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ABSTRACT
We present a new system, called Searchlight, that uniquely
integrates constraint solving and data management tech-
niques. It allows Constraint Programming (CP) machinery
to run efficiently inside a DBMS without the need to extract,
transform and move the data. This marriage concurrently
offers the rich expressiveness and efficiency of constraint-
based search and optimization provided by modern CP solvers,
and the ability of DBMSs to store and query data at scale,
resulting in an enriched functionality that can effectively
support both data- and search-intensive applications. As
such, Searchlight is the first system to support generic search,
exploration and mining over large multi-dimensional data
collections, going beyond point algorithms designed for point
search and mining tasks.

Searchlight makes the following scientific contributions:
• Constraint solvers as first-class citizens Instead of

treating solver logic as a black-box, Searchlight provides
native support, incorporating the necessary APIs for its
specification and transparent execution as part of query
plans, as well as novel algorithms for its optimized exe-
cution and parallelization.
• Speculative solving Existing solvers assume that the

entire data set is main-memory resident. Searchlight
uses an innovative two stage Solve-Validate approach that
allows it to operate speculatively yet safely on main-
memory synopses, quickly producing candidate search re-
sults that can later be efficiently validated on real data.
• Computation and I/O load balancing As CP solver

logic can be computationally expensive, executing it on
large search and data spaces requires novel CPU-I/O bal-
ancing approaches when performing search distribution.

We built a prototype implementation of Searchlight on
Google’s Or-Tools, an open-source suite of operations re-
search tools, and the array DBMS SciDB. Extensive exper-
imental results show that Searchlight often performs orders
of magnitude faster than the next best approach (SciDB-
only or CP-solver-only) in terms of end response time and
time to first result.
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1. INTRODUCTION
Motivation The need for rich, ad-hoc data analysis is

key for pervasive discovery. However, generic and reusable
systems tools for interactive search, exploration and min-
ing over large data sets are lacking. Exploring large data
sets interactively requires advanced data-driven search tech-
niques that go well beyond the conventional database query-
ing capabilities, whereas state-of-the-art search technologies
are not designed and optimized to work for large out-of-
core data sets. These requirements force users to roll their
own solutions, typically by gluing together existing libraries,
databases and custom scripts, only to end up with a solution
that is difficult to scale, optimize, maintain and reuse.

Our system, Searchlight, addresses these limitations by
uniquely combining the ability of modern array-based DBMSs
to store and query data at scale with the rich expressiveness
and efficiency of modern CP solvers to search and optimize
over large search spaces.

Exploration via search queries In data exploration,
users often have idea about what they want to find, but
have no idea where to look. This is fundamentally a search
problem in which the user interacts with the data in an ad-
hoc fashion to identify objects, events, regions, patterns of
interest for further, more detailed analysis. Let us consider
simplified but representative examples from the astronomy
domain. Consider SDSS [2], a data set containing informa-
tion about celestial objects. An object of interest might be a
rectangular region in the sky (with coordinates correspond-
ing to right ascension and declination) with the properties
including average/min/max star magnitudes within the re-
gion, the region area, the lengths of its sides, etc. The user
might be interested in the following types of search queries:
• First-order queries look for a single region satisfying the

search properties. For example, Q1: “find all [2, 5]◦ by
[3, 10]◦ regions with the average r-magnitude of stars
within it less than 12”. The region dimensions are not
fixed and can take any value within the given range. The
search can include more advanced properties; e.g., “the
difference between the average magnitudes of the region
and its 3◦-neighborhood must be greater than 5”.
• High-order queries search for sets of regions. For exam-

ple, Q2:“find a pair of celestial regions with the difference
between the magnitudes not exceeding 1, located in dif-
ferent sectors of the sky”.
• Optimization queries assign an objective function to all

regions, and search for regions maximizing/minimizing
the function. For example, Q3: “find all 2◦ by 3◦ regions
that contain sky objects with the minimal r-magnitude”.
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Perhaps surprisingly, traditional DBMSs offer very limited
support for search queries, even for the most basic first-order
ones, as we extensively argued in [13]. SQL constructs such
as OVER and GROUP BY are not expressive enough. Even a
seemingly simple query such as Q1 is thus very cumbersome
to specify and difficult to automatically optimize. Funda-
mentally, search requires the ability to enumerate sets of ob-
jects and identify the qualifying ones. Most DBMSs do not
provide such power-set enumeration operations. Even if the
enumeration can be done, the number of (sub)sets can be so
large that sophisticated pruning and search techniques have
to be employed to get results in a timely fashion. For exam-
ple, SciDB has a powerful operator that can be used to com-
pute aggregates for every possible sub-array of the specified
size. This might allow users to find interesting sub-arrays by
filtering them. However, the operator processes sub-arrays
exhaustively, in a specific order, without any concerns for
interactivity. Moreover, since it has to compute every possi-
ble sub-array, the query becomes impractical for large search
spaces — for a two-dimensional array of size 10,000x10,000
finding even a fixed window of size 10x10 would result in ex-
ploring approximately 108 windows and computing one or
more aggregates for each of them. Looking for flexible-size
windows significantly exacerbates the problem (Section 5).
Moreover, for more complex search problems users might
have to write several queries and perform some form of a
“join” or concatenation of the intermediate results.

These limitations motivate the use of an integrated solver
functionality within a DBMS. Such functionality not only
allows us to perform search efficiently, but also offers a sin-
gle, expressive framework that can support a wide variety
of data-intensive search and exploration tasks.

Through CP, Searchlight can support many other com-
mon types of search, such as similarity queries over time-
series data (e.g., stock trading data, medical measurements).
Such queries allow users to look for a time interval (i.e.,
a temporal region) satisfying the specified “similarity dis-
tance” and possibly other constraints. While we focus only
on aggregate search queries here, Searchlight and its under-
lying techniques are general and apply to a broad range of
search tasks. We make additional comments about exten-
sions for time-series data in Section 3.2.3.

Why Constraint Programming for Search? While
DBMSs struggle with queries such as Q1-Q3, these can be
compactly expressed and efficiently answered by the CP ap-
proach [21]. In CP, users first specify decision variables over
some domains, defining the search space. They then specify
constraints between the variables, e.g., algebraic, “all vari-
ables must have different values”, etc. Finally, a CP solver
finds solutions, the variable assignments satisfying the con-
straints. For Q1, the variables would simply define the sky
region (i.e., the corners of a rectangle, or the center and ra-
dius of a sphere) with domains restricting the region to a
particular sky sector, and constraints specifying the prop-
erties. To express high-order queries, such as Q2, more
variables and constraints can be introduced in a straight-
forward way. As for optimization queries, such as Q3, CP
solvers support min/max searches with objective functions.

Several salient features make CP solvers particularly well
suited for generic search and exploration:
• Efficiency: CP solvers are very proficient at exploring

large search spaces. Similar to query optimizers, they in-
corporate a collection of sophisticated optimizations in-

cluding pruning, symmetry breaking, etc. The first is a
core technique that safely and quickly removes parts of
the search space that cannot contain any results.
• Interactivity: CP solvers are designed to identify indi-

vidual solutions fast and incrementally. Users can pause
or stop the search, or ask for more solutions. This is fun-
damentally different from conventional query optimiza-
tion that aims to minimize the completion time of queries.
• Extensibility: CP solvers are designed to be modular

and extensible with new constraint types and functions.
Moreover, users can introduce their own search heuristics
that govern the search process.

