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ABSTRACT
Given a large collection of tree-structured objects (e.g.,
XML documents), the similarity join finds the pairs of ob-
jects that are similar to each other, based on a similarity
threshold and a tree edit distance measure. The state-of-
the-art similarity join methods compare simpler approxima-
tions of the objects (e.g., strings), in order to prune pairs
that cannot be part of the similarity join result based on
distance bounds derived by the approximations. In this pa-
per, we propose a novel similarity join approach, which is
based on the dynamic decomposition of the tree objects into
subgraphs, according to the similarity threshold. Our tech-
nique avoids computing the exact distance between two tree
objects, if the objects do not share at least one common
subgraph. In order to scale up the join, the computed sub-
graphs are managed in a two-layer index. Our experimental
results on real and synthetic data collections show that our
approach outperforms the state-of-the-art methods by up to
an order of magnitude.

1. INTRODUCTION
Tree-structured data are ubiquitous nowadays and there

is a growing number of applications that require the man-
agement and search of such data. As concrete examples,
consider XML/HTML data management in computer sci-
ence [18], searching secondary RNA structures in biology [6],
shape classes discovery in vision and graphics [26], and tree
parsing in linguistics [22]. Similarity search is a common
operation over collections of tree-structured objects, with
tree edit distance (TED) being the typical similarity met-
ric. TED models the distance (i.e., dissimilarity) between
two trees as the minimum number of basic node edit op-
erations required to transform one tree into another [4, 20].
Three node edit operations insert, delete, and rename are
typically considered in the literature [11, 20, 29]. Given a
query tree Tq and a distance threshold τ , a similarity search
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query [13,16,18,27] finds in the database T (i.e., a collection
of tree objects) all trees Ti, such that TED(Tq, Ti) ≤ τ .

In this paper, we study the similarity join operation on
tree-structured data [18], which extends similarity search.
We focus on self-joins, due to their increased applicability;
still our solution is directly applicable for non-self joins.
Formally, given a collection T of tree objects and a dis-
tance threshold τ , the objective is to report all pairs of trees
(Ti, Tj) in T× T, such that TED(Ti, Tj) ≤ τ .

The similarity join is an important operation that finds
applications in data integration, near duplicate detection,
and biological sequences comparison [4, 9, 14, 21]. For ex-
ample, consider an online C2C shopping site; information
about individual items (e.g., music albums) are often mod-
eled as XML documents. The vendors could be interested in
knowing similar items that are sold at other stores in order
to find potential competitors; also, the site could use the join
result to identify similar or near-duplicate items in order to
diversify its recommendations to users. As another exam-
ple, biologists are often interested in finding similar pairs
of RNA secondary structures (which are modeled as trees)
from various sources to better understand the relationships
of different species. Moreover, finding sentences that have
similar parsing structures would be useful in computational
linguistics for semantic categorization.

Due to the importance of the similarity join over tree-
structured data, its evaluation has been well studied in the
past [4,13,16,18,27]. State-of-the-art techniques use nested
loops to iterate all possible tree pairs (Ti, Tj). Pairs that
cannot be part of the join result are pruned by effective
filters [4, 18]; exact TED computation has to be performed
only for pairs that survive the filters.

The tree edit distance TED(Ti, Tj) between trees Ti and
Tj can be computed recursively by first decomposing Ti and
Tj into subtrees and subforests, and then computing the
distances of the subtrees and subforests as subproblems [4].
Existing TED algorithms focus on minimizing the number of
these subproblems during TED computation. However, the
performance of these algorithms is sensitive to the structure
of the trees. RTED [20] is the state-of-the-art algorithm for
computing TED. The time complexity of RTED is O(n3),
where Ti and Tj are both of size n. This makes a straight-
forward similarity join algorithm which applies RTED for
all pairs of trees in the dataset too expensive. In view of
this, existing approaches for solving the tree similarity join
problem are based on transforming the trees into simpler
data structures the distances between which are easier to
compute and can be used to filter out tree pairs that cannot
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be similar [18]. However, these methods either do not scale
well [1, 13] or do not provide effective pruning [16, 27]. Fur-
thermore, these solutions do not take the similarity thresh-
old τ into consideration when performing the transformation
from trees to other structures (i.e., the transformation is in-
sensitive to τ) and do not build any index to reduce the
number of comparisons between tree pairs (i.e., they have
to examine all pairs of trees in a nested-loop fashion).

In view of this, in this paper, we propose a partition-based
similarity join (PartSJ) framework over tree-structured
datasets. In PartSJ, each tree is stored using its left-child
right-sibling (LC-RS) binary tree representation. We divide
each LC-RS tree into a set of subgraphs using a novel par-
titioning scheme, which balances the sizes of the resulting
subgraphs. We prove that if two trees TR1 and TR2 are
similar with each other, then there exists at least one sub-
graph s in the binary tree representation of TR1 such that s
is also a subgraph of the binary tree representation of TR2.
Based on this observation, we design a filter which can effec-
tively prune tree pairs that cannot be part of the join result.
More specifically, we first build a two-layer index which di-
vides the subgraphs into groups based on their labels and
positions. Then, for each LC-RS tree Ti, we use the index to
retrieve subgraphs of other trees that are also subgraphs of
Ti. For each such subgraph, its container tree Tj is retrieved
to compute its exact TED with Ti for further verification.
Finally, after the processing of Ti, Ti is divided into a set
of subgraphs using the same partitioning method, which are
inserted into the two-layer index for comparison with sub-
sequent trees. Our framework does not require any offline
index construction; instead, we build the two-layer index for
the subgraphs on-the-fly, while evaluating the join.

In summary, we make the following contributions:
• We propose a partition-based framework for similar-

ity joins on tree-structured data. To the best of our
knowledge, this is the first work which applies sub-
graph matching to facilitate tree similarity joins.
• We present a novel partitioning scheme which is sensi-

tive to the similarity threshold τ and can generate bal-
anced subgraphs for various shapes of trees efficiently.
Based on this, a filtering method is proposed to prune
tree pairs that cannot be part of the join result.
• We design a search paradigm for matching subgraphs

with trees (i.e., checking whether a subgraph s of tree
Tj is a subgraph of tree Ti or not). A two-layer index
is introduced to organize the subgraphs for efficient
matching, and a novel subgraph selection method is
proposed to reduce comparisons and to avoid unnec-
essary matchings between subgraphs and trees.
• We conduct an extensive empirical study on real and

synthetic tree collections and show that our proposed
solution outperforms the state-of-the-art competitors.

The rest of the paper is organized as follows. Section 2
reviews TED and its computation, as well as state-of-the-
art solutions for the evaluation of similarity queries on tree-
structured data. Section 3 presents our proposed partition-
based framework for efficient tree similarity joins. Our ex-
perimental evaluation is presented in Section 4. Section 5
reviews related work and Section 6 concludes the paper.

2. PRELIMINARIES
A tree-structured object organizes data items as nodes in

a hierarchy. The nodes in a tree are linked via edges, which

<html>
<title>Test page</title>
<body>
<p>This is a <dfn>dfn</dfn> tag example.</p>
</body>
</html>

html

title

Test page

body

p

This is a dfn

dfn

tag example.

Figure 1: Tree representation of a HTML fragment

model parent-child relationships. Mathematically, a tree is
an acyclic connected graph. In this paper, we focus on rooted
ordered labeled trees, which are directed acyclic graphs with
the following properties: (i) each edge points from a parent
node to a child node, (ii) each node is associated with a
label (two nodes can have the same label) and has at most
one incoming edge, (iii) there is a unique root node with
no incoming edge, and (iv) the children of each node are
ordered. Figure 1 shows the tree representation of an HTML
fragment, where tags and text are considered as labels.

