
TreeScope: Finding Structural Anomalies In
Semi-Structured Data

Shanshan Ying
Advanced Digital Sciences Center

shanshan.y@adsc.com.sg

Flip Korn
Google Research
flip@google.com

Barna Saha
University of Massachusetts Amherst

barna@cs.umass.edu

Divesh Srivastava
AT&T Labs–Research

divesh@research.att.com

ABSTRACT
Semi-structured data are prevalent on the web, with formats such as
XML and JSON soaring in popularity due to their generality, flex-
ibility and easy customization. However, these very same features
make semi-structured data prone to a range of data quality errors,
from errors in content to errors in structure. While the former has
been well studied, little attention has been paid to structural errors.

In this demonstration, we present TREESCOPE, which analyzes
semi-structured data sets with the goal of automatically identifying
structural anomalies from the data. Our techniques learn robust
structural models that have high support, to identify potential errors
in the structure. Identified structural anomalies are then concisely
summarized to provide plausible explanations of the potential er-
rors. The goal of this demonstration is to enable an interactive ex-
ploration of the process of identifying and summarizing structural
anomalies in semi-structured data sets.

1. INTRODUCTION
Semi-structured data are prevalent on the web and in NoSQL

document databases, with formats such as XML (eXtensible Markup
Language) and JSON (JavaScript Object Notation) soaring in pop-
ularity due to their generality, flexibility and easy customization.
However, these benefits come at the cost of being prone to a range
of data quality errors, from errors in content to errors in structure.
Errors in content have been well studied in the literature [1, 3],
while very little attention has been paid to errors in structure, with
most of it focusing on well-formedness and validity [6]. This is
based on the assumption that once data are valid according to the
specified schema (DTD or XSD for XML data, JSON Schema for
JSON data), there can be no errors in their structure. We have found
this assumption to often be incorrect.

In our work we observe that DTD/XSD specifications for hetero-
geneous XML data sets tend to be quite liberal, allowing semanti-
cally incorrect (though syntactically valid) data to creep into the
data sets. The existence of such errors can lead to incorrect results
on queries [9], and even worse result in poor data-driven decisions.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

We present illustrative examples of such errors in the well-known
and widely-used DBLP Computer Science bibliography data set.

EXAMPLE 1. The tree rooted at dblp in Figure 1 represents
a fragment of the DBLP data set. Each non-leaf node in the tree
under dblp corresponds to an element and each leaf node corre-
sponds to text value in the dataset. Six publication instances are
presented: three inproceedings conference papers, one jour-
nal article, a www publication, and a conference proceedings.

All nodes in red are examples of semantically incorrect but syn-
tactically correct data. For example, the first inproceedings
is a conference paper (by Maleki and Mohades), and has a spuri-
ous number element (which is meaningful for journal papers, but
not for conference papers); the third inproceedings confer-
ence paper (by Kasi) has two crossref elements with the same
text value, one of which is redundant; the journal article (by
Johansson and Johansson) and the www publication (by Tschira)
use editor tags incorrectly instead of author tags.

DBLP has a DTD which requires each publication be one of
the eight types (article, book, etc.), enumerates the valid con-
tained elements to be one of author, editor, and so on, but im-
poses no additional restrictions, making it a very liberal DTD. As
a result, many structural errors exist in DBLP despite being valid
according to the DTD [7].

Liberal schemas tend to be specified for two reasons. First, spec-
ifying precise schemas that can identify all kinds of errors in struc-
ture is a difficult task, even for a domain as well understood as
DBLP bibliographic data; second, attempting to specify precise
schemas is likely to make the schema overly complex and possibly
conservative, making it more likely to reject semantically correct
data as invalid, which is quite undesirable as well.

In this work, we present TREESCOPE, which incorporates novel
techniques to analyze semi-structured data sets with the goal of au-
tomatically identifying potential structural errors in the data. A key
insight is that it is not necessary to learn precise schema to identify
structural errors. Rather, it is sufficient to learn robust structural
models of subsets of the semi-structured data with high support,
and identify structural anomalies as violations of the learned mod-
els. A structural model M is a triple 〈c, t, f〉, where c is a context
path expression, t is a target tag, and f is the expected frequency
(e.g., OneOrMore, Zero, AtMostOne) of the number of occurrences
of target tag t (e.g., editor, number) in each of the elements e in
the result Ec (e.g., a subset of inproceedingss) of evaluating
the context path expression c (e.g. /dblp/inproceedings).

