
A Demonstration of HadoopViz: An Extensible MapReduce
System for Visualizing Big Spatial Data ∗

Ahmed Eldawy Mohamed F. Mokbel Christopher Jonathan

Department of Computer Science and Engineering, University of Minnesota, Twin Cities

{eldawy,mokbel,cjonathan}@cs.umn.edu

ABSTRACT
This demonstration presents HadoopViz; an extensible
MapReduce-based system for visualizing Big Spatial Data.
HadoopViz has two main unique features that distinguish it from
other techniques. (1) It provides an extensible interface that allows
users to visualize various types of data by defining five abstract
functions, without delving into the details of the MapReduce
algorithms. We show how it is used to create four types of
visualizations, namely,scatter plot, road network, frequency heat
map, and temperature heat map. (2) HadoopViz is capable of
generating big images with giga-pixel resolution by employing
a three-phase approach ofpartitioning, rasterize, and merging.
HadoopViz generates single and multi-level images, where the
latter allows users to zoom in/out to get more/less details.Both
types of images are generated with a very high resolution using the
extensible and scalable framework of HadoopViz.

1. INTRODUCTION
In recent years, there has been an explosion in the amounts of

spatial data produced by several devices such as smart phones [14],
satellites [10], and medical devices [5]. A major need for all these
applications is the ability to visualize such big data by generating
an image that provides a bird’s-eye data view. Visualization is a
very common tool that allows users to explore the data and quickly
spot interesting patterns which are very hard to detect otherwise.
Examples of spatial data visualization include visualizing a world
temperature heat map representing NASA satellite data [4, 12], a
scattered plot of billions of tweets worldwide, a frequencyheat
map for Twitter data showing the hot spots of generated tweets [7],
a road network for the whole world [6], or a network of brain neu-
rons [8]. With this huge amounts of data, users should be ableto
zoom in and out in the generated image to explore the data with
more details in a specific region.

∗This work is supported in part by the National Science Founda-
tion, USA, under Grants IIS-0952977 and IIS-1218168 and the
University of Minnesota Doctoral Disseration Fellowship.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment,Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

While there are several techniques that visualize spatial data [3,6,
9, 13, 16], they mainly rely on single-machine main-memory algo-
rithms that cannot handle terabytes of data. GPUs implementations
provide significant speedup [11], but are still limited by the main
memory capacity. Therefore, distributed algorithms have been pro-
posed to visualize big spatial data [4, 12, 15]. However, they suf-
fer from at least one of the two main limitations: (1) each algo-
rithm is designed for a specific type of visualization (e.g.,satellite
data [4, 12] or 3D triangles [15]), and (2) algorithms are designed
to produce small images. Hence, they do not scale up to generate
giga-pixel images that catch details of the underlying data.

This demo presents HadoopViz; an extensible MapReduce sys-
tem for visualizing big spatial data. HadoopViz is open source and
is available as a part of SpatialHadoop [1]. HadoopViz overcomes
the two limitations described above as: (1) It uses avisualiza-
tion abstractionthat abstracts the visualization process into five
functions, namely,smooth, create-raster, rasterize,
merge, andwrite, that are defined separately for each appli-
cation (e.g.,road networks, scatter plot, frequency heat map, and
satellite data). To extend HadoopViz to support one more image
type, user just needs to define these five abstract functions,which
do not require any knowledge of MapReduce or distributed pro-
gramming. (2) HadoopViz can efficiently produce giga-pixelim-
ages using a three-phase approach: Thepartitioning phase splits
the data into small partitions, therasterizephase creates partial im-
ages for these partitions, and themergingphase combines them into
the final image. The three phases are implemented using the five
abstract functions giving HadoopViz the flexibility to support vari-
ous types of visualization. We show that this technique is capable
of generating fixed-resolution single-level images as wellas high-
resolution multilevel images with up to giga pixels of resolution.