Given two rooted ordered labeled trees T1 and T2, their
tree edit distance TED(T1, T2) is defined as the minimum
number of node edit operations required to transform one
tree into another. We consider three types of node edit
operations on rooted ordered labeled trees [11,20,29]:

Insertion. An insert operation adds a node Ni between
a parent node Np and a subset of its consecutive children
nodes (denoted as Nc). The insertion can be viewed as
adding Ni as a child node of Np directly before the nodes in
Nc first and then moving the nodes in Nc as direct children
of Ni, while preserving their original order.

Deletion. A delete operation removes a node Ni from the
tree by first deleting Ni from its parent node Np and then
connecting all the children nodes of Ni (if any) as children
of Np in place of Ni, while preserving their original order.
Deletion and insertion are inverse edit operations.

Renaming. A rename operation changes the label of a
node Ni into a different label.
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Figure 2: Tree node edit operations example

Figure 2 illustrates a sequence of node edit operations on
an initial tree T1. First, T1 is transformed into T2 by deleting
node N4. Then, inserting a new node N8 between nodes N1

and {N6, N7} converts tree T2 into T3. Finally, renaming
the label of N5 from `5 to `9 results in the final tree T4.

TED between two trees can be computed recursively. The
worst-case optimal algorithm [11], hasO(n3) time andO(n2)
space complexity, for two trees of size n. For certain tree
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topologies, such as balanced trees the complexity can be
lowered to O(n2 log2 n) by an approach [29], which however
has O(n4) time complexity in the worst case. A recently
proposed robust hybrid framework (RTED) [20] dynamically
chooses the best one between the algorithms of [11] and [29],
based on the tree shapes (of subproblems). The time and
space complexities of RTED are O(n3) and O(n2), respec-
tively. In this paper, we use RTED for TED computations.
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Figure 3: An example of binary branch

Since the computational cost of TED is too high, existing
approaches for tree similarity search/join queries are gener-
ally based on the transformation of trees into simpler data
structures, the distances between which are easier to com-
pute and can be used to bound the TED. We now intro-
duce the two state-of-the-art methods for similarity search
queries on tree-structured data based on a recent survey [4]
and experimental study [18]. Both approaches can be easily
adapted to solve the similarity join problem in an indexed
nested loops fashion (i.e., by issuing a similarity search query
for each tree in the collection). The first method is proposed
in [13], where the authors prove that the string edit distance
between the preorder/postorder traversal sequences of two
trees can serve as a lower bound of their TED, thus can be
used to filter out dissimilar tree pairs. For example, con-
sider trees T1 and T2 shown in Figure 3. It is easy to verify
that TED(T1, T2) = 3. The string edit distances between
the preorder traversal sequences (both are `1`2`1`3) and the
postorder traversal sequences (`2`3`1`1 and `1`3`2`1) of the
two trees are 0 and 2 respectively; both are no larger than
the real TED(T1, T2). The second solution [27], proposes
to bound the tree edit distance between two binary trees
by the dissimilarity between two bags of binary branches.
More specifically, given a binary tree T1, a binary branch of
T1 is a one-level tree structure of T1 which consists of a node
Ni ∈ T1 and its two children (a dummy node Nε with empty
label ε is added if a child node does not exist). Thus, a tree
Ti contains |Ti| binary branches. Given two binary trees T1

and T2, whose bags of binary branches are X1 and X2 re-
spectively, the binary branch distance between T1 and T2 is
defined as BIB(T1, T2) = |X1| + |X2| − 2|X1 ∩ X2|, where
X1 ∩ X2 is bag intersection [2]. The authors prove in [27]
that BIB(T1, T2) ≤ 5 ·TED(T1, T2). Figure 3 illustrates two
binary trees T1 and T2, as well as their corresponding bags of
binary branches X1 and X2, respectively; it can be verified
that BIB(T1, T2) = 6 ≤ 5 · TED(T1, T2) = 15.

3. PARTITION-BASED SIMILARITY JOIN
In this section we present our partition-based framework

for similarity joins on tree-structured data. The main idea is
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Figure 4: An example of Knuth transformation

based on the binary tree representation of a rooted ordered
labeled tree and subgraph indexing for effective pruning.

3.1 Filtering Principle
Since there is no bound on the number of children of a

node in a general rooted ordered labeled tree, a node edit
operation (e.g., the deletion of a node) may involve an ar-
bitrary number of changes to the parent-child relationships
between nodes. On the other hand, in a binary tree, the
number of nodes affected by a node edit operation is strictly
constrained, since each node is connected to at most 3 other
nodes. For example, consider a general tree TR and its
equivalent binary tree representation TB , as shown in Fig-
ures 4(a) and 4(b), respectively. The deletion of N7 from
the general tree affects 4 tree nodes and 4 edges, while on
the binary tree it only affects 2 nodes/edges. Motivated by
this, our join framework (candidate generation) applies on
binary tree representations of the original tree objects.

One of the most popular approaches for mapping a general
tree TR to a binary tree TB is Knuth’s transformation, which
creates a left-child right-sibling (LC-RS) (binary) tree [10].
Instead of having an array of pointers referring to each of
its children, each node in an LC-RS tree has (at most) two
pointers only, which suffice to access all of its children. More
specifically, a node N in an LC-RS tree may contain a left-
child pointer which points to the leftmost child of N (recall
that the general tree is an ordered tree), and a right-sibling
pointer which points to the sibling of N that is immediately
to the right of N . Note that node labels remain unchanged
during such a conversion. Figure 4 shows an example of a
general tree and its corresponding LC-RS tree.

Before presenting the filtering principle of our partition-
based join framework, we first introduce the concept of δ-
partitioning, which is the basis of our framework.

Definition 1 (δ-Partitioning and Bridging Edge).
A δ-partitioning of a tree TB consists of (δ − 1) edges of
TB; each edge in the δ-partitioning is called a bridging edge.

Obviously, removing the bridging edges in any δ-
partitioning of tree TB from TB results in δ disjoint sub-
graphs (i.e., components) of TB . In our definition, be-
sides the connected component, a subgraph also includes
the bridging edges in the δ-partitioning that connect this
subgraph to other subgraphs. Figure 5 illustrates a possi-
ble 3-partitioning for the LC-RS tree shown in Figure 4(b)
(i.e., {〈N2, N3〉, 〈N6, N7〉}). A subgraph resulting from a
δ-partitioning contains at least one bridging edge (Defini-
tion 1) that belongs to that δ-partitioning. Obviously, each
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Figure 5: A 3-partitioning of the tree in Figure 4(b)

subgraph is also a rooted binary tree itself, if we omit the
bridging edges that belong to the δ-partitioning.

In a subgraph (and in a LC-RS tree in general), at most
three edges are associated with a tree node, belonging to one
of the following categories: (i) right incoming edge (from
the parent’s left pointer), (ii) left incoming edge (from the
parent’s right pointer), (iii) left outgoing edge (pointing to
the left child), and (iv) right outgoing edge (pointing to the
right child). For example, N3 in Figure 5(a) is associated
with three edges: one right incoming edge, one left outgoing
edge, and one right outgoing edge; while N7 in Figure 5(c)
is associated with a left incoming edge and a left outgoing
edge. Note that each edge in a binary tree belongs to two
categories (i.e., a different category for the source and des-
tination nodes); e.g., the edge that connects N2 and N3 is a
left outgoing edge for N2 and a right incoming edge for N3.

