Spatial Partitioning Techniques in SpatialHadoop ~

Ahmed Eldawy Louai Alara

bi Mohamed F Mokbel

Department of Computer Science and Engineering
University of Minnesota

{eldawy,louai,mokbeli@cs.umn.edu

ABSTRACT

SpatialHadoop is an extended MapReduce framework thabsispp
global indexing that spatial partitions the data across machines
providing orders of magnitude speedup, compared to toawditi
Hadoop. In this paper, we describe seven alternative joenitig
techniques and experimentally study their effect on thdityuaf

the generated index and the performance of range and sjoétial
queries. We found that using a 1% sample is enough to produce
high quality partitions. Also, we found that the total ardgarti-
tions is a reasonable measure of the quality of indexes winen r
ning spatial join. This study will assist researchers inagiog a
good spatial partitioning technique in distributed enmireents.

1. INDEXING IN SPATIALHADOOP

SpatialHadoop [2, 3] provides a generic indexing algorithm
which was used to implement grid, R-tree, and R+-tree basgd p
tioning. This paper extends our previous study by introdgi¢our
new partitioning techniques, Z-curve, Hilbert curve, Qtrag¢, and
K-d tree, and experimentally evaluate all of the seven teghas.
The partitioning phase of the indexing algorithm runs irethsteps,
where the first step is fixed and the last two steps are custohfiz
each partitioning technique. The first step computes numibee-
sired partitions: based on file size and HDFS block capacity which
are both fixed for all partitioning techniques. The secoeg séads
a random sample, with a sampling ragipfrom the input file and
uses this sample to partition the space intoells such that num-
ber of sample points in each cell is at mosyn |, wherek is the
sample size. The third step actually partitions the file sigasng
each record to one or more cells. Boundary objects are héndle
ing either thedistribution or replication methods. Thelistribution
method assigns an object to exactly one overlapping celltiaad
cell has to be expanded to enclose all contained recordstephie
cation method avoids expanding cells by replicating each record to
all overlapping cells but the query processor has to emphhypi-
cate avoidance technique to account for replicated records
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2. EXPERIMENTAL SETUP

All experiments run on Amazon EC2r1. | ar ge’ instances
which have a dual core processor, 7.5 GB RAM and 840 GB disk
storage. We use Hadoop 1.2.1 running on Java 1.6 and CentOS 6.
Each machine is configured to run three mappers and two resluce
Tables 1 and 2 summarize the datasets and configuration @aram
ters used in our experiments, respectively. Default pataradin
parentheses) are used unless otherwise mentioned. Inlthe-fo
ing part, we describe the partitioning techniques, the igaewe
run, and the performance metrics measured in this paper.

2.1 Partitioning Techniques

This paper employgrid and Quad tree as space partitioning
techniques;STR, STR+, and K-d tree as data partitioning tech-
niques; andZ-curve andHilbert curve as space filling curve (SFC)
partitioning techniques. These techniques can also bepgthac-
cording to boundary object handling, inteplication-based tech-
niques (i.e., Grid, Quad, STR+, and K-d tree) alidribution-
based techniques (i.e., STR, Z-Cruve, and Hilbert). Fiduitkis-
trates these techniques, where sample points and paritiond-
aries are shown as dots and rectangles, respectively.

1. Uniform Grid: This technique does not require a random
sample as it divides the input MBR using a uniform grid of
[v/n] x [v/n] grid cells and employs the replication method to
handle boundary objects.

2. Quad tree: This technique inserts all sample points into a quad
tree [6] with node capacity ofk/n |, wherek is the sample size.
The boundaries of all leaf nodes are used as cell boundaries.
use the replication method to assign records to cells.

3. STR: This technique bulk loads the random sample into an R-
tree using the STR algorithm [8] and the capacity of each nede
setto| k/n]. The MBRs of leaf nodes are used as cell boundaries.
Boundary objects are handled using the distribution methoere

it assigns a record to the cell with maximal overlap.

4. STR+: This technique is similar to the STR technique but it uses
the replication method to handle boundary objects.

5. K-d tree This technique uses the K-d tree [1] partitioning
method to partition the space intocells. It starts with the input
MBR as one cell and partitions it — 1 times to produce: cells.
Records are assigned to cells using the replication method.

6. Z-curve: This technique sorts the sample points by their order
on the Z-curve and partitions the curve intesplits, each contain-
ing roughly | k/n | points. It uses the distribution method to assign
a recordr to one cell by mapping the center point of its MBR to
one of then splits.

