
The Case for Data Visualization Management Systems
[Vision Paper]

Eugene Wu

sirrice@csail.mit.edu

Leilani Battle

leilani@csail.mit.edu

Samuel R. Madden

madden@csail.mit.edu

Most visualizations today are produced by retrieving data
from a database and using a specialized visualization tool
to render it. This decoupled approach results in signifi-
cant duplication of functionality, such as aggregation and
filters, and misses tremendous opportunities for cross-layer
optimizations. In this paper, we present the case for an in-
tegrated Data Visualization Management System (DVMS)
based on a declarative visualization language that fully com-
piles the end-to-end visualization pipeline into a set of rela-
tional algebra queries. Thus the DVMS can be both expres-

sive via the visualization language, and performant by lever-
aging traditional and visualization-specific optimizations to
scale interactive visualizations to massive datasets.

1. INTRODUCTION
The holy grail of visualization systems makes exploring

different data facets so intuitive, and recommends views that
are so relevant, that users rapidly converge onto valuable in-
sights – irrespective of dataset size. Unfortunately, existing
systems fall far short of this goal [16].

Most visualizations are produced by retrieving raw data
from a database and using a specialized visualization tool
to process and render it. Although the database can some-
times be used to filter the raw data (e.g., return data within
a visible bounding box), visualization tools try to avoid
roundtrips to the database by managing their own results
cache and executing data transformations directly.

This decoupled approach has three drawbacks. First, the
database is unaware of related queries and may recompute
the same results. For example, slightly panning a map will
issue a query to recompute the entire map, though most
results are unchanged. Second, visualization tools duplicate
basic database operations, such as filtering and aggregation.
Some tools even implement an entirely new database for
this purpose [28]. Lastly, visualization tools assume that all
raw data and metadata fit entirely in memory (e.g., [1, 7,
20]). Thus their memory-based functionality cannot scale
to massive datasets, which rarely fit in memory.

We propose instead to blend these two systems into a
Data Visualization Management System (DVMS) to make
all database features available for visualization. A DVMS
scales common data transformations to massive datasets by
executing them directly in the database. Furthermore, a
DVMS can leverage databases to support interactivity with
little effort. For example, with lineage query support, we
can automatically link related geometric objects (e.g., cir-
cles, rectangles) across views by tracking overlap in the input
records that generated them. DVMS’s can also incorporate
novel visual optimizations to reduce rendering latencies, such
as: (1) applying occlusion filters to remove records that ren-
der as geometric objects hidden from the user’s view; (2)
output-based downsampling of datasets to match the view-
port size; and (3) rendering on both the client and server to
balance resource and network constraints.

We present the two central design ideas behind our pro-
posed DVMS Ermac: (1) the user specifies a visualization
workflow, or mapping from raw data to geometric objects,
using a declarative visualization language; and (2) the work-
flow is compiled into relational algebra queries, which are ex-
ecuted by the database. Using this design, we can leverage
traditional database optimizations to boost rendering and
processing performance, and develop specialized optimiza-
tions based on semantic cues inferred from our workflows to
scale interactive visual exploration to massive datasets.

2. THE Ermac SYSTEM
Ermac can be used as a standalone system, as a domain

specific language within a general programming language
such as Javascript or Python, or as the execution framework
for specifications generated from visual direct manipulation
tools such as Lyra [3]. The Ermac language borrows heav-
ily from existing grammar-based languages [1, 30]. We now
describe how a visualization specification is represented as
a Logical Visualization Plan (LVP) that is compiled into a
sequence of relational algebra queries that constitute a Phys-
ical Visualization Plan (PVP) 1. The PVP is finally executed
to produce a static visualization. Section 3.1 presents mech-
anisms to incorporate dynamic interactions.

Our example data is an election table containing Obama
and Romney’s campaign expenditures during the 2012 US
presidential election. The table attributes include the can-
didate name, party affiliation, purchase dates within a 10

1The PVP will be further optimized and compiled by the
DBMS into a traditional operator tree.

