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ABSTRACT
In exploring representative databases, a primary issue has been
finding accurate models of user preferences. Given this, our work
generalizes the method of regret minimization as proposed by Nanongkai
et al. to include nonlinear utility functions. Regret minimization is
an approach for selecting k representative points from a database
such that every user’s ideal point in the entire database is similar to
one of the k points. This approach combines benefits of the meth-
ods top-k and skyline; it controls the size of the output but does not
require knowledge of users’ preferences. Prior work with k-regret
queries assumes users’ preferences to be modeled by linear utility
functions. In this paper, we derive upper and lower bounds for non-
linear utility functions, as these functions can better fit occurrences
such as diminishing marginal returns, propensity for risk, and sub-
stitutability of preferences. To model these phenomena, we analyze
a broad subset of convex, concave, and constant elasticity of sub-
stitution functions. We also run simulations on real and synthetic
data to prove the efficacy of our bounds in practice.

1. INTRODUCTION
When users make a request to a database, they are often unwill-

ing to search through all of the results to find an item that best fits
their preferences. Given this, multiple operators have been pro-
posed to reduce output size for database queries while still effec-
tively representing the entire database.

Top-k [13] and skyline [2, 10] operators have both been studied
as possible solutions to the problem of reducing output to a man-
ageable size. However, both of these operators have drawbacks.
Top-k asks for users to input their utility functions and uses these
functions to return a customized set of items to every user. How-
ever, this method requires users to both know and input their utility
functions. Users may not know exactly how much they care about
any given attribute of an item, or they may not want to take the time
and effort to enter their utility function. The skyline operator elimi-
nates any point if it is less preferable in every attribute than another
point. However, this method does not control the exact number of
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Figure 1: Example of Regret

items returned, leaving the possibility of it not sufficiently reduc-
ing the output size. To combat these issues, Nanongkai et al. [23]
introduced the concept of regret, which we build upon in this paper.

Regret is informally defined in the following example. Assume
a user, Alice, queries for a small set from a large database of cars.
These cars have two attributes, horsepower (HP) and mileage per
gallon (MPG). We will also assume that Alice has a utility function
that can be determined by her attribute preferences. However, as
we do not know what her utility function is, it is impossible to
guarantee that we will output her ideal car in this small set. We
can, however, provide her with a result that is close to her ideal car.
The difference between the utility of her ideal car and the utility
provided by the best car for her in the result set is her regret. We
can find Alice’s regret ratio by dividing regret by the utility of her
ideal car. Finding a small set that bounds the regret ratio of any
possible user is the goal of the k-regret query.

For example, assume that Alice’s utility function is (MPG)2 +
2(HP). Her ideal car from the entire database is the yellow car (see
Figure 1), which gives her a utility of 2760. Her ideal car from
the subset is the red car, which gives her a utility of 2295. Thus her
regret ratio is 2760−2295

2760
= .17, or 17%. The goal of our algorithms

is to minimize the regret ratio for Alice and all other possible users.
Previous work with the k-regret query has shown that the regret

ratio can be bounded to a small quantity for linear utility functions,
but the question was left open as to whether this was the case for
broader classes of utility functions. Our work answers this affir-
matively, showing theoretical bounds for a large subset of convex,
concave, and constant elasticity of substitution (CES) utility func-
tions. The addition of these classes of functions to our set of pos-
sible utility functions greatly enhances the power of the k-regret
query, because it more accurately explains common phenomena in
utility functions.