7. Hilbert curve: This technique is exactly the same as the Z-
curve technique but it uses Hilbert space filling curve whiets
better spatial properties.
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Figure 1. Partitioning Techniques. Examples of nearly-empty partitionsare starred.
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Figure 2: Five Quality Measuresfor Bui | di ngs

Parameter Values (default)
HDFS block capacityB) | 32, (64), 128, 256 MB 3. EXPERIMENTAL RESULTS

Cluster size V)
Sample ratio ()
Selection ratio ¢)

5,10, 15, (20), 25, 35
(0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1/0
0.0001%, 0.01%, (1%)

Table 2: Parameters

2.2 Queries

To test the performance of the partitions, we perform ramge a

spatial join queries as shown in [3]. For arange query, tbargu-

lar query rangeA is centered around a random record drawn from
the input file. The size ofl is adjusted such that thérea(A) =
o.Area(InM BR), where the selection ratie € [0, 1] is a pa-
rameter we change in our experiments ahtba(I/nM BR) is the
area of the MBR of the input. In the spatial join query, we use
over | ap as the join predicate as it is widely used.

2.3 Performance Metrics

To measure and compare the performance of the differerit part
tioning techniques, we use two categories of performandeicag
namely,quality measures andperformance measures.

The quality measures are five metrics computed on the parti-
tioned data to assess its quality. Four of them, Q1-Q4, aieedke
from the R*-tree optimization criteria, where they were whao
correlate with the performance of the range query [4]. Qhés t
total area occupied by all partitions and is used as an italicd
the dead space covered by partitions without containing any actual
records. Q2 is the total overlap between pairs of partitidp3 is
the totalmargin of all partitions where the margin of a rectangle
is the sum of width and height. For a fixed area, minimizing the
margin favors squares over rectangles. Q4 is the disk atiitin
measured as the ratio between actual data in partitionshartdtal
capacity of all occupied file system blocks. Finally, Q5 is titan-
dard deviation of partition sizes and is used to measurecdhe |
balance or skewness across partitions.

The performance measures assess the running time of the par-
titioning process and queries running on the partitiongd.d&he
partitioning time is the total time spent by the cluster to partition
the data. For range queries, we measure both the time spant to
swer a single query and the throughput of the cluster to anawe
batch of queries in terms of jobs per minute. For spatial, jaia
measure the total running time for a single query.

This section shows the results of the experiments carriedmou
the cluster. In each experiment, we use all default paraseten-
tioned in Table 2 unless otherwise mentioned. For clarityfig:
ures use the same set of symbols, and we omitkégen some
figures to keep them readable.

3.1 Quality Measures

Figure 2 shows the five quality measures for Bwg | di ngs
dataset. All values are normalized to the rafigg] to keep the fig-
ure concise. According to Q1, Quad tree partitioning givesitest
performance as it keeps the overall area limited by regyace
partitioning and pruning empty partitions. On the otherdas+
curve partitioning is the worst as it generates a lot of @aethe-
tween partitions due to the huge jumps in the curve. Q2 dogs no
seem to be very helpful as akplication-based techniques gener-
ate disjoint partitions, which always produce Q2=0. Unli2, the
variance in Q3 is high and, surprisingly, Hilbert curve pdad the
best value with the Quad tree being very close. This shows tha
there is a room for improvement if we apply more sophistidate
partitioning techniques. Itis interesting that beplace partitioning
techniques perform relatively poor in Q4 and Q5. The reastmeit
they employ regular space partitioning, which is suscéptipro-
ducing nearly-empty partitions (examples starred in Feguia&b)
which is adversary to both disk utilization (Q4) and skeven@35s).