These features render CP solvers a very powerful tool for
interactive, human-in-the-loop data exploration and min-
ing. Unfortunately, solvers commonly assume that all the
required data fits into main memory and thus only opti-
mize for the compute bottleneck. While this assumption has
served well for many traditional CP problems, in which the
primary challenge is to deal with very large search spaces,
it has recently become obsolete with the availability of very
large data sets in many disciplines. Our experimental results
indeed show that solvers become unacceptably slow when
operating over large, out-of-core data sets (Section 5.1).

CP solvers are commonly used for NP-hard search prob-
lems, as they go beyond straightforward enumeration and
can effectively navigate through large search spaces through
a variety of effective pruning techniques and search heuris-
tics that leverage the structure of the search space. Note
also that expressing the original search problem via CP does
not increase the original problem’s complexity. Take as an
example the problem of finding a fixed-size sub-array satis-
fying some constraints. The number of possible sub-arrays
is polynomial on the size of the array. Exhaustive search
would produce a polynomial, albeit a very inefficient, al-
gorithm. A standard CP solver is going to construct and
explore a search tree, where leaves correspond to possible
sub-arrays. Thus, the complexity remains the same, but the
search space can be explored in a much more efficient way.

Searchlight Overview Searchlight supports data- and
search-intensive applications at large scale by integrating
CP and DBMS functionality to operate on multidimensional
data. Its design is guided by the following goals:
• Integrated search and query: Searchlight offers both

standard DBMS functionality (e.g., storage and query
processing) and sophisticated search. This integrated
functionality simplifies application development and re-
duces data movement between the systems.
• Modularity and extensibility: Our design is mini-

mally invasive and work with different solver implementa-
tions with very little modification. Similarly, the under-
lying DBMS engine will not require major modifications.
This allows Searchlight to gracefully and automatically
evolve as the underlying systems evolve. Moreover, the
same framework can be applied to compatible systems.
• Optimized data-intensive search and exploration:

Searchlight provides optimized execution strategies for
CP, integrated with regular queries, on large data sets.
• Distributed, scalable operation on modern hard-

ware: Searchlight supports efficient distributed and par-
allel operation on modern clusters of multi-core machines.

Users can invoke existing solvers along with their built-in
search heuristics using an array DBMS language. Under the
hood, Searchlight seamlessly connects the solver logic with
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query execution and optimization, allowing the former to
enjoy the benefits of DBMS features such as efficient data
storage, retrieval and buffering, as well as access to DBMS
query operators. Searchlight runs as a distributed system,
in which multiple solvers will work in parallel on different
parts of the data- and search-space.

An important challenge is to enable existing CP solvers
logic (without any modifications) to work efficiently on large
data. To achieve this goal, Searchlight uses a two-stage
Solve-Validate approach. At the solving stage, Solvers per-
form speculative search on main-memory synopsis struc-
tures, instead of the real data, producing candidate results.
A synopsis is a condensed representation of the data, con-
taining information sufficient to perform pruning and to
verify query constraints. The candidates are guaranteed
to contain all real results, but possibly include false posi-
tives. Validators efficiently check the candidates over the
real data, eliminating the false positives and producing the
final solutions while optimizing I/O. Solvers and Validators
invoke different instances of the same unmodified CP solver;
yet the former will be directed to work on the synopses and
the latter on the real data through an internal API that
encapsulates all array accesses. This two-stage approach is
transparent to the CP solvers and the users.

Searchlight can also transparently parallelize query execu-
tion across a modern cluster of multi-core machines. Search-
light supports both static and dynamic balancing. During
the static phase, the search space and the data space are
distributed between Solvers and Validators before the query
begins. During execution, Searchlight redistributes work be-
tween idle and busy Solvers to address hot spots.

We present an implementation of Searchlight as a fusion
between two open-source software, Google’s Or-Tools [1], a
suite of operations research tools that contains a powerful
CP solver, and SciDB, a multidimensional array DBMS. Our
experimental results quantify the remarkable potential of
Searchlight for data- and search-intensive queries, for which
SearchLight often performs orders of magnitude faster than
the next best solution (SciDB-only or CP-solver-only) in
terms of end response time and time to first result.

Paper layout. The rest of the paper is organized as fol-
lows. Section 2 gives a survey of constraint programming
and discusses how data exploration is expressed in Search-
light. Section 3 describes the two-level search query process-
ing. Section 4 discusses distributed search. Section 5 con-
tains experimental evaluation. Section 6 discusses related
work. Section 7 concludes the paper.

2. DBMS-INTEGRATED SEARCH
In Searchlight users pose search queries in form of con-

straint programs that reference DBMS data. While con-
ceptually Searchlight is not restricted to a particular data
model, in this paper we target array data. An array con-
sists of elements indexed with dimensions. Each element
has its own tuple of attributes. For example, for an astron-
omy data set, right ascension and declination might serve as
dimensions, while magnitudes or velocities as attributes.

2.1 CP Background and Or-Tools
Let us revisit the astronomy example from the Introduc-

tion. Assume the user decides to search for all rectangular
regions in the sky sector [0, 10]◦ × [20, 50]◦, where coordi-
nates are defined using right ascension and declination. The

regions must be of size [2, 5]◦ by [3, 10]◦ and have the average
r-magnitude of objects contained within less than 12.

To form a constraint program the user first defines de-
cision variables over domains, which correspond to objects
of interest, the regions. For this example these are: x ∈
[0, 10], y ∈ [20, 50], lx ∈ [2, 5], ly ∈ [3, 10]. x, y describe the
leftmost corner of the region and lx, ly — the lengths of the
sides. CP has limited support for non-integer domains, so in
this example the “resolution” of search is 1◦. If higher pre-
cision is required, real values can be converted to integers,
e.g., by multiplying by 1,000.

The next step is to define constraints. The size constraint
is expressed via domains of lx and ly. There are two left:
• A region must fit into the sector: x + lx − 1 ≤ 10 and

y + ly − 1 ≤ 50.
• The r-magnitude constraint: avg(x, y, lx, ly, r) < 12. avg()

computes the average value of attribute r over the sub-
array (x, y, lx, ly). We assume it is readily available to use
in constraints and elaborate on this in the next section.

Decision variables and constraints constitute the model of
the problem. A common way to obtain solutions in CP is
to perform backtracking search. Other methods exist (e.g.,
local search), but they might not guarantee the exact result.
A typical backtracking solver organizes search as a binary
tree. At every non-leaf node at least one decision variable is
unbound (i.e., its current domain contains multiple values).
At every such a node, the solver makes a decision consist-
ing of two branches. The decision depends on the current
search heuristic of the solver, which can be specified by the
user. A search heuristic typically first chooses an unbound
variable. The choice can be based on the size of its domain,
its minimum/maximum value or made randomly. After the
variable is selected, the two branches of the decision corre-
spond to two opposite domain modifications. For example,
the left branch might assign x = v, in which case the right
branch becomes x 6= v. Another common decision is to split
the domain: x ∈ [0, 9] → x ∈ [0, 4] ∨ x ∈ [5, 9]. Then the
solver chooses a branch and repeats the process until a leaf
of the tree is reached. At a leaf all variables are bound, and
the solver can report a solution.

After the solver chooses a branch, and the variable’s do-
main changes, constraints get notified of the change, and can
check for violations. Additionally, some constraints might
be able to reason about the domains and modify them fur-
ther. For example, if x = 9, lx becomes 2, because of the
x+ lx− 1 ≤ 10 constraint. Thus, the constraint sets lx = 2,
and the process is repeated until no further changes to the
domains can be made, which is called local consistency. The
process itself is called constraint propagation.

