
VIIQ: Auto­Suggestion Enabled Visual Interface for
Interactive Graph Query Formulation

Nandish Jayaram
University of Texas at Arlington
nandish.jayaram@mavs.uta.edu

Sidharth Goyal
University of Texas at Arlington
sidharth.goyal@mavs.uta.edu

Chengkai Li
University of Texas at Arlington

cli@uta.edu

ABSTRACT

We present VIIQ (pronounced as wick), an interactive and iterative

visual query formulation interface that helps users construct query

graphs specifying their exact query intent. Heterogeneous graphs

are increasingly used to represent complex relationships in schema-

less data, which are usually queried using query graphs. Existing

graph query systems offer little help to users in easily choosing the

exact labels of the edges and vertices in the query graph. VIIQ helps

users easily specify their exact query intent by providing a visual

interface that lets them graphically add various query graph com-

ponents, backed by an edge suggestion mechanism that suggests

edges relevant to the user’s query intent. In this demo we present:

1) a detailed description of the various features and user-friendly

graphical interface of VIIQ, 2) a brief description of the edge sug-

gestion algorithm, and 3) a demonstration scenario that we intend

to show the audience.

1. INTRODUCTION
There is an unprecedented proliferation of heterogeneous graph

data in our society today, with thousands of node/edge types and

millions of node/edge instances. These are increasingly used to rep-

resent complex relationships in schema-less data such as Freebase,

DBpedia and YAGO. Figure 1 is an excerpt of such a graph where

nodes represent entities and labelled edges represent relationships

between entities. Given such a large heterogeneous graph, being

able to easily query it is a fundamental problem and a critical task

for many graph applications. Query graphs are often used to spec-

ify the query intent for such graphs. But, formulating these query

graphs is a daunting task since it requires users to know a vocabu-

lary comprised of many labels and types of nodes and edges.

Several graph query systems allow users to construct query graphs

through a visual interface [4, 3, 8]. But, since the focus of these sys-

tems is query processing, their query formulation components are

limited to only being a graphical platform to add nodes and edges

with ease using mouse and keyboard actions. Little help is offered

to easily choose the labels of various components in a query graph.

With large heterogeneous graphs, every time a new query compo-

nent is added, users are inundated with possibly hundreds of or

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150­8097/15/08.

Figure 1: Excerpt of a heterogeneous graph

Figure 2: System architecture of VIIQ

more options for the new component’s label, sorted alphabetically.

It is a daunting task to browse through all the options to select the

appropriate label to add. There are other querying paradigms [1,

9, 6, 7, 10] that help users query graph data. Declarative lan-

guages like SPARQL [1] are used to exactly specify query intent,

but present a usability barrier [5]. Paradigms such as keyword

search, approximate graph query [9] and query-by-example [6, 7,

10] can simplify query formulation, but cannot be used to specify

users’ exact query intent. In summary, existing systems help users

specify queries either easily or exactly, but not both.

To this end, we propose VIIQ (Visual Interface for Interactive

graph Query formulation), a system that helps users easily formu-

late exact query graphs. VIIQ provides a visual interface that en-

ables users to easily construct various query graph components. To

help schema-agnostic users specify their exact query intent, VIIQ

automatically suggests new edges and nodes to add to a partially

constructed query graph, without being triggered by any user ac-

tions. Users can also add nodes or edges manually, whose labels

are ranked and presented on how likely they will be of interest to

the user. A visual querying interface that intelligently helps users

formulate query graphs is acknowledged as an important step to-

wards superior consumption and management of graph data [2]. To

the best of our knowledge, VIIQ is the first visual query formula-

tion system that actively makes ranked suggestions to help users

construct exact query graphs.

