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ABSTRACT
Fast query and transaction processing is the goal of 40 years of
database research and the reason of existence for many new database
system architectures. In data management, system performance
means acceptable response time and throughput on critical-path
operations, ideally with scalability guarantees. Performance is im-
proved with top-of-the line research on data processing algorithms;
efficiency, however, is contingent on seamless collaboration be-
tween the database software and hardware and storage devices. In
1980, the goal was to minimize disk accesses; in 2000, memory
replaced disks in terms of access costs. Nowadays performance is
synonymous to scalability; scalability, in turn, translates into sus-
tainable and predictable use of hardware resources in the face of
embarrassing parallelism and deep storage hierarchies while mini-
mizing energy needs - a challenging goal in multiple dimensions.

We discuss work done in the past four decades to tighten the
interaction between the database software and underlying hard-
ware and show that, as application and microarchitecture roadmaps
evolve, the effort of maintaining smooth collaboration blossoms
into a multitude of interesting research avenues with direct techno-
logical impact.

1. INTRODUCTION
Ever since the first steps of computer science, data management

has been an active research and industrial field. Data management
systems have been an enabler for numerous influential applications,
from the ubiquitous transaction processing, to big data analytics
(e.g., scientific exploration, sensor networks, business intelligence)
and high-performance online services (e.g., social networks like
Twitter and Facebook, or realtime complex event processing finan-
cial applications). These ever-evolving applications have been the
driving force for many innovations in the database and architecture
communities for several decades: systems have had to evolve along
with the applications to support them efficiently.

Emerging application requirements in recent years have led to a
widespread belief that “one size does not fit all” and that specific
applications require specialized system designs. This led to a mul-
titude of system designs, each geared towards a different applica-
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tion. Practitioners use streaming engines for data arriving in high-
velocity streams, column-oriented engines for data analytics, main-
memory-based systems for transactions, etc. The design space con-
tains trade-offs along many dimensions, involving choice of i) data
layout (row oriented, column oriented, hierarchical or hybrid), ii)
storage device (disk, SSD or main memory), etc. Most data man-
agement systems “pick a side” along each of these dimensions.

The specialization trend, along with the increasing complexity of
data management applications and the introduction of ever more so-
phisticated hardware, inspire customized algorithms, many of them
using hardware accelerators such as GPUs and FPGAs. These algo-
rithms, however, often make many assumptions about data formats,
distributions, workload types and hardware properties. It is there-
fore almost impossible to integrate these algorithms in any other
system; instead of re-using efficient, established technology, sys-
tem developers must “reinvent the wheel”. Instead of having to
choose between sub-optimal general purpose solutions and a mul-
titude of specialized solutions that don’t quite fit the specific com-
bination of hardware and application, the next generation of ap-
plications calls for customized (or even customizable) systems that
choose the optimal hardware-conscious data storage and process-
ing algorithm dynamically.

2. MAJOR HARDWARE TRENDS
Recent hardware trends in the areas of processing and storage

hardware deeply affect data management applications. This section
identifies their most influential characteristics.

2.1 Abundant Heterogeneous Parallelism
Processor designs are rapidly becoming heterogeneous, increas-

ing in complexity and following non-uniform architectures. In step
with Moore’s Law, hardware provides increasing opportunities for
parallelism rather than faster processors since 2005. Therefore, in-
stead of increasing frequency, we observe an increase in the num-
ber of cores on a processor. Today’s low power multicores have
dozens of cores on the same chip. Exploiting parallelism is cru-
cial for utilizing the available architectural resources and enabling
faster software. Designing scalable systems that can take advan-
tage of the underlying core parallelism, however, remains a chal-
lenge [1]. In traditional high-performance transaction processing,
the inherent communication leads to scalability bottlenecks on to-
day’s multicore and multisocket hardware. Even systems that scale
on one generation of multicores often fail to scale up on the next
generation. On the other hand, in traditional online analytical pro-
cessing, the database operators that were designed for single-core
processors fail to exploit the abundant parallelism offered by mod-
ern hardware. The continuously changing hardware is forcing data
management systems to evolve too.

