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ABSTRACT

The challenges associated with handling uncertain data, in
particular with querying and mining, are finding increas-
ing attention in the research community. Here we focus
on clustering uncertain data and describe a general frame-
work for this purpose that also allows to visualize and under-
stand the impact of uncertainty—using different uncertainty
models—on the data mining results. Our framework consti-
tutes release 0.7 of ELKI (http://elki.dbs.ifi.lmu.de/)
and thus comes along with a plethora of implementations of
algorithms, distance measures, indexing techniques, evalua-
tion measures and visualization components.

1. INTRODUCTION

Given high-quality, reliable, up-to-date, exact, and suffi-
ciently large data, clustering is often used to support ad-
vanced and educated decision making in many application
domains in economics, health-care, science, and many more.
Consequently, a large number of clustering algorithms has
been developed to cope with different application scenar-
ios. However, our ability to unearth valuable knowledge
from large sets of data is often impaired by the quality of
the data: data may be imprecise (e.g., due to measure-
ment errors), data can be obsolete (e.g., when a dynamic
database is not up-to-date), data may originate from unre-
liable sources (such as crowd-sourcing), the volume of the
dataset may be too small to answer questions reliably [8],
or it may be blurred to prevent privacy threats and to pro-
tect user anonymity [20]. Simply ignoring that data objects
are imprecise, obsolete, unreliable, sparse, or cloaked, thus
pretending the data were accurate, current, reliable, and
sufficiently large, is a common source of false decision mak-
ing. A different approach accepts these sources of error and
creates models of what the true (yet admittedly unknown)
data may look like. This is the notion of handling uncer-
tain data [4]. The challenge in handling uncertain data is
to obtain reliable results despite the presence of uncertainty.
This challenge has received a strong research focus, by both
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industry and academia, in the last five years. “Veracity” has
often been named as the fourth “V” of big data in addition
to volume, velocity and variety. Adequate methods need to
quantify the uncertainty in the data using proper models of
uncertainty, and then to propagate the uncertainty through
the data mining process, in order to obtain data mining re-
sults associated with significance and reliability information.

This demonstration targets the problem of how to derive
a meaningful clustering from an uncertain dataset. For this
purpose, we extend the ELKI framework [3] to handle un-
certain data. ELKI is an open source (AGPLv3) data min-
ing software written in Java aimed at users in research and
algorithm development, with an emphasis on unsupervised
methods such as cluster analysis and outlier detection. We
give a short overview on our new release, ELKI 0.7, in Sec-
tion 2.1. Additionally, we make the following contributions
to handle uncertain data in a general way:

e ELKI 0.7 adds support for the most commonly used un-
certainty models (Section 2.2). In particular, ELKI 0.7
provides an uncertain databases sampler, which derives
multiple database samples from an uncertain database

using the configured uncertainty model.

The ELKI visualization tools have been extended to sup-
port (the clustering of) uncertain data. Therefore ground-
truth data, observed data, as well as various sampled
databases and their corresponding clusterings can be an-
alyzed visually. This allows for getting an intuition of
how uncertainty affects traditional clustering results. We
describe this in more detail in Section 2.3.

Comparison algorithms for clustering uncertain data for
specific uncertainty models have been added to ELKI 0.7
(see Section 2.4). The ELKI framework can easily be
extended by users to support their favorite algorithms.
Traditional clustering algorithms as implemented in ELKI
can be applied to sampled databases, and the clustering
results can then be unified using the approach of Ziifle et
al. [22] as sketched in Section 2.5.

We outline the demonstration scenario in Section 3 and
close with details on the public availability of our open
source (AGPLv3) implementation in Section 4.