VIIQ supports two modes of operation, passive and active. By

default VIIQ operates in passive mode. Based on the partially con-

structed query graph, the system automatically recommends top-k

1940

Figure 3: User Interface of VIIQ

new edges that may be relevant to the user’s query intent, without

being triggered by any user actions. Fig. 3 shows the snapshot of a

partially constructed query graph, with nodes and edges suggested

in passive mode. The nodes in grey and the edges incident on them

are the new automatic suggestions made by the system. The ac-

tive mode is triggered when the user adds new nodes or edges to

the partial query graph, using simple mouse actions. For a newly

added node, the suggested labels are displayed hierarchically in a

pop-up box, as shown in Fig. 4, where type PERSON is chosen as

the label for the node. For a newly added edge, the suggested edge

labels are ranked based on the likelihood of their relevance to the

user’s query intent. Figure 5 shows the ranked suggestions for the

newly added edge between nodes PERSON and FILM. The system will

be augmented to also select type instances as node values.

Figure 2 shows the overall architecture of VIIQ. The user for-

mulates the query graph in the user interface. The edge sugges-

tion algorithm is triggered during both passive and active modes

of operation. The candidate generation module generates potential

candidates to rank based on the mode of operation, and the partial

query graph on the canvas. The ranking candidates module then

ranks the candidates based on how likely they will be of interest to

the user. We next describe the interface and its working in detail.

2. USER INTERFACE
Figure 3 shows the graphical user interface of VIIQ. The system

provides several functionalities that aid users in constructing query

graphs: 1) a canvas for formulating the query graph, which includes

drawing query graph components or selecting automatically made

suggestions, 2) an active mode of operation where users can add

new nodes and edges using simple mouse actions, and 3) a passive

mode of operation where the system automatically suggests new

edges to add based on their relevance to the user’s query intent.

There are mainly four GUI components in VIIQ. Query Canvas

is the area used to construct the query graph. New nodes and edges

are added here in active mode using simple mouse actions. New

top-k edges are also automatically suggested and displayed on the

canvas in passive mode. The Suggestion Panel, as shown in Figs. 4

and 5, is a pop-up box that displays label suggestions for newly

added nodes and edges in active mode. The suggested labels are

ranked and displayed using drop-down lists. The Control Panel is

used to tune various parameters of the system. The drop-down list

under Data Graph is used to select the underlying data graph one

wishes to query. The drop-down list under Suggestion Algorithm

is used to specify the edge suggestion algorithm to use. Finally, the

Help Panel displays general tips to operate the system. It also dy-

namically displays messages explaining the allowable user actions

at any given moment in the query formulation process.

As mentioned earlier, VIIQ operates in passive and active modes.

By default VIIQ operates in passive mode in which the system

automatically suggests top-k new edges relevant to the user. The

new edges suggested are incident on the partial query graph in the

canvas, and Fig. 3 shows an example instance where top-3 new

edges (incident on nodes shaded grey) are the automatic sugges-

tions made. The user can click on some grey nodes to add them to

the query graph, and ignore others. The unselected grey nodes are

deleted with a mouse click on the canvas, and the next set of new

suggestions are automatically displayed. If none of the suggestions

obtained in passive mode are useful and the user does not select

any grey nodes, a new set of suggestions can be manually triggered

using the Refresh Suggestions button on the query canvas.

The user can add a node or an edge using simple mouse actions,

and VIIQ switches to active mode. A user can click on any empty

part of the canvas to add a new node. A suggestion panel pops up

when a new node is added as shown in Fig. 4. Nodes in a heteroge-

neous graph represent entities. Real world entities, and thus their

labels, can be grouped into a natural hierarchy of domains, types

and entities, where multiple entities may belong to the same type

and multiple types may belong to a single domain. We use such

ontological hierarchy to help users navigate through the options for

a node label. Users can either select a type, or an exact entity value

as the node label (atomic values such as Integer are not supported in

the current version) using drop-down lists in the Suggestion Panel.

Options are sorted alphabetically. A new edge can be added in ac-

tive mode by clicking on one node and dragging the mouse to the

destination node. The possible labels for the newly added edge are

ranked by their relevance to the query intent and displayed using a

drop-down list in the suggestion panel as shown in Fig. 5.