One such instance is diminishing marginal returns, the effect by
which a user grows less satisfied with each additional unit of a
good. It is most often represented by a concave function. Since
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this is a known effect, taking it into account when designing the
database operator is critical so as to ensure the user’s regret is not
higher than anticipated by models that only include linear utility
functions. For example, imagine that you, like Alice, would like to
purchase a car. You want a car with high horsepower. If you were
given a choice between car A, which has 260 HP, and car B, which
has 280 HP, you would have a strong preference for car B. How-
ever, if you were given a choice between car C, which has 460 HP,
and car D, which has 480 HP, car D would not seem much better to
you than car C, as car C already has very high horsepower. Your de-
sire for high horsepower can be represented by a concave function
that puts less weight on differences in horsepower as horsepower
gets higher. In addition, convex utility functions often represent
the preferences of risk-loving individuals who will invest in a com-
modity despite a lower expected payout due to the risk.

CES utility functions prove useful by modeling a user’s pro-
clivity or aversion to variety amongst the attributes. For example,
CES functions representing a low elasticity of substitution indicate
a user who desires a diverse mix of criteria, since he or she be-
lieves the attributes to be complementary toward each other, while
a function with a high elasticity of substitution shows a user who
believes the varying attributes are, to a greater degree, interchange-
able. Since all these effects occur frequently in behavioral analysis,
we believe including them in our utility models should be a priority.

Ergo, our main contributions are as follows:

• We present the MinWidth algorithm which allows us to bound
the maximum regret ratio for most independent, monotoni-
cally increasing convex, concave, and CES utility functions.
These bounds are dependent solely on the number of points
displayed and are independent of the number of tuples in the
database, i.e., we can summarize databases of unlimited size
with only a few points.

• We introduce two additional heuristic algorithms that give
low regret ratios in practice.

• We give lower bounds for the convex, concave, and CES
cases that are close to matching the abovementioned upper
bounds.

• We show that regret can be very low in practice via simula-
tions on both real and synthetic data.

After exploring related work in Section 2, we will formally de-
fine our problem in Section 3. We then provide an algorithm with
worst-case upper bounds in Section 4, followed by two heuristic
algorithms in Section 5. Next, we present our lower bounds in Sec-
tion 6. In Section 7 we provide our experimental results and we
conclude in Section 8.

2. RELATED WORK
Many others have proposed approaches to representative databases.

There have been variations of top-k and skyline that attempt to
fix the various issues that these techniques have. Several regret-
minimization techniques have also been proposed.

Börzsönyi et al. [2] first introduced the concept of skyline. Barndorff-
Nielsen and Sobel, Kung et al., Matousek, and Magnani et al. [1,
15, 20, 21] have all expanded the work on skyline. Das Sarma et
al. [8] propose another approach to skyline. They assume users
based on a probability distribution of utility functions instead of a
fixed set of users. These users are modeled on threshold-based pref-
erences which divide tuples into those which a user would or would
not select. Lin et al. [18] and Tao et al. [26] propose an approach

called k-representative skyline. Both find k skyline tuples that rep-
resent the skyline. Lin et al. [18] propose a method that finds the k
skyline tuples that dominate the most tuples. This method is scale
invariant; that is, it still outputs the same tuples even if we scale
the input attribute values. Tao et al. [26] demonstrate that the ap-
proach that Lin et al. provide might yield a objectionable solu-
tion. They propose an alternate solution based on distances that
solves the k-center problem on skyline points. This method is not
scale-invariant, since it uses distances. There has also been work on
constrained subspace skyline computation such as that by Dellis et
al. [9] that propose range constraints specified by skyline queries.
Magnani et al. [19] work with aggregate data rather than just single
records. The method proposed returns desired groups of records
based on their features.

Papadopoulos et al. and Yiu and Mamoulis [24,29] propose top-
k dominating query. This method ranks each tuple by the number
of other tuples that it dominates. Top-k dominating query com-
bines benefits of both top-k and skyline, as it controls output size
without asking users for utility functions. This query has been fur-
ther explored by Lian and Chen [17] and Zhang et al. [30] using
uncertain databases, and by Kontaki et al. [14] using continuous
processing. Ilyas et al., Hristidis et al, Chang et al, and Tsaparas et
al. [6,12,13,27] all use top-k operators; however, they ask for utility
functions, which is a burden on the user. Goncalves and Vidal [11]
propose the operators top-k skyline select and top-k skyline join.
They ask users for criteria and utility functions. The operator then
uses this information to return skyline tuples according to the given
criteria and top k skyline tuples according to the utility functions.
This method controls the size of the skyline, but still requires users
to know and input their utility functions.