2058



As the number of processing cores increases with ever more
complex topologies, the low latency interconnects minimize dis-
tances between servers. Remote Direct Memory Access (RDMA)
technology allows applications to access memory on a remote ma-
chine directly, without involving the operating system or the pro-
cessor. By using RDMA over fast network fabrics, such as Infini-
band and converged Ethernet, the latency of remote machine ac-
cesses is comparable to the latency of accessing remote memory in
a traditional big-memory machine. In the near future, rack-scale
systems, akin to “cluster-in-a-box” [5], will use highly customized
system-on-a-chip (SoC) nodes, containing only processing cores,
memory, and I/O interfaces and communicating via low-latency in-
terconnect fabrics. Software designers eventually will tune their
applications to rack-scale systems [7], just as they did when large
shared-memory machines and supercomputers started being used
for enterprise and scientific applications respectively; applications
were rewritten to emphasize on locality, a requirement for good
performance.

Decreasing energy budgets is another important trend leading to
dark silicon [6]. As a consequence, heterogeneous chips containing
specialized data management accelerators are becoming more ap-
pealing. GPUs are a popular target for data management operators
for over a decade. Another approach is to use reconfigurable chips,
such as field programmable gate arrays (FPGAs), to offload se-
lected data processing paths. However, further demand for energy
efficiency has sparked a number of proposals ranging from custom
chips that accelerate individual operations such as partitioning and
hashing, to query task accelerators, to designs that specialize chips
to complete analytical queries [19].

2.2 Deep Storage Hierarchies
Traditionally, data management systems have been designed with

disks as the primary storage, the main memory acting as the caching
layer, and tape as the archival storage. Nowadays, however, as costs
of DRAM keep decreasing, the storage hierarchy has shifted up-
wards with the main memory serving as the primary data storage
and processor’s caches keeping track of the data processing state.
Given large main memories that can hold working sets of many
applications, we have witnessed a flurry of main-memory-centric
OLTP and OLAP system designs. Yet, in many cases, the large
number of concurrent user requests and the increasingly complex
queries they issue force storing data on disk. Hence, modern data
management systems need to be able to use different levels of the
storage hierarchy interchangeably [3].

A number of memory technologies are making the storage hi-
erarchy more complex. Flash-based solid state drives (SSD) are a
maturing technology that offers persistent storage with faster ac-
cess times compared to traditional spinning disks. Even though
this makes them an attractive drop-in replacement for disks, it is
not very efficient as it exacerbates poor durability and can cause
unpredictable performance that stems from wear leveling. Despite
inspiring many flash-optimized data management operators as well
as systems that use flash as a caching layer between main memory
and the spinning disk, the jury is still out on the optimal way to
integrate SSDs into data management systems [15].

Non-volatile RAM is a family of emerging memory technologies
that promise to offer persistence of flash at the speed and density of
DRAM. Although competing technology proposals offer different
performance and durability characteristics, they all have in com-
mon persistence as well as the access latencies between DRAM
and flash, and higher durability than flash. Also, they exhibit asym-
metry in read and write latencies common to disks, while offering
byte addressability of the main memory. These properties make

them a compelling part of the storage hierarchy that offers many
interesting research opportunities [18].

Overall, the hardware platforms are offering software designers
more and more parallelism in many shapes and forms. Therefore,
data management algorithms need to be as general and modular as
possible in order to take advantage of the available parallelism and
adapt to the storage hierarchy for every specific application.

3. OLTP ON MODERN HARDWARE
Making a sophisticated software system hardware-conscious is

an elaborate task. This section illustrates the challenges posed by
the evolving hardware to data management by focusing on a sin-
gle application class (transaction processing) and a single hard-
ware element (the processor). We discuss how well modern disk-
and main-memory-oriented transaction processing systems utilize
the cache hierarchies and the abundant non-uniform parallelism of
modern multi-socket multi-core servers.

3.1 Improving Micro-architectural Behavior
Transaction processing systems have been known to show sub-

optimal micro-architectural behavior. Up to 80% of the execution
cycles go to memory stalls; L1 instruction cache and/or long la-
tency data misses from the last-level cache account for the majority
of the overall stall time. As a result, the instructions-per-cycle (IPC)
fraction’s value barely reaches one on machines that can retire up
to four instructions in a cycle [1]. This section overviews several
methods improving utilization of hardware resources for transac-
tion processing systems, and presents micro-architectural analysis
of main-memory optimized transaction processing systems.

