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ABSTRACT
SpatialHadoop is an extended MapReduce framework that supports
global indexing that spatial partitions the data across machines
providing orders of magnitude speedup, compared to traditional
Hadoop. In this paper, we describe seven alternative partitioning
techniques and experimentally study their effect on the quality of
the generated index and the performance of range and spatialjoin
queries. We found that using a 1% sample is enough to produce
high quality partitions. Also, we found that the total area of parti-
tions is a reasonable measure of the quality of indexes when run-
ning spatial join. This study will assist researchers in choosing a
good spatial partitioning technique in distributed environments.

1. INDEXING IN SPATIALHADOOP
SpatialHadoop [2, 3] provides a generic indexing algorithm

which was used to implement grid, R-tree, and R+-tree based parti-
tioning. This paper extends our previous study by introducing four
new partitioning techniques, Z-curve, Hilbert curve, Quadtree, and
K-d tree, and experimentally evaluate all of the seven techniques.
The partitioning phase of the indexing algorithm runs in three steps,
where the first step is fixed and the last two steps are customized for
each partitioning technique. The first step computes numberof de-
sired partitionsn based on file size and HDFS block capacity which
are both fixed for all partitioning techniques. The second step reads
a random sample, with a sampling ratioρ, from the input file and
uses this sample to partition the space inton cells such that num-
ber of sample points in each cell is at most⌊k/n⌋, wherek is the
sample size. The third step actually partitions the file by assigning
each record to one or more cells. Boundary objects are handled us-
ing either thedistribution or replication methods. Thedistribution
method assigns an object to exactly one overlapping cell andthe
cell has to be expanded to enclose all contained records. Therepli-
cation method avoids expanding cells by replicating each record to
all overlapping cells but the query processor has to employ adupli-
cate avoidance technique to account for replicated records.
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2. EXPERIMENTAL SETUP
All experiments run on Amazon EC2‘m1.large’ instances

which have a dual core processor, 7.5 GB RAM and 840 GB disk
storage. We use Hadoop 1.2.1 running on Java 1.6 and CentOS 6.
Each machine is configured to run three mappers and two reducers.
Tables 1 and 2 summarize the datasets and configuration parame-
ters used in our experiments, respectively. Default parameters (in
parentheses) are used unless otherwise mentioned. In the follow-
ing part, we describe the partitioning techniques, the queries we
run, and the performance metrics measured in this paper.

2.1 Partitioning Techniques
This paper employsgrid and Quad tree as space partitioning

techniques;STR, STR+, and K-d tree as data partitioning tech-
niques; andZ-curve andHilbert curve as space filling curve (SFC)
partitioning techniques. These techniques can also be grouped, ac-
cording to boundary object handling, intoreplication-based tech-
niques (i.e., Grid, Quad, STR+, and K-d tree) anddistribution-
based techniques (i.e., STR, Z-Cruve, and Hilbert). Figure1 illus-
trates these techniques, where sample points and partitionbound-
aries are shown as dots and rectangles, respectively.
1. Uniform Grid: This technique does not require a random
sample as it divides the input MBR using a uniform grid of
⌈√n⌉ × ⌈√n⌉ grid cells and employs the replication method to
handle boundary objects.
2. Quad tree: This technique inserts all sample points into a quad
tree [6] with node capacity of⌊k/n⌋, wherek is the sample size.
The boundaries of all leaf nodes are used as cell boundaries.We
use the replication method to assign records to cells.
3. STR: This technique bulk loads the random sample into an R-
tree using the STR algorithm [8] and the capacity of each nodeis
set to⌊k/n⌋. The MBRs of leaf nodes are used as cell boundaries.
Boundary objects are handled using the distribution methodwhere
it assigns a recordr to the cell with maximal overlap.
4. STR+: This technique is similar to the STR technique but it uses
the replication method to handle boundary objects.
5. K-d tree: This technique uses the K-d tree [1] partitioning
method to partition the space inton cells. It starts with the input
MBR as one cell and partitions itn − 1 times to producen cells.
Records are assigned to cells using the replication method.
6. Z-curve: This technique sorts the sample points by their order
on the Z-curve and partitions the curve inton splits, each contain-
ing roughly⌊k/n⌋ points. It uses the distribution method to assign
a recordr to one cell by mapping the center point of its MBR to
one of then splits.
7. Hilbert curve: This technique is exactly the same as the Z-
curve technique but it uses Hilbert space filling curve whichhas
better spatial properties.