There have been several approaches to regret minimization. Nanongkai
et al. [23] introduced the concept of regret minimization. This
method controls output size while not requiring users to input their
utility functions. However, the approach proposed by Nanongkai et
al. only guarantees bounds for linear utility functions. Nanongkai
et al. [22] incorporate user interaction into regret minimization by
repeatedly returning selected tuples to users and asking them to se-
lect their favorite. They use this information to better understand
which set of tuples each user desires. This process continues until
the user decides to stop giving input. This method increases the
happiness of each user but burdens users with feedback. Chester
et al. [7] propose a method called relaxation to apply should there
not be an appropriate subset of points to make each user acceptably
happy. Peng et al. [25] use regret minimization, but first narrow
down the database to a set of points called happy points using a
geometric approach. Catallo et al. [3] also narrow down the points,
but do so by using an algorithm to explore the points. This algo-
rithm records the relevance and position of points in order to avoid
needing to look through every relevant point in the database. None
of the previously mentioned approaches incorporate nonlinear util-
ity functions.

There have been other approaches to limit output size besides
the ones mentioned above. Chan et al. [5] propose skyline fre-
quency. This ranks points by counting the number of dimensions
for which each point is in the skyline. Xia et al. [28] propose ε-
skyline queries. This asks users to give weights to certain attributes
of a point, and controls output size using ε. Lee et al. [16] ask users
for partial rankings, which allows them to not ask for entire utility
functions. Chan et al. [4] introduce a new definition of dominance;
a point is dominant if it is better in no less than k dimensions. These
methods all control output size; however, they do not minimize re-
gret. None of the methods mentioned in this section both minimize
regret and use nonlinear utility functions.
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3. PROBLEM DEFINITION
We are given a database (D) of n d-dimensional points, repre-

sented as tuples, and an output size k, where d ≤ k ≤ n. For
every point p ∈ D, the value in any dimension i, represented as pi,
has the domain R+; each value represents the tuple’s preferability
in that dimension, where greater values are more preferable. The
degree to which a point is favored by any given user is represented
by the user’s utility function.

DEFINITION 1. Utility Function. A utility function f is a map
f : Rd+ → R+. We say that a user with utility function f has utility
f(p) for any point p.

Since we assume that bigger values are better, all utility functions
in this paper will be monotonically non-decreasing in each of their
arguments.

DEFINITION 2. Independent Utility Function. A utility func-
tion f is said to be independent if it can be expressed in the form
f(p) =

∑d
i=1 fi(pi), for some functions fi : R+ → R+, 1 ≤ i ≤

d.

EXAMPLE 1. The end user Alice is shown a 2-dimensional point
represented by the tuple s = (.2, .8). Alice’s preferences conform
to the utility function f(x1, x2) = 2x2

1 + 3x2
2, which means that

the given tuple yields a utility of 2. Note that Alice’s utility func-
tion is independent. An example of a non-independent function is
g(x1, x2) = 2x2

1x
2
2 + x3

2.

The reason for our focus on independent utility functions is be-
cause a user’s preference for each attribute is usually unaffected by
their preference for other attributes. In cases where this is not so,
we use CES functions to describe the effect.

Without knowledge of Alice’s utility function, though, one can-
not accurately calculate the utility of a point as one does in a top-k
query. As a solution, k-regret queries [23] seek to return points that
minimize the regret ratio for the user.

DEFINITION 3. Regret Ratio. If f represents a user’s utility
function, p is her optimal point in the database D, and s is her op-
timal point amongst the output S of k points shown to her, then we
define her regret ratio to be rrD(S, f) = f(p)−f(s)

f(p)
.

