

(d) relative error

Figure 7: Impact of the length of time interval [td, ta]

time model, thus the results of TCSP-AWT may not be optimal as

the discussion in Section 2.2. Here, c is the cost of the path com-

puted by TCSP-AWT and c∗ is the cost of the optimal path. There

is no error for TWO-STEP-SEARCH algorithm.

4.2 Experimental Results

Exp-1. Impact of the number of vertices: In Fig. 4, we study the

impact of number of vertices of time dependent graph GT . In this

group of the experiments, the number of vertices increases from

2K to 100K, where the graphs with 2k to 20k vertices are gener-

ated from CARN dataset and the graph with 100k vertices is gen-

erate from EURN dataset. The number of piecewise intervals of

fi,j(t) is 10. The time interval [td, ta] is [0, 1000]. As shown in

Fig. 4(a) and Fig. 4(b), the querying time and memory overhead

of TWO-STEP-SEARCH are always less than that of TCSP-AWT.

TWO-STEP-SEARCH is nearly 20 times faster than TCSP-AWT.

The memory overhead of TWO-STEP-SEARCH is nearly 500 times

less than that of TCSP-AWT. The reason is TCSP-AWT needs to

compute the arrival costs for all the vertices in GT for every time

point and then it can compute the minimum cost from source to

destination based on these results. We find the querying time and

memory overhead increase marginally with the number of vertices

increasing. From Fig. 4(c), we find the average number of dequeu-

ing times of vertices is not affected by the number of vertices. From

Fig. 4(d), we find the relative error increases with the increasing of

the number of vertices. If the number of vertices increases, the dis-

tance between source and destination increases. Thus the relative

error cumulated in the path from source to destination increases.

Exp-2. Impact of the number of edges: We study the impact

of the number of edges in Fig. 5. In this group of experiments, the

number of vertices is fixed at 10K and the number of edges increas-

es from 10K to 80K. The number of piecewise intervals of fi,j(t)
is 10. The time interval [td, ta] = [0, 1000]. As shown in Fig. 5(a)

and Fig. 5(b), we find TWO-STEP-SEARCH always performs bet-

ter than TCSP-AWT. From Fig. 5(c), we find the average number

of dequeuing times decreases with the increasing of the number of

edges. Intuitively, more edges results in larger density of graphs

and then the distance between every two vertices decreases. Thus

TWO-STEP-SEARCH can compute the minimum cost from source

to destination faster and the average number of dequeuing times de-

creases. However, more edges indicates more outgoing neighbors

of a vertex in a graph. When a vertex vi is dequeued from Q, it

takes more time to update the atmc-functions for all the outgoing

neighbors of vi. Therefore, in Fig. 5(a), the querying time increases

with the number of edges increasing. From Fig. 5(d), we find the

relative error of TCSP-AWT decreases with the number of edges in-

creasing. It is because the increasing of the number of edges short-

ens the distance between source and destination. Then less relative

error is cumulated in the path from source to destination.

Exp-3. Impact of the distance between source and destination:

In Fig. 6, we study the impact of the distance between source and

destination. In this group of experiments, the number of vertices is

fixed at 20K. The distance between source and destination ranges

from 5 to 20. As shown in Fig. 6(a) and Fig. 6(b), we find the query-

ing time and memory overhead of both algorithms are not affected

by the distance between source and destination. The reason is the

path with the minimum distance is not a cost-optimal path in many

cases. Note that the density of a graph does not increase in this

group of experiments. Thus, in Fig. 6(c), the average number of

dequeuing times is not affected by the distance. From Fig. 6(d), we

find the relative error of TCSP-AWT increases with the increasing

of distance. The longer distance between source and destination,

the more error cumulated in the path from source to destination.

Exp-4. Impact of the length of time interval [td, ta]: In Fig. 7, we

study the impact of the length of time interval [td, ta]. In this group

of experiments, the earliest departure time is fixed at time point 0

and the latest arrival time ranges from time point 600 to time point

1200. As shown in Fig. 7(a) and Fig. 7(b), the querying time and

memory overhead of TWO-STEP-SEARCH are not affected by the

length of time interval [td, ta]. It is because the number of piece-

wise intervals of fi,j(t) does not increase. However, the number

of sampled discrete time points for TCSP-AWT increases with the

length of time interval [td, ta] increasing. Thus the querying time

and memory overhead of TCSP-AWT increases. We also find the

average number of dequeuing times is stable in Fig. 7(c) and the

relative error does not change significantly in Fig. 7(d).

