RINSE: Interactive Data Series Exploration with ADS+

Kostas Zoumpatianos

University of Trento
zoumpatianos@disi.unitn.it

ABSTRACT

Numerous applications continuously produce big amounts
of data series, and in several time critical scenarios analysts
need to be able to query these data as soon as they be-
come available. An adaptive index data structure, ADS+,
which is specifically tailored to solve the problem of index-
ing and querying very large data series collections has been
recently proposed as a solution to this problem. The main
idea is that instead of building the complete index over the
complete data set up-front and querying only later, we inter-
actively and adaptively build parts of the index, only for the
parts of the data on which the users pose queries. The net
effect is that instead of waiting for extended periods of time
for the index creation, users can immediately start exploring
the data series. In this work, we present a demonstration of
ADS+; we introduce RINSE, a system that allows users to
experience the benefits of the ADS+ adaptive index through
an intuitive web interface. Users can explore large datasets
and find patterns of interest, using nearest neighbor search.
They can draw queries (data series) using a mouse, or touch
screen, or they can select from a predefined list of data se-
ries. RINSE can scale to large data sizes, while drastically
reducing the data to query delay: by the time state-of-the-
art indexing techniques finish indexing 1 billion data series
(and before answering even a single query), adaptive data
series indexing can already answer 3 % 10° queries.

1. INTRODUCTION

Big Data Series. The need for accessing, exploring and
analyzing large collections of data series concerns a big num-
ber of diverse domains, affecting both science and industry.
Formally, a data series D = (eq,...,en) is defined as a se-
quence of elements e; = (vi, p;), where each element consists
of a value v; and a position p; that implies its ordering. Such
domains include meteorology (e.g., temperature), chemistry
(e.g., mass spectroscopy), finance (e.g., stock quotes), smart
cities (e.g., road traffic), marketing (e.g., opinion evolution),
and others. These data have to be analyzed, in order to
identify patterns, gain insights, detect abnormalities, and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.

Proceedings of the VLDB Endowment, Vol. 8, No. 12

Copyright 2015 VLDB Endowment 2150-8097/15/08.

Stratos Idreos

Harvard University
stratos@seas.harvard.edu

Themis Palpanas

Paris Descartes University
themis@mi.parisdescartes.fr

Query

Frontend

Adaptive Split

3 Leaf Data]
Loading

. Raw fil
Result awtle

Figure 1: Interactive Data Series Exploration

extract useful knowledge. In order to perform such complex
data mining tasks, there is a need of efficiently processing
similarity queries, such as range and nearest neighbor search.
In addition, analysts and scientists need to explore the
data by firing sets of exploratory queries, which are not
known a priori [12]. In such cases, performing tuning and
initialization actions up-front suffers from the lack of knowl-
edge about which data parts are of interest, e.g., [9, 10].
Data Series Indexing. To enable this kind of analysis
though, query answering times have to be kept at an inter-
active speed. A common approach for optimizing similarity
search queries using a distance measure e.g., Dynamic Time
Warping and Euclidean Distance, is to perform a dimension-
ality reduction technique such as Discrete Fourier Trans-
forms (DFT) [1], Discrete Wavelet Transforms (DWT) [5],
Piecewise Aggregate Approzimation (PAA) [13], or Symbolic
Aggregate approXimation (SAX) [14] and use this represen-
tation for indexing using various spatial [6, 2] or specialized
indexes, such as the iISAX family [15, 3, 4] and DS-Tree [16].
Problem Definition. The problem with such methods,
is that they take hours or even days to be built. This can
be a show-stopper for many applications that either require
immediate access to the data or the amount of exploratory
queries does not justify the cost that has to be paid upfront.
Adaptive Data Series Indexing. In this work, we
study the data to query time bottleneck and the index cre-
ation bottleneck for interactive exploration of very large
collections of data series. We present a demonstration of
Adaptive Data Series index (ADS+) [17], the first adap-
tive indexing method for data series. ADS+ minimizes the
index creation time allowing users to query the data soon
after its generation and several times faster compared to
state-of-the-art indexing approaches. ADS+ is based on

