
A Demonstration of TripleProv:
Tracking and Querying Provenance over Web Data

Marcin Wylot
eXascale Infolab

University of Fribourg
Switzerland

marcin.wylot@unifr.ch

Philippe Cudré-Mauroux
eXascale Infolab

University of Fribourg
Switzerland

pcm@unifr.ch

Paul Groth
Elsevier Labs

The Netherlands
p.groth@elsevier.com

ABSTRACT
The proliferation of heterogeneous Linked Data on the Web
poses new challenges to database systems. In particular,
the capacity to store, track, and query provenance data is
becoming a pivotal feature of modern triple stores. In this
demonstration, we present TripleProv: a new system ex-
tending a native RDF store to efficiently handle the storage,
tracking and querying of provenance in RDF data. In the
following, we give an overview of our approach providing
a reliable and understandable specification of the way re-
sults were derived from the data and how particular pieces
of data were combined to answer the query. Subsequently,
we present techniques enabling to tailor queries with prove-
nance data. Finally, we describe our demonstration and how
the attendees will be able to interact with our system during
the conference.

1. INTRODUCTION
With the rapid expansion of the Linked Open Data (LOD)

cloud, developers are able to query and integrate large collec-
tions of disparate online data. As the LOD cloud is rapidly
growing, so is its heterogeneity.

The heterogeneity of RDF data combined with the abil-
ity to easily integrate it makes tracing back and querying
the provenance of query results become essential in data
processing. For example, one may want to analyze which
sources were instrumental in providing results, how data
sources were combined, to validate or invalidate results, or to
delve deeper into data related to the results retrieved. One
also may want to filter results based on provenance informa-
tion, e.g., find me all the titles of articles about “Obama”,
but derive the answer only from sources attributed to “US
News”.

Within the database and the Web communities, there
have been several efforts in developing models and syntaxes
to interchange provenance, which resulted in the recent

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

W3C PROV recommendation [3]. However, less attention
has been given to the efficient handling of provenance data
within RDF database systems. While some systems store
quadruples or named graphs, to the best of our knowledge,
no current triple store is able to automatically derive
provenance data for the results it produces or to tailor
queries with provenance data.

To support these use-cases, the most common mecha-
nism used within RDF data management is named graphs.
This mechanism was recently standardized in RDF 1.1. [4].
Named graphs associate a set of triples with a URI. Using
this URI, metadata including provenance can be associated
with the graph. While named graphs are often used for
provenance, they are also used for other purposes, for exam-
ple, to track access control information. Thus, while RDF
databases (i.e., triple stores) support named graphs, there
has only been a relatively small amount of work specifically
focused on provenance within the triple store itself and much
of it has been focused on theoretical aspects of the prob-
lem [1].

In the following, we present a demonstration of
TripleProv, a new RDF database system supporting
the transparent and automatic derivation of detailed
provenance information for arbitrary queries and the
execution of queries incorporating provenance predicates.
TripleProv is based on a native RDF store [7], which we
have extended with different physical models to store
provenance data on disk in a compact fashion. The system
allows to trace provenance at two different granularity
levels as well as to execute provenance-enabled queries.
This demonstration builds on our previous work [5, 6].

The rest of this paper is organized as follows: we de-
fine provenance polynomials and how to track provenance
at different levels of granularity in Section 2; we introduce
provenance-enabled queries in Section 3; in Section 4, we
present our new provenance-aware query execution strategy
allowing to store, track, and query provenance data; finally,
we discuss our demonstration scenario, its user experience,
as well as takeaway points in Section 6.

2. PROVENANCE POLYNOMIALS
The first question we tackle is how to represent provenance

information that we want to return to the user in addition
to the results themselves. Beyond listing the various sources
involved in the query, we want to be able to characterize the
specific ways in which each source contributed to the query

1992

results. Here, we leverage the notion of provenance poly-
nomials [5, 2], which is an algebraic structure representing
how the data is combined to derive the query answer using
different relational algebra operators (e.g., UNION, JOINS).
We focus on the practical realization of this model within
a high performance triple store to answer queries seen as
useful in practice. Specifically, we focus on the capability
to pinpoint and trace back, for each query result, the exact
pieces of data from which the result was selected and how
they were combined to deliver the result.

At the logical level, we use in the provenance polynomials
two basic operators to express the way the pieces of data
were combined to answer the query. The first one (⊕) to
represent unions of sources, and the second (⊗) to represent
joins between sources.

Unions are used in two cases when generating the polyno-
mials. First, they are used when a constraint or a projection
can be satisfied with triples coming from multiple sources
(meaning that there are more than one instance of a partic-
ular triple which is used for a particular operation). Second,
unions are also used when multiple entities satisfy a set of
constraints or projections.

