Fuzzy Joins in MapReduce: An Experimental Study

Ben Kimmett, Venkatesh Srinivasan, Alex Thomo
University of Victoria, Canada

{blk,srinivas,thomo}@uvic.ca

ABSTRACT

We report experimental results for the MapReduce algo-
rithms proposed by Afrati, Das Sarma, Menestrina, Parames-
waran and Ullman in ICDE’12 to compute fuzzy joins of
binary strings using Hamming Distance. Their algorithms
come with complete theoretical analysis, however, no exper-
imental evaluation is provided. They argue that there is a
tradeoff between communication cost and processing cost,
and that there is a skyline of the proposed algorithms; i.e.
none dominates another. We observe via experiments that,
from a practical point of view, some algorithms are almost
always preferable to others. We provide detailed experimen-
tal results and insights that show the different facets of each
algorithm.

1. OBJECTIVES

In [1] there are several algorithms proposed for performing
“fuzzy join” (an operation that finds pairs of similar items)
in MapReduce. The main part of [1] concentrates on binary
strings and Hamming distance; this offers the clearest view
of the various algorithmic approaches. The algorithms pro-
posed are: Naive, which compares every string in the set
with every other; Ball-Hashing, a family of two algorithms
that send strings to a ‘ball’ of all ‘nearby strings’ within a
certain similarity; Anchor Points, a randomized algorithm
that selects a set of strings and compares any pair of strings
that have a close enough distance to a member of the set;
and Splitting, an algorithm that splits the strings into pieces
and compares only strings with matching pieces.*

It is argued in [1] that there is a tradeoff between commu-
nication cost and processing cost, and that there is a skyline
of the proposed algorithms; i.e. none dominates another.
One of our objectives is to see whether we can observe this
skyline in practical terms. We observe via experiments that,
from a practical point of view, some algorithms are almost
always preferable to others. For example in our experiments,

! Hamming Code is another algorithm that [1] considers,
however, it is a special case of Anchor Points.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

1514

Splitting is a clear winner, whereas Ball-Hashing suffers for
all distance thresholds except the very small ones. We pro-
vide detailed experiments and insights that show different
facets of each algorithm.

Another objective we set is to provide implementation op-
timizations whenever possible. Specifically, we provide op-
timizations for Naive and Ball Hashing, and clarify details
for the others.

2. ALGORITHMS AND IMPLEMENTATION

Naive algorithm. This algorithm sends a section of the
input to every physical reducer. Each reducer checks every
possible pair of strings (out of the set it received) to see if
they are within distance d of one another.

More specifically, let K = J(J + 1)/2 be the number of
reducers. They are keyed by (¢,7), where 0 < i < j < J,
thus forming a triangular matrix, where only reducer (4, j)
or (j,i) exists. Strings s € S are hashed to values in [0, J).
If a string s hashes to i, it is sent to reducer (,j) or (j,1),
whichever exists, for each j € [0,J). So, each string is sent
to exactly J reducers. Then, [1] suggests that each reducer
should exhaustively compare each possible pair of strings
from the portion of S it received. This, however, does not
need to be so.

Our optimization. Consider strings s and ¢ that both hash to
. They will be sent to reducers (7,1), (¢,i+1),..., (4, J —1),
and each of these reducers will compare them for similar-
ity. It is clear that only one of the reducers needs to com-
pare s with ¢, say reducer (i,1); the other reducers should
not compare s with ¢ as this would be redundant. More
formally, with our optimization, a reducer (z,j) only com-
pares strings that hash to ¢ with those that hash to j. This
optimization reduces the amount of work in the reducers
by about 2/3. Furthermore this eliminates duplicate out-
put, one of the goals in [1]. The reduction of work by
2/3 is explained as follows. Let m; and n; be the num-
bers of strings hashing to ¢ and j, respectively. An un-
optimized reducer does (n} + n3 4+ n;n;)/2 string compar-
isons and an optimized one does just n;n;/2. Then the
reduction of work is by (nf + n})/2 comparisons, which is
(n? +n3)/(ni +nj +nin;) = 2/3 of the work, if we assume
n; ~ n; in the average case.

Ball-Hashing (BH). This is a family of two algorithms.
For these algorithms there is one reducer for each of the
possible strings in the universe, so in practice, the reducers
are logical rather than physical. A reducer serving string s
will receive input strings that are within a ball of a certain

radius 7 (in terms of number of changed bits) from s. In
practice, a physical reducer will likely serve not one string
but many.