Given a δ-partitioning of a binary tree representation TB
of TR, we show in Lemma 1 that the effects that a node edit
operation has on the subgraphs of TB are restricted.

Lemma 1. Let TB be the LC-RS tree representation of a
general tree TR. For any δ-partitioning on TB, any node edit
operation on TR changes at most 2 subgraphs of TB.

Proof. We prove the lemma by enumerating the changes
that each node edit operation makes.

Renaming. The case of renaming is trivial: only the
subgraph containing the node being renamed is changed.

Insertion. Assume that a new node Nx is inserted be-
tween a parent node Np and a subset of its n consecutive
children nodes {Ni1, Ni2, . . . , Nin}. We show that in this
case only the subgraphs containing either Ni1 or Nin have
to be changed. More specifically, if Ni1 contains a right in-
coming edge (i.e., Ni1 is not the leftmost child of Np), then
this edge will be changed to a left incoming edge (i.e., Ni1
becomes the leftmost child of the newly inserted node); if
Nin contains a right outgoing edge (i.e., Nin is not the right-
most child of Np), then this edge will be eliminated (as Nin
becomes the rightmost child of the newly inserted node).
In summary, the insertion may affect only nodes Ni1 and
Nin (and their associated edges), which belong to at most 2
different subgraphs (w.r.t. any δ-partitioning on TB).

Deletion. The analysis is similar to that of insertion,
since they are inverse operations of each other. Specifically,
assuming that Nx is the node to be deleted, the deletion of
Nx may affect at most 2 subgraphs (w.r.t. any δ-partitioning
on TB). We omit the details here due to space limitations.

In conclusion, we have shown that any node edit operation
changes at most 2 subgraphs of TB .

For example, assume that an insert operation changes
TR1 of Figure 6(a), where N11 is inserted between N1 and
{N3, N6, N7}. Figure 6(b) illustrates the tree after insertion,
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Figure 6: Node edit operation effects

denoted as TR2. Figures 6(c) and 6(d) are the binary tree
representations of TR1 and TR2 respectively. For the sub-
graph of TB1 containing N3, the change includes altering
N3’s right incoming edge into a left incoming edge; for the
subgraph of TB1 containing N7, the change includes elimi-
nating N7’s right outgoing edge. In the worst case, N3 and
N7 belong to different subgraphs, thus at most 2 subgraphs
are changed by this insertion.

Lemma 1 leads to the following filtering principle:

Lemma 2. Consider a binary tree representation TB1 of
a general tree TR1 and a similarity threshold τ . For any δ-
partitioning of TB1 (δ = 2τ + 1) and any general tree TR2

with binary tree representation TB2, if TED(TR1, TR2) ≤
τ , TB1 must contain at least one subgraph s (by the δ-
partitioning) such that s is a subgraph of TB2.

Proof. If TED(TR1, TR2) ≤ τ , then there exists a se-
quence of λ (≤ τ) node edit operations O = 〈o1, o2, . . . , oλ〉
that convert TR1 into TR2. Based on Lemma 1, any node
edit operation on TR1 changes at most 2 subgraphs in TB1.
Hence at most 2λ (≤ 2τ) subgraphs in TB1 are changed
by applying O. On the other hand, TB1 is partitioned into
(2τ + 1) subgraphs, which means that at least one subgraph
s in TB1 is untouched. Since s remains the same, its corre-
sponding structure in TR1 is unaffected; such a structure will
appear in TR2 as well (clearly, if a subgraph is not changed,
its binary representation remains the same). Therefore, s
must be a subgraph of TB2 (i.e., s is included in TB2), the
binary tree representation of TR2.

Lemma 2 can be used as follows. Consider the subgraphs
of a tree TB1 ∈ T based on any δ-partitioning (δ = 2τ + 1).
When processing tree TB2 ∈ T, if there is no subgraph s of
TB1, which is also a subgraph of TB2 (i.e., appearing in TB2),
then it is guaranteed that (TB1, TB2) is not a similarity join
result on T (with TED threshold τ); therefore the tree pair
can be pruned.

3.2 Partition-based Framework
Based on Lemma 2, we propose a partition-based tree sim-

ilarity join framework PartSJ, summarized by Algorithm 1.
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Algorithm 1 Partition-based Similarity Join

1: procedure PartSJ(Trees T, τ)
2: I := ∅; . inverted index of tree size
3: sort trees in T in ascending order of their sizes;
4: for each Ti ∈ T do
5: for n := max{1, |Ti| − τ} → |Ti| do
6: for each node N ∈ Ti do . postorder traversal
7: S = In.getSubgraphs(Ti, N);
8: for each s ∈ S do
9: Tj := the tree which owns s;
10: if (Ti, Tj) has not been checked before then
11: if TED(Ti, Tj) ≤ τ then
12: report tree pair (Ti, Tj);

13: γ := MaxMinSize(Ti, 2τ + 1);
14: S′ := Partition(Ti, 2τ + 1, γ);
15: for each s ∈ S′ do
16: insert s into I|Ti|;

Algorithm 1 initializes an empty inverted size index I of
subgraphs, which is populated on-the-fly, while processing
the join. I contains one inverted list In for every possible
tree size n; In includes the subgraphs generated from the
trees that have exactly n nodes. The algorithm examines
the trees in increasing order of their sizes (line 3). For each
tree Ti, the sizes of trees Tj that are similar to Ti (i.e.,
TED(Ti, Tj) ≤ τ) should be in the range [|Ti| − τ, |Ti|+ τ ],
since each node edit operation changes the size of a tree by
at most 1.1 Still, since the trees are ordered by size, all the
trees that have been processed so far cannot have size larger
than |Ti| (line 5), thus candidates are only the trees seen so
far with size at least |Ti| − τ . The subgraphs of these trees
are retrieved from inverted lists I|Ti|−τ to I|Ti|.
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Figure 7: An example of subgraph selection

A straightforward implementation would retrieve all these
subgraphs and check whether they appear in Ti; for each
retrieved subgraph s, all nodes of Ti should be enumerated
to decide whether s matches the subtree of Ti rooted at each
node N ∈ Ti. In particular, s matches the subtree rooted
at node N of Ti iff the root of s matches N (i.e., they have
the same label) and so do the children, descendants, and
bridging edges of s (i.e., s matches the structure at the top
of the subtree). For example, consider tree Tj in Figure 7,
which is partitioned into 3 subgraphs. Subgraph s2 of Tj
matches the subtree of Ti rooted at N , because the label of
N is `7 (like the root of s2), the two children of s2’s root
have the same labels as the two children of N (note that the
grandchild of N is not relevant to this matching), and both
s2 and N have a left incoming edge (bridging edge).