As for the join operator, it can also be used in two ways:
to express the fact that sources were joined to handle a con-
straint or a projection, or to handle object-subject or object-
object joins between a few sets of constraints.

RDF data provenance can be modeled at different gran-
ularity levels. Current approaches, typically, return a list
of named graphs from which the answer was computed [5].
Our system, besides generating polynomials summarizing
the complete provenance of results, also supports two levels
of granularity. First, a lineage li (i.e., an element appearing
in a polynomial) can represent the source of a triple, (e.g.,
the fourth element in a quadruple). We call this granularity
level source-level. Second, a lineage can represent a quadru-
ple (i.e., a triple plus its corresponding source). This second
type of lineage produces polynomials consisting of all the
pieces of data (i.e., quadruples) that were used to answer
the query, including all intermediate results. We call this
level of granularity triple-level.

For more detail on provenance polynomials in TripleProv,
we refer the reader to our previous work [5].

3. PROVENANCE-ENABLED QUERIES
Besides providing to a user a provenance polynomial, i.e.,

a reliable and understandable description of the way the
query answer was derived, we also give the possibility to
tailor RDF queries with provenance data. In this work,
we adopt the view proposed in the W3C PROV Family of
Documents1 defining a model, corresponding serializations
and other supporting definitions to enable the interopera-
ble interchange of provenance information in heterogeneous
environments such as the Web. We also adopt the termi-
nology of Cyganiak’s original NQuads specification2, where
the context value refers to the provenance or source of the
triple. We note that context values often are used to refer
the named graph to which a triple belongs. Based on this
background, we introduce the following terminology used
within this paper:

1http://www.w3.org/TR/prov-overview/
2http://sw.deri.org/2008/07/n-quads/

Workload
query

Provenance
query

⋈

Results &
Provenance
Polynomial

triplestore

Workload
results

Provenance
resuls

Figure 1: Executing provenance-enabled queries; both a workload
and a provenance query are given as input to a triplestore, which
produces results for both queries and then combine them to obtain
the final results and the provenance polynomial.

Definition 1. A Workload Query is a query producing
results a user is interested in. These results are referred to
as workload query results.

Definition 2. A Provenance Query is a query that se-
lects a set of data from which some workload query results
should originate. Specifically, a Provenance Query returns a
set of context values whose triples will be considered during
the execution of a Workload Query.

Definition 3. A Provenance-Enabled Query is a pair
consisting of a Workload Query and a Provenance Query,
producing results a user is interested in (as specified by
the Workload Query) and originating only from data pre-
selected by the Provenance Query.

We assume a strict separation of the workload query on
one hand and the provenance query on the other (as illus-
trated in Figure 1). Provenance and workload results are
joined to produce a final result. A consequence of our design
is that workload queries can remain unchanged, while the
whole process of applying provenance filtering takes place
during query execution. The body of the provenance query
specifies the set of context values that identify which triples
will be used when executing the workload queries.

For the full details on executing provenance-enabled
queries in TripleProv, we refer the reader to our previous
work [6].

4. PROVENANCE IN QUERY PROCESS-
ING

Given a SPARQL query, our system first analyzes the
query to produce a physical query plan, i.e., a tree of op-
erators that are then called iteratively to retrieve molecules
(basic storage units in TripleProv) susceptible of containing
data relevant to the query. RDF molecules [7] are similar
in their simplest form to property tables and store, for each
subject, the list or properties and objects related to that
subject.

The molecules are retrieved by taking advantage of a
molecule index to locate all elements containing values
specified in the query.

In parallel to the classical query execution process,
TripleProv keeps track of the entities that have been
instrumental in producing results for the query. For
each molecule inspected, our system keeps track of the
provenance of any triple matching the current pattern
being handled. In case multiple molecules are used to
construct the final results, the system keeps track of the
local provenance of the molecules by performing a union
of the local provenance data using a global provenance
structure (see [5] for details).

To tailor RDF quires with provenance data, we propose
several query execution strategies. The simplest strategy is

1993

Provenance
Query

Workload
Queries

Execute
Provenance

Query

Materialize OR
Co-locate

Tuples
Query Results &

Provenance Polynomial

Execute
Query &
Collect

Provenance

Rewrite
Query

Figure 2: Generic provenance-aware query execution pipeline,
where both the workload queries and the provenance query get
executed in order to produce the final results and the provenance
polynomial.

to execute both the RDF query and the provenance query
independently, and to join both result sets based on the
provenance polynomial. We also propose a strategy to pre-
materialize some of the data based on the provenance specifi-
cation. Another way to execute a provenance-enabled query
we present is through dynamic query rewriting; in that case,
the workload query is rewritten using the provenance query
(or some of its results) and only then is the query executed.