903



904



axis. These records are maintained for each aesthetic vari-
able in every facet and layer.

Representing all visualization state as relational tables lets
Ermac compile each logical operator into one or more rela-
tional algebra queries that take the data relation and scales

relation as input and update one of the two relations. For
example, Ermac reads the data relation to update the at-
tribute domains in the scales relation, whereas data-space
transformations (e.g., bin) read the x (day) attribute’s do-
main from the scales relation to compute bin sizes.

Due to lack of space, we only describe how the facet op-
erator is compiled and how it modifies the downstream LVP
to deal with dummy variables. The fx: candidate clause
(Line 11) partitions the data by candidate name and creates
a unique facet attribute value for each partition. This is rep-
resented as a projection that creates a new data relation:

data = SELECT *, candidate as fx from data

The parameter-based faceting (Line 12) is compiled into
a cross product with a custom table, facety(fy), that con-
tains a record for each parameter value (e.g., 10 and 20):

SELECT data.*,facety.fy FROM data OUTER JOIN facety

Furthermore, facet replicates the downstream LVP for
each fy value 10 and 20. If the fx clause were also a param-
eter list of size M , the downstream plan would be replicated
2M times – once for each pair of fx, fy values.

Although we have developed compilation strategies for all
major logical operators, many of the relational queries rely
on expensive cross-products or nested sub-queries. Many of
these operations are unavoidable, regardless of whether Er-
mac or another system is creating the visualization. How-
ever, by expressing these expensive operations declaratively,
we can use existing optimization techniques and develop new
visualization techniques to improve performance. For in-
stance, Ermac knows that queries downstream from parameter-
based faceting will not update the data relation so it can
avoid redundant materialization when executing the cross-
product. Identifying further optimizations for individual
and across multiple LVP operators poses an interesting re-
search challenge.

3. RESEARCH OPPORTUNITIES
Dava visualization is part of a larger data analysis pro-

cess. Although we have proposed techniques for a DVMS
to manage the data transformation, layout, and rendering
processes for creating static data visualizations, our vision is
for an interactive DVMS system that manages how data is
viewed, explored, compared and finally published into sto-
ries for consumers to experience.

To this end, there are numerous interesting research op-
portunities to explore, such as (1) expanding our language
proposal (Section 2.1) into a comprehensive language that
can also describe user interactions in a manner that is amenable
to cost-based optimization, (2) understanding interaction
and visualization-specific techniques that can be used in an
optimization framework to either meet interactive (100ms)
latency constraints or mask high-latency queries, (3) exploit-
ing different classes of hardware (e.g., GPUs) that are op-
timized for specific types of visualizations, and (4) incorpo-
rating recommendation and higher-level analysis tools that
help users gain sound insights about their data.

The rest of this section outlines some immediate steps
that help address each of these research directions.

3.1 Visualization Features
Lineage-based Interaction: Brushing and linking is a

core interaction technique (Figure 1 arrow 6) where the user
selects data in one view, and manipulates (e.g., highlights,
removes) the corresponding data in other views. To do this,
selected elements must be traced back to their input records,
and then forward from those inputs to visual elements in the
other views. Unfortunately, existing visualization tools ei-
ther require users to track these lineage relationships manu-
ally [7], or provide implementations that often scale poorly
to larger datasets and more complex visualizations.

In contrast, our relational formulation captures these lin-
eage relationships automatically, and can thus express brush-
ing and linking as lineage queries. Furthermore, workflows
allow the DVMS to optimize and scale interactions to very
large datasets with little user effort. For example, Ermac
can automatically generate the appropriate data cubes and
indices to optimize brushing and linking similar to the tech-
niques used in imMens [20] and nanocubes [19].

Although the database community has explored many lin-
eage optimizations [33, 13, 17, 11], additional techniques
such as pre-computation and approximation will be neces-
sary for supporting an interactive visualization environment.

