StarDB: A Large-Scale DBMS for Strings

Majed Sahli
King Abdullah University for
Science & Technology
Thuwal, Saudi Arabia

majed.sahli@kaust.edu.sa

ABSTRACT

Strings and applications using them are proliferating in sci-
ence and business. Currently, strings are stored in file sys-
tems and processed using ad-hoc procedural code. Exist-
ing techniques are not flexible and cannot efficiently handle
complex queries or large datasets. In this paper, we demon-
strate StarDB, a distributed database system for analytics
on strings. StarDB hides data and system complexities and
allows users to focus on analytics. It uses a comprehensive
set of parallel string operations and provides a declarative
query language to solve complex queries. StarDB automat-
ically tunes itself and runs with over 90% efficiency on su-
percomputers, public clouds, clusters, and workstations. We
test StarDB using real datasets that are 2 orders of magni-
tude larger than the datasets reported by previous works.

1. INTRODUCTION

Analytics are performed on a single long string, such as
the human genome, or a large collection of short strings,
such as DNA reads [7]. Due to low storage costs, large col-
lections of strings are accumulating in academic and indus-
trial research labs [2]. Governmental and industrial bodies
aim at sequencing individuals with cancer, rare diseases, and
infectious diseases. Ambitious projects include the 100,000
Genomes Project! in the UK and the Cancer Genome At-
las? in the US. Several medical breakthroughs are awaiting
the proper management and processing of the growing ge-
netic data banks. Similarly, large collections of sequential
signals from the world’s largest radio telescope® will require
extensive processing. Moreover, textual data (e.g., World
Wide Web content) and time series (e.g., stock prices) are
examples of important sequential data [7].

Managing strings is still done in an ad-hoc fashion using
application-specific methods. Complex queries and analyt-
ics require using different systems and moving data between

http://www.genomicsengland.co.uk
%http://cancergenome.nih.gov
3http://www.skatelescope.org

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a cdiis li-

cense, visit http://creativecommons.org/licenses/bywa-0/. Obtain per-
mission prior to any use beyond those covered by the licensentaCt
copyright holder by emailing info@vldb.org. Articles frorhis volume

were invited to present their results at the 41st Intermati€onference on

Very Large Data Bases, August 31st - September 4th 2015, Kdbw@ést,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

Essam Mansour
Qatar Computing Research
Institute
Doha, Qatar

emansour@qf.org.ga

Panos Kalnis
King Abdullah University for
Science & Technology
Thuwal, Saudi Arabia

panos.kalnis@kaust.edu.sa

(. N\
[Application Interface { Query Language MCommand Menus}]
[Matching] [Filtering } [Generation } [Extraction }|

Query { Query Optimizer }
LTS { Plan Executer MStatisticaI UtiIities}
String

Speletens { Workload Distribution }

Parallel —
Planner { Data Replication }
{ Resources Elasticity }
[Storage Manager { Partitioning H Indexing J]

N J

Figure 1: Architecture of StarDB.

them. For example, biologists use BLAST? to find regions
of local similarity between biological sequences and KAT®
to analyze substring frequency spectra. Several attempts
were proposed to handle strings using a DBMS approach.
Periscope/SQ [11] extended PostgreSQL with matching op-
erations over biological sequences. It is challenging to ex-
press common string queries, such as motifs and k-mers,
with only matching operations. Moreover, complex queries
require the efficient utilization of large infrastructures to fin-
ish in reasonable times. Therefore, Periscope/SQ reported
simple matching queries over sequences of 5,000 symbols.

In this demonstration, we describe the architecture of
StarDB, a large-scale DBMS for strings. StarDB uses our
novel data structures [9] and parallel string algorithms [10]
to natively facilitate large-scale analytics for strings. We
incorporate our automatic tuning framework for large in-
frastructures [8] to meet users time and budget constraints.
StarDB allows users to easily form complex string queries.
It hides the complexity of supercomputers, large clusters,
public clouds, and multicore machines from users.

The rest of this paper is organized as follows. Section 2
discusses the system architecture and how it supports large
infrastructures. In Section 3, we detail our demonstration.
Section 4 compares StarDB to procedural systems.