682

10
-2

10
-1

10
0

10
1

10
2

5 10 15 20

R
u
n
n
in

g
 t
im

e
(s

e
c
)

Number of segments

TCSP-AWT(C)
TWO-STEP(C)
TCSP-AWT(T)
TWO-STEP(T)

(a) querying time

256k

2M

16M

128M

1G

8G

5 10 15 20

M
e

m
o

ry
(b

y
te

)

Number of segments

TCSP-AWT(C)
TWO-STEP(C)
TCSP-AWT(T)
TWO-STEP(T)

(b) memory overhead

 0

 2

 4

 6

 8

 10

 12

 14

5 10 15 20

A
v
e

ra
g

e
 d

e
q

u
e

u
e

 t
im

e
s

Number of segments

TWO-STEP(C)
TWO-STEP(T)

(c) average dequeue times

0

1

2

3

4

5 10 15 20

E
rr

o
r

ra
ti
o

Number of segments

TCSP-AWT(C)
TCSP-AWT(T)

(d) relative error

Figure 8: Impact of number of piecewise intervals of cost-function and time-function

 0
 2

 4
 6
 8

 10

 12
 14
 16

1 1.5 2 2.5 3

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of nodes (×million)

EURN

(a) querying time (nodes)

50

100

150

200

250

300

1 1.5 2 2.5 3

M
e

m
o

ry
 (

M
B

)

Number of nodes (×million)

EURN

(b) memory overhead (nodes)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

2 4 6 8 10

R
u

n
n

in
g

 t
im

e
 (

s
e

c
)

Number of edges (×million)

EURN

(c) querying time (edges)

0
50

100

150
200
250
300

350
400

2 4 6 8 10

M
e

m
o

ry
 (

M
B

)

Number of edges (×million)

EURN

(d) memory overhead (edges)

Figure 9: Adaptivity to large graphs

Exp-5. Impact of the number of piecewise intervals of cost

function and time function: In Fig. 8, we investigate the impact

of the number of piecewise intervals of fi,j(t) by curves TCSP-

AWT(C) and TWO-STEP(C) in Fig. 8. In this group of experi-

ments, the number of piecewise intervals of fi,j(t) increases from

5 to 20. As shown in Fig. 8(a) and Fig. 8(b), the querying time

and memory overhead of TWO-STEP-SEARCH increase with the

increasing of the number of piecewise intervals. The reason is that

TWO-STEP-SEARCH needs more time to update the atmc-function

for vertices when the number of piecewise time intervals increas-

es. We find TWO-STEP-SEARCH is always better than TCSP-AWT.

From Fig. 8(c), we find the average number of dequeuing times in-

creases with the increasing of the number of piecewise intervals.

In Fig. 8(d), the relative error of TCSP-AWT increases with the in-

creasing of the number of piecewise intervals. When the number of

piecewise intervals increases, the number of arrival cost values be-

tween two consecutive discrete time points in TCSP-AWT increas-

es. This results in that TCSP-AWT cannot find the optimal cost of

traveling an edge. Thus the relative error of TCSP-AWT increases

with the number of piecewise intervals increasing.

We also investigate the impact of the number of piecewise in-

tervals of wi,j(t) by curves TCSP-AWT(T) and TWO-STEP(T) in

Fig. 8. The number of piecewise intervals of wi,j(t) also increas-

es from 5 to 20. The experimental results show the efficiency of

TWO-STEP-SEARCH is not affected by the number increasing. It

is because the increasing of this number does not incur extra oper-

ation on atmc-function during the whole process.

Exp-6. Scalability: We evaluate the scalability of TWO-STEP-

SEARCH in Fig.9. We investigate the querying time and memory

overhead by varying the number of vertices from one million to

three millions and by varying the number of edges from two mil-

lions to ten millions on the EURN dataset. In this group of ex-

periments, the number of piecewise intervals of fi,j(t) and wi,j(t)
are both 10. The time interval [td, ta] is [0, 1000]. The experi-

mental results show TWO-STEP-SEARCH can perform efficiently

even though the number of vertices is larger than three millions or

the number of edges is larger than ten millions. These experimen-

tal results indicates TWO-STEP-SEARCH are also suitable for large

time-dependent graphs.