The new edge suggestions made are based on the partial query

graph formed hitherto. The ranking of suggested edge labels in

1941

Figure 4: Adding Node in Active Mode Figure 5: Adding Edge in Active Mode

both active and passive mode depends on the underlying edge sug-

gestion algorithm which is briefly described next.

3. RANKING CANDIDATE EDGES
A data graph Gd is a connected, directed, labelled multi-graph

with node set V (Gd) and edge set E(Gd). Each node v ∈ V (Gd)
is labelled by its unique ID and belongs to one or more entity types

(e.g., PERSON and ACTOR). All entity types form a set TV . Each

edge e ∈ E(Gd) is labelled by its type (e.g., directed). The target

query graph that represents the user’s intent is a connected graph

Qt. The nodes in Qt are either entities in V (Gd) or entity types

in TV . The relationships between nodes in Qt are defined by edge

labels, i.e., edge types. To an end user, the direction of an edge

does not bear any significance. It is rather the role of the two ends

of an edge that is important. Roles are easily identified by users for

most edges, for instance, the role of a PERSON and COUNTRY is clear

for edge nationality . We thus refrain from showing edge directions

in the interface. But, for edges such as children, to disambiguate the

roles of parent and child, the system will be augmented to show

examples of entities corresponding to the two ends of the edge.

The assistance provided byVIIQ during query formulation mainly

consists of edge suggestions made to the user. In active mode, the

two ends of a newly added edge are selected by the user, and all

possible edge labels between the two nodes form the set of candi-

date edges C. In passive mode, any edge that can potentially be

incident on any node in the partial query graph Qp is a candidate

edge. The edge can be either between two current nodes in Qp or

between a node in Qp and a suggested new node. Candidate edges

are ranked and displayed in a drop-down list in active mode, while

only the top-k edges are displayed on the canvas in passive mode.

Edges found relevant by the user, called positive edges, are ac-

cepted and added to the partial query graph. In passive mode, the

suggested edges not relevant to the user, called negative edges, are

ignored by clicking on the canvas. Both accepted and ignored edges

play a major role in gauging the user’s query intent. The query for-

mulation process is a query session q which is a series of such sug-

gested edges and the corresponding user responses obtained. Note

that the query session q not only contains the edges forming the par-

tial query graph, but also the edges that were rejected by the user.

Given a set of candidate edges C, we must rank these edges based

on the likelihood of them being accepted by the user, since rank-

ing relevant edges higher is considered important. The likelihood

of a candidate edge being accepted is conditioned on the various

edges suggested and their corresponding user responses obtained

hitherto, which is captured by the query session q.

A query log W that captures many such query sessions is use-

ful in ranking candidate edges for a new query session q. But,

such a large graph query log is not available publicly. We thus

simulate a query log using Wikipedia and the data graph Gd (e.g.,

Freebase). For every Wikipedia page, entities occurring in each

sentence are identified simply by recognizing hyperlinks to other

Wikipedia pages (i.e., entities). Most nodes in data graphs like

Freebase have properties such as topic equivalent webpage, that iden-

tify the Wikipedia URL corresponding to them. Such properties are

used to map entities found in a Wikipeda page’s sentence to nodes

inGd. The properties that connect these nodes inGd mimic the set

of positive edges in a query session. We also use data graph based

statistics, by considering all properties incident on a node in Gd

as such positive edges of a query session. Negative edges, which

indicate edges that were ignored by the user, are injected into these

simulated query sessions. If there is evidence of positive edges e1
and e2 in query session qi, and another query session qj contains

e1 but not e2, then e2 is injected into qj as a negative edge. Finally,

the Apriori algorithm is used to find frequent itemsets of correlated

edges (query sessions) to be included in the query log W .

Problem Statement: Given a query log W , user session q so far

and a set of candidate edges C, the problem is to rank edges in C

by some scoring function score(e).