1912

ﬂ/lain Memory
—
. — / ’/

L

\

C (libevent) NodeJS

Web Middleware

-
/

TCP Socket

Backend

~<_ Replies _w

ADS+ Server

TCP Socket | Events

b

HTMLS5/JS/Socket.I0

Socket.lO

Network

Telnet

SAX__iSAX

N PARTIAL
el
b AX

rd Disk

Qard Disk

iSAX_iSA

. Adaptively Split Region Msms/

PARTIAL m
- ———— |

=8

Command Line

Raw Data Series
Raw Data Series

Frontend

Raw Data Series
Raw Data Series
Raw Data Series

a

Web Frontend

Qa

Figure 2: ADS- initial state

iSAX 2.0 [3], where each data series is represented by words
of multi-resolution characters (depicted as binary words in
Figures 2 and 3). As more queries are posed, the index is
continuously refined and subsequent queries enjoy even bet-
ter execution times. ADS+ has been shown to work well for
high-dimensional data series [17].

ADS+ introduces several novel techniques for adaptive
data series indexing such as creating only a partial tree
structure deep enough to not penalize the first queries with
a lot of splits, and filling it on demand, as well as adapt-
ing leaf sizes on-the-fly and with varying leaf sizes across
the index. During indexing, ADS+ performs only a few ba-
sic steps, mainly creating the basic skeleton of a tree, which
contains condensed information on the input data series. Its
leaves do not contain any raw data series and remain unma-
terialized until relevant queries come. When queries arrive,
ADS+ fetches data series from the raw data and moves only
those data series inside the index. In addition, ADS+ does
not require a fixed leaf size; it dynamically and adaptively
adjusts the leaf size in hot areas of the index; all leaves start
with a reasonably big size to guarantee fast indexing times
but the more a given area is queried, the more the respec-
tive leaves are split into smaller ones to enhance query times.
The net effect is that users do not have to wait for extended
periods of time before getting access to the data: in our ex-
periments with 1 billion data series, ADS+ allows users to
answer several hundreds of thousands of queries, while the
state-of-the art indexing approaches are still in the indexing
phase [17]. Adaptive indexing was originally introduced in
the context of column-store databases [11, 7, 8]. We share
the main intuition: instead of building database indexes up-
front, indexes are built during query processing, adapting to
the workload. However, contrary to indexing relational data
where a global ordering can be imposed, i.e., incrementally
creating a range index, in the case of data series similarity
search, global orderings do not exist.

Interactive Data Series Exploration. We describe
the RINSE system (a recursive acronym: RINSE Interac-
tive Series Explorer), which is built around ADS+. RINSE
provides a user interface that manifests the benefits of adap-
tive indexing for interactive exploration of large data series
collections. The exploration process can be seen in Figure 1.
Users can explore large multi-gigabyte datasets in seconds,
pose exact or approximate similarity queries by drawing
data series using the mouse or touch screen and issue ran-

Figure 3: ADS+ adaptive split

1913

Figure 4: RINSE Architecture

dom queries on the click of a button. These queries guide
the ADS+ index that lies inside RINSE to perform adap-
tive operations. Users can experience how the index adapts
by looking at statistics that are updated on the fly. Addi-
tionally, they can compare query answering times, memory
footprint, etc. across different access methods, such as a
simple scan or the use of a complete (non adaptive) index.
Finally, they can also experience the differences in terms
of data-to-query time by building either a complete or an
adaptive index. Users can pose queries using their mouse
(or touch screen) or select them from other data collections.

The rest of the paper is organized as follows. In Section
2 we briefly describe how ADS+ works, in Section 3 we de-
scribe RINSE and the demonstration scenarios, and finally,
in Section 4 we give a short summary of this work.