1602



(a) Grid (b) Quad Tree (c) STR and STR+ (d) K-d Tree (e) Z-curve (f) Hilbert Curve

Figure 1: Partitioning Techniques. Examples of nearly-empty partitions are starred.

Name Size Records Average Record Size
All Objects 88GB 250M 378 bytes
Buildings 25GB 109M 234 bytes
Roads 23GB 70M 337 bytes
Lakes 8.6GB 9M 1KB
Cities 1.4GB 170K 8.4KB

Table 1: Datasets

Parameter Values (default)
HDFS block capacity (B) 32, (64), 128, 256 MB
Cluster size (N ) 5, 10, 15, (20), 25, 35
Sample ratio (ρ) (0.01), 0.02, 0.05, 0.1, 0.2, 0.5, 1.0
Selection ratio (σ) 0.0001%, 0.01%, (1%)

Table 2: Parameters

2.2 Queries
To test the performance of the partitions, we perform range and

spatial join queries as shown in [3]. For a range query, the rectangu-
lar query rangeA is centered around a random record drawn from
the input file. The size ofA is adjusted such that theArea(A) =
σ.Area(InMBR), where the selection ratioσ ∈ [0, 1] is a pa-
rameter we change in our experiments andArea(InMBR) is the
area of the MBR of the input. In the spatial join query, we use
overlap as the join predicate as it is widely used.

2.3 Performance Metrics
To measure and compare the performance of the different parti-

tioning techniques, we use two categories of performance metrics,
namely,quality measures andperformance measures.

The quality measures are five metrics computed on the parti-
tioned data to assess its quality. Four of them, Q1-Q4, are derived
from the R*-tree optimization criteria, where they were shown to
correlate with the performance of the range query [4]. Q1 is the
total area occupied by all partitions and is used as an indicator of
thedead space covered by partitions without containing any actual
records. Q2 is the total overlap between pairs of partitions. Q3 is
the totalmargin of all partitions where the margin of a rectangle
is the sum of width and height. For a fixed area, minimizing the
margin favors squares over rectangles. Q4 is the disk utilization
measured as the ratio between actual data in partitions and the total
capacity of all occupied file system blocks. Finally, Q5 is the stan-
dard deviation of partition sizes and is used to measure the load
balance or skewness across partitions.

Theperformance measures assess the running time of the par-
titioning process and queries running on the partitioned data. The
partitioning time is the total time spent by the cluster to partition
the data. For range queries, we measure both the time spent toan-
swer a single query and the throughput of the cluster to answer a
batch of queries in terms of jobs per minute. For spatial join, we
measure the total running time for a single query.
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Figure 2: Five Quality Measures for Buildings

3. EXPERIMENTAL RESULTS
This section shows the results of the experiments carried out on

the cluster. In each experiment, we use all default parameters men-
tioned in Table 2 unless otherwise mentioned. For clarity, all fig-
ures use the same set of symbols, and we omit thekey in some
figures to keep them readable.

3.1 Quality Measures
Figure 2 shows the five quality measures for theBuildings

dataset. All values are normalized to the range[0, 1] to keep the fig-
ure concise. According to Q1, Quad tree partitioning gives the best
performance as it keeps the overall area limited by regular space
partitioning and pruning empty partitions. On the other hand, Z-
curve partitioning is the worst as it generates a lot of overlap be-
tween partitions due to the huge jumps in the curve. Q2 does not
seem to be very helpful as allreplication-based techniques gener-
ate disjoint partitions, which always produce Q2=0. UnlikeQ2, the
variance in Q3 is high and, surprisingly, Hilbert curve provided the
best value with the Quad tree being very close. This shows that
there is a room for improvement if we apply more sophisticated
partitioning techniques. It is interesting that bothspace partitioning
techniques perform relatively poor in Q4 and Q5. The reason is that
they employ regular space partitioning, which is susceptible to pro-
ducing nearly-empty partitions (examples starred in Figure 1 a&b)
which is adversary to both disk utilization (Q4) and skewness (Q5).
In fact, the value of Q5 is too small to notice in other techniques as
they have the freedom to accurately adjust partition boundaries to
maximize utilization and minimize skewness. In a future work, we
can try to combine several small partitions into one bigger partition
to improve Q5, and study its effect on other quality measures.