Such a brute-force enumeration of all nodes in Ti for each
subgraph s is too time-consuming and the join becomes very

1An insertion (deletion) increases (decreases) the tree size
by 1, while renaming does not affect it.

slow if we have numerous large trees and/or large τ values
(recall that larger τ values result in more subgraphs and
larger tree sizes require checking more candidate tree nodes).
To this end, we propose to select interesting subgraphs re-
versely, i.e., instead of matching each subgraph with the
current tree Ti, we enumerate the nodes N of Ti (line 6)
and select only the subgraphs that can possibly match with
the subtree rooted at each node N (line 7). Consider the toy
example in Figure 7, where Ti contains 10 nodes and τ = 1.
The number in parentheses next to each node indicates the
postorder number of that node in the corresponding tree.
Assume that I10 contains only three subgraphs s1, s2, and
s3 from tree Tj (note that |Tj | = 10). A brute-force ap-
proach would retrieve all the three subgraphs in I10 and
compare each of them with all the possible subtrees (10 in
total) of Ti. On the other hand, our solution selects for each
node N of Ti only a subset of subgraphs from I10 (e.g., only
s2 may be selected for the subtree rooted at N in Figure 7),
based on the structure of the subtree rooted at N and the
position of N . In Section 3.4, we present an effective in-
dexing approach for the inverted lists In, based on which
In.getSubgraphs(Ti, N) (line 7) is implemented efficiently.

For each returned subgraph s ∈ S, if s matches Ti (i.e.,
s is a subgraph of Ti), then (Ti, Tj) becomes a candidate
join pair and the TED between the two trees is computed.
If this distance is no larger than τ , (Ti, Tj) is reported as
a result (lines 9–12). Finally, Ti is partitioned into δ =
2τ + 1 subgraphs, which are added into inverted list I|Ti|,
for comparison with all subsequently examined trees.

3.3 Partitioning Scheme
We now investigate how to obtain a good δ-partitioning in

order to maximize the effectiveness of our approach. Intu-
itively, a good partitioning scheme should not generate very
small subgraphs for any given tree, since small subgraphs
have a high probability of being subgraphs of other trees.
Based on Lemma 2, if more common subgraphs are identi-
fied, more candidates will be generated for which the exact
TED should be computed; thus degrading the performance
(pruning power) of our framework. An intuitive approach
would be to divide TB into a set of subgraphs which have
(almost) the same size; this way, the minimum size of any
subgraph would be maximized. However, such a partitioning
may not exist due to the complexity of tree-structured data.
Consider, for instance, a binary tree as shown in Figure 8,
where each triangle represents a binary tree structure con-
sisting of 50 nodes (hence the tree contains 202 tree nodes
in total). Assume that δ = 3 (i.e., τ = 1). Ideally we want
to partition this tree into 3 subgraphs each having 67 or 68
nodes respectively. However, we can easily show that any
3-partitioning of this tree will include a subgraph of at most
50 nodes and a subgraph of at least 100 nodes; thus there
will be a great difference among the sizes of these subgraphs.

s4

`j

`i

s1 s2

s3

Figure 8: An example of binary tree partition
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In view of this, we propose a partitioning approach which
aims at maximizing the minimum size of the subgraphs for
a binary tree. This objective helps in ending up with as
balanced subgraphs as possible and at the same time avoids
having small partitions. Before presenting our method, we
first show how to solve the decision version of this problem,
i.e., given a size constraint γ, find whether there exists a
δ-partitioning for a given binary tree TB such that the sizes
of all the resulting subgraphs are all at least γ.

Definition 2 ((δ, γ)-Partitionable). Given a binary
tree TB and a size constraint γ, if there exists a δ-
partitioning of TB such that γ · δ ≤ |TB | and the size of each
subgraph is no less than γ, we say TB is (δ, γ)-partitionable.

Our solution for the (δ, γ)-partitionable problem is based
on the concept of γ-subtree.

Definition 3 (γ-Subtree). Given a size constraint γ,
a subtree si of which the left and right subtrees are sil and
sir respectively, is called a γ-subtree if and only if |si| ≥ γ,
|sil| < γ and |sir| < γ.

For example, the subtree rooted at N3 of TB2 in Fig-
ure 6(d) is a 5-subtree. It is easy to see that each binary tree
TB contains at least one γ-subtree, given that γ ≤ |TB |; we
can use the following recursive approach to discover a possi-
ble γ-subtree from TB : starting from the subtree rooted at
node Ni of which the size is no less than γ (initially Ni is the
root node of TB), we check whether its two subtrees satisfy
the size constraint. If yes, then we report the subtree rooted
at Ni as a result; otherwise there must exist one child node
(denoted as Nc) of which the size is no less than γ, and thus
we search for a γ-subtree in the subtree rooted at Nc. Note
that no γ-subtree can span multiple subgraphs after a legal
(δ, γ)-partitioning, since none of its child branches has size
that is larger than or equals to γ.

Lemma 3. If a binary tree TB is (δ, γ)-partitionable, then
detaching a γ-subtree from TB will derive a binary tree which
is (δ − 1, γ)-partitionable.

Proof. Let the γ-subtree (to be detached) in TB be tγ ,
and the residual tree after detaching tγ from TB be Tr.
Obviously, Tr is still a rooted binary tree. Since TB is
(δ, γ)-partitionable, there exists at least one δ-partitioning
P, which cuts TB into a set of subgraphs S, such that for
each subgraph si in S, |si| ≥ γ. Note that tγ must be com-
pletely inside one subgraph of TB (by applying P), since
every subtree of tγ (except tγ itself) has size smaller than
γ, and thus must be included in the same subgraph as its
parent (i.e., every node in tγ appears in the same subgraph).

Assume that the subgraph that contains tγ is sγ . We
denote the set of (bridging) edges in P that appear also
in sγ as Ω, and construct a new partitioning P ′ (for Tr)
by deleting from P an edge ei ∈ Ω (i.e., P ′ = P \ {ei}).
Obviously, P ′ divides Tr into δ − 1 subgraphs (trivial since
removing δ− 2 edges from a tree will result in δ− 1 disjoint
subgraphs); we now show the size of each such subgraph is
not smaller than γ. Let the subgraph that connects to sγ via
ei be sx. We can easily see that the other δ − 2 subgraphs
(i.e., S\{sx, sγ}) remain unchanged, and thus their sizes are
no less than γ. Also, we connect the residual in sγ (after
detaching tγ) with sx to form a new subgraph s′x (i.e., the
remaining subgraph in P ′); clearly, the size of s′x is also not
smaller than γ. Therefore, Tr is (δ− 1, γ)-partitionable.

Based on Lemma 3, we propose a greedy algorithm to
solve the (δ, γ)-partitionable problem in linear time O(|TB |).
In order to achieve this goal, we store at each tree node Ni
two variables, size and detached : size stores the number of
nodes in the subtree rooted at Ni, while detached stores the
number of nodes that have been cut off in the subtree rooted
at Ni. In other words, (size−detached) is the actual number
of nodes that are under Ni at the current stage. These two
statistics will be updated while we traverse TB . Note that in
order to obtain sufficient information when processing the
subtree rooted at Ni, we follow a postorder traversal of the
binary tree to get the statistics from Ni’s children first.