If during the propagation a constraint cannot be satisfied
(e.g., avg() > 14 for x = 9, lx = 2), the search fails, since
no solutions are possible in the sub-tree corresponding to
the state. The solver prunes the sub-tree and backtracks,
rolling back all changes, until an ancestor with an unex-
plored branch is found. If such an ancestor exists, the solver
explores the branch. Otherwise, the search ends, since no
alternatives are possible. If the solver reaches a leaf, the cor-
responding assignment is a solution, since all constraints are
satisfied. If the user wants to obtain more solutions, or the
problem is an optimization one (e.g., max(avg(x, y, lx, ly, r))),
the solver backtracks from the leaf, and explores the rest
of the search space. More thorough description of the CP
solver logic can be found in the related books [21].
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In Searchlight we use the backtracking CP solver from
Google’s Or-Tools [1], which follows the execution model
described above. Or-Tools is highly customizable. Users
can add new constraints, functions, define their own search
heuristics, perform nested search at any node of the main
search tree. They can also define monitors to track the
search progress, limit the time of the execution or control
the search (e.g., search restarts, switching branches, etc.).

2.2 Search Queries
Searchlight supports any type of queries a typical CP

solver can process. However, to access the DBMS data users
have to use User-Defined Functions (UDFs). Revisiting the
astronomy example, in the constraint avg() < 12, avg() is
a UDF, since it requires accessing the array data. UDFs
are essentially treated as black boxes by the solver 1. It
periodically calls them to obtain their values at the current
search state. In general, since variables might be unbound,
UDFs are not able to return single values. A UDF usu-
ally returns an interval [m,M ] containing all possible val-
ues of the function for all currently possible assignments of
the variables. Such an interval is sufficient to check con-
straints and attempt pruning at internal nodes. For the ex-
ample constraint avg() < 12, the interval 13 ≤ avg() ≤ 17
would allow the solver to prune the current sub-tree, how-
ever 11 ≤ avg() ≤ 17 would not.

For performance, array operations are restricted to the
Searchlight API, which at present consists of two calls:
• elem(X, a), which returns the value of attribute a at co-

ordinates X = (x1, . . . , xn).
• agg(X1, X2, a, op), which computes the aggregate op over

attribute a for the sub-array bounded by X1 and X2. op
can be any of the common aggregates (i.e., min, sum,
etc), and it is easy to add support for others. Users can
specify multiple ops in a single call.

These calls are useful for array exploration, since individ-
ual elements and sub-arrays are natural entities of interest.
The API is not fixed and can be easily extended for future
applications. It is meant to provide building blocks for con-
straints. A UDF can contain any number of API calls. For
example, a user might want to compute the average value
of some attribute for a sub-array and its neighborhood, and
compare the two to detect anomalies. This can be imple-
mented with several API calls in a single UDF, which would
return the difference between the averages.

Let us describe briefly how the UDF A = avg(x, y, lx, ly, r)
could be implemented. A returns interval [m,M ] contain-
ing all possible values of avg(r) for every sub-array [x′, x′ +
lx′−1]× [y′, y′+ ly′−1], where x′, y′, lx′, ly′ are values from
the current domains. When the number of possible sub-
arrays (i.e., the product of the cardinalities of the domains)
is greater than a threshold, then m (M) is equal to the
minimum (maximum) value of r in the minimum bounding
sub-array. This requires a single agg() call. If the number
of the sub-arrays is less than the threshold, their average
values can be computed with agg() calls, and m (M) will be
equal to the minimum (maximum) value just computed.

The search is guided by a search heuristic. Searchlight
supports Or-Tools heuristics (e.g., random, impact, split,
etc.) without any modifications. It can also be extended
with new ones. This allows users to customize search for

1In Or-Tools UDFs can be written in C++, which gives
users a large degree of freedom.

Solver
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Candidate
SolutionsUser
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Data
Array

Figure 1: Two-level search query processing.

particular problems, which is common in CP. New heuristics
are defined in the same way as in plain Or-Tools. Users can
also use API calls to access array data, e.g., for evaluating
the impact of the heuristic’s decisions.

3. SEARCHLIGHT QUERY PROCESSING
The naive way to process Searchlight queries would be

to run a traditional CP solver without any changes and
transform Searchlight API calls into DBMS queries. This,
however, results in a very poor interactive and total per-
formance. The solver might call UDFs many times during
the search, since it assumes them to be relatively cheap.
More importantly, pruning cannot work without requesting
data, since UDF values are required for provable pruning. In
practice, the naive approach results in reading the same data
multiple times by arbitrarily ordered data requests, which
causes DBMS memory buffer thrashing. This is supported
by our experimental evaluation, presented in Section 5.1.

Searchlight uses two-level query processing instead, which
combines speculative execution over a synopsis of the array
with validating the results. This architecture is aimed at:
• Interactivity: Searchlight should start outputting re-

sults quickly and minimize delays between subsequent
results. Some overhead is impossible to avoid, e.g., com-
puting an aggregate for a large sub-array might be expen-
sive. However, the time to discover the next result should
be minimized. This is the task of speculative execution.
• Total performance: Parts of the data not containing

any results should be eliminated efficiently with few data
accesses. Searchlight uses extensive pruning at the spec-
ulative level to achieve this.
• Expressiveness: Users should be able to use tools avail-

able in the CP solver, e.g., constraints, heuristics, etc.
Searchlight does not modify the Or-Tools engine. In-
stead, it uses the customization features available in Or-
Tools to merge it with the DBMS.

3.1 Two-level Query Processing
The two-level query processing is illustrated in Figure 1.

When the user submits a search query in the CP form,
Searchlight starts the CP Solver for processing it. As we
discussed in Section 2.2, a search query accessing the data
makes Searchlight API calls. When such a call is made, it
is processed by the Router, which sends it to a synopsis.
Synopsis is lossy compression of data, which is used to ap-
proximately answer the API calls. For each call it returns
an interval guaranteed to contain the exact answer. For ex-
ample, elem(X, a) might return [5, 10], while the real value
is 7. Since in general UDFs are expected to return intervals
as well, this does not complicate their implementation.

While the Solver processes the model it produces candi-
date solutions (candidates). A candidate is a CP solution
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Figure 2: Synopsis example. (a) 2x2 synopsis grid.
(b) Upper and lower bound arrays for the avg() of
the highlighted region (in white).

(i.e., a complete variable assignment), and does not violate
any constraints. However, since candidates are synopsis-
based, they might contain false positives. Since synopsis in-
tervals are guaranteed to contain exact answers, candidates
are guaranteed to include all real solutions.

The Solver sends each candidate to the Validator, which
checks it over the original data. At the beginning the Val-
idator clones the initial model from the Solver and starts
its own CP solver, which, however, runs a different search
heuristic. This heuristic simply assigns the values from the
candidate to the variables. Since at the Validator all API
calls are answered using the original data, this results in
proper validation of query constraints. Thus, if the Valida-
tor’s solver fails, the candidate is a false positive.

The validation is CP-based for the sake of generality. Since
the Validator clones the model from the Solver, it does not
assume anything about the constraints. New constraints,
UDFs and API calls can be added without modifying the
Validator. The two-level processing is completely transpar-
ent to users. They call the API from UDFs using the Router,
which directs the calls to the appropriate data.

Since the Validator uses its own CP solver, it works in
parallel with the main Solver. Potentially expensive valida-
tions do not hamper the search and are made concurrently,
which greatly improves interactive performance.

3.2 Synopsis
Synopsis is a lossy compression of data, which is used

to give approximate answers to the API calls in form of
intervals guaranteed to contain the real result. We assume it
fits into memory, so the Solver, which accesses it during the
search, can execute its model efficiently. During distributed
processing, when the Solvers operate on parts of the search
space, the synopsis might partially reside on disk.