Ball-Hashing 1 (BH1) sends each input string s to all the
reducers serving strings at distance not more than d from s.
A mapper reading s, will emit (s, —1) and (s1, s), ..., (s, s),
where s1, ..., si are all the strings obtained from s by chang-
ing i € [1,7] bits. If a reducer receives (s, —1), it infers that
s is in the input set. It becomes active and outputs all the
(v, s) pairs of similar strings that it received.

Our optimization. The original version of BH1 performs a
check for duplicate output in the reducer; a pair (v, s) will be
output only if v < s lexicographically. We move this check
to the mapper instead, preventing key-value pairs that will
only form duplicate output from ever being emitted by a
mapper. Specifically, a mapper only emits a key-value pair
(Sm, 8) if 81 < s. This pair will then be received and output
by the sm-keyed reducer. If (s, s) is valid, but s, > s, then
it is (s, sm) that will be generated by a mapper. It will be
received and output by the s-keyed reducer. The proposed
optimization reduces the processing time and communica-
tion cost by a constant of roughly two.

Ball-Hashing 2 (BH2) sends each input string s to all the
reducers serving strings at a distance of not more than [d/2]
from s. Unlike BH1, every reducer is active and will check
for similarity between all the possible combinations of two
strings it receives. Pairs that pass the similarity check are
then tested to see if they are equidistant from the reducer’s
“home string”.

Splitting (S). The mappers in this algorithm break each
string s into d 4+ 1 equal-length substrings, s1, ..., sqt+1, and
emit (s1,$),...,(sa+1,5). The rationale for this is that if
two strings, s = s1...84+1 and t = t1...tq+1, are at no
more than distance d of each other, then they have some
substring that is the same for both of them, i.e. there exists
1 € [1,d+1], such that s; = t;. Therefore, there is a reducer
that will receive both s and t. Reducers then test each string
they receive to see if they are within distance d of all other
received strings, similar to the Naive algorithm.

Anchor Points (AP). This is the only randomized al-
gorithm considered, and it has a predicted failure rate of
1/1000 of the time. AP works by choosing a random set of
strings (‘anchor points’) in the universe. If the set is suffi-
ciently large, at least one string in the set can be expected
to be within distance [d/2] of any two strings in the in-
put. The algorithm behaves much like Ball-Hashing in that
it sends strings in the input to pools of strings with ‘keys’
that are slight variants of the string; however, instead of
creating every key within distance d or [d/2] of a string in
the input, AP only creates keys that match the strings in
the anchor point set and are within distance 2d of the in-
put string. All reducers are active, outputting any pair of
strings with matching keys that are within distance d of one
another.

3. SETUP

In our experiments, the items to be joined were strings of
bits, represented as 32-bit integers. For our tests, a universe

1515

of strings of length less than 32 bits was used. We ran the
algorithms on datasets consisting of:

e The entire universe of 20-bit strings, as a baseline.

e Subsets of the universe of 24-bit strings equal in size
to the 20-bit universe (1/16 of the 24-bit universe), as
well as 2x (1/8 of ditto) and 4x (1/4 of ditto). The
strings in each subset were chosen randomly.

e Subsets of the universe of 28-bit strings equal, double,
and quadruple the size of the 20-bit universe respec-
tively (1/256, 1/128, and 1/64).

The results for the 28-bit universe and 24-bit (1/4) are
given in the long version of this paper [2]. They do not
influence our conclusions in any substantial way.

Each dataset was used on a range of distances from 1, to
1/4 of the length of the strings.

Hadoop Cluster Configuration. The data was pro-
cessed using Hadoop 1.2.1. In the cluster we used, there is
a maximum of 4 map jobs and 4 reduce jobs per machine
at any one time. The cluster has 31 machines; each ma-
chine has 4 cores (Intel(R) Xeon(R) CPU E5430 operating at
2.66GHz) and 6GB of memory; we have a total of 124 phys-
ical cores (one MapReduce node per core). Each Hadoop
child process is configured to get 1GB of memory. There
are two disks per node. Each disk is a 73GB Hot-Swap 3.5”
10K RPM Ultra320 SCSI HDD capable of a transfer rate
of 104 MBytes/sec (measured with dd if=/dev/zero of=test
count=1000). The machines are organized in three chassis
of 11, 11, and 9 each. Inter-chassis and intra-chassis net-
working are provided by switches capable of 1Gbit/sec.

4. RESULTS

The gist of our results is summarized below. Then we
describe our experiments in detail.

1. We confirm that the shape of Mapper Time (M) accu-
rately represents Communication Cost (C) for Naive,
BH1, BH2, and Splitting. We furthermore show that
this is essentially true even for AP although not di-
rectly suggested by the theoretical analysis.

We find that for most algorithms, the main compo-
nent of the Total Processing Time (T) is the Reducer
Time (R). The Mapper Time (M) is much smaller by
comparison. The exception is the Ball-Hashing family.