2. THE FRAMEWORK

This project is an extension of the ELKI framework [3]
(http://elki.dbs.ifi.lmu.de/). Based on this framework,
we aim at providing a platform to design, experiment with,
and evaluate algorithms for uncertain data, as we will be
instantly able to use the provided functionality.


http://www.dbs.ifi.lmu.de
http://elki.dbs.ifi.lmu.de/
http://elki.dbs.ifi.lmu.de/

2.1 General Functionality of ELKI

ELKI uses a modular and extensible architecture. Many
algorithms in ELKI are implemented based on general dis-
tance functions and neighborhood queries, but are agnostic
to the underlying data type or distance. Functionality pro-
vided by ELKI includes:!

e input readers for many popular file formats, such as CSV,

ARFF, and the 1ibSVM format;

distance functions, including set-based distances, distri-
bution-based distances, and string dissimilarities;

clustering algorithms, including many k-means and hier-
archical clustering variations, density-based algorithms
such as DBSCAN and OPTICS, but also subspace clus-
tering and correlation clustering algorithms;

unsupervised outlier detection algorithms [2];

data indexing methods such as R*-tree variations, M-
tree variations, VA-file, and LSH that can be used to
accelerate many algorithms;

evaluation measures such as the adjusted Rand index
(ARI) [17], Fowlkes-Mallows [16], BCubed [7], mutual-
information-based, and entropy-based measures;

a modular visualization architecture including scatter-
plots and parallel coordinates, using an SVG renderer
to produce high quality vector graphics.

ELKI can be extended by implementing the appropriate
interfaces. The provided Uls for ELKI will automatically de-
tect the new implementations and allow simple configuration
of experiments without the need to write further code. How-
ever, not all functionality required for analyzing uncertain
data can be added using such extensions. In particular, sam-
pling possible worlds will require an additional processing
loop around the algorithms, and a second meta-clustering
phase to aggregate these results. An application providing
such more complex solutions is a core contribution of this
demonstration and will be sketched below (Section 2.5).

2.2 Supported Uncertain Data Models

The most common discrete and continuous data models
for uncertain data (cf. Figure 1) have been implemented in
ELKI. Let us outline the implemented models briefly:

A pioneering uncertainty model is the existential uncer-
tainty model [13, 10], where each data record is associated
with a Bernoulli-event deciding whether the corresponding
data object is present in the database. Our framework al-
lows to specify an attribute column which will be used as
an existential uncertainty of the respective tuple. For the
case where each object is described by a discrete proba-
bility mass function (p.m.f.), the block-independent disjoint
tuples model [14] and its common examples such as the
Uncertainty-Lineage Database model [9] and the X-Tuple
model or U-Relation model [5, 6] are implemented. Each
object is represented by a finite number of alternative object-
instances, each associated with the probability of being the
true object, but still assuming stochastic independence be-
tween objects. In ELKI, a pmf of a data record o is repre-
sented by a list of (value, probability)-pairs, requiring that
the sum of probabilities of all pairs of 0o does not exceed one.
If the sum of probabilities is less than one, the difference to
one is used as the probability that the tuple does not exist.

!For an extensive list of publications implemented in ELKI
see: http://elki.dbs.ifi.lmu.de/wiki/RelatedPublications.
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Figure 1: Uncertain Data Models

For the case of continuous probability density functions,
ELKI provides classic parametric models for which the cor-
responding probability density function and cumulative dis-
tribution function can be specified. As standard paramet-
ric functions, ELKI offers support for uniform distributions
and normal distributions. Then, for each object, the cor-
responding parameter values can be passed to ELKI, either
by selecting attributes of a relation as parameter values, or
by reading the parameter values from a file. In addition,
mixture models are supported. For these models, a number
of parametric probability density functions can be provided,
each associated with a probability. This allows to support
Gaussian mixture models as used by Bohm et al. [11].

For both cases (discrete or continuous distributions) ELKI
provides data parsers and helper classes to link data records
to their corresponding p.m.f. or p.d.f.