Different API calls might require different synopsis types,
which we discuss in Section 3.2.3. Searchlight can use mul-
tiple synopses in a single query, if required by constraints
(API calls). Since this paper concentrates on aggregates,
the main discussion follows the aggregate grid synopsis.

3.2.1 Synopsis for Aggregate Estimations
An example of the synopsis is presented in Figure 2(a).

The original 4x4 array is divided into four 2x2 synopsis cells.
For each cell we keep information needed to answer the API

calls. For aggregates these are min/max, the sum and count
of all elements. Cells might store other information, e.g., the
distribution of a cell, bitmaps for sparse cells, etc. The syn-
opsis is a lossy compression. For example, the top-right cell
in the figure could be produced by sub-arrays (5, 3, 3, 2) and
(5, 4, 2, 2). We will call such sub-arrays cell distributions.

The synopsis provides answers to the API calls in form
of intervals [m,M ], guaranteed to contain the exact value.
For the elem() call, m (M) is simply the min (max) value
stored in the corresponding cell. The agg() call is different.

Let us assume the user calls A = avg(R), where R is the
white rectangular region from Figure 2(b). R intersects 3
out of 4 synopsis cells partially. Since cells might correspond
to different distributions, this implies multiple possible val-
ues of A. The main idea is to find the distributions that
reach the lower bound m and the upper bound M , which is
illustrated in Figure 2(b). Both arrays might have produced
the synopsis. Their A values are 2.125 and 3.286, so the call
will return [2.125, 3.286]. For the original array, A = 2.857.

Estimating bounds for aggregates over the synopsis is
done in a similar way as over Multi-Resolution Aggregate
(MRA) tree structures [14]. For example, to compute the
interval for avg(), the upper (lower) bound array must con-
tain as many high (small) value elements as possible to in-
crease (decrease) the average without violating the synopsis
information. Possible elements from all cells are considered
in the descending (ascending) order and added one by one
until the average cannot increase (decrease).

The detailed algorithm with proofs can be found in the
MRA paper [14]. For an MRA tree (e.g., an R- or quad-tree)
each intersection of the query region with an MRA node
might contain any number of objects referenced by the node.
However, for arrays the minimum and maximum number of
elements in the intersection is known. Thus, for each cell
there is the minimum and maximum number of elements
that must be included in the estimation. We modified the
MRA estimation algorithm accordingly to account for this.

3.2.2 Synopsis Layers
The aggregate synopsis has a parameter — the cell size

(e.g., 2x2), which we call its resolution. There is a trade-off
when choosing the correct resolution for a query. Estima-
tions are computationally more efficient with coarser syn-
opses (i.e., with larger cells) due to a smaller number of
cells participating in estimations. At the same time, they
might provide poor quality estimations, especially for small
regions. Finer synopses, on the other hand, provide better
quality estimations, albeit at higher cost. Synopses for an
array form a hierarchy of layers, low to high resolution.

Given a synopsis hierarchy for an array, Searchlight starts
from the lowest-resolution layer and proceeds as follows:
1. The query region is divided into disjoint pieces: intersec-

tions with the synopsis cells. For example, in Figure 2
there are four pieces.

2. Each piece covered by the cell more than 75% (a param-
eter) is estimated from this cell. The coverage is defined
as the ratio of the areas of the piece and the cell.

3. The remaining pieces are left for the next layer, finer,
synopsis. In Figure 2, the bottom-right piece is covered
25% and the top-right one 50%. If there are no more
layers, the pieces are estimated from the current one.

The basic idea behind the algorithm is to cover each re-
gion with synopses in such a way as to avoid small region-cell
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intersections, which decrease the estimation quality. At the
same time, we cover large parts of the region with a small
number of cells, which improves performance. To further
speedup the computation the algorithm employs the follow-
ing heuristic: if the region is covered by the cells of the
current synopsis layer more than 75% (a parameter), the al-
gorithm stops at this layer, ignoring individual cell coverage.
This heuristic allows us to avoid cases where large regions
have a small number of poorly covered pieces. In Figure 2,
the region is covered 9

16
× 100% = 56%. So the algorithm

would use the next synopsis layer, if available.
Synopsis layers are also considered when validating can-

didates. If one of the layers is aligned with the candidate,
that synopsis is used for the validation instead of the orig-
inal data array. To be aligned with a synopsis, the region
must intersect all its cells completely, 100%, which guaran-
tees the exact answer. This optimization severely improves
performance, since synopses are either fit in memory or, at
least, are much more compact than data arrays.

3.2.3 Synopsis Alternatives
The choice of the aggregate synopsis as a grid was dictated

by using the array data representation. There is no need in
an index tree, such as R-tree, since the grid cell coordinates
can be easily computed from the array coordinates. Synop-
sis layers can be seen as a slice of the well-known pyramid
structure [26]. Searchlight does not use the complete pyra-
mid due to memory restrictions. Several in-memory lay-
ers are sufficient for estimations, and the lowest layer, the
data array, is used for validations. For other DBMS types,
other structures might be more suitable. For example, for
an RDBMS, MRA-trees [14] would be a better choice.

We want to emphasize the fact that the synopsis con-
cept is not exclusive to aggregate structures. Other types
of constraints might necessitate other types of structures.
One example is sub-sequence similarity matching for time-
series data [8, 9]. A common way to answer such queries
is first to compute the Discrete Fourier Transform (DFT)
for all sub-sequences of the time-series, take several com-
ponents of each DFT as points and produce a trace [8] by
combining the points from adjacent sub-sequences. A trace
can be seen as a set of points in a multidimensional space.
Since traces are quite large, they can be further covered by
a number of MBRs, which then can be indexed (e.g., via an
R-tree). Such an index obviously fits in the synopsis con-
cept described above. Each MBR can be used to estimate
the similarity distance between the query sequence and all
time-series sub-sequences represented by the MBR, which is
exactly what a CP solver needs. This notion can be encap-
sulated by a new Searchlight API call: dist(xl, xr, Q), which
computes the distance between the query sequence Q and
any subsequence of size |Q| lying within the [xl, xr].

4. DISTRIBUTED SEARCHLIGHT
Searchlight supports distribution on both levels of query

processing. At the first level, the search space is distributed
among Solvers in a cluster. At the second level, Validators
are assigned to nodes responsible for different data parti-
tions, and validate candidates sent to their corresponding
nodes. There can be an arbitrary number of Solvers and Val-
idators, and they do not have to reside on the same nodes.
This gives users considerable freedom in managing cluster
resources. Solvers can be put on CPU-optimized machines,

Solver Solver Solver Solver

Validator Validator Validator

Figure 3: Distributed Searchlight with Solver and
Validator layers.
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Figure 4: Search balancing. (a) Static round-robin
balancing. The highlighted region is a hot-spot. (b)
Dynamic balancing with transferring a sub-tree.

while Validators can be moved closer to the data. Moreover,
there might be multiple Solvers and Validators at each node
at the same time, which explores multi-core parallelism. The
architecture is illustrated in Figure 3.

4.1 Searchlight in SciDB
Searchlight uses SciDB [6] as the array DBMS. A SciDB

cluster consists of instances, and each array is distributed
among all instances. During query execution one instance
serves as a coordinator, which combines partial results from
other, worker, instances and returns the final result.

Each array is divided into chunks, possibly overlapping
tiles of fixed size. SciDB computes a hash function over
the leftmost corner of a chunk, which produces the instance
number that will own the chunk. One of the important fea-
tures of SciDB is attribute partitioning, which means differ-
ent attributes are stored in different sets of chunks. This is
similar to vertical partitioning in columnar RDBMSs.