During the demonstration, we will present HadoopViz running
on a cluster of 20 nodes loaded with three datasets: (1)NASAdata
containing daily snapshots of world temperature for 15 years total-
ing 3TB of raster data, (2)Twitter dataset containing two Billion
tweets collected over two years, and (3)world road networkfrom
OpenStreetMap (OSM) with 700 Million road segments. These
datasets will be used to show four types of visualizations: (1) Tem-
perature heat mapfor NASA data where each region is colored ac-
cording to its average temperature, (2)Scatter plotof tweets where
each one is represented by a dot on a zoomable map, (3)Frequency
heat mapfor tweets where each region is colored according to the
frequency of tweets around it, and (4)Road networkvisualization
for OSM dataset. In addition to inspecting the final output, the
demonstration will allow the audience to examine theintermediate
partial images to investigate the differences between the employed
visualization algorithms. We will also walk the audience though
the steps of defining a new image type and visualizing it.

1896

(a) Not smoothed (b) Smoothed

Figure 1: Smoothing of road segments

2. VISUALIZATION ABSTRACTION
HadoopViz is an extensible framework that can support a myr-

iad of visualization procedures for various image types. The goal is
to make the designers of visualization algorithms worry free from
the scalability and detailed implementation of their algorithms.
HadoopViz already ships with modules for visualizing four im-
age types, namely, temperature heat map, scattered plot, frequency
amp, and road network. To support one more image type within
HadoopViz, one will need to define the following five abstractfunc-
tions for the new image type:

1. Smooth. This is anoptional abstract function. If defined,
it fuses input nearby records together to produce a better
looking final image. For example, when visualizing a road
network, the non-desired output in Figure 1(a) is produced
when this function is not applied. Figure 1(b) shows the de-
sired output where thesmooth function merges intersecting
road segments. In another example when visualizing satellite
data, this function is applied to estimate missing values by
interpolating nearby values [4].

2. Create-raster. This abstract function initializes a raster
layer that is used as a canvas to draw records. It takes the
desiredwidth andheight of the raster layer in pixels as in-
puts, and it outputs an initialized raster layer of the given
resolution. For example, when visualizing a road network,
this function returns an in-memoryblank image of the given
size. To visualize a frequency heat map, it returns a two-
dimensional array of integers which acts as a histogram to
count number of points in each entry.

3. Rasterize. This abstract function is called for each input
record to plot it on a raster layer. For example, when visual-
izing a road network, the Bresenham mid-point algorithm [2]
is used to draw a line on the image. When visualizing a heat
map, it updates the two-dimensional histogram based on the
point location.

4. Merge. This abstract function takes two partial raster layers
as input, and returns one raster layer representing the merg-
ing of the two input layers. This function is necessary be-
cause multiple intermediate raster layers might be covering
the same pixel in the final image. In this case, this function
computes the final value of that pixel according to a user-
defined logic. For example, if the raster layers are images,
we take the average of each color component in the two pix-
els. In case of heat maps, two entries in the histogram are
merged by adding up the corresponding values.

5. Write. This abstract function is used to write the final raster
layer (i.e., image) to the output in a standard image format.
For example, when visualizing a road network, the raster
layer is an in-memory image, hence, this function just dumps
it to disk in a standard PNG format. However, in the case of
a heat map where the raster layer is a two-dimensional his-
togram, this function first generates an in-memory image by
mapping each entry in the histogram to a color based on its
value, and then dumps it to a disk as an image.

3. ALGORITHMS
This section describes the core visualization algorithms sup-

ported by HadoopViz. These algorithms are divided into two cat-
egories based on the type of the generated image, namely,single-
level andmulti-levelvisualization algorithms. A single-level im-
age consists of one image with a fixed resolution, while a multi-
level image is generated at multiple resolutions allowing the users
to zoom into the image and see more details.

3.1 Single-Level Visualization
The input to HadoopViz single-level image visualization algo-

rithm is a data file, its minimal bounding rectangle (InMBR), and
a desiredImageSizein pixels. The output is an image of the de-
sired size. Figure 2(a) gives an architectural view of this algorithm,
which has the following three phases: (1) Thepartitioning phase
splits the input file intom partitions distributed over a set of com-
puting nodes. (2) Therasterizephase draws a partial image out of
each partitioni. First, it calls thesmooth function, if provided,
to fuse nearby records per user-defined logic. Then, it initializes a
partial raster layerRi using thecreate-raster function. Fi-
nally, it loops over the recordsr ∈ Ri and draws them on the
raster layer which is sent to the final merging phase. (3) Themerg-
ing phase assembles the partial images together and writes the fi-
nal output image. It initializes a final raster layerRf using the
create-raster function. Then, it merges all partial raster lay-
ers intoRf using themerge function. Finally, it writes the final
image to the output using thewrite function.