Figure 2 gives a high-level perspective on the query
execution process. The provenance and workload queries
are provided as input; the query execution process can
vary depending on the exact strategy chosen, but typically
starts by executing the provenance query and optionally
pre-materializing or co-locating data; the workload queries
are then optionally rewritten—by taking into account some
results of the provenance query. Finally we execute the
workload query and simultaneously we collect information
of entities contributing to the answer and the way they are
combined. The process returns as output the workload
query results, restricted to those which are following the
specification expressed in the provenance query and the
provenance polynomial describing the way the results were
derived.

We give more detail on the execution process, storage
models, various query execution and indexing strategies, and
the system architecture in our previous work [7, 5, 6].

5. PERFORMANCE
We implemented two different storage models to store

provenance information, two granularity levels for the prove-
nance polynomials, and five different query execution strate-
gies for the provenance-enabled queries. Fort detailed dis-
cussion, experiment scenarios, and the performance evalua-
tion we refer the reader to our previous works [5, 6].

Overall, the performance penalty created by tracking
provenance in TripleProv ranges from a few percents
to almost 350%. Clearly, we observe a significant
difference between the two main provenance storage models
implemented. We also notice considerable difference
between the two granularity levels. Clearly, the more
detailed provenance granularity requires more time for
query execution than the simpler one, because of the more
complete physical structures that need to be created and
updated while collecting the intermediate results sets.

Our implementations supporting provenance-enabled
queries overall outperform the vanilla TripleProv. This is
unsurprising, since the selectivity of provenance data in
the datasets allows us to avoid unnecessary operations on
tuples which do not add to the result [6].

The Full Materialization strategy, where we pre-
materialize all relevant subsets of the molecules, makes
the query execution on average 44 times faster than the

vanilla version. The price for the performance improvement
is the time we have to spend to materialize molecules, in
our experiments it was 95 seconds, which can however be
amortized by executing enough workload queries. This
strategy consumed about 2% more memory for handling
the materialized data. The Partial Materialization strategy
performs on average 35 times faster. The advantage
over the Full Materialization strategy is that for Partial
Materialization, the time to execute a provenance query
and materialize data is 475 times lower and takes only 0.2
second.

6. DEMONSTRATION
The demonstration will put the conference attendees in

the position of a database user. In that sense, they will be
able to pose provenance-enabled queries against TripleProv
and to retrieve results along with provenance polynomials
showing how the different pieces of data were combined
to derive the results. The system will be deployed on a
Linux-based laptop with a graphical user interface. We
will provide two different Web datasets: the Billion Triples
Challenge (BTC)3 and the Web Data Commons (WDC)4.
Both datasets are collections of RDF data gathered from the
Web. They represent two very different kinds of RDF data.
The Billion Triple Challenge dataset was created based on
datasets provided by Falcon-S, Sindice, Swoogle, SWSE,
and Watson using the MultiCrawler/SWSE framework. The
Web Data Commons project extracts all Microformat, Mi-
crodata and RDFa data from the Common Crawl Web cor-
pus and provides the extracted data for download in the
form of RDF-quads or CSV-tables for common entity types
(e.g., products, organizations, locations, etc.).

The aforementioned datasets ideally represent the vari-
ety of Linked Data coming from multiple sources and pro-
duced in various ways; they gather data with different levels
of trustability and usability, different degrees of authorita-
tiveness, and gathered automatically from independent and
potentially unknown sources. Those heterogeneous datasets
incorporate provenance information, which we leverage to
provide to the user a reliable and understandable descrip-
tion of the way the executed query was answered, i.e., the
way the answer was derived: a provenance polynomial. We
also enable the users to tailor queries with provenance data,
including or excluding some specific lineage.

For the demonstration, we will provide a set of exemplary
queries showing the differences in query execution when an-
swering provenance-enabled queries. The queries will be de-
signed to highlight the way the data can be derived. We
will also provide various provenance queries, hence allowing
to restrict the data used to produce the answers in differ-
ent ways. The users will be able to arbitrarily combine and
modify both the workload and the provenance queries, and
to observe the resulting effects on the output (i.e., on the
provenance polynomials and query results).

To further illustrate our demonstration, we present a few
examples of provenance-enabled queries that are simplified
versions of what a user will be able to execute on our system.
In the examples below, context values are denoted as ?ctx.

A common case is to ensure that the data used to
produce the answer comes from a set of trusted sources.