EXAMPLE 2. Given all circumstances of our previous example,
now assume Alice’s optimal point p to be a point in the database
with weights (.6, .7). Alice is not shown this point, and therefore
picks point s. Since p yields a utility of 2.19, and s gave a utility of
2, Alice’s regret ratio is .19

2.19
, or 8.68%.

Since utility functions vary across users, however, one must not
only minimize the regret ratio for Alice’s utility function, but also
for all other users. Thus, any algorithm for a k-regret query must
minimize the maximum regret ratio across the class of utility func-
tions, F .

DEFINITION 4. Maximum Regret Ratio. The maximum re-
gret ratio for showing the set S instead of the entire database D
to a set of users with utility functions from the class F is defined
as mrrD(S,F) = supf∈F rrD(S, f). Note that we must take the
supremum as F is an infinite set and the maximum may not exist.

In all prior work, the class of functions F was restricted to ones
with linear utility [7,22,23,25]. In this paper, we consider functions
from the following very broad classes.

DEFINITION 5. Convex function. A function f is said to be
convex over R+ if for all x1, x2 ∈ R+ and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

If f is twice differentiable, then it is convex if and only if f ′′(x) ≥ 0
for all x.

DEFINITION 6. Concave function. A function f is said to be
concave if −f is convex. If f is twice differentiable, then it is con-
cave if and only if f ′′(x) ≤ 0 for all x.

DEFINITION 7. Constant Elasticity of Substitution (CES) Func-
tions. Constant elasticity of substitution functions are utility func-
tions of the form f(x) = (

∑d
i=1 aix

b
i )

1
b , where b ∈ R and ai ∈

R+ for all 1 ≤ i ≤ d.

Note that CES functions are not independent.

3.1 Problem Definition
When a user with an unknown utility function from the class
F queries for k points from a database D with n d-dimensional
points, return a set S of size k that minimizes mrrD(S,F). The
classes of utility functions we consider are:

• CONVEX = {f | f(x) =
∑d
i=1 fi(xi), where each fi is a

convex function};

• CONCAVE = {f | f(x) =
∑d
i=1 fi(xi), where each fi is

a concave function}; and

• CES = {f | f(x) = (
∑d
i=1 aix

b
i )

1
b , where b ∈ R+ and

ai ∈ R+ for all 1 ≤ i ≤ d}.

EXAMPLE 3. A set of risk-loving financial advisors are pre-
sented with k options for various financial packages. Their utility
functions are known to be of the form f(x) =

∑d
i=1 aix

2
i (where

each ai ∈ R+). Because each fi(x) = aix
2
i is convex, our bounds

for CONVEX will apply.

EXAMPLE 4. A group of consumers are shown k different va-
cation packages. They experience diminishing marginal returns on
any given attribute of a package. Their utility functions are known
to be of the form f(x) =

∑d
i=1 ai

√
xi (where each ai ∈ R+).

Because each fi(x) = ai
√
xi is a concave function, our bounds

for CONCAVE will apply.

3.2 Stability and Scale Invariance
Nanongkai et al. [23] defined two very important properties called

stability and scale invariance. Intuitively, stability is the property
that the addition of a point that is non-optimal for all users should
not change the result of the query. The k-regret query is stable
since non-optimal points have no bearing on the computation of
regret and hence the set of points returned will not be affected by
non-optimal ones.

The scale invariance property [23] informally means that re-scaling
each dimension of the database by a constant should not affect the
result of the query. For example, it should not matter if the fuel ef-
ficiency of a car is given in miles per gallon or kilometers per liter.
It was shown by Nanongkai et al. [23] that the k-regret query for
linear utilities is scale invariant. We extend this result to a much
broader class of utility functions.
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THEOREM 1. LetF be the class of functions of the form f(x) =∑d
i=1 fi(xi), where each fi is an infinitely differentiable at zero.