In fact, the value of Q5 is too small to notice in other teclueis|as
they have the freedom to accurately adjust partition botieslao
maximize utilization and minimize skewness. In a future kyove
can try to combine several small partitions into one biggetifoon
to improve Q5, and study its effect on other quality measures

In Figure 3(a), we measure Q1 while varying the sampling ra-
tio p from 1% to 100% for theli t i es dataset. Surprisingly, the
quality measure is hardly affected by the sampling ratio. dlve
serve a similar behavior across different datasets, jwenitiig tech-
niques, and quality measures (except Q5). This finding nsgam
counter-intuitive because drawing a larger sample shcedilige
the error caused by sampling and increase the quality of dhe p
titioning. However, there are two reasons that make thisrfind
accountable. First, each partitioning technique has itsiolverent
limitations which impose some upper bound on its quality. &6
ample, Z-curve partitioning would generally produce oapging
partitions due to the loss of locality in the Z-curve evert ibper-
ates on the whole file. From this experiment, it looks liket thés
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Figure4: Range Query

upper bound is easily reached for the evaluated partitgptech-
niques even with a 1% sample. The second reason is that secord
are converted to points as they are sampled to make the iremgem
bulk-loading step simpler and more efficient. This meanseian
when p =100%, there is still some approximation of shapes into
points. We believe that this is a very important finding beeau

it tells that the limitations of these partitioning techunés are not
caused by the random sampling.

The only exception to the previous finding is with Q5 (skew-
ness) which actually improves for most partitioning teclugis as
the sample ratio increases, as shown in Figure 3(b). Therewar
interesting findings in this figure. Firsspace partitioning tech-
niques are hardly affected by the sample ratio. Grid partitig
does not use the sample at all while the Quad tree uses thdesamp
only to decide which tree nodes to split, which is not muckettd
by the sample size. Second, as the sample size approactiés 100
the distribution-based techniques achieve a near-perfect load bal-
ancing, as opposed teplication-based techniques. The reason is
that the effect of replication is not taken into account wislibdi-
viding the space using the sample of points.

Figures 3(c) and 3(d) show the tradeoff between partitignin
quality and disk utilization as we increase the partitioresfor
Bui | di ngs. This tradeoff is well known in the literature and this
experiment confirms that it still holds in MapReduce envinemts.

Finally, Figure 3(e) shows the value of the quality measute Q
for all datasets. Although we cannot really compare theityuaf
different datasets as they have different characterjstiean still
observe that the relative quality between techniques isistant
across datasets. In addition, we see a huge drop fali $tréoution-
based techniques witAl | Obj ect's (largest dataset) as they
have to greatly expand partitions to enclose very largeotdje.g.,
countries borders). This does not happen wéplication-based
techniques which do not expand partitions boundaries. B
important finding which helps users in choosing a partitigriech-
nique for a dataset depending on the shape of the objects.

3.2 Range Query Performance

Figure 4 shows the performance of range queries over the con-

structed indexes. In each experiment, we submit a batch of
queries, and measure the throughput of the cluster in tefms o
queries/minute. In general, we found that all partitiontegh-
niques that have been experimented behave roughly the saene d
to the simplicity of the query in the MapReduce environmétrtias

been shown in [4] that the performance of the range queryctsfle
the four quality measures Q1-Q4. Therefore, we will focusen-
suring the effect of query selectivity and number of machinghe
MapReduce environment. In Figure 4(a), the input size isiased
and the throughput is measured for each partitioning tegckniAs
expected, the performance degrades as the input size sesrea
more partitions need to be processed with larger files.

In Figure 4(b), the block size of the partitioned data is éased
from 32MB to 256MB and the performance of range query is mea-
sured forAl | Obj ects. Despite the slight variance in times
across the different techniques, we can notice a comhiianic
trend of the performance where it rises up and then goes down
again. This interesting behavior happens due to the tréideece
tween number of matched partitions and amount of procegsng
partition. A smaller block size reduces the amount of wonkpze:-
tition but increases number of matched partitions per quenyle
a larger block size has an opposite effect. As shown in figtee,
sweet spot that balances this trade-off varies from onatipart
ing technique to another but most techniques are balanctt at
128MB block which is the default value in recent Hadoop reésa

To further study the effect of block size, Figure 4(c) shohes t
range query performance &ui | di ngs when itis indexed using
a Quad tree of different block sizes. We run three sets ofaang
queries withr € {0.0001%, 0.01%, 1%}. We see the same bitonic
trend in all cases but the peak is different where it is 64MBwh
o = 0.0001% and 128MB for the other two values. The peak at
128MB wheno = 1% does exist but is hard to notice due to the
scale of the figure. This experiments indicates that the lvack
should be accounted while tuning the index.

In Figure 4(d), we increase the selection ratg &nd evaluate
the range query performance for all partitioning techngqus the
selection ratio increases, the performance degrades as paor
titions are processed. Eventually, the performance offathem
converge as they end up scanning large portions (or all)efrth
put file. Unlike centralized systems, Quad tree takes maone ti
scanning the file as the MapReduce job needs to create one task
per partition while our Quad tree technique produces muctemo
partitions than other techniques.