TREESCOPE learns robust structural models through a controlled
exploration of the lattice structure of context path expressions that

1904

editor

Bartlett

proceedings

editor
title

Pereira

Advances in Neural
Information Processing..

booktitle

NIPS

dblp

inproceedings
author
author

titleMaleki

Mohades

number

A CA Randomizers Based on
parallel CAs with Balanced Rules

booktitle

ICCS
1

crossref

conf/iccS/20
10

inproceedings

author
title

Alexe

On the adaptive solution of space-
time inverse problems with…

booktitle

ICCS

crossref

conf/iccS/20
11

inproceedings

author

title
Kasi

High Performance and Availability…

booktitle

SIGMOD
crossref

conf/sigmod/92

crossref

conf/sigmod/92

www

editor title
Tschira

Klaus Tschira Stiftung
gemeinnützige GmbH

article
editoreditor

title
S.Johansson

J.Johansson

Interactive Dimensionality
Reduction..

journal

IEEE Trans. Vis.
Comput. Graph

volume

15

number

6

Figure 1: Examples from DBLP

have high support, computing frequency distributions of candidate
target tags, and finding those structural models that exhibit a sig-
nificant skew in their frequency distributions. Structural anomalies
are then identified as elements satisfying the context path expres-
sion of the learned robust structural model, whose frequency of a
target tag is an outlier (i.e., has few occurrences in the skewed fre-
quency distribution) compared to the expected frequency. Context
path expressions can be more complex than simple path expres-
sions, taking advantage of predicates and wild cards.

EXAMPLE 2. Consider the model with a simple path as its con-
text: M1 = 〈/dblp/inproceedings,number, Zero〉. The
model M1 says that each inproceedings should have 0 occur-
rence of the number element. In Figure 1, the second and the third
inproceedingss satisfy M1, while the first inproceedings
(by Maleki and Mohades) violates it. And such an element can be
identified as a structural anomaly with respect to M1.

Since the number of structural anomalies in big semi-structured
data sets (such as DBLP) can easily be in the thousands (if not
more), enumerating all the structural anomalies one by one is not
necessarily the best way to present the results. Hence, TREESCOPE
uses summarization techniques based on greedy weighted set cover
heuristics to concisely summarize the structural anomalies for pre-
sentation to experts, who can then distinguish true structural errors
from structurally rare, but semantically correct data.

In our demonstration, VLDB conference attendees will be pre-
sented with the robust structural models and structural anomalies
learned by TREESCOPE from the widely-used DBLP and Mondial
data sets. They can interactively explore the process of identifying,
explaining and summarizing structural anomalies in these data sets,
using the TREESCOPE tool that we developed for this purpose.

2. TREESCOPE SYSTEM ARCHITECTURE
The TREESCOPE system integrates a visualization frontend with

algorithmic backend components; the system architecture is shown
in Figure 2, and we will discuss each component in more detail.

Visualize Results

Anomaly Summarization

Anomaly Detection

Frontend

Backend

XML Database

Figure 2: TREESCOPE System Architecture

2.1 Backend Components
There are two components in the backend, one for anomaly de-

tection and the other for anomaly summarization. We first intro-
duce the Anomaly Detection component, which systematically gen-
erates a search space to explore candidate structural models and
identifies structural anomalies, and then describe the Anomaly Sum-
marization component.