2.3 Visualization Tools

The ELKI visualization tools have been extended to sup-
port clustering of uncertain data. The corresponding view
(cf. Figure 2) can switch between the following perspectives:
(1) The result of clustering algorithm C on the ground-truth,
if it is available, gives an intuition on how the clustering
should look like without the presence of uncertainty. (2)
The result of C' on random samples gives insight on how the
possible clusterings vary and how the uncertainty affects tra-
ditional clustering results. (3) The representative clusterings
(c.f. Section 2.5)give a summarized view of the possible clus-
terings and allow for educated decision making. For all these
perspectives we can utilize the existing visualization toolkit
of ELKI including scatterplots (2-dimensional projections
for each pair of attributes), 1-dimensional attribute distri-
butions (histograms), parallel-coordinate plots, evaluation
measures for data mining results, and different additional
cluster model visualizations where applicable.
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Figure 2: Views of a Dataset
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2.4 Uncertain Clustering Algorithms

Based on the uncertainty models (Section 2.2), various
clustering algorithms for uncertain data have been published
in the past. We implemented some of the most prominent
algorithms and made them available in ELKI.

A commonly used naive approach is implemented which
represents each uncertain object by its expectation and uses
a traditional clustering algorithm. Additionally, a fair base-
line approach is to return the most probable clustering re-
sult. For this purpose, a naive approach would be to apply
clustering algorithm C to every possible world and return
the clustering which has the highest support (the sum of
probabilities of the worlds with this clustering result is the
highest). However, the naive is often not applicable since the
number of possible worlds may be very large or even infinite,
e.g., for continuous probability distributions. Thus we sup-
port a Monte Carlo approximation of the naive approach,
which applies C on a user-defined number of randomly sam-
pled (i.i.d. according to the specified data model) databases,
and returns the clustering with the highest support (most
of the samples yield the clustering) in this sample.

In addition, a number of published algorithms for cluster-
ing of uncertain data have been implemented and are avail-
able in ELKI 0.7. One of the pioneering works in this field
is the approach of Kriegel and Pfeifle [19]. This approach
uses a discrete uncertainty model requiring each alternative
of an object to have the same probability. Furthermore, the
UK-means [12] has been implemented, which is similar to
the fuzzy c-means algorithm [15]. This approach is applica-
ble to arbitrary uncertainty models. Subsequent work [21]
has shown how to improve the efficiency of this algorithm if
uncertainty regions follow uniform distribution.

2.5 Representative Clustering

Clustering uncertain data is a daunting task, since the
number of possible clusterings of a database with |D| objects
is O(Q‘D‘). Existing solutions to uncertain clustering either
cluster aggregates (e.g., the expectation or the medoid) of
the uncertain objects, or the probabilistic distance between
objects [21], or the results are based on probabilistic dis-
tance thresholds [19]. These approaches have two crucial
drawbacks: First they are tailored to a specific clustering
algorithm, making the approach inapplicable in scenarios
where the cluster algorithm does not fit the application.
Second, and even more important, they have been shown to
yield results that are not in accordance with possible worlds
semantics.

In contrast, the approach of representative clustering [22]
is more general and thus applicable in a wide number of sce-
narios, yielding outcomes that are in accordance with pos-
sible worlds semantics. The approach can be summarized
in a few steps (cf. Figure 3): First, a set X = {X1,.., Xn}
of possible worlds is sampled in an unbiased way from the
database X, using ELKI’s new uncertain database sampler.
The uncertain objects in X can be represented by either of
the models described in Section 2.2. Second, each database
sample X; € X is clustered using a traditional clustering
algorithm C, which can be chosen from the large list of clus-
tering algorithms implemented in ELKI. Any algorithm that
assigns clusters to discrete (potentially overlapping or non-
exhaustive) partitions can be used, methods that perform
a soft cluster assignment or yield a hierarchical result first
need to be discretized into partitions. This step yields a set

X, ) X

[ C 8
X o) fE
IS P
RS (L_'% C(X;) a Clustering
b . ¢ . 2 Algorithm C*
I : g
i S|
=) X (X =
N c (Xa) [}
Clustering Representative
Algorithm Clusterings