An important decision that affects the behavior of this algorithm
is how the first phase partitions the data. HadoopViz employsei-
ther the default non-spatial Hadoop partitioner or a spatial-aware
partitioner. There are two cases in which we apply the spatial par-
titioner. First, if asmooth function is provided by the user, then
a spatial partitioning is required to ensure that nearby records are
processed together in one partition as required by the smoothing
logic. Second, if the generated image is very large, a spatial parti-
tioning is employed to speed up the visualization process. In this
case, each partition only covers a small region of the input space,
which causes partial images to be much smaller than the full image.
This speeds up the whole algorithm as the size of intermediate data
becomes much smaller and the final merge step has less work to do.

Figures 2(b) and 2(c) illustrate the difference in the mergestep
when non-spatial and spatial partitioners are used, respectively.
When a non-spatial partitioner is used, each partition covers the
whole input space and partial images have to beoverlaidto produce
the final image (Figure 2(b)). On the other hand, when a spatial
partitioner is used, partial images are small and non-overlapping,
which means the merge step has tostitchthem together to produce
the final image 2(c).

In this demonstration, we will show that when the image is very
large, the saving in the merge step pays off the overhead of spatial
partitioning.

3.2 Multilevel Visualization
This section presents HadoopViz algorithm for generating mul-

tilevel images where users can zoom in to see more details. Fig-
ure 2(d) gives an example of a multi-level image containing 1, 4,
and 16image tilesin three zoom levels, each of a fixed default size
256× 256 pixels. Throughout this demo, we also call it apyramid
of three levels. Each tile is identified by the triple〈z, c, r〉, wherez
is the zoom level and(c, r) is its position in that level. Web maps
(e.g., Google and Bing Maps) use this technique by generating a
pyramid of 17 levels for the whole world in an offline phase, while
the web interface browses through these images.

1897

Input
create-raster

smooth rasterize

merge write

Output

smooth rasterize

smooth rasterize

create-raster

...

Partition Rasterize Merge

R1

R2

Rm

R1

Rm

Rf

(a) Single Level Visualization

R1

R2

R3

R4

Rf

(b) Overlay

R1

R2

R3 R4

Rf

(c) Stitch

z=0

z=1

z=2

256px 256px

r

c

z

(d) Multi-level Image

Figure 2: Single-level and Multi-level Visualization Algorithms

In this section, we describe two algorithms which carry out the
offline generation process efficiently by employing the MapReduce
technique. These algorithms use the same five abstract functions
defined earlier, which allow users to generate multilevel images
without any additional implementation.

3.2.1 Flat Partitioning Algorithm
The flat partitioning algorithm follows the three-phase algo-

rithm, partition, rasterize, andmerge: (1) Thepartitioning phase
uses one of the two partitioning techniques as described in the
single-level algorithm, namely, non-spatial or spatial partitioning.
(2) The rasterizephase creates one raster layerRt for each tilet
in the pyramid. Each recordr ∈ Ri is rasterized to every tilet it
overlaps. All these raster layers have to be kept in memory until
all records are rasterized. Then, these raster layers are sent to the
final mergingphase. (3) Themergingphase merges all raster lay-
ers{Rt} belonging to each tilet. This phase is necessary because
two different partitions might overlap the same pyramid tile which
means each of them would generate a partial image for that tile.

3.2.2 Pyramid Partitioning Algorithm
The flat-partitioning algorithm suffers from two main draw-

backs. First, it has a huge memory requirement as therasterize
phase has to keep all partial raster layers in memory. Second, the
merge phase might be too expensive with large pyramids as it needs
to merge each pyramid tile separately. Thepyramid partitioning
algorithm overcomes these two drawbacks by employing a multi-
level pyramid partitioning technique. In this technique, the data is
partitioned according to a pyramid structure such that records over-
lapping with each pyramid tile are grouped together in one parti-
tion. This overcomes the above limitations by: (1) saving the mem-
ory in the rasterize phase by allowing it to work on only one raster
layer at a time, and (2) completely eliminating the merge phase as
each tile is generated by exactly one machine.