2.1.1 Structural Anomaly Detection
Context Path Expressions
The first step for exploring structural models is to generate the
space of context path expressions. In standard XPath, each path
expression consists of a list of steps s1s2 · · · sm, where si =
axisname::nodetest[predicate]. For simplicity we use
a restricted version of XPath where axisname is limited to child
and the context path expression has at most one wild card (∗).
Computing Frequency Distributions
TREESCOPE learns a structural model by computing the frequency
distribution F of the number of occurrences of the target tag t in
the elements in Ec, grouped into three buckets: f0(f1, f2, resp.)
counts the number of elements in Ec that have zero (one, two or
more, resp.) occurrences of target tag t. This choice of bucketing
is based on the cardinality quantifiers widely used in DTDs. If only
one of the buckets has a non-zero count, the frequency distribution
is called consistent. If some frequency fi in any of the buckets is
smaller than an α fraction of the total frequency count inF , thenF
is called α-skewed. The expected frequency of a robust structural
model is determined from α-skewed frequency distributions, for a
smallα ∈ (0, 1). For example, if only f0 isα-skewed, the expected
frequency is OneOrMore.
Generating Lattices
We generate a directed, acyclic search graph G consisting of pos-
sible context path expressions as graph vertices.1 For each target
tag t, we select a subgraph Gt of G to explore, and compute the
frequency distribution F for t given each context path expression
c ∈ Gt – this generates the space of candidate structural models
for t, and we repeat this process for every tag.

We seed the graph with a vertex (i.e., a context path expression
c) that selects only the root node of the XML data tree; in DBLP
this is /dblp. We create new graph vertices v′ by modifying c =
s1s2[p2] · · · sm[pm] of an existing vertex v in one of the following
three ways:

Horizontal Expansion: add a directed “horizontal” edge from v
to v′ such that the context path expression c′ of v′ is obtained from
c by (i) specializing the wild card in child::* in a nodetest
of c by an element name elemName, or (ii) adding or conjoining
1We use vertices to refer to the search graph, to distinguish them
from nodes that are used to refer to the XML data tree.

1905

an atomic predicate of the form child::* (if c does not already
contain a wild card), child::elemName or the negated predi-
cate not(child::elemName) to c.

Horizontal Shrinkage: add a directed “horizontal” edge from v′

to v such that the context path expression c′ of v′ is obtained from c
by (i) generalizing the element name in child::elemName in a
nodetest of c by the wild card (*), if c does not already contain
a wild card, or (ii) removing an atomic predicate from c.

Vertical Expansion: add a directed “vertical” edge from v to
v′ such that the context path expression c′ of v′ is obtained from
c by appending a new step child::* to c, if c does not already
contain a wild card.

Note that each component of the subgraph induced by only the
horizontal edges (i.e., horizontal expansion and horizontal shrink-
age) is a lattice. Further, if there is a directed edge from v to v′

in a lattice, the set of elements Ec′ in the result of evaluating the
context path expression c′ of v′ is a subset of the set of elements
Ec in the result of evaluating v’s context path expression c.

Pruning the Search Space
The above search graph generation process terminates when all dis-
tinct context path expressions (in the restricted XPath language)
have been generated. To speed up, TREESCOPE stops expanding
the structural model when either it is consistent or is has insuffi-
cient support(|Ec| ≤ θ), as a consistent model will never lead to
any anomalies and a lowly supported model is not robust enough.

Structural Anomaly Identification
The structural anomalies for different target tags can obviously be
different. For this reason, TREESCOPE identifies structural anoma-
lies for each target tag t, and for each lattice in Gt. Given a lattice,
vertices that have no outgoing horizontal edges are referred to as
leaves.2 TREESCOPE identifies structural anomalies based only on
the structural models corresponding to the leaves of the lattices,
since these are the most specific robust structural models learned.

2.1.2 Structural Anomaly Summarization
Each robust structural model can give rise to a set of structural

anomalies. However enumerating all structural anomalies is not
necessarily the best way to present results, as the number of anoma-
lies could be in thousands. Hence, TREESCOPE summarizes the
structural anomalies before presenting them to an expert. The sum-
marization is done separately for each target tag t, and for each
lattice in Gt. The summarization problem hence is modeled as a
weighted set cover problem to cover all the structural anomalies
using a minimal number of structural models. This can be solved
using the standard greedy weighted set cover heuristic, which itera-
tively favors sets with the highest value of marginal benefit per unit
cost.