Algorithm 2 (δ, γ)-partitionable Test

1: procedure Partitionable(TB , δ, γ)
2: n := 0; . the number of subgraphs found by far
3: root := the root node of TB ;
4: return RecursivePartitionable(root, δ, γ);

5: procedure RecursivePartitionable(Ni, δ, γ)
6: Ni.size := 1;
7: Ni.detached := 0;
8: Nl := the left child node of Ni;
9: Nr := the right child node of Ni;
10: if Nl 6= NIL then
11: succ := RecursivePartitionable(Nl, δ, γ);
12: if succ then return true;

13: Ni.size := Ni.size +Nl.size;
14: Ni.detached := Ni.detached +Nl.detached;

15: if Nr 6= NIL then
16: succ := RecursivePartitionable(Nr, δ, γ);
17: if succ then return true;

18: Ni.size := Ni.size +Nr.size;
19: Ni.detached := Ni.detached +Nr.detached;

20: if Ni.size−Ni.detached ≥ γ then . γ-subtree identified
21: n := n+ 1;
22: Ni.detached := Ni.size;
23: if n ≥ δ then
24: return true;

25: return false;

Algorithm 2 tests whether a binary tree TB is (δ, γ)-
partitionable by greedily cutting off a γ-subtree found so
far from the current residual tree (line 20). Note that we do
not conduct any real detach operations in Algorithm 2, but
we use the two variables size and detached to maintain the
information after each detach operation. This way, we do
not need to recalculate the real number of nodes that remain
in the subtree rooted at the current tree node after each de-
tach operation. As long as enough γ-subtrees are discovered
(line 23), the algorithm returns true (i.e., that the tree is
(δ, γ)-partitionable), otherwise it reports failure of the parti-
tioning test (line 25). Note that Algorithm 2 not only deter-
mines whether a binary tree TB is (δ, γ)-partitionable, but
also computes (with minor modifications) a δ-partitioning
when such a partitioning exists (cf. Lemma 3).

`1

`2

`3

`4

`5 `6

`7

`8

`9

`10

`11

N1
N2

N3

N4

N5 N6

N7

N8

N9

N10

N11

s1

s2

s3

Sequence of nodes visited with Post-order traversal:

N5 N6 N4 N3 N10 N9 N11 N8 N7 N2 N1

(1) Visiting N5:
N5.size = 1; N5.detached = 0;

(2) Visiting N6:
N6.size = 1; N6.detached = 0;

(3) Visiting N4:
N4.size = 3; N4.detached = 3;

(4) Visiting N3:
N3.size = 4; N3.detached = 3;

...

(9) Visiting N7:
N7.size = 5; N7.detached = 4;

(10) Visiting N2:
N2.size = 10; N2.detached = 7;

...

Figure 9: (δ, γ)-partitionable test example
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Figure 9 illustrates the application of Algorithm 2 on a
binary tree, with δ = 3 and γ = 3. The processing order
of tree nodes, as well as the final values of variables in each
node after processing are listed on the right side of the fig-
ure. For example, after processing the left and right children
of N4, N4.size and Ni.detached are updated to 3 and 0, re-
spectively. Since N4.size − Ni.detached ≥ 3, a 3-subtree is
identified and detached from the binary tree, resulting in
a new binary tree of eight nodes. In addition, we set the
value of N4.detached to N4.size to indicate that the subtree
rooted at N4 has been detached. Later, when processing
N4’s parent (N3), we obtain these statistics from N4.

Lemma 4. Given a binary tree TB, if it is (δ, γ)-
partitionable, then TB is also (δ, γ − 1)-partitionable.

Proof. Trivial, since a subtree not smaller than γ is also
not smaller than (γ − 1).

Given a binary tree TB and the number of subgraphs
δ after partitioning, according to Lemma 4, there should
be a value γ, such that for all γ′ ≤ γ, TB is (δ, γ′)-
partitionable; while for any γ′′ > γ, TB is not (δ, γ′′)-
partitionable. This observation motivates us to use binary
search to find the maximum value of γ, for which the tree
is (δ, γ)-partitionable. This value can be considered as an
upper bound of all feasible γ values.

Algorithm 3 Maximizing the Minimum Subgraph Size

1: procedure MaxMinSize(TB , δ)
2: γmax := b|TB |/δc;
3: γmin := b(|TB |+ δ − 1)/(2δ − 1)c;
4: c := γmax − γmin + 1;
5: while c > 1 do
6: γmid := γmin + bc/2c;
7: if Partitionable(TB , δ, γmid) then
8: γmin := γmid;
9: c := c− bc/2c;
10: else
11: c := bc/2c;
12: return γmin;

Algorithm 3 shows the pseudocode for finding this value
of γ. Obviously if TB is (δ, γ)-partitionable, then γ ≤ |TB |/δ
(cf. Definition 3). In other words, the size of each subgraph
cannot be larger than b|TB |/δc (line 2). On the other hand,
the trivial lower bound of γ can be set to 1. In order to
obtain a non-trivial lower bound for γ, consider the worst
case where the left subtree and right subtree of each sub-
graph isolated in the first δ − 1 iterations are both of size
(γ − 1), i.e., all these subgraphs found so far are of size
(2γ − 1). Since a tree is divided into δ subgraphs, to make
sure that the size of the last subgraph is no less than γ,
we should have |TB | − (δ − 1) · (2γ − 1) ≥ γ. Solving this
inequality results in γ ≤ (|TB | + δ − 1)/(2δ − 1), indicat-
ing that TB is definitely (δ, γ)-partitionable if γ is no larger
than (|TB | + δ − 1)/(2δ − 1) (line 3). In other words, TB
is (δ, γmin)-partitionable. The loop invariant for the while
loop (lines 5–11) is that the largest feasible value γ is in the
range [γmin, γmin + c). If c becomes 1 (i.e., there is only one
feasible value now), then γmin is the desired answer. Other-
wise, Algorithm 3 tests iteratively whether the value in the
middle of the range (i.e., γmid) can derive a feasible parti-
tion or not (line 7). If TB is (δ, γmid)-partitionable, we can
guarantee that the largest feasible value of γ is in the right

half range [γmid, γmid + c − bc/2c) (lines 8–9). Otherwise it
is in the left half range [γmin, γmin + bc/2c) (line 11).

Time complexity. The algorithm enters the while loop
(lines 5–11) at most O(log(|TB |/δ)) times, since at each it-
eration the search range is shrunk to half of its original
length. In the loop body, we conduct a partitionable test
(Algorithm 2) in O(|TB |) time, as well as some constant
time operations. Therefore, the overall time complexity of
Algorithm 3 is O(|TB | · log(|TB |/δ)).

3.4 Subgraph Selection
The heart of our framework (presented in Section 3.2) is to

find for each node N of the currently examined tree Ti, the
subgraphs of previously accessed trees, which match with
the subtree of Ti rooted at N (line 7 of Algorithm 1). For
each such subgraph s, the tree Tj that contains s forms a
candidate join pair with Ti. We now present two orthogo-
nal indexing techniques for each inverted list In (containing
the subgraphs of n-sized trees). These indexing techniques
facilitate the efficient access of the relevant subgraphs that
match N . The main idea is to partition the subgraphs in
In into groups according to their labels and position, such
that groups that may not contain possible candidates for Ti
can be pruned. We aim at filtering out subgraphs s that
(i) definitely do not match the subtree rooted at N , and (ii)
although they may match the subtree, their position in their
container tree Tj is not compatible with the position of N
in Ti, and thus (Ti, Tj) is not a candidate pair due to s.

Label indexing. To filter out subgraphs that definitely
do not match the subtree rooted at node N ∈ Ti, we can
index the subgraphs in In by the labels in their topmost
twig. More specifically, consider a subgraph s with root
Na and let Nb and Nc be the left and right child of Na,
respectively. If Nb (or Nc) does not exist, it becomes a
dummy node (denoted as Nε). Assume that the labels of
Na, Nb and Nc are are `a, `b and `c, respectively (the label
of a dummy node is denoted by ε). By pre-ordering the three
labels as `a`b`c, we assign key `a`b`c to s and put s into the
group corresponding to this key (we create the group if it
does not already exist). For instance in Figure 7, the three
subgraphs of Tj , namely s1, s2 and s3, are assigned to groups
corresponding to keys `1`2`6, `3`4`5 and `7`8`9 respectively.