3http://km.aifb.kit.edu/projects/btc-2009/
4http://webdatacommons.org/

1994

Given a workload query that retrieves titles of articles
about “Obama”:

SELECT ? t WHERE {
?a <type> <a r t i c l e > .
?a <tag> <Obama> .
?a <t i t l e > ? t . }

One may want to ensure that the articles retrieved come
from sources attributed to the government:

SELECT ? ctx WHERE {
? ctx prov : wasAttributedTo <government> .}

As per the W3C definition, provenance is not only about
the source of data but is also about the manner in which
the data was produced. Thus, one may want to ensure that
the articles in question were edited by somebody who is a
“SeniorEditor” and that articles where checked by a “Man-
ager”. Thus, we could apply the following provenance query
while keeping the same “Obama” workload query:

SELECT ? ctx WHERE {
? ctx prov : wasGeneratedBy <a r t i c l eProd >.
<a r t i c l eProd> prov : wasAssociatedWith ?ed .
?ed rd f : type <SeniorEdior> .
<a r t i c l eProd> prov : wasAssociatedWith ?m .
?m rd f : type <Manager> . }

Another way to apply provenance-enabled queries is for
scenarios in which data is integrated from multiple sources.
For example, we may want to aggregate the chemical prop-
erties of a drug (e.g., its potency) provided by one database
with information on whether it has regulatory approval pro-
vided by another:

SELECT ? potency ? approval WHERE {
? drug <name> ‘ ‘ So ra f en ib ’ ’ .
? drug ? l i n k ?chem .
?chem <potency> ? potency .
? drug <approvalStatus> ? approval }

6.1 User Experience
The user will be able to specify in real-time restrictions

on the data to be used to derive answers for the workload
queries using provenance queries. In addition, he will be able
to modify the provenance specification and observe how re-
sults evolve with different provenance queries. Besides being
able to execute his own queries, the user will also be able
to experiment with sets of pre-written queries; those queries
will be prepared to highlight the influence of provenance-
enabled queries on query execution and results. After exe-
cuting the query, the system will display the results of the
workload query obtained from data satisfying both the work-
load and the provenance specification.

The system will also display a provenance polynomial in
addition to the results (i.e., a high-level specification of how
the results were derived). The provenance polynomial will
be returned at two levels of granularity (see Section 2). The
source-level polynomial and the corresponding triple-level
polynomials will be visually connected, in order for the user
to be able to examine and compare both polynomials si-
multaneously. The demonstration will also allow the user
to analyze which part of the workload query was derived
using which pieces of data: for each query result, the user
will be able to identify the exact source(s) from which the

result was derived. Leveraging the provenance polynomial,
the user will be able to understand how particular pieces of
data were combined to deliver the final result, thus he will
be able to trace back the query execution process.

6.2 Takeaways
This demonstration highlights the importance of tracking

the provenance of Web data. TripleProv offers an interactive
and pragmatic experience for users interested in exploring
trade-offs related to supporting provenance. Through our
demonstration, users will be able to experience differences
when executing queries with various provenance specifica-
tions. The system will also provide the user a detailed spec-
ification on the way results were derived and on how partic-
ular pieces of data were combined to answer the query. A vi-
sual interface will show how results evolve as the provenance
specification gets updated as well as how different pieces of
data can be combined when answering provenance-enabled
queries.

7. ACKNOWLEDGMENTS
This work was supported by the Swiss National Science

Foundation under grant number PP00P2 128459 and by the
Dutch national program COMMIT.

8. REFERENCES
[1] F. Geerts, G. Karvounarakis, V. Christophides, and

I. Fundulaki. Algebraic structures for capturing the
provenance of sparql queries. In Proceedings of the 16th
International Conference on Database Theory, ICDT
’13, pages 153–164, New York, NY, USA, 2013. ACM.

[2] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
31–40. ACM, 2007.

[3] P. Groth and L. Moreau (eds.). PROV-Overview. An
Overview of the PROV Family of Documents. W3C
Working Group Note NOTE-prov-overview-20130430,
World Wide Web Consortium, Apr. 2013.

[4] D. W. R. Cyganiak and M. L. (Ed.). RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation, February
2014. http://www.w3.org/TR/rdf11-concepts/.

[5] M. Wylot, P. Cudre-Mauroux, and P. Groth.
TripleProv: Efficient Processing of Lineage Queries in a
Native RDF Store. In Proceedings of the 23rd
International Conference on World Wide Web, WWW
’14, pages 455–466, Republic and Canton of Geneva,
Switzerland, 2014. International World Wide Web
Conferences Steering Committee.

[6] M. Wylot, P. Cudré-Mauroux, and P. Groth. Executing
Provenance-Enabled Queries over Web Data. In
Proceedings of the 24rd International Conference on
World Wide Web, WWW ’15, Republic and Canton of
Geneva, Switzerland, 2015. International World Wide
Web Conferences Steering Committee.

[7] M. Wylot, J. Pont, M. Wisniewski, and
P. Cudré-Mauroux. dipLODocus[RDF]: short and
long-tail RDF analytics for massive webs of data. In
Proceedings of the 10th international conference on The
semantic web - Volume Part I, ISWC’11, pages
778–793, Berlin, Heidelberg, 2011. Springer-Verlag.

1995