Instruction reuse. The key observation in transaction process-
ing is that transactions exhibit significant overlap in their instruc-
tion footprint due to the common database operations they exe-
cute such as index probe, index scan, update tuple, etc. This of-
fers an opportunity to achieve better L1 instruction cache locality
by scheduling transactions in a way that would enable instruction
reuse across transactions based on their common actions [17].

STEPS, a software technique, and STREX, a hardware tech-
nique, time-multiplex a batch of similar transactions by context-
switching on a single core so that the instructions fetched by one
transaction in the batch are reused by all the other transactions of
the batch on the same core. Going one step further, SLICC, a hard-
ware technique, and ADDICT, a software-guided hardware tech-
nique, spread the computation by dynamically migrating the trans-
actions to multiple cores to allow multiple transactions to reuse the
cached instructions on multiple cores.

While STEPS and STREX are single-core algorithms, SLICC
and ADDICT need to have a number of cores large enough for
the aggregate capacity of L1 instruction caches to fit the instruc-
tion footprints of all the concurrently running transactions. Being
software-level/software-guided methods, STEPS and ADDICT are
able to use statistical information from the software side to deter-
mine the context-switch/migration points at which the transactions
should be context-switched or migrated to different cores. STREX
and SLICC, however, are completely software-oblivious, missing
the opportunity of using software hints to decide on the context-
switch/ migration points. Instead, they use heuristics based on
cache miss rates to find the context-switch and migration points.

Dictating which transactions should run on which cores is harder
and less efficient at the software-level than at the hardware-level,
because software-level scheduling is platform-dependent and re-
quires drastic modifications to the operating system software. On
the other hand, software-level hints can substantially improve the
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prediction of better context-switch/migration points. Being a soft-
ware guided hardware mechanism, ADDICT exploits both the cheap
hardware level transaction scheduling mechanism and the software
level hints to find the better migration points. Moreover, ADDICT
exploits the aggregate L1 instruction cache capacity of the multi-
core architectures. As a result, among the four proposed solutions,
ADDICT reduces the instruction misses most drastically (by 85%)
due to its careful hardware-software co-design [17].

Main-memory optimized systems. Recent years have witnessed
the rise of main-memory optimized transaction processing systems.
Unlike the traditional disk-based systems, main-memory optimized
systems process all the data in main memory, and therefore can
omit the buffer manager component. In addition, they usually adopt
more lightweight concurrency control mechanisms, cache-conscious
index structures, code generation, and a cleaner code base since
they are usually designed from scratch. Hence, one would expect
better micro-architectural behavior from main-memory systems.

Despite all the design differences and system-specific optimiza-
tions, main-memory OLTP systems exhibit very similar behavior to
the disk-based ones: more than half of the execution time goes to
memory stalls where L1 instruction cache and/or the long-latency
data misses from the last-level cache are the dominant factors in
the overall stall time. Main-memory systems adopting aggressive
transaction compilation techniques can reduce the instruction misses
to almost zero; however, the reduction in instruction stalls amplifies
the impact of last-level cache data misses. As a result, the IPC value
barely reaches one on machines that are able to retire up to four
for both traditional disk-based and new generation main-memory
transaction processing systems. Therefore, pure software-level op-
timizations are not enough to fully exploit micro-architectural fea-
tures. As in ADDICT, one needs to optimize the hardware and soft-
ware together to improve the utilization of the micro-architectural
resources.

3.2 Non-uniform core topologies
Transaction processing applications traditionally run on high-

end servers. Up until recently, such servers had uniform core-
to-core communication latencies. With the introduction of multi-
socket multi-cores, however, for the first time we have Islands,
i.e., groups of cores that communicate fast among themselves and
slower with other groups. In current mainstream servers, each chip
is an Island; as the number of cores on a chip increases, however,
soon we will identify Islands within a single chip.