Figure 3: Workflow of Representative Clustering

of possible clusterings PC = {C(X1),...,C(Cn)}. Third,
using a distance measure for clusterings, dist, we can then
apply any distance-based clustering algorithm C’ to cluster
the set of clusterings PC. For the choice of dist, ELKI al-
lows to choose between pre-implemented distance measures
for clusters, including Adjusted Rand Index [17], Fowlkes-
Mallows index [16], BCubed [7], mutual-information-based,
and entropy-based measures, and can easily be extended
with custom measures (see also [1]). For the choice of C’,
ELKTI allows to choose between various distance-based clus-
tering algorithms. Fourth, for each of the resulting meta-
clusters returned by C’, we select a T¢-representative cluster-
ing C(X;) € PC, such that we can guarantee that, at a user-
specified level of significance «, the probability that the (un-
known) ground-truth has a distance (in terms of the chosen
distance measure dist) to X; of at most 7 is at least ¢ [22].
The resulting set of T7¢-representatives can be used for ed-
ucated decision making, as the returned parameters 7 and ¢
allow to assess the quality of a clustering.

Since the three parts clustering algorithm C, distance mea-
sure dist and distance-based clustering algorithm C’ (shown
in orange in Figure 3) in representative clustering are mod-
ular, ELKI is a perfect implementation environment. ELKI
is not constrained to using numerical vector types, and thus
clustering results can be treated as first-class citizens, and
we can use appropriate distance functions to run clustering
algorithms on the results to obtain clusters of clustering re-
sults. Additional benefits of ELKI are the large number of
alternatives that are already present and its easy extensibil-
ity for inclusion of further alternatives.

3. DEMONSTRATION SCENARIO

The audience will be presented with the functionality of
ELKI 0.7. Specifically, we will focus on the uncertain data
mining/clustering aspect. The effect of different parameter
settings will be elaborated on three interesting datasets.

To illustrate the concepts behind the demonstration we
start by presenting the clustering of a small uncertain dataset.
The dataset consists of uncertain objects that are arranged
in three Gaussian distributions (A, B, C) next to each other.
After illustrating the original clustering, that separates the
objects in A, B and C (cf. Figure 2), we will sample some
possible datasets and show their clustering result. It will
clearly be visible that the larger the uncertainty of the ob-
jects, the more diverse the clustering results. After showing
the result from the clustering of the center of mass points,
we will present the representative clustering. The result of
representative clustering consists of the intuitive possible re-
sults of the clustering of the uncertain data. Specifically, it
will contain the clustering where A, B, and C are separated
(cf. Figure 4a), A and B merge (cf. Figure 4b), B and C
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Figure 4: The four representatives of the dataset

merge (cf. Figure 4c), and A, B, and C merge (cf. Figure 4d),
each annotated with the similarity 7 and confidence ¢. We
see that the first representative (Figure 4a) has the highest
probability, whereas the latter two representatives only rep-
resent a small fraction of possible worlds. This part of the
demonstration should give an intuitive introduction to the
framework. Next we will show the validity of the approach
on low dimensional real datasets. The variety of possible
clusterings will be shown to increase. We will utilize dif-
ferent datasets here which will make the use of different
clustering algorithms necessary. We will show the impact
of centroid-based approaches (e.g., k-means) versus density-
bases approaches (e.g., DBSCAN) which tend to have less
variability in their clustering results.

Lastly, we will increase the complexity of the demonstra-
tion and apply the framework to multi-dimensional datasets.
This demonstration will show the full potential of the ELKI
framework since it is able to visualize (uncertain) clustering
results even of high-dimensional spaces through 2-dimensio-
nal projections and parallel-coordinate [18] techniques.

4. AVAILABILITY

ELKI is an open source (AGPLv3) data mining software
written in Java, actively and continuously developed since
years. A growing community uses ELKI in related research
areas such as databases and data mining as well as in other
research areas where data mining methods are applied. Our
visualization and evaluation tool will be available along with
ELKI release 0.7 at: http://elki.dbs.ifi.lmu.de/
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