“http://blast.ncbi.nlm.nih.gov/
Shttp://www.tgac.ac.uk/KAT/

1844

2. SYSTEM ARCHITECTURE

StarDB is a distributed system built over the master-
worker parallel programming paradigm. Complex queries
are solved in parallel whereas simple ones are run in serial.
StarDB utilizes a scalable data model and exposes a declar-
ative query language while hiding infrastructure complexity.
Figure 1 shows the overall system architecture.

Naively, operations require multiple data scans and mostly
involve a much wider search space than the strings them-
selves. Moreover, string operations workloads scale super-
linearly with data size [5]. We attack these challenges at dif-
ferent system layers. (i) We provide a declarative query lan-
guage that includes a comprehensive set of optimized string
operations. (1) We use efficient and self-tuned parallel algo-
rithms to utilize resources and speedup computation. (i)
We employ full-text indexes in the form of tries to strike a
balance between index features and sizes; and between pre-
processing and information retrieval times. Hence, StarDB
natively supports string operations, handles real datasets,
and efficiently utilizes various infrastructures.

Example 1: A user needs to find text that appears fre-
quently in Wikipedia. The user has to work around spelling
mistake and simple differences such as noun plurals and
verb tenses. First, the Wikipedia archive is imported into
StarDB. StarDB indexes the dataset and may partition or
replicate indexes depending on size and available resources.
Motifs are patterns that appear frequently but not neces-
sarily exactly. StarDB supports edit distance or hamming
distance for approximate matching. To find all frequent pat-
terns, a query to generate motifs is used. Running on 480
cores, the motifs search space (a combinatorial tree over
English alphabet) is partitioned to 17,576 tasks (26 sub-
trees). The workload is balanced by dynamically assigning
tasks and the results are gathered and returned to the user.

2.1 Data Model and Query Language

Strings are ordered sets of symbols, grouped into collec-
tions. Depending on how collections are generated, they
could consist of several long strings or millions of short ones.
Our data model, StarDM, is to be efficient and scalable in
terms of string length and collection size. Generally, oper-
ations in StarDM take one or two collections as input and
output a collection. Our query language, StarQL is declara-
tive. The unification of format in StarDM allow for pipelin-
ing operations to express complex queries in StarQL.

We introduce five categories for operations in StarDB.
(i) Administrative commands are used to manage data col-
lections (e.g., the import StarQL construct). (it) Matching
operations take 2 collections as input and output a collection
of strings that represent the substrings from the left operand
that match a string in the right operand. Example StarQL
constructs include exact and approximate. (ii7) Filters are
used to operate on parts of collections of certain features,
such as length. (i) Generation operations result in new
string collections for common and repeated motifs and k-
mers. (v) Extraction operations are used to create windows
over strings given absolute positions (e.g., range) or relative
ones (e.g., prefixes).

In addition, basic set operations (e.g., union) and aggre-
gate operations (e.g., count) are supported. StarQL also
supports sorting and returning partial results using the 1imit
keyword. The syntax of StarQL is SQL-like. Figure 2
depicts the syntax of selection queries.

1845

<query> = <select> | <import> | <delete> | <update>
<extractor> := PREFIXES | SUFFIXES | RANGE

<generator> := RMOTIFS | CMOTIFS | KMERS

<identifier>:= <path> | <name> | <import>

<filter> = PREFIX | SUFFIX | SUBSTRING | <metadata>
<match> = EXACT | APPROXIMATE | REGEX

<select> = SELECT <extractor> | <generator> | *

FROM <identifier> | (<query>)
[WHERE <filter> | <match> | <metadata>]
[<aggregate-ops> | <limit> | <order-by>]

Figure 2: Abstract BNF of StarQL selection query.

In the example of finding motifs from Wikipedia, the user
may decide to filter out motifs of length 4 or less as they
correspond to common short words, such as articles and
prepositions. The user allows an edit distance of 2 characters
so words like “fishes” and “fishy” count as occurrences for
the motif “fish”. The length and approximate matching
parameters are readily available in StarQL. The user in our
example may form and submit the following StarQL query.

SELECT RMOTIFS FROM wiki WHERE LEN>4 (1)
AND EDIT<=2 AND FREQ>1000;

StarDB users can form complex queries easily. Consider
two collections of strings, hom for human DNA and mus for
mouse DNA. A biologist finds the sequences that are similar
in both collections by using the approximate matching op-
eration. For simplicity, we assume a hamming distance of 3
is acceptable. The following StarQL query results in all the
subsequences in hom that have approximate matches in mus.