In addition to built-in query operators, SciDB allows users
to write User-Defined Operators (UDOs). We implemented
Searchlight as a UDO. Thus, it directly participates in query
execution inside the DBMS engine and has access to the in-
ternal DBMS facilities. We use SciDB networking to pass
all control and data messages. Validators use the tempo-
rary LRU cache to store chunks pulled from other instances.
When answering API calls Searchlight accesses data inter-
nally, in the DBMS buffer. In summary, working inside
the DBMS engine significantly decreases the overhead and
avoids duplication of the same functionality.

4.2 Search Distribution and Balancing
Initially, the search space is distributed among the Solvers

statically. Since the search space is a Cartesian product of
the variable’s domains, it can be represented as a hyper-
rectangle. We slice this hyper-rectangle along one of its
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dimensions into even pieces and assign each slice to a Solver
in the round-robin fashion. This is illustrated in Figure 4(a).

The static scheme targets search hot-spots, parts of the
search space containing a lot of candidates. A Solver might
get “stuck” in a hot-spot, while others finish quickly and sit
idle. This creates an imbalance. The round-robin method
distributes continuous hot-spots among multiple Solvers, as
shown in Figure 4(a).

The static partitioning depends on the total number of
slices. Too few slices might result in a hot-spot not being
covered by multiple Solvers, which brings back the bias. Too
many slices might reduce the quality of the estimations for
some heuristics, which hurts pruning. It might also hurt
Solvers performance due to increased maintenance costs.

When the static balancing falls through, Searchlight uses
dynamic balancing as a fall-back strategy. When a Solver
becomes idle (i.e., when it has finished its part), it reports
itself to the coordinator as a helper. The coordinator takes
a busy Solver from a queue, dispatches the helper to it, and
pushes it back to the queue. Thus, a busy Solver might
receive multiple helpers. The busy Solver cuts a part of its
search tree and sends it to the helper. A Solver might reject
help, e.g., due to the heuristic, in which case the helper is
dispatched to another busy Solver. This process is highly
dynamic. A helper becomes a busy Solver itself and might
receive helpers in the future. Such balancing is similar to
work stealing, which is common in distributed CP.

Dynamic balancing is illustrated in Figure 4(b), where the
Solver at Instance 1 cuts its right sub-tree and sends it to
Instance 2. The helper treats it as the root of a new search
tree. Transferring a sub-tree is cheap, since all Solvers run
the same model. A sub-tree is a set of domain intervals, and
can be serialized into a message efficiently.

4.3 Validating and Forwarding Candidates
In SciDB array chunks are hash-partitioned across the

entire cluster, and queries are broadcast across all nodes.
In such a setting search UDFs would expose large latency:
UDFs make multiple API calls, and each call would have to
be broadcast across the cluster. Only after the individual
answers are received the Validator would be able to con-
tinue, until the next API call. Additionally, API functions
would have to be distributive or algebraic [10]. This is true
for many common functions (including the API aggregates).
However, we wanted the API to be extendable with other
types, including holistic, which cannot be easily distributed.
Thus, we decided to investigate another approach.

The array is evenly sliced into multiple partitions along
the longest dimension. Each node participating in the val-
idation gets one slice. During the validation Searchlight
transparently pulls the required array chunks from other
instances and caches them in an LRU buffer. The buffer is
disk-backed, so no chunks are ever re-fetched. Chunks are
pulled only on demand, when an API call needs them. If
the search prunes some parts of the array, the correspond-
ing data is neither fetched nor read from disk at all. UDFs
can make multiple API calls during the validation without
worrying about latency. Each call will be served from mem-
ory, after the chunks are fetched. Arbitrary functions can be
added to the API, since any sub-array is accessible locally.

In some cases such data redistribution might hurt per-
formance. For queries that read the majority of the ar-
ray, transferring a lot of chunks might saturate the network.

However, we assume this to be rare in practice due to the
nature of search queries. Even then Searchlight provides
reasonable interactive performance, as supported by experi-
ments. Moreover, as an optimization, the redistribution can
be done during the execution of the first query, after which
the LRU chunk cache can be reused by further queries.

When a Solver finds a candidate, it has to send it to the
appropriate node for validation. In general, solvers have no
knowledge about which API calls will be made during the
validation. These calls, however, determine the array chunks
the validation will need. We solve this problem by first sim-
ulating the validation, which is performed by the same-node
Validator. The simulation is validation for which the Router
(Figure 1) is switched to the “dumb” mode. In this mode,
instead of reading the synopsis or data, the Router simply
answers API calls with [−∞,+∞] intervals, which satisfies
any constraint. Thus, such a validation always “succeeds”.
At the same time, the Router logs all chunk requests made
during the simulation. Then, the Validator can examine the
log and forward the candidate to the node responsible for
most of the chunks, possibly keeping the candidate at the
local node. The simulation is very lightweight, since it does
not require data access, disk or memory.

Some Validators might get flooded with candidates. This
becomes a CPU, not I/O, problem, since the data will be
quickly pulled from remote instances and mostly residing in
memory. In this case Searchlight dynamically starts more
Validators at the struggling nodes. Validations are per-
formed concurrently by reading data from the same shared
buffer, so no chunks are duplicated. The number of addi-
tional Validators depends on the current state of the search
process, which we discuss in the next section.

4.4 Additional Performance Improvements
Systems usually restrict the number of simultaneous ac-

tive jobs (e.g., via thread pools), either on per node or per
query basis. Each Searchlight node participating in a query
has a number of active jobs corresponding to the Solvers and
Validators. The challenge is to put more CPU resources
into either of them depending on the current state of the
search. While it is possible to do this in a static way, be-
fore the query begins, that might be highly inefficient. For
example, given 8 threads per node, 4 might be given to
the Solvers and 4 to the Validators. However, it is hard
to predict if a particular node is going to experience high
load in the number of candidates or if the search is going
to have a lot of candidates at all. To address this issue
Searchlight uses a dynamic resource allocation scheme, for
which it monitors the current state of the search process at
each node. Initially, given n available threads per node, it
starts n− 1 Solvers and a single Validator. If the number of
candidates at a node increases over time, Searchlight stops
Solvers when they finish exploring their parts of the search
space and starts more Validators instead. Ultimately, nodes
overwhelmed with candidates might become Validator-only.
In this case, the remaining search space is automatically dis-
tributed between Solvers at other nodes. When the number
of candidates decreases, Searchlight stops Validators and re-
leases the Solvers allowing them to continue the exploration.

Recall, when a Solver finishes its part of the search space,
it reports itself to the coordinator as a helper. While it is
waiting, Searchlight starts another Validator at the same
node. When the new load for the Solver arrives, Search-
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light stops the Validator and wakes up the Solver. This also
ensures that when the Solvers have completed the entire
search, all resources go to the Validators.

Another optimization involves batching candidates to im-
prove I/O performance. Some queries produce a large num-
ber of candidates dispersed around the data array. If these
candidates are validated in an arbitrary order, that might re-
sult in thrashing : DBMS repeatedly reads chunks from disk,
evicts them and reads again for other candidates. To address
this issue Searchlight first divides each data partition into
multiple continuous zones. When a candidate arrives at a
node for validation, it is assigned to the zone containing most
of the chunks required for its validation. This information
is available from the simulation process described above. At
each step Validators take candidates from the same zone,
enforcing locality. Recently accessed zones are checked first.
By default Searchlight ensures that at least two zones can fit
in memory at the same time. First, candidates correspond-
ing to continuous objects (regions) often span neighboring
zones. Secondly, this allows us to avoid the case where two
frequently-used zones evict each other from memory.