This algorithm solves the two drawbacks of the flat-partitioning
algorithm, but it still suffers from two other drawbacks. First, it has
to pay an extra overhead of partitioning the input which replicates
each record to all overlapping tiles. Second, it performs poorly on
pyramid levels towards the top as each tile overlaps with toomuch
data. At one extreme, the root tile covers the whole input space and
therefore overlaps with all records in the input.

To summarize, these two algorithms complement each other in
the sense that the flat partitioning algorithm is used to generate the
top-levels of the pyramid, say levels 0-4, while the pyramidpar-
titioning algorithm generates the deeper levels. Since each tile is
stored as a separate image, there is no real need for any further
processing to merge the output of the two algorithms. This finding
is further shown in the demonstration by experimenting the per-

Datasets
Road Network

 Whole World

 Minnesota Road

 California Road

 Hawaii Road

Twitter

 Whole Tweets

 Year 2014

 Year 2013

NASA Temperature

 Whole Datasets

 2014

 2014/12

 2014/12/01

Visualization Options

 Single Level Multilevel

 Non Spatial Partitioning Spatial Partitioning Pyramid Partitioning

Width: Height: Smooth

Min Zoom: Max Zoom:

HadoopViz

 Partial Images Sample

5000 3000

Statistics
Input Size: 64.95 GB.

Running Time: 276288 ms.

Intermediate Data Size: 12.99 GB.

Number of Partitions: 16.

x

Figure 3: Web Interface

formance of both algorithms in generating different levelsof the
pyramid.

4. WEB INTERFACE
Figure 3 shows the primary web interface used during the

demonstration, while the actual computation is happening on a
backend cluster of 20 nodes running on Amazon EC2. The in-
terface contains three main sections,dataset selector, visualization
options, andgenerated image.

Thedataset selectoron the left lists down all datasets loaded in
the cluster. We use three main datasets in our demonstration: (1) A
temperature dataset which is collected by NASA satellites [10] in
a daily basis for 15 years totaling 3TB of compressedrasterdata,
(2) A twitter dataset of 2 Billion geotagged tweets collected over a
period of two years, and (3) A road network dataset for the whole
world extracted from OpenStreetMap with over 700 Million road
segments. We also provided smaller subsets of these datasets by
selecting smaller spatial and temporal ranges. This makes it eas-
ier to rerun the visualization algorithm in a short time and let the
audience watch its progress.

Once a dataset is selected, thevisualization optionspane pro-
vides users with the options available for visualizing thisdataset.
This includes the choice of the image type (i.e., single- or multi-
level), the partitioning technique (i.e., non-spatial, spatial, or pyra-
mid), the application of the smooth function, the size of thegen-
erated image for single-level, and number of levels for multilevel.
As the user clicks ‘Visualize’, the visualization process starts and
the results are shown in area at the bottom. The system also caches

1898

(a) Road network (b) Frequency heat map (c) Temperature heat map

Figure 4: Examples of generated images using HadoopViz

the results and displays them right away instead of rerunning the
visualization process. This allows the audience to quicklyreview
some preprocessed scenarios without having to wait, especially, for
very large datasets that might take a few minutes to process.

The generated imagearea at the bottom of the screen displays
the results of the generation process. If the selected imagehas been
previously generated, the interface show cached results, otherwise,
the visualization process is started and the results are shown after-
wards. Upon completion of the visualization algorithm, thegener-
ated imagearea displays the generated image along with the total
processing time for that image and the amount of intermediate data
(i.e., partial images) in bytes. This gives users an insightof the per-
formance of different partitioning techniques. In addition, users can
ask to preview the intermediate partial images which helps with a
better understanding of how the different algorithms work and how
themergingphase differs in these algorithms.

5. DEMONSTRATION SCENARIO
During the demonstration, the attendees will be able to under-

stand three key components in HadoopViz, the visualizationab-
straction, and the performance of both single-level and multilevel
visualization algorithms.