Given all the effort to make transaction processing systems scale
on multi-cores, one would expect that they perform well on multi-
sockets, too. However, this is not the case. To be fair, multi-sockets
are not an ideal platform for distributed transaction processing de-
ployments either. In fact, no single optimal configuration exists:
the ideal configuration depends on the hardware topology and the
workload. For example, a shared-nothing configuration is twice
as fast as a shared-everything one for perfectly partitionable work-
loads. By contrast, the situation is completely the opposite for non-
partitionable workloads and workloads that exhibit heavy skew.
Island-sized shared-nothing configurations fall between the two ex-
tremes, so none of the previous alternatives can be applied directly.

One way to address this challenge is by adapting a scalable log-
ically partitioned shared-everything system to Islands using auto-
matic partitioning of the system state and dynamically assigning
worker threads to specific partitions [16]. In this way, one can re-
move all intersocket accesses from the critical path of transaction
execution for perfectly partitionable workloads. For other work-
loads, we rely on finding a good partitioning and placement scheme
that balances the load across partitions and minimizes the synchro-

nization overheads across Islands. Finally, to ensure robust per-
formance in the presence of shifting workload patterns, we use a
lightweight monitoring mechanism to detect and quick repartition-
ing mechanism to adapt to any change.

4. NIMBLE DATA MANAGEMENT
A defining characteristic of modern data management applica-

tions is their diverse requirements. Despite the increasing process-
ing capabilities of modern hardware platforms, having to deal with
multiple, heterogeneous applications renders many brute force /
general-purpose approaches ineffective, and requires a tighter co-
design of data management systems for specific hardware and ap-
plications. The key is to make dynamic behavior the primary design
goal of a modern data management system, as shown in the next
two cases of rack-scale OLTP and just-in-time data management.

4.1 Rack-scale OLTP
Software designers often choose to augment existing systems

when new requirements arise as we exemplified over the long his-
tory of general purpose DBMS which ended up being superseded
by an array of specialized systems. We illustrate challenges of this
approach on the example of transaction processing for future highly
parallel rack-scale platforms.

OLTP systems are typically designed to either scale out or scale
up, yet neither is optimal for rack-scale hardware. Scale-out sys-
tems mostly utilize shared-nothing designs that run on clusters of
machines and offer very high performance for easily partitionable
workloads due to explicit data partitioning and reduced synchro-
nization. However, they completely ignore the opportunities for op-
timizing communication between nodes located on the same phys-
ical machine thus lowering per machine throughput. Scale-up sys-
tems typically use main memory optimized shared-everything de-
signs that rely on the precise synchronization among threads to
achieve robust high performance. However, when deployed in a
distributed way, they are sensitive to the delays introduced by the
network communication.

Inadequacies of state-of-the-art concurrency control and coor-
dination protocols stem from scale-up and scale-out requirements
respectively. On the one hand, concurrency control protocols for
main-memory-optimized, scale-up designs need to minimize the
duration of any critical sections so as not to introduce any scalabil-
ity bottlenecks. This makes them sensitive to delays introduced in
the critical path of transaction execution. On the other hand, coor-
dination protocols aim at minimizing the number of messages be-
tween nodes in the distributed system as communication latencies
dominate all other delays in the system. This allows them, however,
to add significant local processing overhead, that is prohibitive for
lean main memory optimized systems.

Neither scale up nor scale out designs can be easily augmented
to fit the rack-scale hardware platforms. To that end, concurrency
control protocols need to become resilient to the communication
delays, while the coordination protocols need to become lighter to
capture the best of both worlds. Judicious use of semantic informa-
tion from the application with the focus on locality on every node
is a promising way toward efficient rack-scale OLTP designs.

4.2 Just-in-time Data Management
Traditional data management systems have multi-layer architec-

tures, each layer being responsible for enriching the previous one’s
functionality, and operating on a different level of abstraction (one
goal being logical and physical data independence). Every layer
of abstraction, however, bring indirection along, which needs to
be handled in the code base. As a result, the query engines of

2060



many mature systems become increasingly general-purpose and
hardware-agnostic, losing optimization opportunities associated with
specific use cases; the abstractions they use are “too high”.