2. THE ADAPTIVE DATA SERIES INDEX

The ADS+ Index. In order to increase the exploration
ability we need to decrease the data to query time. That
is, we need to decrease the amount of time needed until
a user can access and query new data with good response
time. The main bottleneck is the index construction over-
head. Our results in [17] show that a big part of these read
and write costs is due to reading the raw data series from
disk and to writing the leaves of the index tree back to disk
(after insertions). ADS+ attacks the index construction bot-
tleneck by shifting the construction of the leaf nodes of the
index (the only nodes that can carry raw values for the data
series, and have to be stored on disk) to query time.

ADS+ Index Creation. The index creation phase takes
place before queries can be processed but it is kept very
lightweight. ADS+ builds a minimal tree during this phase,
which can be seen in Figure 2. The tree contains only iSAX
representations, which are sufficient to build the index tree.
The actual data series are only necessary during query time,
i.e., in order to give a correct answer. In addition, not all
data series are needed to answer a particular set of queries.
In this way, ADS+ first creates all necessary iSAX repre-
sentations (with a full scan on the raw file) and builds the
index tree without inserting any data series. For data series
we also record its offset in the raw data file so future queries
can easily retrieve the raw values. ADS+ improves locality
when inserting data using buffering.

Querying and Refining ADS+. When a query arrives
(in the form of a data series), it is first converted to an iISAX

-’\%}'Z WSIE

P Load

\ ADS+ ~ SeralScan ~ ISAX2.0 Exact Search > Random B

@ Explore
= Browse
Insert

WlLog

E HARVARD - Il sAhs bescanres

=R UNVERSITY
T OF TRENTO - oty

< Re-run

[Dataset J randomwalk.bin | sizo J s77wo |

© Info S Copy

Query I Answer ADS+ Details

RAM Usage

40
30
20
10

\

L

YL S Copy W Paste

Hard Disk Usage
200
lmc \

Exact Query Answering Time

Data Indexed

390000
380000
370000
360000
350000
Approximate Query Answering Time
40000

30000
20000
10000

Figure 5: RINSE in action

representation. Then, the index tree is traversed searching
for a leaf with an iSAX representation similar to that of the
query. In the case that the leaf node where the search ends
is in PARTTAL mode (as seen in Figure 2), i.e., it contains
only iSAX representations but not any data series, then all
missing data series are fetched from the raw file. At this
point the leaf data is fully materialized and future queries
that need to access the data series can find them in this
leaf. The real distance from the query using the raw data
is calculated. The minimum distance found in the leaf can
be used as an approximate answer. If we need an exact
answer, the process is repeated for the next most promising
node until we can’t improve our answer any more. To prune
the search space, we use the minimum distance bounding
function of iSAX, described in [15].

Adaptive Leaf Size. During index construction split
operations are expensive as they cause data transfer to and
from disk (to update node data). The main parameter that
affects split costs is the leaf size, i.e., a tree with a big leaf
size has a smaller number of nodes overall, causing less splits.
Thus, a big leaf size reduces index creation time. However,
when reaching a big leaf during a search, we have to scan
more data series than with a small leaf. State-of-the-art in-
dexes rely on a fixed leaf size which needs to be set upfront.
To further optimize the data to query time, we introduce
a more transparent initialization step. ADS+ uses two dif-
ferent leaf sizes: a big build-time leaf size for optimal index
construction, and a small query-time leaf size for optimal ac-
cess costs. Intuitively the effect is that when a target leaf is
accessed during query answering, it is split until it becomes
small enough, while all leaves created due to split actions
but are not needed for this query are then left untouched.
If and only if the workload shifts and future queries need to
query those leaves, then ADS+ automatically splits those
leaves even further to reach a leaf size that gives good query
processing times (see Figure 3).

3. RINSE DEMONSTRATION

We now describe RINSE, and the demonstration scenar-
ios that showcase the functionality and benefits of adaptive
indexing via the ADS+ index.