When retrieving subgraphs for node N ∈ Ti, we create
four search keys based on N . Specifically, if Nl and Nr are
the children of N and the labels of N , Nl and Nr are `, `l and
`r, we form keys ``l`r, ``lε, `ε`r, and `εε. Only the groups
in In that correspond to these keys can possibly match the
subtree rooted at N . The subgraphs in group ``l`r have
the same topmost twig as that rooted at node N ; therefore
they are possible candidates for matching N and should be
accessed and verified. For example, s2 in Figure 7(b) will
be selected for N ∈ Ti since it is inside group `7`8`9. For
the subgraphs in the remaining three groups, although the
topmost twigs are different from that rooted at node N , they
can still possibly match the subtree rooted at node N ; hence
they should be selected and verified as well.

Postorder pruning. When a subgraph s of tree Tj
matches a subtree rooted at node N of Ti, this does not
necessarily mean that (Ti, Tj) is a candidate join pair. We
observe that if the positions of s in Tj and N in Ti are quite
different then the matching does not imply the candidature
of (Ti, Tj). For example, in Figure 7, assume that τ = 1 and
that s2 of tree Tj is retrieved and found to be matching with
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the subtree rooted at N of tree Ti. Observe that since s2 and
N are in very different positions in Tj and Ti, respectively,
we can conclude that (Ti, Tj) cannot be a join pair due to
this matching. If our search for subgraphs that match node
N could exclude s2 due to its different relative position, then
we could avoid having (Ti, Tj) as a candidate pair and thus
avoid a necessary TED computation; we could also save the
cost of checking if there is a potential match of s2 with the
subtree rooted at N in Ti. We now present the details of
an indexing approach for In which partitions the subgraphs
based on their postorder numbers in their container trees.
When a node N ∈ Ti is processed, we can use the postorder
of N in Ti to search for subgraphs that may render their
container trees candidate join pairs with Ti.

Consider a δ-partitioning of a tree Tj derived by our pro-
posed partitioning scheme in Section 3.3, and let the result-
ing subgraphs be s1, s2, . . . , sδ, and their respective iden-
tifiers in a postorder traversal of Tj be p1, p2, . . . , pδ. For
example, the postorder identifiers of the subgraphs s1, s2,
and s3 (i.e., p1, p2, and p3) in Figure 7(b) are 4, 8, and 10
respectively. Let p be the postorder of N ∈ Ti.

Assume a matching is found between a subgraph sk (of
tree Tj) and a subtree rooted at N ∈ Ti. Without affecting
the completeness of the results, sk can be safely discarded if
(i) we know that there exists another subgraph sk′ (k′ 6= k)
of Tj that appears in Ti which will be selected (thus Tj
is not missed if it is a true result), or (ii) the matching
will definitely result in a false positive candidate (thus the
exclusion of sk does not affect the final result). Otherwise
sk should be selected by our selection methodology.

By definition, if Tj and Ti are similar, Tj can be trans-
formed into Ti using at most τ node edit operations. Assume
that among these node edit operations, ∆ of them are per-
formed on nodes in the last δ − k + 1 subgraphs of Tj (i.e.,
sk, sk+1, . . . , sδ). If ∆ ≥ (δ−k+1)/2, the number of edit op-
erations applied on those nodes in the first k− 1 subgraphs
(i.e., s1, s2, . . . , sk−1) is at most τ − (δ− k+ 1)/2 = k/2− 1;
these node edit operations change at most 2·(k/2−1) = k−2
subgraphs of them (cf. Lemma 1). Therefore, there exists at
least one subgraph sk′ (k′ < k) among the first k − 1 sub-
graphs of Tj that is unchanged by the node edit operations;
in other words, sk′ appears also in Ti. In this case, we can
discard sk because of the existence of such sk′ , if sk′ should
be selected. On the other hand, when ∆ < (δ−k+ 1)/2, we
cannot discard sk based on condition (i). However, recall
that according to our partitioning scheme, the last δ− k+ 1
subgraphs still form a connected binary tree T ∗. For ex-
ample in Figure 7(b), if we remove s1, we still have a con-
nected binary tree T ∗ of 6 nodes. In addition, as we examine
subgraphs in a depth-first search (post-order) manner, all
the nodes with postorder numbers greater than pk (the pos-
torder identifier of subgraph sk) only appear in subgraphs
after sk. Denote these nodes as Nk. Assume, in the extreme
case, the ∆ node edit operations are all applied on these
nodes. Since these nodes belong to the binary tree T ∗ and
one node edit operation changes the size of the T ∗ by at
most 1, ∆ node edit operations changes the size of the T ∗

by at most ∆; i.e., the size of Nk is changed by at most ∆ as
well. As a result, the postorder identifier pk shifts at most ∆
(< (δ− k+ 1)/2) positions in tree Ti. Let ∆′ be the largest
integer smaller than (δ−k+1)/2, i.e., ∆′ = τ−bk/2c. Then,
p ∈ [pk −∆′, pk + ∆′]. In other words, if the matchings oc-
cur between sk and nodes whose postorder numbers do not

fall into this range, sk can be safely discarded since such
matchings only provide false positive candidature results.

Based on the above reasoning, for each subgraph sk whose
postorder identifier is pk, for each value v ∈ [pk−∆′, pk+∆′],
we assign sk to group with key v. For example, consider the
subgraph s2 in Figure 7(b) where τ = 1, k = 2, and pk = 8;
since ∆′ = τ − bk/2c = 0, the corresponding range becomes
[8, 8]. As a result, we assign s2 to group with key 8. When
our similarity join framework (line 7 of Algorithm 1) re-
trieves subgraphs for node N (with postorder number p) in
Ti, we only need to access subgraphs in group with key p. It
is guaranteed that considering only these subgraphs is suffi-
cient for not missing any join results. For example, in Fig-
ure 7, when selecting subgraphs for node N (with postorder
number 5) in Ti, s2 (of Tj) will not be selected since it is
not assigned to the group with key 5. Thus we avoid select-
ing a false positive candidate Tj for Ti, although s2 matches
Ti’s subtree rooted at N (by not selecting s2 we also avoid
actually verifying if s2 matches the subtree rooted at N).

Two-layer index. In summary, the two aforementioned
techniques are orthogonal and can be combined to construct
a two-layer index for effective subgraph selection. More
specifically, we first assign subgraphs into groups utilizing
the postorder pruning technique. Then, within each such
group, we split subgraphs using the label indexing tech-
nique. When selecting subgraphs for a node N (with pos-
torder number p) of Ti, we first use p to find the group
G in the first layer, and then use the twig at N to select
subgroups within G.

4. EXPERIMENTS
In this section we conduct extensive experiments to

demonstrate the efficiency and effectiveness of our proposed
partition-based tree similarity join framework. All methods
were implemented in C++ and the experiments were run on
a quad-core machine running Ubuntu 12.04, with 16 GB of
main memory. We evaluate our proposed method on both
real and synthetic datasets.

Swissprot: Swissprot2 contains manually annotated and
reviewed protein sequences in XML format. It includes 100K
flat and medium-sized trees (average tree size 62.37, number
of distinct labels 84, average depth 2.65, maximum depth 4).

Treebank: Treebank3 is an XML database containing
50K small and deep trees, where each tree tags an English
sentence from the Wall Street Journal with parts of speech
(average tree size 45.12, number of distinct labels 218, aver-
age depth 6.93, and maximum depth 35).