Ranking Based on Random Correlation Paths: As mentioned

earlier, the query log captures the correlation between edges. Edges

in C must be ranked based on the correlation strength between an

edge e ∈ C and q. One way to measure this correlation strength is

using the support we find for q in query logW , which are the query

sessions inW that subsume query session q. One can assume strict

correlation between all edges in q, but for a long q, this may lead to

zero support in W . The other extreme is to assume independence

between all edges in q (like in a naive Bayes classifier), but this will

likely lead to a large noisy support in W . We propose to find ran-

dom correlation paths that capture the correlation between only a

subset of edges in q, striking a balance between the aforementioned

extremes of considering correlation between edges in q. A correla-

tion path−→o for a given set of edges o, is the ordered set of edges in

o. We define supp(−→o), the support for a correlation path−→o , as the

number of entries in W that are supersets of o. We build a random

set of correlation paths consisting of only those correlation paths

that are based on the current user session q. We do not attempt to

pre-learn a set of correlation paths using query log W which are

used to answer every arbitrary input instance (like learning a deci-

sion tree). Instead, we only build random correlation paths specific

to q. This is similar to assuming a virtual space of an exponential

number of decision trees built for a random forest with query log

W , but instantiating only a small set of paths in these decision trees

that are specific to q.

A correlation path −→o has a prefix path and may be associated

with several postfix paths. The prefix of−→o , denoted prefix(−→o), is
the path before adding the last edge in−→o . A postfix of−→o , denoted

postfix(−→o , ek+1), is the new path formed by adding edge ek+1 to
−→o . If −→o ={e1, e2, . . . , ek−1, ek}, then prefix(−→o)={e1, e2, . . . ,
ek−1}, and postfix(−→o , ek+1)={e1, e2, . . . , ek−1, ek, ek+1}.

Given a query session q and candidate edgesC, each edge e ∈ C

is ranked by the support of its corresponding postfix(−→q , e). In

order to rank the candidate edges, we build ℜ, a set of N random

correlation paths as shown in Fig. 6. The user session in Fig. 6

has edges e1-e6 and the candidate edges are e7-e9. The edges with

a yes denote positive edges, and edges with a no denote negative

edges in q. All correlation paths inℜ are based only on those edges

in q whose supports are no more than a threshold τ . A correlation

1942

Figure 6: Ranking Based on Random Correlation Paths

path−→p is grown until supp(−→p) ≤ τ and supp(prefix(−→p)) > τ ,

or until all the edges in q are exhausted, whichever comes first. The

score of an edge e ∈ C, with regard to correlation path −→p is given

by score(e,−→p). All edges e ∈ C are ranked by the final score

score(e), given by

score(e) =
1

|ℜ|
×

∑

−→p ∈ℜ

supp(postfix(−→p , e))

supp(−→p)
(1)

Preliminary experiment results suggest that ranking candidates

by this approach is significantly better than both the methods (one

based on strict correlation, and the other on naive Bayes classifier).

9 target query graphs, each with up to 5 edges were designed. The

system operated only in passive mode and the top-1 edge was sug-

gested in each iteration. The number of iterations required to reach

the target graph starting from a single-edge partial query graph was

measured. 7 out of the 9 target query graphs were achieved within

21 suggestions (on average) with our proposed method, while not

a single relevant edge was suggested by the other two methods for

8 of these 9 query graphs.

4. DEMONSTRATION PLAN
A demonstration video ofVIIQ can be found at https://youtu.

be/el_w1vEvtoA. In describing the demonstration scenarios, we

shall assume Freebase as the data graph. In the eventual demo

users will be able to choose among multiple data graphs. We use

a preprocessed and cleaned Freebase data graph that contains 28M

nodes, 47M edges and 5,428 distinct edge labels. The types of an

entity were found using property /type/object/type, and the domain

associated with a type was obtained using the canonical name of

the type. Freebase uses intermediate nodes to capture ternary and

higher-arity relationships. Such relationships are replaced by mul-

tiple binary relationships (through merging edges associated with

intermediate nodes), trading expressiveness for simplicity of user

interface. For instance, there is an intermediate node between en-

tities Tom Hanks and CSU (California State University) connecting

properties education and school. This was replaced with a single

edge labelled education-school as part of data pre-processing.