2.2 Frontend Visualization
The frontend visualization is designed to help users understand

and interactively explore the lattices. Users will first be presented
with a list of structural anomalies, as shown in Figure 3. Each row
in the list consists of: 1) context path expression c and tag t of the
structural model; 2) expected frequency f ; this serves as the ex-
planation for the structural anomalies; 3) the number of structural
anomalies w.r.t the structural model. For example, the first row in-
dicates 388 structural anomalies for inproceedings with child
pages, without any author elements, as the expected frequency
of authors is OneOrMore.

For the users who want to dig deeper, TREESCOPE will present
the lattice structure, as shown in Figure 4, where 4) the left panel

2Note that such leaves may have outgoing vertical edges.

/dblp/inproceedings[child::pages] author OneOrMore 388

/dblp/inproceedings number Zero 363
/dblp/article[not(cdrom)] cite Zero 3691 2 3

Figure 3: Summary of Structural Anomalies

shows the distribution under selected context path expression c and
5) the right panel shows the circular layout for lattice, where each
vertex is colored according to its expected frequency: blue(Zero),
yellow(One), red(OneOrMore), etc. The more colorful a lattice
is, the more heterogeneous the set of expected frequencies is.

Figure 4: Detailed View of Lattice

Further the users can gain more insights by using any of the wid-
gets: 1) Show Detail: retrieve sample data in different frequency
buckets; 2) Parameters Slider: by adjusting the α and θ slider bars,
the users can check the difference in anomalies detected; 3) Zoom
in/out: the user can tune vertical slide bar for a more clear view, if
she is only interested in a small portion of it.

3. DEMONSTRATION DESCRIPTION

3.1 Effectiveness Study
We design a baseline where the context path expression in the

structural model is restricted to a single step, and neither predicate
nor wild card is used. The experiment is performed against two
datasets: the DBLP data published in 2013 and the Mondial data
published in 2009. The former is flat in structure but large in size,
while the latter is deep in structure but small in size. We evaluate
for each dataset the anomalies detected by both algorithms, and
take the union of the true positives as the ground truth. Then we
compute the precision and recall of the two algorithms, as shown
in Table 1.

Table 1: Comparison with Baseline

DBLP Mondial
Baseline TreeScope Baseline TreeScope

precision(%) 88 81 52 76
recall(%) 64 100 51 100
#anomaly 5,255 9,006 149 199

For the DBLP2013 dataset, we set θ = 10, 000 and α = 0.1%,
and for the Mondial 2009 dataset, we set θ = 150 and α = 5%.
We mark in total 7230 and 151 anomalies as true errors in DBLP
and Mondial respectively. From Table 1 we can see that, in both

1906

datasets, TREESCOPE detects more true anomalies, and has a higher
recall. But TREESCOPE looses a little in precision on DBLP dataset,
since TREESCOPE detects more anomalies on cdrom and note,
which are assumed as rarity rather than true errors here.

Users can try to play with different threshold settings to get a
more ideal result. When the thresholds θ and α vary, the list of
anomalies detected changes. To achieve a relatively better result,
the user can tune the frequency threshold θ and skew threshold α
through the slider bars. A larger θ reduces the number of vertices
in the lattice, while a larger α may result in a larger portion of
elements identified as anomalies. If the user is satisfied with the
default setting, but wants to see more potential anomalies, she may
lower the θ value and increase the α value. On the other hand,
if many anomalies reported are actually false positives, the user
should try a smaller α for a more restricted skewness condition and
increase θ to filter out less frequent elements.

3.2 Demo Walkthrough
The TREESCOPE system is deployed on our server. 3 In the

demonstration, users may explore the structural anomalies from
both DBLP and Mondial datasets.

/dblp/inproceedings number 363Zero

/dblp/inproceedings[child::pages] author OneOrMore 388

/dblp/article[not(cdrom)] cite Zero 369

1317158 363 0
0

200
400
600
800
1000

Group 0 Group 1 Group 2+

/dblp/article journal One 228

Figure 5: Frequency Distribution and Sample Data

Users may click the blue “Distribution” icon to see the frequency
distribution, to find whether it is skewed, and in which way. There
are three frequency groups, zero (Group 0), one (Group 1), and
more than one (Group 2+) in the chart, with y-axis as the num-
ber of elements in each group. This would help the user to verify
whether the expected frequency in the model makes sense. In this
example, the user will find that only 363 elements are from Group
1. By comparing this number with the large number of (more than
1 million) elements that fall in Group 0, she may believe that the
363 elements are worthy of subsequent verification. To understand
what the anomalies exactly are, samples from different groups will
be retrieved by clicking the green “Information” icon. At most
10 elements will be fetched in each group. In this example, the
user will see some papers published in ICCS 2010 in Group 1, and
will judge whether conference papers as they are should have the
number element.