Visualization Estimation and Steering: Users can
easily build workflows that execute slowly or require signif-
icant storage space to pre-compute data structures, and it
would be valuable to alert users of such costs. The DVMS
can make use of database cost estimation [26, 8, 9] tech-
niques to inform users of expensive visualizations (e.g., a
billion point scatterplot) and inherent storage-latency trade-
offs, and to steer users towards more cost-effective views.
The latter idea (e.g., query steering [2]) may benefit from
understanding the specification that produced the queries.

Rich Contextual Recommendations: Recommending
relevant or surprising data is a key tool as users interactively
explore their datasets. Prior work has focused on recom-
mending visualizations and queries based on singular, but
semantically different features such as data statistics [21],
image features [23], or historical queries [18, 24, 25]. Ermac
controls, and can thus use, all of these features to construct
more salient recommendations to the user. For example,
image features such as mountain ranges may be of interest
when rendering maps, whereas the slope of a line chart is
important when plotting monthly expense reports.

Result analysis: Several recent projects [22, 31], in-
cluding one of the author’s Scorpion project [32], extend
databases to automatically explain anomalies and trends.Thus
the DVMS can use these extensions “for free” to not only
present data, but also embed functionality to automatically
explain and debug the results.

3.2 Query Execution
Developing visualizations that are interactive across var-

ious environments and client devices (e.g., phone, laptop)
can be challenging. Ermac can allow users to specify la-
tency goals (e.g., 200ms interaction guarantees) and use
Rendering Placement and Psychophysical Approxi-

mation optimizations to satisfy these constraints.
The former dynamically decides where to render visual-

izations given the client’s available resources. For instance,
heatmaps may be faster to render server-side and send to
the client as a compressed image, whereas histograms are
faster to send as data records and render on the client.

905



The latter produces approximations in a way that mini-
mizes user perceived error, and is widely used in image and
video compression. For example, humans are sensitive to po-
sition but have trouble discerning small color variations. Er-
mac can then respond to poor network bandwidth by push-
ing down an aggregation operator to coarsely quantize the
color of a heatmap to match a smaller data type (e.g., short
instead of long), and thus reduce the bandwidth demand by
4×. Alternatively, Ermac can aggregate the histogram data
into coarse bins and use pre-computed data structures to re-
duce latency. Developing sufficient annotations to automate
this optimization is an interesting research direction.

Finally, Ermac can use Occlusion Filtering to mini-
mize unnecessary work. A common technique in computer
graphics is visibility culling [10], which filters geometric ob-
jects that are hidden behind closer objects. While these
optimizations are readily applied when rendering the data

relation containing geometries, Ermac may be able to apply
these occlusion filters as data-space transformations earlier
in the LVP to avoid generating occluded visual elements.
For example, a plot that layers a histogram over a heatmap
can first render the histogram and push down a filter to
remove data corresponding to the occluded heatmap pixels.

4. RELATED WORK
Previous work in visualization systems have traded-off be-

tween expressiveness and performance. For instance, popu-
lar toolkits such as D3 [7], protovis [6] and matplotlib [12]
are highly expressive, however they require low level pro-
gramming that impedes the ability to quickly iterate and
do not scale to large datasets. Declarative grammar-based
languages such as the Grammar of Graphics [30] and gg-
plot2 [1] are expressive domain-specific languages designed
for rapid iteration, however they do not scale beyond their
host environments of SPSS and R.

Recent systems address these scalability limitations by
either adopting specific data management techniques such
as pre-computation [20], indexing [19], sampling [4], spec-
ulation [15], and aggregation [5, 29], or developing two-
tiered architectures where the visualization client composes
and sends queries to a data management backend [27, 14].
The former approaches are optimized towards properties of
specific applications or visualization types and may not be
broadly applicable. The latter approach forgoes the numer-
ous cross-layer optimizations described in this paper.

Our proposed Ermac DVMS is intended be both expres-

sive thanks to the declarative visualization language and
performant by using traditional database optimizations as
well as those outlined in Section 3.