Sentiment: Sentiment4 is used for sentiment prediction
of movie reviews. It consists of 10K tagged sentences where
the sentiments are computed based on long phrases (average
tree size 37.31, number of distinct labels 5, average depth
10.84, and maximum depth 30).

Synthetic: We use the generator of [28] to generate a set
of trees by setting the default fanout, maximum depth, num-
ber of labels, and tree size to 3, 5, 20, and 80 respectively.
Moreover, we adopt the decay factor Dz as in [27] to change
the generated trees. Specifically, for each node of the tree
generated by the data generator, we change it with prob-
ability Dz; the change is randomly chosen from the three

2http://us.expasy.org/sprot/
3http://www.cis.upenn.edu/~treebank/
4http://nlp.stanford.edu/sentiment/
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node edit operations (i.e., insertion, deletion and renaming)
with equal probability. We set Dz to 0.05 as in [27]. The
synthetic dataset contains 10K trees by default.

We compare our proposed framework (denoted as PRT)
with two state-of-the-art methods in the literature [4, 18],
i.e., STR (adopted from [13] and [19]) and SET (adopted
from [27]), as described in Section 2.

4.1 Performance Analysis
Figures 10 and 11 compare the runtimes and pruning

power of STR, SET, and PRT on all four datasets for var-
ious TED thresholds τ . For experimental instances where
the runtime is too high (e.g., SET for τ = 4), we truncated
the corresponding bars and wrote on them the total runtime
(e.g., 1113). The first observation is that the generation of
candidates in SET and PRT is quite fast, therefore TED
computations dominate the runtime of SET, while the cost
is balanced between candidate generation and verification
in PRT. On the other hand, the generation of candidates
by STR requires expensive string join computations. Recall
that the computation of TED using RTED requires cubic
time complexity. When τ is small, fewer tree pairs are sim-
ilar and thus fewer candidates are generated, so the com-
putation of string edit distance joins dominates the overall
runtime. As we can see from Figure 11, STR and PRT have
better pruning power compared to SET. In the plots of Fig-
ure 11, we also included the actual number of join results
(series REL) for reference. The number of candidates gen-
erated by STR and PRT are very close to those of REL,
indicating that these methods generate only a small number
of false candidate pairs (except for the case of Sentiment),
while SET requires the verification of a large number of can-
didates that are false hits. The difference between SET and
REL increases with τ , since the binary branch structure ex-
tracted in SET is insensitive to τ and larger τ derives more
candidates; the number of false candidates generated by
STR and PRT only increases slightly. Therefore, although
SET spends less time on candidate generation, the perfor-
mance gap between SET and STR narrows with the growth
of τ . SET can be worse than STR for larger thresholds, as
more candidates are returned by SET for refinement.

Finally, the performance gap between PRT and STR/SET
increases when smaller TED thresholds (τ) are used. For
example, PRT outperforms the best competitor (i.e., SET)
by an order of magnitude when τ = 1. The gap decreases
with increasing τ values, since more candidates are gener-
ated and the computation of TED dominates the overall
runtime. When τ = 5, PRT is 50%–80% faster than the
best competitor (either STR or SET); this is still a substan-
tial improvement. To summarize, our proposed framework
PRT is very efficient, achieving significant performance gains
over state-of-the-art solutions for similarity joins on large
tree-structured datasets.

4.2 Scalability Analysis
We evaluate the scalability of all the methods by varying

the cardinality of the datasets. We conducted experiments
on Swissprot subsets with cardinalities from 20K to 100K,
on Treebank subsets (10K to 50K), on Sentiment subsets
(2K to 10K), and on Synthetic subsets (2K to 10K). In all
experiments, τ is set to 3. As shown in Figure 12, the re-
sponse time of each method grows as the cardinality of the
dataset increases, since more pairs have to be compared and

more results are identified (cf. Figure 13). The relative per-
formance of the three methods is insensitive to the data size
and the conclusions are similar to our analysis in Section 4.1:
(i) PRT generates similar number of candidates as STR and
this number is closer to REL compared to SET; (ii) SET
spends a large percentage of its time on verifying pairs and
STR spends a large percentage of its time on generating the
candidates. In summary, our proposed solution PRT con-
stantly outperforms STR and SET in all settings.

4.3 Sensitivity Analysis
Our last experiment is a sensitivity analysis for all the

methods w.r.t. different tree parameters, i.e., the maximum
fanout f , maximum depth d, number of labels l, and average
tree size t. Table 1 summarizes these parameters with their
default values in bold.

Table 1: Tree parameters
Parameter Values

f 2, 3, 4, 5, 6
d 4, 5, 6, 7, 8
l 3, 5, 10, 20, 50
t 40, 80, 120, 160, 200

All sensitivity tests were conducted on the synthetic
datasets. When investigating the effect of one parameter,
we fix the values of other three parameters to defaults to
diminish their effects. To this end, we generate 5 differ-
ent datasets for each parameter. Each generated dataset
consists of 10K trees. We set the TED threshold τ = 3.
Figure 14 compares all methods for various parameter set-
tings. The results show that our proposed solution PRT
outperforms STR/SET in all cases.

Figures 14(a) and 14(b) show that the runtime of STR in-
creases when f changes from 2 to 6. The reason is that given
the other parameters fixed, a small value of f increases the
expected variance in the heights of the generated trees; thus,
more candidates are pruned by the size constraint5 before
passing to the string join computation. When f increases to
6, the difference between the tree heights becomes smaller;
hence more tree pairs are passed to STR, resulting in longer
candidate generation times. On the other hand, the growth
of f introduces more randomness and diversity in the tree
shapes, significantly reducing the number of candidate and
actual result pairs (cf. Figure 14(b)). As PRT captures the
structural information of trees, more diversified tree shapes
(because of higher f) lead to higher pruning effectiveness
and shorter runtimes for PRT.

Figures 14(c) and 14(d) compare the performance of all
methods for various tree depths d. The growth of d decreases
the variance of tree sizes, thus more candidates survive the
size constraint filter. As a result, the candidates generation
steps of both STR and SET become more expensive with
the increase of d. On the other hand, unlike the case of
fanout f , the binary branch structures are irrelevant to d,
hence the number of candidates generated by SET is less
sensitive to d (see Figure 14(d)).

Figures 14(e) and 14(f) plot the performances of different
methods when varying the number of labels l. Observe that
SET is more sensitive to l than STR and PRT. When l is
small, the binary branch structures of the trees are more

5Recall that if two trees are similar with TED threshold τ ,
the difference of their sizes should be no larger than τ .

1138



S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

TED Threshold τ

0

5

10

15

20

25

R
u
n
ti

m
e
 (

x
 1

0
3

s) 5
0

.6
5

1
3

5
.1

8

3
0

9
.6

9

τ=1 τ=2 τ=3 τ=4 τ=5

TED Computation Candidate Generation

(a) Swissprot

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

S
T
R

S
E
T

P
R

T

TED Threshold τ

0

1

2

3

4

5

R
u
n
ti

m
e
 (

x
 1

03
s)

τ=1 τ=2 τ=3 τ=4 τ=5

TED Computation Candidate Generation
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(c) Sentiment
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Figure 10: Runtime on all the datasets w.r.t. TED threshold τ
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Figure 11: Number of candidates generated on all the datasets w.r.t. TED threshold τ
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(d) Synthetic

Figure 12: Runtime on all the datasets w.r.t. dataset cardinality
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Figure 13: Number of candidates generated on all the datasets w.r.t. dataset cardinality

similar and thus SET reports more false candidates (the
default tree size is 80). The runtimes of all methods stabilize
when l ≥ 20, since the labels are more sparse in these cases.