5. EXPERIMENTAL EVALUATION
We performed an extensive experimental evaluation of

Searchlight for clusters of sizes 1 through 8 using EBS-
optimized Amazon EC2 c3.xlarge instances (4 virtual CPU
cores, 7.5GB memory) with EBS-based general purpose SSDs
(no provisioned IOPS). The OS was Debian 7.6 (kernel 3.2.60).
We used SciDB 14.3 as the DBMS and Or-Tools 1.0.0 (the
current SVN trunk at the time) as the CP solver.

We generated a 100, 000×100, 000 data array using Gaus-
sian distribution with varying mean (from 0 to 200) and
small variance. At places we injected small sub-arrays with
means of 300, 350 and 500, which introduced natural zones
of interest (clusters). The array took 120GB of space (the
binary size of the SciDB file). We used a 100 × 100 synop-
sis, which took approximately 400KB of space. We varied
the the search space size by choosing more or less restrictive
constraints and variable domains. For each search space we
chose queries that produced different number of candidates
to vary the Validators loads. The queries follow:

HSS (Huge Search Space). The query searched for 800×
800 sub-arrays with avg() ∈ [330, 332]. While results were
situated around the clusters, the search space size was 1010

sub-arrays, which was impossible to finish in a reasonable
time. We used HSS to explore time-limited execution.

SSS-HS, SSS-LS (Small Search Space, High/Low Se-
lectivity). The left-most corners of the sub-arrays were re-
stricted to coordinates divisible by 330. LS searched for
2, 000× 2, 000 sub-arrays with avg() ∈ [95, 120]. For HS the
sizes varied from 500 to 2,000 with step 100, with avg() ∈
[330, 332].

SSS-ANO (ANOmaly). This query checked the ability
of Searchlight to handle more elaborate constraints. In addi-
tion to searching for 1, 000× 1, 000 sub-arrays with avg() ∈
[200, 600], it computed the maximum element of the sub-
array’s neighborhood of size 500. The query selected only
sub-arrays for which the difference between their maximum
elements and the neighborhoods’ was greater than 100, which
can be seen as detecting anomalies. The query was expressed
via CP constraints with the only UDFs being avg(),max().

LSS-HS, LSS-LS (Large Search Space). These queries
were similar to SSS ones, except the left-most corners had

to be divisible by 10. The search space was much larger.
The sub-array sizes varied from 500 to 2,000 with step 100.
For HS avg() ∈ [495, 505], for LS avg ∈ [330, 332].

LSS-ANO. The query was similar to SSS-ANO, look-
ing for 500 × 500 sub-arrays with avg() ∈ [200, 600]. The
neighborhood size was 200, and an additional constraint was
made: not only the difference between the maximums was at
least 250, but also the difference between the region’s mini-
mum and the neighborhood’s maximum was at least 200.

5.1 Exploring Alternatives
We studied two alternatives to Searchlight. The first, CP,

ran a traditional CP solver on DBMS data. Data requests
were made via UDFs, but no synopses were used, only the
original data. This allowed us to explore the applicabil-
ity of state-of-the-art CP solvers to exploring large data
sets. The second alternative performed search by using the
SciDB window() operator, which computes aggregates for
every possible fixed-size sub-array. Then, the filter() op-
erator was used to select the required sub-arrays. Since the
operators belong to the Array Functional Language (AFL),
we called this approach AFL. AFL does not allow full rich-
ness of constraints supported by Searchlight, but it allowed
us to compare Searchlight with a native DBMS solution.
For all approaches we specify the size of the cluster via a
hyphen, e.g., CP-8 means running CP in an 8-node cluster.

While the number of alternatives might seem scarce, these
are the only ones available to the users today. It might be
possible to use SciDB with complex client scripts or extend
it with specialized indexes. However, this would require non-
trivial effort, and would result in comparison with, basically,
a different system. The main goal of this experiment was to
explore existing alternatives.

Table 1: Time of the first result, delays between subse-

quent results and the # of results for HSS (secs)
Approach First Min/avg/max delays Results
SL-1 13 0.001/3.8/101.1 981
SL-8 5 0.001/5.9/21.9 6,336

The results for HSS are presented in Table 1. Since the
search space was very large, it was infeasible to run the query
until completion. Thus, we limited the time to 1 hour. We
see it as a common use-case, when users want to find some
results within a time limit to get an idea about the content
of the data. CP and AFL did not find anything. For both
the I/O became a considerable bottle-neck, due to multiple
data accesses. Running the query in an 8-node cluster did
not change that. SL (Searchlight), found the first result in
13/5 seconds and kept outputting them during the execu-
tion with small delays. We provide the delay statistics as
min/avg/max delays between subsequent results. Together
with the first result time, we believe this to be a good mea-
sure of the interactivity.

Table 2: The result and total times, SSS-HS-mod (secs)
Approach Result time Total time
SL-1/8 6.19/4.8 6.52/5.13
CP-1/8 3,240/91 4,260/304

Even for a small search space, CP was not able to fin-
ish SSS-HS in 13 hours, with no results found. Thus, we
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decided to decrease the search space by running SSS-HS
inside a 10, 000×10, 000 sub-array of the original array (Ta-
ble 2). Even in this case, CP was no match for SL. This
was due to a large number of API calls produced by CP.
While this was true for SL as well, SL was able to utilize
the synopsis, greatly improving the performance. Moreover,
for CP pruning did not make much difference, since it re-
quires reading the data. In a cluster the performance of CP
increased significantly, while still remaining well below the
SL’s. SL did not gain much from the cluster, since only 2
nodes were involved in validating a small number of candi-
dates, with 6 nodes remaining idle. Impressive improvement
for CP in the cluster can be explained by the nature of the
solving process. A single node solver reads the data multi-
ple times when traversing the search tree, since it does not
optimize I/O or performs any intermediate caching. Divid-
ing the search space between 8 nodes resulted in dividing
the data as well, providing exponential I/O gains due to
severely decreased data space at each node.

When we tried a larger sub-array of size 30, 000× 30, 000,
Searchlight was done in 11 seconds, whereas CP could not
find any results within 3 hours, and is thus not a competitor.

Table 3: First result times, subsequent results delays

and total times for SSS-HS(top)/-LS(bottom), secs
Approach First Min/avg/max delays Total
SL-1 8.2 0.09/2.4/8.2 31.2
SL-8 6.12 0.02/1.2/6.9 13.9
AFL-1 2,105 2,105 2,105
AFL-8 301.3 1.1/3.3/7.1 945.3

SL-1 16.7 0.001/0.14/16.7 2,198
SL-8 6.1 0.001/0.05/6.1 563.3
AFL-1 1,852 1,852 1,852
AFL-8 295 295 295

Expressing the constraints of the SSS queries in AFL was
not entirely possible, since window() does not support vari-
able sizes. We tried to use the concat() operator to combine
results of several window operators, which resulted in very
poor performance due to subpar implementation. Moreover,
SSS-HS required 256 concat() operators for a single query,
which is hard to optimize.

We decided to use another approach. First, since SSS-
LS/HS require window coordinates divisible by 330, we cre-
ated a temporary array via the regrid() operator, which
divides the array into tiles and computes aggregates for each
tile. This actually gives an I/O performance boost to SciDB,
since such an array can be seen as an index. Then, we ran
several filter-window queries over the same connection (one
for each possible size) and measured the total time of all
queries as well as times for intermediate results. The regrid
time was added to the time of the first result, since it was
the essential part of the AFL query. It was impossible to
express SSS-HS exactly (after the regrid(), window sizes
had to be divisible by 330 as well), so we modified the query
preserving the high selectivity. For SSS-LS we ran a single
regrid-window-filter query. Results are presented in Table 3.