 0
 1

 2
 3
 4
 5

 6
 7
 8

300 600 900 1200

R
a

ti
o

Time interval

CARN

(a) varying time interval

 0
 1

 2
 3
 4
 5

 6
 7
 8

5 10 15 20

R
a

ti
o

Distance

CARN

(b) varying distance

Figure 10: The cost-optimal path vs the fastest path

Exp-7. Comparing with the fastest path: In Fig. 10, we inves-

tigate the ratio c′

c∗
on the CARN dataset with 20K vertices, where

c′ is the travel cost of the path with the minimum travel time from

vs to ve and c∗ is the cost of the path computed by TWO-STEP-

SEARCH, i.e., the cost-optimal path with time constraint. c′

c∗
re-

flects that how much cheaper the cost-optimal path is compared

with the fastest path. In Fig. 10(a), we study c′

c∗
by varying the

length of time interval [td, ta]. In this group of experiments, the

earliest departure time is fixed to time point 0 and the latest arrival

time ranges from time point 300 to time point 1200. We find c′

c∗

increases with the length of time interval [td, ta] increasing. When

time interval is [0, 1200], c′

c∗
is larger than 6. It indicates the fastest

path is at least six times more expensive than the cost-optimal path.

In Fig. 10(b), we study c′

c∗
by varying the distance between source

and destination. We also find c′

c∗
increases with the increasing of

distance. These experimental results show that the fastest path may

not be a cost-optimal path and it is always much more expensive

than a cost-optimal path.

5. RELATED WORK
Shortest path query is an important problem in graphs and has

been well studied in static graphs. The existing works for the short-

est path problem propose various index techniques to enhance the

efficiency of the shortest path query for large graphs [23, 1, 8, 22,

5, 19]. All these works make a trade-off between the querying time

683

and index size. The main idea of these works are maintaining some

shortest paths in index. Given a query, algorithms first retrieve the

shortest path and then concatenate them by the shortest paths not in

index. The recent literature [20] gives a full overview of the works

on the shortest path problem.

Recently, there are several works on the shortest path problem

in time-dependent graphs. However, these works are to solve the

TDSP problem, that is, to find a path from source to destination

that has the minimum travel time. These works are categorized as

follows: one group is based on the discrete time model and the

other one is based on the continuous time model. George et al.

in [10] and [9] assign an aggregated attribute to each edge, called

edge time series, which represents the time point at which the edge

appears. Chabini et al. in [4] discretize the starting-time interval

into k time points evenly, and construct a static graph by making k
copies of each node and each edge, respectively. The TDSP prob-

lem can be solved as a static single-source shortest path problem

in such a static graph, whose size is enlarged k times. The funda-

mental drawbacks of the discrete time model are two-fold. First,

it cannot represent the state of networks between two discrete time

points, which might yield inaccurate results. Second, the memory

and processing requirement are high. Orda et al. propose a con-

tinuous time algorithm to solve the TDSP problem in [16]. This

algorithm generalizes the BELLMAN-FORD shortest path algorith-

m. Sung et al. [21] present a Flow Speed Model that computes the

travel time on each road segment as a piecewise linear function of

time. Pfoser et al. [17, 18] contribute techniques that can derive

the up-to-date speed associated with a road segment at a given time

based on Floating Car Data. Kanoulas et al. in [13] propose an A*-

extended algorithm. The main idea of this algorithm is to maintain

a priority queue Q of all the paths to be expanded. For any vertex

vi, the algorithm estimates the travel time from vi to destination

ve. By estimating the travel time, the algorithm computes a short-

est path from source to destination with the minimum travel time.

Gonzalez et al. in [11] apply some data mining techniques to derive

driving and speed patterns that describe road speeds under a variety

of conditions, such as time, weather, and vehicle type. Ding et al.

in [7] propose an efficient 2S algorithm to solve the TDSP problem.

All these methods utilize the following property: the earliest arrival

time of a vertex vi can be computed by the earliest arrival time of

vi’s incoming neighbors. However, for the problem proposed in

this paper, this property does not hold. Therefore, the solution to

the TDSP problem cannot be used to solve the cost-optimal path

problem proposed in this paper.

Several studies in the field of operation research consider the

cost-optimal path problem under the discrete time model [3, 2].