1914

3.1 The RINSE System

The overall 3-tiered architecture of the RINSE demonstra-
tion system can be seen in Figure 4. More information can
be found on the ADS+/RINSE website'.

Basic Infrastructure. We developed ADS+ in C and
compiled it using GCC 4.6.3 as a shared library (libads). We
additionally created a TCP server, using libevent, to expose
its functionality as a network service. This is seen as the
ADS+ Server in Figure 4. In addition, we created language
bindings for libads for the NodeJS JavaScript runtime envi-
ronment. Users connect to the ADS+ Server using a telnet
client or a web interface. The RINSE web interface is de-
veloped as a single page application in HTML5, JavaScript
and CSS. It connects to a NodeJS middleware using the
Socket.IO library. The middleware has an always active
connection to the ADS+ Server. The HTMLS5 client listens
for user events which are pushed to the middleware. The
middleware then pushes results back to the client in a real-
time event-based mode. This allows for an intuitive and re-
sponsive experience where users can draw queries on screen
using the mouse (or a touch interface), and see the results
appear on screen in near real-time. They can also generate
random queries, or choose queries from a list. Data series
query workloads [18] can also be used, in order to stress-test
ADS+, and demonstrate its performance benefits.

Supported Features. RINSE allows users to index data
and issue nearest neighbor queries, using three different ac-
cess methods: 1) a simple serial scan, which reads the com-
plete raw data file for every query; also employing a simple
early abandoning technique for avoiding useless computa-
tions, 2) a complete iISAX 2.0 [3] index, which is built before
the users can start posing queries, and 3) an adaptive ADS+
index, which takes considerably less time to construct. In
all three cases, the distance measure used is the Euclidean
Distance. Each query can be re-run using a different data
structure such that users can see the differences. Further-
more, users have access to statistics measuring the perfor-
mance of each access method, the amount of data currently
ingested by the adaptive index and the memory footprint.

"http://daslab.seas.harvard.edu/rinse/

3.2 Demonstration Scenarios

We will provide a laptop with RINSE installed that ex-
poses the web interface. A screenshot of the interface is
shown in Figure 5. Various datasets of different sizes will
also be made available to the users for exploration. The goal
is to discover the speed benefits of using partial adaptive in-
dexes over traditional ones for similarity search in large col-
lections of data series, and observe how the system adapts
to their queries during data exploration. Bellow we list 3
demo scenarios that showcase the functionality of RINSE.

1. Immediate Data Access. In our first demonstration
scenario, the participants will experience how adaptive in-
dexing allows for quick access to data by not having to wait
for an extended period of time for indexing to be completed.
We achieve this by directly comparing adaptive indexing to
full indexing. The participants can choose between the two
methods and witness how the indexing evolves by observing
a set of dynamic graphic representations that record the be-
havior of the indexing structures. By repeating the process
with increasing data sizes, it becomes evident that adaptive
indexing is a scalable approach, while full indexing quickly
becomes a bottleneck.

2. Data Exploration. In the second demonstration sce-
nario, the audience will be given the ability to explore large
datasets at interactive speeds. The goal of this scenario is to
showcase the ability of ADS+ to provide answers at interac-
tive speeds even though it starts from a partial index state
compared to full indexing. Participants can issue queries in
multiple ways such as interactively drawing data series on
screen, as seen in the large plot area on the left hand side
of Figure 5. For this task one can either use the mouse
or a touch screen (e.g., on an iPad). A query is essentially
a data series and the system tries to find the closest data
series in the database. Additionally, queries can be selected
from within existing files of data series; in this scenario the
user browses existing files and selects a specific data series
to see what is the closest one in the database. The result to
each query, i.e., the nearest neighbor, is displayed on screen
alongside the query itself as shown in Figure 5. This al-
lows users to visually compare the shapes of the two data
series. To demonstrate the benefits of using an adaptive in-
dex, participants can compare the query answering times of
ADS+ [17] to that of iSAX 2.0 [3], and serial scan. Fur-
thermore, we allow users to inspect the evolution of query
answering times (i.e., for a sequence of queries) as seen at
the bottom right in Figure 5. For iSAX 2.0 and ADS+,
users are able to run both exact and approximate queries by
selecting this option from the RINSE interface. In this way,
users can also compare the answering times and accuracy of
the various methods when using exact versus approximate
processing modes.