While AFL required computing every sub-array, Search-
light was able to prune most of the data and provide much
better performance. SS-LS query, however, was different.
While pruning was possible, the candidates touched the ma-
jority of the array, which created significant I/O load. As we
discussed in Section 4.3, we consider such queries rare. In
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Figure 5: Delays for subsequent results for SL (secs).

the cluster the performance of AFL improved significantly,
and it was able to beat SL by utilizing the regrid() array.
Note, SL remained the best interactive solution in all cases.

We tried to compare Searchlight and AFL for the LSS
queries. However, even running a version of LSS-LS with
fixed size windows resulted in a very poor AFL performance.
We simplified the query and ran it on a regrid() array,
similar to SSS. Modified LSS-LS did not find any results
within 13 hours. All CPU cores were saturated and the
query itself had a simple query plan. Such poor performance
can be explained by the necessity of checking 108 windows.
Thus, AFL cannot handle larger-than-trivial search spaces.
SL finished the modified LSS-LS in under 2 minutes and
output the first result in 18 seconds.

The problems with the queries discussed in the context
of SciDB are also applicable to other systems. Query oper-
ators such as window(), concat() or regrid() are typical
for array DBMSs. While they are useful for certain query
types, they are not sufficient for search queries, since such
queries require a different execution model.

5.2 Online and Total Performance
We studied interactive and total performance of distributed

Searchlight by varying the number of nodes in the cluster.
The results are shown in Figure 5. We do not provide the
minimum delays, since they were mostly under 1 second. We
also decided to omit SSS-ANO and SSS-HS, since the former
demonstrated the same trend as LSS-ANO, and the latter
finished in 30 seconds even for a single node with the first
result delivered in 8 seconds. For most queries the delays
significantly improved with the cluster size. One notable ex-
ception is LSS-HS, for which the first result time remained
around 2 minutes and averages around 30 seconds even in
the 8-node cluster. This was a very hard query with a large
number of candidates and limited pruning opportunities.

Total times for all queries are presented in Table 4. For
some queries it was hard to improve performance beyond
4 nodes, since the granularity of the distribution on both
levels of the execution is a slice (sub-tree for dynamic bal-
ancing). One exception is SSS-LS, which scaled poorly as
it touched almost every chunk of the array. Thus, Valida-
tors saturated the network (Amazon EBS is network-based
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Table 4: Total times for queries, in seconds
Query 1 node 2 nodes 4 nodes 8 nodes
SSS-LS 2,138 1,799 1,572 563
SSS-HS 31 19 14 13.9
SSS-ANO 163 60 27 16
LSS-LS 2,830 1,271 646 491
LSS-HS 1,381 663 332 225
LSS-ANO 443 215 59 39

as well). The results can be partially explained by bursty
performance of EC2. When we were running the query in a
2-node cluster, the total time varied from 30 to 90 minutes.
When we ran a similar query in a local 4-node cluster, the
completion time went down from 2,008 (1 node) to 700 sec-
onds (4 nodes). Another low-selective query, LSS-LS, scaled
much better since it did not touch as many chunks.

5.3 Searchlight Feature Experiments
The evaluation of the balancing strategies described in

Section 4.2 is presented in Table 5, which shows the times
for different numbers of slices in an 8-node cluster. First,
we computed the average time for each Solver across three
runs. Then, we computed the mean and standard deviation
across these times. For the static case large deviation values
can be explained by outliers — the times varied from 0.1 to
465 seconds. We saw the same trend for most queries. The
results clearly show that the dynamic strategy significantly
improves the balancing.

Table 5: Mean/StdDev of individual Solver times
(top); and total times (below) for LSS-HS, secs
Balancing 8 slices 40 slices 100 slices 500 slices
Static 160/183 160/179 155/129 161/30
Dynamic 173/36 159/49 158/35 159/12

Static 466 454 338 254
Dynamic 259 284 223 235

The next experiment explores the ability of Searchlight to
handle different heuristics. We compared the common Split
(splits the largest domain in half) and Random (assigns a
random value to a randomly chosen variable) heuristics with
a custom one, called Probes. In Probes, the search space is
divided into multiple cells, and the cells are explored in the
utility order. The utility measures the probability of the
cell to contain results, and is computed by trying a small
sample of assignments from the cell. The results for two
queries in an 8-node cluster are shown in Table 6. Due to the
nature of LSS-HS, the Random heuristic was a very bad fit
for it, demonstrating poor performance, so we aborted the
execution. Split in general performed better than Probes
due to the utility computation overhead of the latter.

To explore optimizations from Section 4.4, we performed
micro-experiments using local machines to fully control CPU,
network and disk. As we mentioned above, Amazon EC2
performance for network- and disk-intensive queries might
vary significantly between runs. We used two local nodes
(Linux kernel 3.8, Intel Q6600 CPU, 4GB of memory and
WD 750GB HDD) running four SciDB instances, two in-
stances per node. We took a 20GB subset of the original
data and set the DBMS buffer size to 1GB for each instance.

Table 7 shows results for two queries, which were run
with 4 threads available per instance. We distributed the

Table 6: First result times, subsequent results de-

lays and total times for different heuristics for SSS-

ANO(top)/LSS-HS(bottom), secs
Approach First Min/avg/max delays Total
Random 13.1 0.1/2.3/13.1 13.7
Split 4 0.04/0.7/4 4.3
Probes 11.7 0.1/2.7/13 16

Split 32.5 0.005/19.2/96.6 171.9
Probes 104 0.1/30/104 225

threads between the Solvers and Validators as discussed in
Section 4.4. In the table, “x-y” stands for the static distribu-
tion with x Solvers and y Validators per instance. Dynamic
means dynamic threads allocation during the search.

Table 7: Total times for different thread distributions
Query Dynamic 3-1 2-2 1-3
LSS-LS 8m18s 14m3s 9m4s 9m44s
LSS-ANO 19s 19s 3m19s 3m30s

The dynamic strategy performed better than the static
one, which requires the user to guess the correct allocation.
In contrast, the dynamic strategy adapts to the current sit-
uation. We saw similar trends for all queries we ran.

Another experiment explores the ability of Searchlight to
choose correct synopsis layers during query execution. We
present the results in Table 8 for different layers that were
available to Searchlight (e.g., 100 means 100x100 synopsis).

Table 8: Total times for different synopsis layers
Query 1000 100 10 1000-100-10
LSS-HS NA 4m41s 2h28m 3m
SSS-LS 21m30s 15m 6m9s 1m10s

The choice of synopsis layers has a profound impact on
query times, especially in case of LSS. When running LSS-
HS with the 1000x1000 synopsis, we actually were not able
to finish the query in several hours. These results show the
trade-off described in Section 3.2.2, when coarse synopses
produce too many candidates and fine synopses require too
much CPU power. This trend might be less apparent for
SSS. SSS-LS performed better for the 10x10 synopsis, since
Searchlight was able to use it for validation instead of the
original data. The Solver times actually increased from 6
seconds to 6 minutes between the 100 and 10 experiments.
The best benefit was achieved when all synopses were used
together (i.e., 1000-100-10), since Searchlight was able to
choose best synopses for both estimations and validations.

The last experiment in this section shows the benefits of
using candidate batching, as discussed in Section 4.4. In
case of a small number of candidates or if the candidates
are situated close to each other, the batching does not pro-
vide any benefits. In our experiments it did not have any
significant effect, positive or negative. For one query, SSS-
LS, that had a large number of candidates scattered around
the whole search space, using batching decreased the total
time from 21m30s to 15m.