Scenario A: The user wishes to query Freebase and use random

correlation path based edge suggestion algorithm.

(A1) Click on “Data Graph” drop-down list and select Freebase.

(A2) Click on “Suggestion Algorithm” drop-down list and select

Random Correlation Paths.

Scenario B: Add new nodes in active mode.

(B1) Click on any empty space in the canvas to create a new node.

(B2) A node label suggestion panel pops up. Click on the “Do-

main” drop-down list and select PEOPLE.

(B3) Click on the “Type” drop-down list and select type PERSON.

(B4) Click on the “Save” button to apply the selected node type.

(B4) Follow steps (B1)-(B4) and add another node with domain

FILM and type FILM.

Scenario C: Add a new edge between two nodes in active mode.

(C1) Click on node PERSON and drag the mouse to node FILM, or drag

the mouse from FILM to PERSON.

(C2) An edge label suggestion panel pops up, click on the “Edge

Label” drop-down list and select film/directed by .

(C3) Click on the “Save” button to apply the selected edge label.

Scenario D: Add an edge suggested automatically in passive mode

to the partial query graph.

(D1) After performing Scenario A-Scenario C, edges and nodes

suggested automatically in passive mode are displayed in grey.

(D2) Click on a newly suggested node FILM WRITER to add it to the

partial query graph.

(D3) Click on any empty space in the canvas to save the selected

node and reject the unselected grey nodes.

Scenario E: Instead of choosing the automatically suggested edges

in passive mode, add a new node and edge in active mode.

(E1) After performing Scenario D, click on any empty space in the

canvas to add a new nodes.

(E2) Follow steps (B1)-(B4) to add a new node with domain LO-

CATION and type COUNTRY.

(E3) Follow (C1)-(C3) to add a new edge labelled person/nationality

between nodes COUNTRY and PERSON.

Scenario F: If none of the edges and nodes automatically sug-

gested in passive mode are relevant, request for new suggestions.

(F1) After performing Scenario E, click on “Refresh Suggestions”

button on the canvas and get a new set of suggestions.

(F2) Click on Submit button to process the query graph.

Acknowledgments The authors have been partially supported by
NSF grants IIS-1018865, CCF-1117369 and IIS-1408928. Any
opinions, findings, and conclusions in this publication are those of
the authors and do not necessarily reflect the views of the funding
agencies.

5. REFERENCES
[1] SPARQL query language for RDF.

http://www.w3.org/TR/rdf-sparql-query.

[2] S. S. Bhowmick. DB ⊲⊳ HCI: towards bridging the chasm between
graph data management and HCI. In DEXA, 2014.

[3] D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and
T. Eliassi-Rad. GRAPHITE: A visual query system for large graphs.
In ICDM, 2008.

[4] H. H. Hung, S. S Bhowmick, B. Q. Truong, B. Choi, and S. Zhou.
Quble: Blending visual subgraph query formulation with query
processing on large networks. SIGMOD, 2013.

[5] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making database systems usable. In SIGMOD,
2007.

[6] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri.
GQBE: Querying knowledge graphs by example entity tuples. In
ICDE (demo description), 2014.

[7] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying
knowledge graphs by example entity tuples. IEEE Transactions on

Knowledge and Data Engineering, (to appear).

[8] C. Jin, S. S. Bhowmick, B. Choi, and S. Zhou. prague: A practical
framework for blending visual subgraph query formulation and query
processing. In ICDE, 2012.

[9] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao.
Neighborhood based fast graph search in large networks. In
SIGMOD’11.

[10] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Exemplar
queries: Give me an example of what you need. In VLDB, 2014.

1943