3. Adaptivity Benefits. In this scenario, the partici-
pants will experience the adaptive nature of ADS+. In par-
ticular, we highlight how ADS+ grows incrementally and
adaptively as more queries arrive. To achieve this we pro-
vide a visual way of monitoring various statistics such as
RAM and disk usage. Users can also see the percentage of
data indexed by ADS+ at any point in time. In addition,
they can observe the index expand as more queries are is-
sued, and also observe the impact that this has on memory
usage. Breakdowns for partial and raw data in the index
are also provided. All these measures can be seen in Fig-
ure 5 on the right hand side. Finally, we provide both a

1915

manual and an automatic query process: (a) in the manual
case, the index is enriched through user queries; (b) in the
automatic case, the system automatically executes random
queries and enriches the index. To support this scenario, a
Play/Pause button is additionally provided to control the
automatic query execution. While the system continuously
executes random queries, the user can observe the changing
index characteristics by following the evolution of the statis-
tics reported graphically, i.e., memory overhead, percentage
of data indexed, and query answering times.

4. CONCLUSIONS

In this demo, we demonstrate the benefits of the adaptive
data series index ADS+ [17] through RINSE, a tool that
provides visual access and querying of large data series col-
lections. This demo allows the audience to experience how
adaptive indexing provides quick access to data.

References

[1] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient simi-
larity search in sequence databases. In FODO, 1993.

S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree:
An index structure for high-dimensional data. In VLDB,
1996.

A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. iSAX
2.0: Indexing and mining one billion time series. In ICDM,
2010.

A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and
E. Keogh. Beyond One Billion Time Series: Indexing and
Mining Very Large Time Series Collections with iSAX2+.
KAIS, 39(1):123-151, 2014.

K.-P. Chan and A.-C. Fu. Efficient time series matching by
wavelets. In ICDE, 1999.

A. Guttman. R-Trees A Dynamic Structure for Spatial
Searching. In SIGMOD, 1984.

F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochas-
tic database cracking: Towards robust adaptive indexing in
main-memory column-stores. PVLDB, 5(6):502-513, 2012.
S. Idreos. Database Cracking: Towards Auto-tuning
Database Kernels. PhD Thesis, 2010.

S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here
are my Data Files. Here are my Queries. Where are my Re-
sults? In CIDR, 2011.

S. Idreos and E. Liarou. dbtouch: Analytics at your finger-
tips. In CIDR, 2013.

S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging
what’s cracked, cracking what’s merged: Adaptive index-
ing in main-memory column-stores. PVLDB, 4(9):586-597,
2011.

S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview
of Data Exploration Techniques. In SIGMOD, Tutorial,
2015.

E. Keogh, K. Chakrabarti, and M. Pazzani. Dimensional-
ity reduction for fast similarity search in large time series
databases. KAIS, 3(3):263-286, 2000.

J. Lin, E. Keogh, and S. Lonardi. A symbolic representation
of time series, with implications for streaming algorithms. In
DMKD Workshop, 2003.

J. Shieh and E. Keogh. iSAX: Indexing and Mining Terabyte
Sized Time Series. In SIGKDD, 2008.

Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A
data-adaptive and dynamic segmentation index for whole
matching on time series. PVLDB, 6(10):793-804, 2013.

K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for
interactive exploration of big data series. In SIGMOD, 2014.
K. Zoumpatianos, Y. Lou, T. Palpanas, and J. Gehrke.
Query workloads for data series indexes. In SIGKDD, 2015.

2

[3]

[4]

[5]

[6]

(7

(8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