One work-around traditional engines employ is to duplicate, hard-
code, or pre-compile certain “frequent code paths”, hoping to in-
crease performance. This approach, however, leads to bloated code
bases and does not scale, as it is impractical to pre-specify the code
needed for any ad-hoc query. “Pre-cooked” query operators intro-
duce significant interpretation overhead during query evaluation.
The overarching problem of these operators is that gain in perfor-
mance is countered by loss of generality so while some applications
enjoy faster response times, the performance of others suffers.

An alternative approach to using “pre-cooked” query operators
is generating the code to answer database queries just-in-time. By
using just-in-time code generation, one gets the best of both worlds;
engines can still reason in high-level abstractions, while at the same
time producing specialized code for each incoming query, and coa-
lescing all the system layers at runtime. Depending on the system’s
code generation capabilities, the resulting code can target specific
data types / formats, underlying hardware features, etc.

Years after first being applied in System R, runtime code genera-
tion recently re-gains popularity, the modern hardware capabilities
and characteristics being a contributing factor. HIQUE is a no-
table effort, dynamically instantiating code templates to generate
hardware-specific (e.g., cache-conscious) code. HyPer [12], Im-
pala [14], and Tupleware [4] employ more sophisticated code gen-
eration techniques, using the LLVM compiler infrastructure. Hy-
per specializes to the underlying hardware by advocating “register-
based processing”; it tries to avoid CPU register contents being
flushed to memory. The query engine of HyPer is, therefore, push-
based to simplify the control flow in the generated code and to ex-
ploit data locality via pipelining. On the other side of low-level
code generation, LegoBase [13] advocates “abstraction without re-
gret” and staged compilation. By using this staged approach, LegoB-
ase can exploit and combine opportunities from the software and
hardware layers. The query engine and the optimization rules of
LegoBase are both written in the high-level language Scala. Dif-
ferent optimizations can be applied in every query translation step
from the original Scala representation to the C code that is even-
tually generated. All the aforementioned systems are essentially
self-compiling DBMS, shedding away unnecessary abstractions to
become hardware-conscious.

ViDa [10] is a new database engine which uses data virtualiza-
tion to produce custom database systems just-in-time, while mini-
mizing the performance hit. ViDa virtualizes data by abstracting it
out of its original form and manipulating it regardless of the way it
is stored or structured. Vida accesses heterogeneous datasets effi-
ciently, regardless of their location, format, and of the queries that
are to be executed over them. ViDa handles the underlying model
heterogeneity by using an expressive internal query language able
to handle relations, hierarchies, and arrays, as well as transforma-
tions between these collection types. Existing languages can also
be translated to ViDa’s internal language, so that users have the
power to choose the language best suited for an analysis. ViDa
also employs low-level code generation techniques to adapt its en-
tire query engine just-in-time. By enhancing techniques described
in H2O [2] and RAW [11], the ViDa engine i) dynamically adapts
its data storage layout based on the incoming query workload, and
ii) generates its access paths just-in-time to adapt to the underlying
data files and to the incoming queries.

ViDa is the first just-in-time database system: it is generated in-
stantaneously and then it customizes itself fully and dynamically to
the user’s hardware, data, and queries. All the software and hard-

ware heterogeneity is masked away from the user, who can launch
queries on top of her “virtual”, custom database without data prepa-
ration. “Self-designing” data systems adopt a similar philosophy: a
database is designed automatically to fit specific data, queries and
hardware platform [9]. One promising step is the Ocelot project,
which demonstrated how CPU and GPU operators can be com-
bined to efficiently run queries over the MonetDB column store [8].
By combining query-driven, hardware-aware, code-generated oper-
ator pipelines optimized for the current system resource availability
across processing and storage hierarchies, one can efficiently pro-
cess any query on any hardware platform.

5. SUMMARY
In this paper, we first discuss major hardware trends with lasting

impact on the data management systems. Then we illustrate the
complexity of hardware/data management co-design through chal-
lenges and promising solutions in the interaction of processors and
transaction processing systems. Finally, we argue in favor of just-
in-time design of data management systems that dynamically adapt
to hardware and application requirements.
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