Then, the maximum regret ratio for any set of points remains un-
changed after any dimension is rescaled by the same constant.

PROOF. Assume f to be any function from the class F defined
in the statement of the theorem. We know that f can be written in
the form f(x) =

∑d
i=1 fi(xi), where each fi has a Taylor series

expansion around zero. Hence, we can re-write the function as
f(x) =

∑d
i=1

∑∞
j=0 ai,jx

j
i . Now, let us say that the attributes of

the database are rescaled by the constants λ1, . . . , λd, respectively,
to give a new database D′. We define another utility function

g(x) =

d∑
i=1

∞∑
j=0

ai,j

λji
xji

and note that, by construction, the value of the utility function of
f on any point in D is equal to the value of the utility function g
on the corresponding point in D′. Hence, the regret ratio of f in D
will also be equal to the regret ratio of g in D′. Since our goal is to
bound the regret ratio of the maximum across all functions, and g
is a function in the class F , the maximum regret ratio must be the
same.

4. UPPER BOUNDS
In this section, we will introduce the MinWidth algorithm and

show how it provides theoretical upper bounds on the regret ra-
tios for convex, concave, and CES functions. We will prove that
the maximum regret ratio for a large subset of convex functions is
O(1/k

1
d−1 ). We will also prove that the maximum regret ratio for

all concave functions is also O(1/k
1

d−1 ). Finally, we will prove
that the maximum regret ratio for CES functions is O(1/bk

b
d−1 )

for 0 < b < 1 and O(1/k
1

b(d−1) ) for b > 1. Note that all these
bounds are independent of the number of tuples in the database and
the distribution of these tuples.

4.1 MinWidth Algorithm
The MinWidth algorithm (Algorithm 1) is an adaptation of the

Cube algorithm given in [23], with a few additions to increase its
efficacy on sparse datasets. The algorithm works as follows: after
adding the maximal points in each dimension to the result set, it
divides each dimension except for the last into t = O(k1/(d−1))
variable-sized intervals. For each combination of these intervals,
MinWidth includes the point that is largest in the last dimension in
its solution. See Algorithm 1 for details.

The difference from the Cube algorithm is the way in which Min-
Width selects the breakpoints for the intervals. While the Cube
algorithm evenly divides the points into equal-sized intervals, Min-
Width selects the interval breakpoints in dimension i in such a
manner so as to minimize the maximum distance (along dimension
i) between any two points in the interval. More precisely, given
the values of the points in the ith dimension {p1[i], . . . , pn[i]}, we
wish to pick breakpoints s0 < s1 < s2 < ... < st−1 < st such
that maxl=0,...,t−1 maxpu[i],pv [i]∈[sl,sl+1] |pu[i] − pv[i]| is mini-
mized. The interval width can thus be bounded by, and in fact can
be considerably smaller than, the width of intervals for the Cube
algorithm, which was ci/t, where ci is the maximum value in the
ith dimension.

The breakpoints used by MinWidth are calculated as in Algo-
rithm 2. FindG determines the breakpoints via a modified ver-
sion of binary search. This adaption was added because one of
Cube’s drawbacks was that buckets would often be empty on sparse

Algorithm 1 MINWIDTH algorithm(D, k, n)
Input: D, a database of n d-dimensional points {p1, p2, ..., pn}
and k, the number of points to output.
Output: A subset S of D with cardinality k.

1: For i = 1, 2, ..., d − 1, let ci be the maximal value in the ith

dimension, and set p∗i to the corresponding point.
2: Let S = {p∗i , p∗2, ..., p∗d−1}.
3: Let t = b(k − d+ 1)

1
d−1 c.