In Figure 4(e) we show the speedup of running range quergusin
MapReduce compared to a centralized techniques. In thigefigu
values below one, illustrated by a horizontal line, incéctitat the
centralized query is faster. This experiment shows thabhaakzed
system outperforms MapReduce when the query area is snigll as
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Figure6: Spatial join performance (best viewed in color)

avoids the overhead of MapReduce when only a little work seed
to be done. The results of this experiment can be incorpiiate

a query optimizer to choose the best approach based on #hefsiz
the query area.

Figure 5(a) shows how the range query scales out when the clus
ter size changes from 5 to 35 nodes. On each cluster, we sfibenit
batches of sizes 1, 5, 10, 15, and 20 range queries, and reeasu
the speedup of MapReduce over centralized processing.keJnli
centralized systems, which better utilize all its procegsiapabil-
ities, MapReduce has an upper bound on the speedup regardles
of number of machines in the cluster. The reason is that MapRe
duce breaks a job into coarse-grained tasks, as one petiquarti
which limits the level of parallelism it can achieve, whilentral-
ized systems break jobs into finer-grained partitions taexeha
higher level of parallelism as its resources allow. As thielbaize
increases, MapReduce can achieve a higher speedup buirit aga
stabilizes as soon as the cluster becomes underutilized.

r

3.3 Spatial Join Performance

Figure 5(b) shows the performance of joinilRpads and
Bui | di ngs when both are partitioned using the same technique.
In general, all the techniques scale well with the clustee.slUn-
like range query, one spatial join query is usually enoughtto
lize all cluster resources and achieve a high degree oflpksat.
The two SFC-based techniques perform relatively worse dfttaer
techniques as they produce a lot of overlapping partitierts (see
Figure 1 e&f).

Figure 6 further studies the performance of spatial join mvhe
the two input files are partitioned using different techmisju In
this experiment, we run two spatial join queri®ads xLakes
andRoads xBui | di ngs, for every possible combination of par-
titioning techniques on inputs. The figure shows the valdg3lo
for input files, and the total running times which are coloded
from red (slowest) to green (fastest). The figure shows i@ -
respondence between the values of Q1 and the overall penfmen
Statistically, we found a strong linear correlation withcefficient
of 89% and92%, for the two experimented queries.

In addition to its good quality measures, the Quad tree outpe
forms all other techniques as it minimizes the number of -over
lapping partitions between the two files by employing a ragul
space partitioning which is perfectly aligned across dii files.
This finding conforms with earlier work in the literature whi
showed that Quad tree partitioning outperforms both R-tiee
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R+-tree partitioning when running a spatial join query irradt-
tional DBMS environment [7]. Furthermore, the state-cd-trt
work in spatial join in main memory is based on Quad-tree-lik
partitioning [5]. This paper is the first to extend those ieafind-
ings to MapReduce as well.

3.4 Partitioning Time

Figure 7(a) shows the overall partitioning time for differén-
put datasets. An interesting finding is that the performanfcal
techniques is very similar as the partitioning is domindgtgdhe
MapReduce job that scans the whole file. The main differeeee b
tween all techniques is in the in-memory step which operates
a small sample. This opens the space to incorporate more com-
plicated techniques. Figure 7(b) shows the partitioninggti for
Bui | di ngs, as the number of machines in the cluster increases
from 5 to 20. Although the sampling step takes less than twe mi
utes, it does not scale as good as the partitioning step dtieto
fixed overhead associated with each map task in the MapReduce
job. This calls for more efficient sampling techniques imtsrof
performance. We also found that the partitioning time isgnettly
affected by the block size, hence, we omitted that experirf@n
limited space.

4. CONCLUSION

In this paper, we experimentally evaluated seven spatidi-pa
tioning techniques, all employed inside SpatialHadoop sWeved
that SpatialHadoop is scalable when indexing a file usingainy
these techniques. It was shown that even with a 1% sample2of th
file, we can partition a file with a very high quality. While g
query performed similarly on all of them, we showed that tbag
be tuned with system parameters such as block size accaaling
the query work load. We also showed the the performance of spa
tial join is strongly correlated with the value of Q1 (totaka of
partitions) and found that Quad tree outperformed othdmiigies
being experimented.
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