In Figure 3(a), we measure Q1 while varying the sampling ra-
tio ρ from 1% to 100% for theCities dataset. Surprisingly, the
quality measure is hardly affected by the sampling ratio. Weob-
serve a similar behavior across different datasets, partitioning tech-
niques, and quality measures (except Q5). This finding mightseem
counter-intuitive because drawing a larger sample should reduce
the error caused by sampling and increase the quality of the par-
titioning. However, there are two reasons that make this finding
accountable. First, each partitioning technique has its own inherent
limitations which impose some upper bound on its quality. For ex-
ample, Z-curve partitioning would generally produce overlapping
partitions due to the loss of locality in the Z-curve even if it oper-
ates on the whole file. From this experiment, it looks like that this
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Figure 3: Quality Measures
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Figure 4: Range Query

upper bound is easily reached for the evaluated partitioning tech-
niques even with a 1% sample. The second reason is that records
are converted to points as they are sampled to make the in-memory
bulk-loading step simpler and more efficient. This means that even
whenρ =100%, there is still some approximation of shapes into
points. We believe that this is a very important finding because
it tells that the limitations of these partitioning techniques are not
caused by the random sampling.

The only exception to the previous finding is with Q5 (skew-
ness) which actually improves for most partitioning techniques as
the sample ratio increases, as shown in Figure 3(b). There are two
interesting findings in this figure. First,space partitioning tech-
niques are hardly affected by the sample ratio. Grid partitioning
does not use the sample at all while the Quad tree uses the sample
only to decide which tree nodes to split, which is not much affected
by the sample size. Second, as the sample size approaches 100%,
the distribution-based techniques achieve a near-perfect load bal-
ancing, as opposed toreplication-based techniques. The reason is
that the effect of replication is not taken into account while subdi-
viding the space using the sample of points.

Figures 3(c) and 3(d) show the tradeoff between partitioning
quality and disk utilization as we increase the partition size for
Buildings. This tradeoff is well known in the literature and this
experiment confirms that it still holds in MapReduce environments.

Finally, Figure 3(e) shows the value of the quality measure Q1
for all datasets. Although we cannot really compare the quality of
different datasets as they have different characteristics, we can still
observe that the relative quality between techniques is consistent
across datasets. In addition, we see a huge drop for thedistribution-
based techniques withAll Objects (largest dataset) as they
have to greatly expand partitions to enclose very large objects (e.g.,
countries borders). This does not happen withreplication-based
techniques which do not expand partitions boundaries. Thisis an
important finding which helps users in choosing a partitioning tech-
nique for a dataset depending on the shape of the objects.

3.2 Range Query Performance
Figure 4 shows the performance of range queries over the con-

structed indexes. In each experiment, we submit a batch of
queries, and measure the throughput of the cluster in terms of
queries/minute. In general, we found that all partitioningtech-
niques that have been experimented behave roughly the same due
to the simplicity of the query in the MapReduce environment.It has

been shown in [4] that the performance of the range query reflects
the four quality measures Q1-Q4. Therefore, we will focus inmea-
suring the effect of query selectivity and number of machines in the
MapReduce environment. In Figure 4(a), the input size is increased
and the throughput is measured for each partitioning technique. As
expected, the performance degrades as the input size increases as
more partitions need to be processed with larger files.

In Figure 4(b), the block size of the partitioned data is increased
from 32MB to 256MB and the performance of range query is mea-
sured forAll Objects. Despite the slight variance in times
across the different techniques, we can notice a commonbitonic
trend of the performance where it rises up and then goes down
again. This interesting behavior happens due to the trade-off be-
tween number of matched partitions and amount of processingper
partition. A smaller block size reduces the amount of work per par-
tition but increases number of matched partitions per query, while
a larger block size has an opposite effect. As shown in figure,the
sweet spot that balances this trade-off varies from one partition-
ing technique to another but most techniques are balanced atthe
128MB block which is the default value in recent Hadoop releases.

To further study the effect of block size, Figure 4(c) shows the
range query performance onBuildingswhen it is indexed using
a Quad tree of different block sizes. We run three sets of range
queries withσ ∈ {0.0001%, 0.01%, 1%}. We see the same bitonic
trend in all cases but the peak is different where it is 64MB when
σ = 0.0001% and 128MB for the other two values. The peak at
128MB whenσ = 1% does exist but is hard to notice due to the
scale of the figure. This experiments indicates that the workload
should be accounted while tuning the index.