5.4 SDSS Experiment
We experimented with the entire Sloan Digital Sky Sur-

vey (SDSS) [2] catalog, which contains information about
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objects in the surveyed portion of the sky. We used right
ascension (ra) and declination (dec) as coordinates. The cat-
alog provides a large number of attributes, and we chose the
model magnitudes: u, g, r, i, z. These are spectrum mea-
sures that can be used to analyze the “brightness” of objects.
The binary size of the data in the DBMS was approximately
80GB. We performed the experiment in an 8-node cluster.

Table 9: First result times, subsequent results delays

and total times for SDSS queries (Qi given in text), secs
Query First Min/avg/max delays Total
Q1 10 0.001/2/54 300
Q2 17 17 132
Q3 24 0.004/6/45 331
Q4 29 0.21/13/29 134

We fed Searchlight a variety of queries searching for sky
regions (sub-arrays) with average magnitudes belonging to
a range. Similar queries are often used in SDSS workloads
when filtering individual objects. Some of the results are
presented in Table 9. The queries are given below in the
format: “rX,mY,lenZ,stT”, where X means the resolution
(e.g., 1◦ for sub-arrays with leftmost coordinates divisible
by 1◦), Y means ranges for magnitudes (we used all five
of them in the same query), Z means the range of lengths
(e.g., 4◦ to 5◦) and T means the step for the lengths. The
delays, as before, are given as min/avg/max. If the delay
is a single number, that means there was only one result.
The queries were: Q1 = res1,m10-20,len4-5,st0.05; Q2 =
res1,m5-15,len0.4-0.5,st0.001; Q3 = res0.1,m0-20,10-30,10-
15,0-50,0-40,len5; Q4 = res0.1,m5-15,len0.1.

SDSS was a big challenge for Searchlight. Objects with
different magnitudes are dispersed around the data set, which
makes pruning difficult. Thus, the completion times were
worse than for the synthetic data. Even so, Searchlight was
able to provide reasonable interactive performance.

6. RELATED WORK
There is a considerable body of research directed at mak-

ing search efficient for large search spaces for different types
of constraints [21]. Traditional CP solvers (e.g., Gecode,
IBM ILOG, Comet) support parallel search, including work
stealing [18, 7] and over-partitioning [22]. We use similar
techniques for balancing in Searchlight. However, our ex-
periments showed that traditional CP solvers are ill suited
for searching large volumes of data or handling external
(e.g., DBMS-resident) data natively, i.e., without extract-
ing, transforming and partitioning it.

The idea of using linear solving and optimization tech-
niques has been explored for specific problems in relational
DBMSs, such as how-to queries [17] and Quantifier-Free Lin-
ear Integer Arithmetic (QFLIA) [16]. In how-to queries
the user specifies constraints for DBMS tables and allowed
database modifications, and the system employs a MIP solver
to produce a set of hypothetical tables, satisfying the specifi-
cation. In QFLIA, the authors allow the model to reference
DBMS tables via membership constraints, which tie model
variables to existing tuples. The linear part is handled by
the solver, and the membership is checked by a DBMS en-
gine. The authors, however, do not explore complex search
queries or address the problem of accessing the data by the
solver. The latter, as we have shown, renders traditional
solvers infeasible for large data sets.

We want to explicitly contrast our work with aggregate
query processing, spatial and data cube exploration. The
first one involves efficient computation of aggregates for the
specified query region (e.g., via the SQL WHERE clause). While
constraints in Searchlight often contain aggregates, its queries
are much more complex, since they involve search. A search
query cannot be easily mapped to an aggregate query, since
the former does not have a query region. The complexity lies
with finding this region, based on the specified constraints.

To compute aggregates, additional structures (e.g., R-/B-
trees) are often used to find the tuples belonging to the
region and perform the computation. These structures can
be extended to include more information about the data.
For example, Multi-Resolution Aggregate (MRA) trees [14],
where nodes are annotated with aggregate information. The
query’s aggregates can be estimated at every level of the tree
with progressively better intervals, guaranteed to contain
the exact result. As we discussed in Section 3.2.1, Search-
light uses this technique as the basis for the aggregate grid
synopsis. Sampling-based methods [12, 5, 19] are also com-
monly used to approximate aggregates, and often have lower
costs. However, they do not provide 100% confidence guar-
antees, which makes them unsuitable for provably pruning
search sub-trees. Thus, Searchlight does not use sampling.

Data cube exploration [10] involves computing aggregates
over GROUP BYs of subsets of attributes. For a particular
GROUP BY users can perform operations like roll-up (expand-
ing an attribute from the GROUP BY) or drill-down (adding
an attribute to the GROUP BY). Data cube exploration is es-
sentially a series of related aggregate queries. Different tech-
niques have been explored to speed-up the exploration, e.g.,
materializing parts of the cube [11], compressing it for gen-
eral [25] and spatio-temporal cases [15]. Additional informa-
tion can be stored in the cube to provide more information
to the user, e.g., the degree of abnormality for values [23].
The important distinction with our work is that data cube
exploration does not involve search. When the user specifies
the GROUP BY attributes and the aggregates, the problem lies
in efficiently computing the corresponding aggregate query.

Spatial DBMSs [24] allow users to manage and query spa-
tial data. They are often built on top of traditional DBMSs,
and can efficiently retrieve particular objects (e.g., build-
ings, rivers, etc.), find all features inside a window and per-
form nearest-neighbors search. Such queries do not gen-
erally involve search. Objects can be retrieved by using
common index structures, like pyramids [26, 4] or R-trees.
For nearest-neighbors search, the point of reference is given
(e.g., find the nearest ATM to the current location). The
most interesting type of spatial queries related to Search-
light is Content-Based Retrieval (CBR) [24], which explores
relationships between objects (e.g., topological, directional,
metric). For example, the user might search for a build-
ing near a lake with a grove nearby. One common way to
process CBRs is to precompute a complete graph of all ob-
jects, containing the relationship information [3, 20]. Then,
search can be performed using this graph. The constraints
are generally easy to check (e.g., look up the edge), and the
search space is small. In contrast, for Searchlight we assume
a large search space of objects, which is infeasible to precom-
pute and maintain. The constraints are also more expensive,
since they might involve multiple complex computations.

Semantic Windows (SW) [13] is aimed at searching for
multi-dimensional rectangular regions with specified aggre-
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gate properties. The framework runs on top of an RDBMS
and supports distributed computation. However, this work
has two major limitations. First, it uses a custom priority-
based search method tailored to a conjunction of aggregate
constraints for a single window (which can vary in sizes).
It would be hard to extend SW for arbitrary constraints or
multiple windows in the same query (e.g., “anomaly” queries
discussed in the paper). Searchlight can easily handle SW
queries with additional constraints without any modifica-
tions, which corresponds to our vision of a unified search en-
gine. More importantly, SW uses sample-based estimations
to steer the search in the direction of candidates. Thus, SW
has to eventually read the whole data set to produce the final
result, since it cannot provably prune the search space. In
contrast, Searchlight uses provable pruning, which reduces
the amount of data to be processed and greatly increases
performance, as supported by the experiments.

We note that our system differs in the kind of problems it
targets in relation to the so-called ”big data” systems, most
of which aim to efficiently perform analytical queries, ma-
chine learning tasks, stream processing, etc. Our framework
targets a fundamentally different problem.

7. CONCLUSIONS
Searchlight facilitates the application of modern constraint-

based search methods to large data sets, while taking ad-
vantage of the data management capabilities in a modern
array DBMS. It uses sophisticated techniques that combine
speculative execution over a synopsis with the validation
over the original data to provide interactive performance. It
supports distributed computation and employs data- and
search-space balancing techniques. Our experimental re-
sults over real and artificial data sets show the remarkable
speedups that are possible over the state-of-the-art alterna-
tives for data- and search-intensive queries, for both inter-
active and total performance.
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