Recall that we apply a greedy algorithm for summarization. To
find out how well the summarization algorithm works, for each lat-
tice, the user can use the highlight button (below the vertical zoom
in/out bar) to show the coverage of each lattice vertex. All vertices
picked by the summarization algorithm are in black. By clicking

3http://42.61.39.87/TreeScope/

on any of the vertices, all reachable vertices from the clicked one
will be connected with edges. For instance, Figure 4 shows a lat-
tice with number as the target tag, and 4 vertices in red circles are
picked by the summarization algorithm. Once a vertex is clicked,
we will see its original color (blue), meaning that its expected fre-
quency is zero. By following the edges we can trace how many
blue vertices in the leaf layer are covered. Therefore users will see
clearly the coverage of each vertex, and see if there are any inter-
esting vertices missing from the summarization.

TREESCOPE also permits predicates and a wild card in the con-
text path expression. The user can find the difference in generated
lattices and detected anomalies by switching on/off the predicate
and wild card functions from our visualization tool, and comparing
them side by side. Due to limited space, we will not present details
in this work.

4. RELATED WORK
Recently several approaches have been proposed for scheme in-

ference on XML documents. XTRACT [5, 4] generates a set of
candidate regular expressions from each element. The most con-
cise one is selected as the best answer. [8] uses multiple approaches
to generate probabilistic string automata representing regular ex-
pressions, by application of inductive inference theory. Geert et
al [2] propose to infer a concise DTD from the XML data. But all
these works assume the training data to be not only correct but also
fairly comprehensive. As a consequence, this approach is also not
practically viable for automatically identifying structural errors in
semi-structured data.

5. CONCLUSION
In this demonstration, we present TREESCOPE, which analyzes

semi-structured data sets with the goal of automatically identifying
structural anomalies from the data, by learning robust structural
models through a controlled exploration of the lattice structure. An
interesting interactive online visualization tool is designed to help
users explore the process of identifying and summarizing structural
anomalies. Anomalies from real datasets, such as DBLP and Mon-
dial, are available online for users to play with.

6. REFERENCES
[1] C. Batini and M. Scannapieco. Data Quality: Concepts,

Methodologies and Techniques. Data-Centric Systems and
Applications. Springer, 2006.

[2] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of
Concise DTDs from XML Data. In VLDB, pages 115–126, 2006.

[3] W. Fan and F. Geerts. Foundations of Data Quality Management.
Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[4] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
XTRACT: A System for Extracting Document Type Descriptors from
XML Documents. In SIGMOD, pages 165–176, 2000.

[5] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim.
DTD Inference From XML Documents: The XTRACT Approach.
IEEE Data Eng. Bull, pages 19–25, 2003.

[6] S. Grijzenhout and M. Marx. The Quality of the XML Web. In CIKM,
pages 1719–1724, 2011.

[7] M. Ley. DBLP - Some Lessons Learned. PVLDB, 2(2):1493–1500,
2009.

[8] J. Sankey and R. K. Wong. Structural Inference for Semistructured
Data. In CIKM, pages 159–166, 2001.

[9] B. Q. Truong, S. S. Bhowmick, C. E. Dyreson, and A. Sun.
MESSIAH: Missing Element-conscious SLCA Nodes Search in XML
Data. In SIGMOD, pages 37–48, 2013.

1907

http://42.61.39.87/TreeScope/

	Introduction
	TreeScope System Architecture
	Backend Components
	Structural Anomaly Detection
	Structural Anomaly Summarization

	Frontend Visualization

	Demonstration Description
	Effectiveness Study
	Demo Walkthrough

	Related Work
	Conclusion
	References