In the discrete time model, the whole time interval is discretized to

a set of time points, {t1, t2, · · · , tl}. For any edge (vi, vj), users

only can select a specified time point tx to depart from vi. The main

disadvantages of these works are as follows: (1) The optimal path

cannot be found under the discrete time model. (2) These works

need to compute the arriving cost for every vertex at every time

point. The time and space costs are expensive.

6. CONCLUSION
In this paper, we study how to find a cost-optimal path with

time constraint in time-dependent graphs. We first define the cost-

optimal path with time constraint. Second, we propose an efficien-

t TWO-STEP-SEARCH algorithm to compute a cost-optimal path

with time constraint. We show that the time and space complex-

ities of the algorithm are O(kn log n + mk) and O((n + m)k)
respectively. Finally, we confirm the effectiveness and efficiency

of our algorithm through conducting experiments on real datasets.

7. ACKNOWLEDGMENTS
This work is partly supported by the grant of the National Pro-

gram on Key Basic Research Project (973 Program) of China, No.

2012CB316200, the grant of the National Natural Science Foun-

dation of China No. 61190115, 61173022, and the grant of the

Research Grants Council of Hong Kong SAR, No. CUHK 418512.

8. REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance

queries on large networks by pruned landmark labeling. In SIGMOD

Conference, pages 349–360, 2013.

[2] X. Cai, T. Kloks, and C. Wong. Time-varying shortest path problems
with constraints. Networks, 29(3):141–150, 1997.

[3] X. Cai, T. Kloks, and C. K. Wong. Shortest path problems with time
constraints. In MFCS, pages 255–266, 1996.

[4] I. Chabini. Discrete dynamic shortest path problem in transportation
applications: Complexity and algorithms with optimal run time.
Transportation Research Records, 1645:170–175, 1998.

[5] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of
distance queries in large graphs: a vertex cover approach. In
SIGMOD Conference, pages 457–468, 2012.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[7] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent shortest paths
over large graphs. In EDBT, pages 205–216, 2008.

[8] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational
approach for shortest path discovery over large graphs. In PVLDB,
volume 5, pages 358–369, 2012.

[9] B. George, S. Kim, and S. Shekhar. Spatio-temporal network
databases and routing algorithms: A summary of results. In SSTD,
pages 460–477, 2007.

[10] B. George and S. Shekhar. Time-aggregated graphs for modeling
spatio-temporal networks. Journal on Data Semantics, 11:191–212,
2006.

[11] H. Gonzalez, J. Han, X. Li, M. Myslinska, and J. P. Sondag. Adaptive
fastest path computation on a road network: A traffic mining
approach. In VLDB, pages 794–805, 2007.

[12] L. Jiang, S. Parekh, and J. Walrand. Time dependent network pricing
and bandwidth trading. In NOMS Workshops, pages 193–200, 2008.

[13] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest paths on a
road network with speed patterns. In ICDE, pages 10–19, 2006.

[14] J. Leape. The london congestion charge. Journal of Economic

Perspectives, 20(4):157–176, 2006.

[15] M. O’Mahony, W. Y. Szeto, and X. Q. Li. Modeling time-dependent
tolls under transport, land use, and environment considerations. In
Applications of Advanced Technology in Transportation, pages
852–857, 2006.

[16] A. Orda and R. Rom. Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length. Journal of ACM,
37(3):607–625, 1990.

[17] D. Pfoser, S. Brakatsoulas, P. Brosch, M. Umlauft, N. Tryfona, and
G. Tsironis. Dynamic travel time provision for road networks. In
GIS, pages 68–71, 2008.

[18] D. Pfoser, N. Tryfona, and A. Voisard. Dynamic travel time maps -
enabling efficient navigation. In SSDBM, pages 369–378, 2006.

[19] M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest
distance computing: A query-dependent local landmark scheme. In
ICDE, pages 462–473, 2012.

[20] C. Sommer. Shortest-path queries in static networks. ACM

Computing Surveys, 46(4):1–35, 2014.

[21] K. Sung, M. G. Bell, M. Seong, and S. Park. Shortest paths in a
network with time-dependent flow speeds. European Journal of

Operational Research, 121(1):32–39, 2000.

[22] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest
path and distance queries on road networks: An experimental
evaluation. PVLDB, 5(5):406–417, 2012.

[23] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest
path and distance queries on road networks: towards bridging theory
and practice. In SIGMOD Conference, pages 857–868, 2013.

684