Finally, Figures 14(g) and 14(h) compare all methods for
various values of the average tree size t. The runtime de-
creases for larger t values, since the growth of t increases
the diversity of tree sizes in the dataset, and most of the
tree pairs are pruned by the size constraint before they are
fed to the string edit distance join computation. As a re-
sult, the time spent on generating candidates decreases. In
contrast, note that the number of generated candidates by

SET only slightly decreases with the growth of t; therefore,
SET’s cost decreases with t. PRT is less sensitive to t com-
pared to the other methods and its runtime also decreases
with t. Since τ is fixed, larger tree sizes result in larger sub-
graphs; therefore less subgraphs are common among trees,
which increases PRT’s pruning power.

To conclude, the performance of our proposed method
PRT is stable w.r.t. different tree characteristics, and PRT
constantly outperforms state-of-the-art approaches (STR
and SET) under various settings of tree parameters. The
speed-up that we achieve is important, considering applica-
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Figure 14: Sensitivity to various parameters

tions that require a low response time for similarity joins,
e.g., streaming workloads where tree objects (e.g., XML and
HTML entities) are inserted and updated at a high rate and
data collections are refreshed every few hours/minutes. As
a final note, we also experimentally tested the effectiveness
of our partitioning scheme in PRT (Section 3.3) and found
that the general performance improvement it offers com-
pared to performing random tree partitioning is 50%–300%.
This experiment is omitted due to space constraints.

5. RELATED WORK
Tree similarity measures. Besides TED, alternative

distance measures for trees have been proposed and studied.
For example, the pq-gram [3, 5], which is defined as a small
tree strucutre consisting of an anchor node with p−1 ances-
tors and q children, could be used to measure the closeness
of two rooted labeled trees (either ordered or unordered); in-
tuitively, two trees are similar (w.r.t. the pq-gram distance)

if they share a large number of common pq-grams. In addi-
tion, Tatikonda and Parthasarathy [25] propose a mapping
approach that transforms an unordered tree into a multiset
of pivots (i.e., simple wedge-shaped structures), and then
couples it with a minwise hashing framework to convert the
multiset into a fixed sized signature-sketch, to estimate the
similarity between trees. Despite the existence of alternative
measures, TED is widely recognized as the state-of-the-art
similarity measure for tree-structured objects [18,20]. Some
studies (e.g., [4, 18]) have extensively compared TED with
other alternative measures and discussed its pros and cons.
For example, TED is of higher quality compared to other dis-
tance measures; also, TED matches the human perception
of difference between tree structures. On the other hand,
TED has the highest computational complexity among ex-
isting similarity measures for rooted ordered labeled trees.
In this paper, we alleviate this drawback by avoiding TED
computations as much as possible in tree similarity joins.

Computation of TED. There have been several studies
on reducing the time and space complexity of TED compu-
tation. Given two trees both of size n, Tai [23] proposed
the first non-exponential TED algorithm, which has O(n6)
time and space complexity. Later this method was im-
proved by Zhang and Shasha [29] to an approach with O(n2)
space complexity and O(n4) time complexity, which reduces
to O(n2 log2 n) for balanced trees. Klein [17] reduced the
time complexity for general trees to O(n3 logn), at a cost of
O(n3 logn) space requirements. Based on the ideas of [17],
Demaine et al. [11] further reduced the time complexity to
O(n3), while keeping the O(n2) space complexity of [29].
Recently, Pawlik and Augsten [20] propose a robust hybrid
framework RTED, which combines [11] and [29] and dynam-
ically chooses the best of the two methods based on the tree
shapes. The time and space complexity of RTED is O(n3)
and O(n2), respectively. Some research efforts [15,24] focus
on finding a suboptimal solution with better time complex-
ity by constraining the node edit operations; however, in
this paper, we do not consider such constraints.

Similarity queries on tree-structured data. Simi-
larity queries on tree-structured data is a well-studied topic
in the database community. Guha et al. [13] study the
XML data integration problem using tree similarity joins
as a core module. The authors adopt TED as the distance
metric for XML data objects and propose to use the pre-
order/postorder node traversal sequences of trees to derive
lower bounds for TED, and thus facilitate the join. Akutsu
et al. [1] use the strings derived from the Euler tour for a
given tree to bound its TED to other trees. Both these two
methods require O(n2) time to compute the string similari-
ties for all tree pairs. On the other hand, Kailing et al. [16]
propose three lower bounds for TED, based on some sim-
ple statistics (namely the distance to leaves, degrees, and
labels of nodes) of the trees, which can be extracted as his-
tograms. In [27], the authors measure the similarity among
trees based on a specific pattern called binary branch. Each
tree is transformed into a bag of binary branches and the
TED between any two trees is bounded by the dissimilarity
between their binary branch vectors. Our approach is dif-
ferent from all these methods, as our framework is based on
tree partitioning and subgraph matching.

Another line of related work is on subtree similarity
search [3, 7, 8]; the objective is to find in a large data tree
similar subtrees to a given a query tree. Our focus is dif-
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ferent, as we aim at finding similarity tree pairs in a large
collection of tree objects. As a result, these techniques are
not applicable for solving our problem.

Similarity queries for other data types. Similarity
search and joins have been extensively studied on various
types of complex data in recent years, e.g., strings [19], vec-
tors [12], and graphs [30]. In specific, Li et al. [19] proposes
Pass-Join for efficient string similarity joins; the main idea
is to partition strings into segments and index them for gen-
erating candidate string join pairs. Zhao et al. [30] study
similarity search over graph databases. The graphs are di-
vided into variable-size non-overlapping partitions for sub-
sequent subgraph containment tests which are used to prune
unpromising candidate pairs. All the above techniques can-
not be used to solve our problem, because tree-structured
data have different structure and similarity measures com-
pared to the other data types. In particular, although a
tree is also a graph, the similarity measures, i.e., graph edit
distance (GED) used in [30] and tree edit distance (TED),
bear considerable differences in terms of definitions and se-
mantics. For example, there are 6 types of edit operations
for GED, but only 3 for TED. In addition, the insert/delete
operations in GED and TED are totally different; e.g., in
GED, the insertion of a node only adds it to the graph and
any other nodes/edges are not affected (while in TED some
existing nodes become children of the new one).

6. CONCLUSION
We proposed a novel similarity join technique for collec-

tions of tree-structured objects. Our approach is based on
the decomposition of the tree objects into subgraphs, which
are indexed. The decomposition is based on the join similar-
ity threshold and it is performed dynamically during the join
evaluation. Our technique prunes pairs of objects if there
does not exist a subgraph of one object inside the other.
We proposed an effective partitioning approach that gen-
erates as large subgraphs as possible in order to maximize
the pruning effectiveness of the join framework. In addi-
tion, we proposed effective techniques for selecting which
subgraphs of the current object to search in other objects,
in order to obtain the join candidates. Our experiments on
real and synthetic data confirmed the superiority of our join
algorithm compared to the previous state-of-the-art. In the
future, we plan to extend our solution to support other tree
distance metrics and study also the adaption of our tech-
niques to parallel and distributed settings (e.g., multi-core
architectures, MapReduce).
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