In Figure 4(d), we increase the selection ratio (σ) and evaluate
the range query performance for all partitioning techniques. As the
selection ratio increases, the performance degrades as more par-
titions are processed. Eventually, the performance of all of them
converge as they end up scanning large portions (or all) of the in-
put file. Unlike centralized systems, Quad tree takes more time
scanning the file as the MapReduce job needs to create one task
per partition while our Quad tree technique produces much more
partitions than other techniques.

In Figure 4(e) we show the speedup of running range query using
MapReduce compared to a centralized techniques. In this figure,
values below one, illustrated by a horizontal line, indicate that the
centralized query is faster. This experiment shows that a centralized
system outperforms MapReduce when the query area is small asit
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Figure 5: Scale-out with cluster size
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Figure 6: Spatial join performance (best viewed in color)

avoids the overhead of MapReduce when only a little work needs
to be done. The results of this experiment can be incorporated into
a query optimizer to choose the best approach based on the size of
the query area.

Figure 5(a) shows how the range query scales out when the clus-
ter size changes from 5 to 35 nodes. On each cluster, we submitfive
batches of sizes 1, 5, 10, 15, and 20 range queries, and measure
the speedup of MapReduce over centralized processing. Unlike
centralized systems, which better utilize all its processing capabil-
ities, MapReduce has an upper bound on the speedup regardless
of number of machines in the cluster. The reason is that MapRe-
duce breaks a job into coarse-grained tasks, as one per partition,
which limits the level of parallelism it can achieve, while central-
ized systems break jobs into finer-grained partitions to achieve a
higher level of parallelism as its resources allow. As the batch size
increases, MapReduce can achieve a higher speedup but it again
stabilizes as soon as the cluster becomes underutilized.

3.3 Spatial Join Performance
Figure 5(b) shows the performance of joiningRoads and

Buildings when both are partitioned using the same technique.
In general, all the techniques scale well with the cluster size. Un-
like range query, one spatial join query is usually enough touti-
lize all cluster resources and achieve a high degree of parallelism.
The two SFC-based techniques perform relatively worse thanother
techniques as they produce a lot of overlapping partitions (e.g., see
Figure 1 e&f).

Figure 6 further studies the performance of spatial join when
the two input files are partitioned using different techniques. In
this experiment, we run two spatial join queries,Roads×Lakes
andRoads×Buildings, for every possible combination of par-
titioning techniques on inputs. The figure shows the values of Q1
for input files, and the total running times which are color-coded
from red (slowest) to green (fastest). The figure shows a direct cor-
respondence between the values of Q1 and the overall performance.
Statistically, we found a strong linear correlation with a coefficient
of 89% and92%, for the two experimented queries.

In addition to its good quality measures, the Quad tree outper-
forms all other techniques as it minimizes the number of over-
lapping partitions between the two files by employing a regular
space partitioning which is perfectly aligned across different files.
This finding conforms with earlier work in the literature which
showed that Quad tree partitioning outperforms both R-treeand
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R+-tree partitioning when running a spatial join query in a tradi-
tional DBMS environment [7]. Furthermore, the state-of-the-art
work in spatial join in main memory is based on Quad-tree-like
partitioning [5]. This paper is the first to extend those earlier find-
ings to MapReduce as well.

3.4 Partitioning Time
Figure 7(a) shows the overall partitioning time for different in-

put datasets. An interesting finding is that the performanceof all
techniques is very similar as the partitioning is dominatedby the
MapReduce job that scans the whole file. The main difference be-
tween all techniques is in the in-memory step which operateson
a small sample. This opens the space to incorporate more com-
plicated techniques. Figure 7(b) shows the partitioning time, for
Buildings, as the number of machines in the cluster increases
from 5 to 20. Although the sampling step takes less than two min-
utes, it does not scale as good as the partitioning step due tothe
fixed overhead associated with each map task in the MapReduce
job. This calls for more efficient sampling techniques in terms of
performance. We also found that the partitioning time is notgreatly
affected by the block size, hence, we omitted that experiment for
limited space.

4. CONCLUSION
In this paper, we experimentally evaluated seven spatial parti-

tioning techniques, all employed inside SpatialHadoop. Weshowed
that SpatialHadoop is scalable when indexing a file using anyof
these techniques. It was shown that even with a 1% sample of the
file, we can partition a file with a very high quality. While range
query performed similarly on all of them, we showed that theycan
be tuned with system parameters such as block size accordingto
the query work load. We also showed the the performance of spa-
tial join is strongly correlated with the value of Q1 (total area of
partitions) and found that Quad tree outperformed other techniques
being experimented.
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