SELECT * FROM hom WHERE APPROXIMATE (mus)
AND HAMM<=3;

(2)

2.2 Optimization and Execution

In StarQL semantics, the final output is always a subset
of the operation after a SELECT keyword. Conditions after
a WHERE keyword are interpreted from left to right, but not
necessarily executed in the same order. By this convention,
it is clear to users how StarQL is interpreted. They form
queries that represent their intentions. The costs of valid
plans are compared internally to choose the most efficient
plan. The following nested query extracts the suffixes of
length 3 from the Wikipedia repeated motifs.

SELECT SUFFIXES FROM (SELECT RMOTIFS FROM wiki
WHERE LEN>4 AND EDIT<3)

3)

WHERE LEN=3;

Alternatively, the motifs query could be saved as a col-
lection in StarDB for further processing. This allows users
to analyze intermediate results and execute different queries
without having to start from scratch. For example, after
extracting suffixes of length 4 from the motifs, the user may
want to explore prefixes or suffixes of different lengths. In
this case, first the motifs are saved as a collection in StarDB
then used in subsequent queries as shown next. Motifs of
length 5 will not contribute to the results of the prefixes.

IMPORT (SELECT RMOTIFS FROM wiki

WHERE LEN>4 AND EDIT<3) AS mot;
SELECT SUFFIXES FROM mot WHERE LEN=10;
SELECT PREFIXES FROM mot WHERE LEN>5 AND LEN<10;

(4)

2.3 Indexing and Large-scale Parallelism

Scaling to large infrastructures, we need flexible data struc-
tures, efficient parallel algorithms, and automatic tuning.
Given a query plan and a user budget, StarDB decides an
execution plan. While serial execution is preferred in the
case of low workloads, such as simple extraction or exact
matching, operations of high workloads are run using multi-
ple cores. Hence, it is critical to have efficient parallel execu-
tion and load balancing. Matching operations require data
partitioning to facilitate parallel execution. Other opera-
tions, such as motif extraction, require the decomposition
of the problem search space across cores. Either way, the
number of cores to use is optimized to increase utilization
and to speedup computation.

There is a trade-off between index size and computation.
We combine indexing techniques with well-known algorithms
(e.g. Boyer-Moore algorithm) to strike a balance between
preprocessing time, index size, and execution efficiency. We
opt for a novel suffix trie index that does not maintain ter-
minating symbols and string identifiers, unlike generalized
suffix trees [6]. The suffix trie indexes all suffixes of all
strings and retains the frequency of every path label by stor-
ing a single integer in every node. Each node represents a
character, avoiding the need to scan strings to retrieve path
labels. Most operations are answered by simply traversing
suffix tries. In cases where we need to relate path labels
to strings, parallel algorithms are used. Moreover, our data
structure is easily decomposable in the form of multiple suf-
fix tries for different collection subsets.

In order to utilize large infrastructures, it is critical to
find the best decomposition and to accurately estimate run-
times. StarDB adopts our automatic tuning framework [§]
to decide the problem decomposition and estimate serial and
parallel runtimes. Random sample tasks are used to model
the workload of different decompositions. The gamma prob-
ability density function is used to approximate the workload
frequency distributions. A discrete event simulator is then
used to simulate execution and estimate runtimes. By auto-
matically tuning itself, StarDB meets user time and budget
constraints while efficiently utilizing available resources.

Example 2: The archive analyzed in Example 1 is rep-
resented logically by one collection but indexed using suffix
tries that fit in memory. StarDB first executes the repeated
motifs operation in parallel. Since the motifs search space
is a combinatorial tree, it is logically partitioned into many
sub-trees. On a supercomputer, the parallel planner finds
that 2,048 cores can be fully utilized given the query work-
load. The original archive is not accessed because suffix tries
are annotated with counts. The resulting repeated motifs
are also in the form of a suffix trie. Therefore, the common
suffixes are easily extracted by a simple index traversal.