BH1 and BH2 are prohibitive for all but small dis-
tances because of their enormous communication cost
and mapper and shuffle times.

AP is fast at low to medium distances. Eventually it
becomes a contender with Naive.

Splitting is the best algorithm to use across a range of
distances.

In a nutshell, our main insight in this paper is that one
would always be safe to use Splitting and avoid the Ball-
Hashing family. The latter should only be considered for
very low distances.

The communication costs showed a predictable shape as
suggested by the theoretical analysis in [1]. We compare
the theoretical and actual communication costs for the 20-
bit universe in the full paper [2]. The algorithm with the

biggest hidden constant is AP with a factor of around 10
attached to the cost.
In the rest of the section we detail our experiments.

4.1 Processing Time, By Universe Size

Each of the datasets used in the experiment was sized
to have 220, 22 or 222 strings, regardless of the length or
number of the strings in the universe, or the size of the
universe itself. This allows measuring how the algorithms
behave as the number of extraneous strings (and thus the
universe complexity) grows.

4.1.1 20-Bit Universe

The total processing, mapper, shuffle (mapper-to-reducer
copy), and reducer times for Naive always remain approxi-
mately constant (except for slight variations due to cluster
node performance).

Ball-Hashing algorithms start out efficiently. However,
their shuffle times grow fast, and their mapper times even
faster. By a distance threshold of 5, both algorithms have
been outsped by Naive. Unlike the other algorithms, the
BH family tends towards long mapper times, due to the
volume of keys that must be generated and copied. BH2’s
time grows in steps. This is because the algorithm behaves
as if the distance is half its actual value, and therefore its
time grows every time the threshold increases by two.

AP’s processing time steadily increases; while its mapper
and shuffle follow the communication cost graph, its reducer
rises with the increased threshold.

Splitting behaves efficiently, with the mapper times ap-
proximately equal to the Naive algorithm and shuffle and
reducer times lower than every other algorithm. It grows
very slowly, taking only a few minutes to process the dataset
irrespective of the distance threshold.

4.1.2 24-Bit Universe

In the universe of 24-bit strings, the algorithms now react
to the increased complexity.

Naive behaviour for the 1/16 dataset (22° strings) is the
same as the 20-Bit universe set, with no difference in time for
any phase. Increasing the dataset size to 1/8 (22* strings)
or 1/4 (2% strings) does not change Naive’s mapper times,
but it does increase the reducer time, increasing the time by
a factor of 2 to 3 for each doubling of the dataset.

BH algorithms repeat their pattern of growing to enor-
mous heights, here taking longer than Naive by distance 4,
for all 24-bit datasets. Increasing the universe size has a
drastic effect on this family of algorithms; as an example,
the total processing time for the 20-bit dataset at distance
5 is 41 minutes. For the 1/16 24-bit dataset (same number
of strings), also at distance 5, it took 1 hour and 50 minutes
to process the data. In addition, the communication cost
for this family of algorithms grows so large that it becomes
impractical to run on larger datasets. For distances of 6
and above (and 5 for the 1/8 dataset), BH1 did not return
results in a reasonable amount of time and space.

For the AP algorithm at higher distances, a slight dip is
observed at medium thresholds as mapper and shuffle time
decrease but reducer time has yet to rise to compensate.
This temporarily gives the algorithm better performance
than Naive, but worse than Splitting; however, this per-
formance advantage is lost when the dataset becomes large
enough (at distance 6 in the 1/4 dataset).

Splitting still netted the lowest processing times overall.
Similar to Naive, the mapper and shuffle times of Splitting
stay stable.

4.2 Further Observations

In these results, several points of interest emerge:

e For all algorithms, the graphs of the mapper processing
time appear to be similar in shape to that of the com-
munication cost; this suggests that the biggest factor
on mapper runtime is the time taken to produce the
intermediate output. However, as we discuss later (see
Disk Utilization), the mappers are not disk-bound.

e Naive was not affected by increasing the string length,
even though the same increase was responsible for pro-
cessing time increases in several of the other algo-
rithms. This suggests that the increased time to com-
pare longer strings is outweighed by the time taken to
compare all the strings that arrive at the reducer.

e The time of BH1 grows too quickly to be useful for
all but very low distances. BH2 grows in a similar
manner, but at double the distances of BH1. Unfortu-
nately, this growth is already quite big to be practical
by distance 6 or more.

e For the BH algorithms, the shape of the total process-
ing time appears to be very similar to that of the theo-
retical (and actual) communication cost. This suggests
that the communication cost is a primary influence on
the processing time taken for these algorithms.

e Splitting consistently took the least amount of time to
complete among all the algorithms.