To show the flexibility of HadoopViz, the attendees will gener-
ate the four types of images for medium-sized datasets and show
that they all run using the same underlying MapReduce program.
Figure 4 gives an example of visualizing the road network, tweets
as a frequency map, and satellite data as a temperature heat map.
In addition, the audience can browse the source code of the five
abstract functions for each case study to observe the simplicity and
expressiveness of the abstract interface. For each case study, we
show that the overall source code of the five functions is lessthan
100 lines-of-code.

To show the performance of the single-level algorithm, attendees
will run it with all combinations of small/large images and non-
spatial/spatial partitioning, with a total of four runs. Attendees will
be able to see from the running times that non-spatial partitioning
is more efficient for a small image, while the spatial partitioning is
more suitable for a large image. This confirms what we have de-
scribed earlier in Section 3.1. To better understand this behavior,
attendees will be able to see the partial images generated ineach
case along with the total size of intermediate data. In the case of
a small image, non-spatial partitioning produces very small data,
making it more efficient than spatial partitioning as the partition-
ing step is simpler. With large images, spatial partitioning pays an
overhead for spatially partitioning the data but it pays offwith the
huge reduction in the amounts of intermediate data.

The performance of the multilevel visualization algorithmwill
be shown by running the visualization process four times using the
two partitioning techniques, i.e., flat and pyramid partitioning; each

of them runs twice to generate levels 0-4 and 5-10. Similar tothe
single-level algorithm, we show that flat-partitioning is more effi-
cient when it comes to generating the top of the pyramid, while
pyramid-partitioning works the best with the deeper levelsof the
pyramid. Showing the size of intermediate data in cases willclearly
explain this behavior where the size of intermediate data explodes
with flat-partitioning while it increases only gradually with pyra-
mid partitioning. In addition, the audience will be able to see sep-
arate times for therasterizeand mergingphases and observe the
huge saving when eliminating the merge phase in pyramid parti-
tioning.

6. REFERENCES
[1] http://spatialhadoop.cs.umn.edu/.
[2] J. E. Bresenham. Algorithm for Computer Control of a Digital

Plotter.IBM Systems journal, 4(1):25–30, 1965.
[3] I. F. Cruz, V. R. Ganesh, C. Caletti, and P. Reddy. GIVA: a semantic

framework for geospatial and temporal data integration,
visualization, and analytics. InSIGSPATIAL, pages 534–537, 2013.

[4] A. Eldawy. et al, SHAHED: A MapReduce-based System for
Querying and Visualizing Spatio-temporal Satellite Data.In ICDE,
pages 1585–1596, 2015.

[5] European XFEL: The Data Challenge, 2012.
http://www.eiroforum.org/activities/
scientific_highlights/201209_XFEL/index.html.

[6] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout,
M. Ouzzani, W. S. Cleveland, S. J. Grannis, and D. S. Ebert. A
Visual Analytics Approach to Understanding Spatiotemporal
Hotspots.IEEE Transactions on Visualization and Computer
Graphics, 16(2):205–220, March 2010.

[7] MapD Twitter Demo.
http://mapd.csail.mit.edu/tweetmap-desktop/.

[8] H. Markram. The Blue Brain Project.Nature Reviews Neuroscience,
7(2):153–160, 2006.

[9] A. Middel. A Framework for Visualizing Multivariate Geodata. In
Visualization of Large and Unstructured Data Sets, pages 13–22,
2007.

[10] Land Process Distributed Active Archive Center, 2015.
https://lpdaac.usgs.gov/about.

[11] Todd Mostak. An Overview of MapD (Massively Parallel Database).
Harvard Technical Report.http://geops.cga.harvard.
edu/docs/mapd_overview.pdf.

[12] G. Planthaber, M. Stonebraker, and J. Frew. EarthDB: Scalable
Analysis of MODIS Data using SciDB. InBIGSPATIAL, pages
11–19, 2012.

[13] J. Song, R. Frank, P. L. Brantingham, and J. LeBeau. Visualizing the
spatial movement patterns of offenders. InSIGSPATIAL, pages
554–557, 2012.

[14] Twitter. The About webpage.
https://about.twitter.com/company.

[15] H. T. Vo. et al, Parallel Visualization on Large Clusters using
MapReduce. InLDAV, pages 81–88, 2011.

[16] E. Wu, L. Battle, and S. R. Madden. The case for data visualization
management systems.PVLDB, 7(10):903–906, 2014.

1899