3. DESCRIPTION OF DEMONSTRATION

This demonstration illustrates the power of StarDB in
analyzing strings. The following features are shown:

1. Scalability to large infrastructures using real datasets.
2. Automatic tuning and elasticity features.
3. Perform analytical tasks online and in batch mode.

4. Ability to express complex string queries declaratively.

1846

3.1 Datasets

In this demonstration, we use real datasets from bioinfor-
matics and the English language. We choose these datasets
to exhibit a variety of alphabets, strings of different lengths,
and collections of different sizes and character repetition dis-
tributions. The query workloads are high enough to demon-
strate StarDB power in a conference setting. In addition, the
used datasets are one to two orders of magnitude larger than
previously reported results in string databases and parallel
string operators. We have tested StarDB using real datasets
in the order of gigabytes (e.g., the complete human genome
of size 2.6GB) and synthetic datasets with up to 100 symbol
alphabets.

3.2 Infrastructure

We use a dedicated high-end 480-core Linux cluster for
this demonstration. This cluster consists of 20 machines;
each is equipped with 148GB RAM shared by 24 cores. We
will also utilize 10 instances from Amazon EC2. StarDB
fully utilizes the resource of an IBM Blue Gene/P super-
computer (16,384 CPUs) at over 90% speedup efficiency [10]
but resource usage policies prevent us from using the super-
computer in a demo setting.

3.3 Scenarios and Workloads

We provide a user interface to build tasks that get trans-
lated to StarQL queries (See Figure 3). We consider sce-
narios of users performing analytical tasks on strings; such
as finding frequent patterns, matching, counting, and gen-
erating k-mers. Queries can be executed in different orders,
nested, saved, and further processed. We showcase two dif-
ferent scenarios and discuss their workloads.

3.3.1 Bioinformatics scenario

Given DNA and protein datasets, a biologist needs to
find the patterns that are frequent within every genomic
sequence and at the same time common between sequences.
Such patterns have potential functional importance and can
be used to draw conclusions across species or to find muta-
tions within a species. The workload of such task is high
due to the combinatorial search space over the string’s al-
phabet. The task translates to generating repeated motifs,
generating common motifs, then finding the motifs that are
both repeated and common. The following StarQL query is
an example for this scenario.

SELECT CMOTIFS(dna) AS c
FROM dna, (SELECT RMOTIFS AS r FROM dna
WHERE r.LEN>10 AND r.EDIT<2
AND r.FREQ>10000) AS rep
WHERE c.LEN>10 AND c.EDIT<2 AND c.FREQ=10
AND c.EXACT(rep);

()

First, the inner sub-query is evaluated and its results are
saved as a collection (rep). This evaluation is done in par-
allel by executing the repeated motifs operator. The col-
lection rep is only available for the current query because
it is not imported. Then, the outer sub-query is evaluated
by running the common motifs operator resulting in another
temporary collection (c). The exact filter (c.EXACT (rep)) is
used to find the intersection between the repeated and com-
mon motifs. After returning the final results, the temporary
collections and their indexes are dropped.

4) Rename

Enter number > 11

IGRP 1D | NAME

T # SEQ | TOTAL SIZE I LOADED T ORIGINAL PATH

1 | wikipedia | 10 | 2791728 X | /stardb/dataset/wikipedia
i I i

EXTRACT [PREFIX]: group ID (or nothing to return) > 1

EXTRACT [PREFIX]: minimum length > 1000

[EXTRACT [PREFIX]: maximum length > 5000

SAVE 1) No 2) Yes
S N,

i

EXTRACT [PREFIX]: save results >

(a) Command line interface (CLI)

[XN StarDB

Menus Parser Help (Q search Collections ©)
Query: vID |vName v Size v Length 1Al
SELECT RMOTIFS FROOM JoesDNA WHERE LEN>=5 AND 1 JoesDNA 10 3GB
LEN<=10 AND EDIT<=2 AND FREQ>500 a
2 Wikipedia 100 21KB
3 Leadlike 170 30MB
=T 4 |doesmotts |5347 |11k o
e) (C_clear_)
< C) >
Result
[iD [Name [size [iength [Aphavet [origin | C—Clear
[s [J[13381 [42k8 [aceT | RMOTIFS[1] Len(s-10] Editf2] Freq[500] ==)

Preview:

ACCGCA
ACCGCCC

Y

ACCGCCGTT
ACCGCGCTT
ACCGCGGG N

M

ACCTGTG [v]

(b) Graphical user interface (GUI)

Figure 3: Sample StarDB interface screens.