Compression. We also ran our experiments using the com-
pression option in Hadoop. As an example of compressed
results we have included both compressed and uncompressed
versions of the results for the 1/8 subset of the 24-bit uni-
verse, in Figures 3 and 4. We have included more results
with compression in the long version [2]. We observe that
using compression cuts the intermediate communication cost
by about 75%. However, this caused the Mapper processing
time to increase, due to the time necessary to compress the
data. Compression had little effect on the reducer processing
time, and decreased most shuffle times (with the exception
of BH1). Overall, adding compression comes at a tradeoff
in total processing time that is approximately proportional
to the original size of the intermediate communication cost.

Disk Utilization. The analysis of the disk usage data from
the cluster shows that the disks are not becoming saturated.
Namely, using the sar utility, we observed that the maxi-
mum data rate written to disk at any time during all our
experiments was not more than 27.45MB/sec, whereas our
disks can handle up to 104MB/sec. This suggests that the
mappers and reducers are in fact CPU-bound.

5. REFERENCES

[1] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G.
Parameswaran, and J. D. Ullman. Fuzzy joins using
mapreduce. In ICDE’12, pages 498-509, 2012.

[2] B. Kimmett, V. Srinivasan, and A. Thomo. Fuzzy joins
in mapreduce: An experimental study (long version),
http://webhome.cs.uvic.ca/“thomo/fuzzy.pdf.

1516

Communication Cost and Processing Time, 20-Bit Universe

32 4 2.0 18 18
C M [R T
15 15
24 3 15 12 12
=
% 16 g 2 g 1.0 g 9 é 9
= g = =
S o 6 6 /“
8 1 0.5
~
—a 3 j 3 J/
0 0 - 0000 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Distance [bits of diference] Distance (bits of difference) Distance (bits of difference) Distance (bits of difference) Distance (bits of difference)
— /O Naive < Ball-Hashing 1 Ball-Hashing2 < Spliting £F Anchor Points

Figure 1: The graphs show the communication cost (C), and the mapper (M), shuffle (S), reducer (R), and total (T)
time, respectively, from left to right. (For BHI1, distance 5, C, M, S, and T are 84.77 GB, 29.83 min, 11.73 min, and

41.73 min, respectively. They do not fit in the plot area.)

Communication Cost and Processing Time, 24-Bit Universe (1/16)

70 12
e © R T
- 50 9 0——0 < ~o 9
=
S 20 g g . g .
' f E /- ‘/
20 3 3
2 "‘\u /o_\~‘;// .
0 0 0
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Distance [bits of diference] Distance (bits of difference) Distance (bits of difference) Distance (bits of difference) Distance (bits of difference)
— /O Naive - Ball-Hashing 1 Ball-Hashing2 <~ Splitting £F Anchor Points

Figure 2: C, M, S, R, and T, respectively, from left to right. (For BH1, C and M at distance 5 are 216.65 GB and 98.87
min, respectively. S at distances 4 and 5 is 5.95 min and 37.3 min, and T at distances 4 and 5 is 18.13 min and 110.35
min. BH1 could not be run for distance 6.) M and R do not sum to T because Hadoop staggers mapper and reducer

tasks for efficiency.

Communication Cost and Processing Time, 24-Bit Universe (1/8)

60 30
C
25
- 45 2
<)
i, RN IR
4 15 = 10 =
; B‘dé‘/—/
0 08
1 2 3 4 5 6
Distance [bits of difference] Distance (bits of difference) Distance (bits of difference) Distance (bits of difference)
— /O Naive # Ball-Hashing 1 Ball-Hashing2 < Splitting £F Anchor Points

Distance (bits of difference)

Figure 3: C, M, S, R, and T, respectively, from left to right. (For BH1, distance 4, C is 433.32 GB.) BH1 could not be

run for distances 5 and greater.

Compressed Communication Cost and Processing Time, 24-Bit Universe (1/8)

60 30 16 60
C M S R
25
45 12 45
5 20
% 30 g 15 é 8 g 30
S H 10 H H
® \u 4 15 //u
5
, ﬂ\ﬂ 0 . . . M
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
Distance [bits of difference] Distance (bits of difference) Distance (bits of difference) Distance (bits of difference)
— /O Naive + Ball-Hashing 1 Ball-Hashing2 <~ Splitting {F Anchor Points

T

15 J
—
e

1 2 3 4 5 6
Distance (bits of difference)

Figure 4: C, M, S, R, and T, respectively, from left to right. (For BH1, distance 4, M is 52.47 min.) BH1 could not be

run for distances 5 and greater.

1517