5. CONCLUSIONS
The explosive growth of large-scale data analytics and

the corresponding demand for visualization tools will con-
tinue to make database support for interactive visualiza-
tions increasingly important. We proposed Ermac, a Data
Visualization Management System (DVMS) that executes
declarative visualization specifications as a series of rela-
tional queries, and explored several challenges and optimiza-
tion opportunities for the future.

6. REFERENCES
[1] ggplot2. ggplot2.org.

[2] CIDR 2013, Sixth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 6-9, 2013,
Online Proceedings, 2013.

[3] The lyra visualization design environment (vde), February
2014. http://idl.cs.washington.edu/projects/lyra/.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: queries with bounded errors and bounded
response times on very large data. 2013.

[5] L. Battle, R. Chang, and M. Stonebraker. Dynamic reduction
of query result sets for interactive visualization. 2013.

[6] M. Bostock and J. Heer. Protovis: A graphical toolkit for
visualization. InfoVis, 2009.

[7] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven
documents. InfoVis, 2011.

[8] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating
progress of execution for sql queries. In SIGMOD, 2004.

[9] S. Chaudhuri and V. R. Narasayya. Autoadmin ’what-if’ index
analysis utility. In SIGMOD, 1998.

[10] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand.
A survey of visibility for walkthrough applications. IEEE
Transactions on Visualization and Computers, 2003.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. KDD, 1997.

[12] J. D. Hunter. Matplotlib: A 2d graphics environment.
Computing In Science & Engineering, 2007.

[13] R. Ikeda and J. Widom. Panda: A system for provenance and
data. IEEE Data Eng. Bull., 2010.

[14] J.-F. Im, F. G. Villegas, and M. J. McGuffin. Visreduce: Fast
and responsive incremental information visualization of large
datasets. In BigData Conference, 2013.

[15] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi.
Distributed and Interactive Cube Exploration. In ICDE, 2014.

[16] S. Kandel, A. Paepcke, J. Hellerstein, and H. Jeffrey. Enterprise
data analysis and visualization: An interview study. VAST,
2012.

[17] A. Kemper and G. Moerkotte. Advanced query processing in
object bases using access support relations. In VLDB, 1990.

[18] A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck:
self-organizing dashboards for visual analytics. SIGMOD, 2012.

[19] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes
for real-time exploration of spatiotemporal datasets. IEEE
Transactions on Visualization and Computer Graphics, 2013.

[20] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual
querying of big data. EuroVis, 2013.

[21] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. IEEE Transactions on
Visualization and Computer Graphics, 2007.

[22] A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data
management. PVLDB, 2011.

[23] A. Oliva and A. Torralba. Building the gist of a scene: the role
of global image features in recognition. In Progress in Brain
Research, 2006.

[24] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. Seedb:
Visualizing database queries efficiently. PVLDB, 2014.

[25] S. Sarawagi and G. Sathe. i3: Intelligent, interactive
investigaton of olap data cubes. In SIGMOD, 2000.

[26] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In SIGMOD, 1979.

[27] C. Stolte and P. Hanrahan. Polaris: A system for query,
analysis and visualization of multi-dimensional relational
databases. InfoVis, 2002.

[28] R. Wesley, M. Eldridge, and P. T. Terlecki. An analytic data
engine for visualization in tableau. In SIGMOD, 2011.

[29] H. Wickham. Bin-summarise-smooth: a framework for
visualising large data. Technical report, had.co.nz, 2013.

[30] L. Wilkinson. The Grammar of Graphics (Statistics and
Computing). Springer-Verlag New York, Inc., 2005.

[31] W. Willett, J. Heer, and M. Agrawala. Strategies for
crowdsourcing social data analysis. In CHI, 2012.

[32] E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. PVLDB, 2013.

[33] E. Wu, S. Madden, and M. Stonebraker. Subzero: A
fine-grained lineage system for scientific databases. In ICDE,
2013.

906