3.3.2 Literary scenario

Given the English text of Wikipedia, a librarian is curi-
ous about how writers start articles. She wants to explore
the letters that frequently appear consecutively in the pref-
aces of Wikipedia pages. In StarDB, the k-mers operation
finds symbols that appear consecutively and reports their
frequencies. To find k-mers from the beginnings of articles,
the k-mers are generated from the prefixes of the texts or are
checked to exist in a specific range. To explore, the librarian
may need to increase k-mers lengths as long as frequency is
high. Given StarDB indexing, these queries are of low work-
loads. The following StarQL query is an example of the top
20 k-mers of length 4, 8, or 16, that appear in the first 100
characters more than 200 times across the dataset.

IMPORT (SELECT PREFIXES AS p FROM wiki
WHERE p.LEN=100) AS pref;
SELECT KMERS AS k FROM pref WHERE k.LEN=4
OR k.LEN=8 OR k.LEN=16 AND COUNT (k)>200
ORDER BY COUNT(k) DESC LIMIT 20;

(6)

The first query translates to creating a new collection in
the database from the results of the prefix extractor. The
second query is run by executing the k-mers operation with
length and frequency filters to keep the top 20 results only.

4. EXPERIMENTAL EVALUATION

We compare StarDB capabilities against state-of-the-art
procedural repeated motif extractors. Table 1 below shows
that StarDB is superior in terms of machine and data scal-
ability. Although the procedural methods are specialized,
StarDB generates the same output up to 3 orders of mag-
nitude faster. For example, for a certain exact-length motif
query, FLAME runs for 4 hours while StarDB finishes seri-
ally in 1 hour and using 12 cores in 7 minutes.

Table 1: Largest reported datasets and number of
cores for repeated motif extraction.

System Dataset Size # Cores Motif Types

FLAME [4] 1.3 MB 1 Exact-length
VARUN [1] 3.1 MB 1 Maximal

PSMILE [3] 0.2 MB 4 Exact-length

StarDB [ours] 2.6 GB 16,386 Any + Supermaximal

1847

5. ACKNOWLEDGMENT

For computer time, this research used the resources of the
Supercomputing Laboratory at King Abdullah University of
Science & Technology (KAUST) in Thuwal, Saudi Arabia.

6. REFERENCES

[1] A. Apostolico, M. Comin, and L. Parida. VARUN:
discovering extensible motifs under saturation
constraints. IEEE/ACM Tran. on Computational
Biology Bioinformatics, 7(4), 2010.

J. A. Blake, C. J. Bult, et al. Beyond the data deluge:
data integration and bio-ontologies. Journal of
biomedical informatics, 39(3), 2006.

A. M. Carvalho, A. L. Oliveira, A. T. Freitas, and
M.-F. Sagot. A parallel algorithm for the extraction of
structured motifs. In Proc. of SAC, 2004.

A. Floratou, S. Tata, and J. M. Patel. Efficient and
Accurate Discovery of Patterns in Sequence Data Sets.
TKDE, 23(8), Aug. 2011.

I. Gorton and D. K. Gracio. Data-intensive
computing: architectures, algorithms, and applications.
Cambridge University Press, 2012.

D. Gustield. Algorithms on strings, trees, and
sequences: computer science and computational
biology. 1997.

A. Mathur, A. Sihag, E. Bagaria, S. Rajawat, et al. A
new perspective to data processing: Big data. In Proc.
of INDIACom.

M. Sahli, E. Mansour, T. Alturkestani, and P. Kalnis.
Automatic tuning of bag-of-tasks application. In Proc.
of ICDE, April 2015.

M. Sahli, E. Mansour, and P. Kalnis. Parallel motif
extraction from very long sequences. In Proc. of
CIKM.

M. Sahli, E. Mansour, and P. Kalnis. Acme: A
scalable parallel system for extracting frequent
patterns from a very long sequence. The VLDBJ,
23(6), Dec. 2014.

S. Tata, W. Lang, and J. M. Patel. Periscope/SQ:
Interactive exploration of biological sequence
databases. In Proc. of VLDB, 2007.