4: for i = 1, 2, ..., d− 1 do
5: Let bPoints[i] = findG(D, t, n, i, ci).
6: for each group of integers 0 ≤ j1, . . . , jd−1 < t do
7: Let S′ = {p ∈ D | bPoints[i][ji] ≤ p[i] <

bPoints[i][ji + 1], 1 ≤ i < d}.
8: Add the point in S′ that is maximal in the dth dimension to

S.
9: return S.

datasets, and points would therefore be selected unevenly. FindG
seeks to rectify this by determining the minimum distance between
points that can be achieved with t buckets. FindG, after sorting
the points based on their value in the ith dimension, operates in
a greedy fashion, continuously adding points to a possible bucket
until the value of g as determined by the binary search has been ex-
ceeded. It then creates a “breakpoint” between the previous point
and the point that exceeded the value of g. This ensures that no two
points in the same interval are further apart than g. If there exists
a feasible selection of such points with value g, then the greedy
algorithm will find them as shown by the following argument.

Say that there exists a feasible solution for g, call it s∗0 < s∗1 <
. . . < s∗t . Further, let us denote by s0 < s1 < . . . < st the
first t + 1 breakpoints selected via our greedy method. Note that
s∗0 = s0 = minp∈D p[i] since we must include the smallest point
in the ith dimension between the breakpoints. We will show that
the greedy solution is also feasible by a replacement argument. Let
us say that the greedy and feasible solution are identical up to some
index j ≥ 0. The greedy algorithm selects sj+1 as the point with
the largest value in the ith dimension such that sj+1[i]−sj [i] ≤ g.
Hence, for s∗ to be feasible, it must be that s∗j+1[i] ≤ sj+1[i].
Since this is true, we can replace s∗j+1[i] with sj+1[i] in the feasible
solution and it would still remain feasible. This means that we have
a new feasible solution that agrees with the greedy solution up to
the first j+ 1 breakpoints. Repeating this argument at most t times
gives us that the greedy solution must also be feasible.

If the value of g cannot be achieved with t, a new value of g
is found by binary search, and the process is repeated until the
precision of g is arbitrarily sufficient. In our implementation, we
executed the binary search for at least twenty iterations.

Once MinWidth has been given the breakpoints for every dimen-
sion, it then places all the points into td−1 ≤ (k−d+1) “buckets”
and picks the point maximal in the last dimension in each bucket,
adding them to the result set. This result set is then returned to
the user. Given the value of t, MinWidth returns k points to the
user. The choice of maximal points in each dimension, as well as
the constraints on the maximum width of any given bucket ( ci

t
for

dimension i, in the worst case), lead to our theoretical bounds for
convex, concave, and CES functional types in the following sec-
tions. Although other algorithms may provide lower regret in prac-
tice, these properties of MinWidth allow us to prove the following
bounds.
Running time: Step 1 of the algorithm takes O(nd) time. Steps

2101



Algorithm 2 FINDG algorithm(D, t, n, i, ci)
Input: D, a database of d-dimensional points {p1, p2, ..., pn}
sorted on the ith dimension; t, the desired number of intervals; n,
the total number of points; i, the dimension for which to assign
boundaries; and ci, the maximal value in the ith dimension.
Output: bPoints, a set of t+ 1 boundaries in the ith dimension.

1: Set lowerbound = 0 and upperbound = ci
t

.
2: while the precision of g is insufficient, do
3: bPoints[0] = p1.
4: Set g to the average of lowerbound and upperbound.
5: Let m = 1, j = 2, and h = 1.
6: while pj < ci and h < t do
7: while pj − pm ≤ g do
8: j = j + 1
9: m = j − 1

10: Set bPoints[h] = pm.
11: Set h = h+ 1.
12: if ci − pm > g then
13: lowerbound = g.
14: else
15: Set bPoints[t] = pn.
16: upperbound = g.
17: Store this copy of bPoints.
18: return the last stored copy of bPoints.

4-5 can be accomplished in O(n) time since the greedy algorithm
(lines 3-17 of the FindG algorithm) takes linear time, assuming that
we use constant precision for g (e.g., 0.01%). Lastly, steps 6-8 can
be executed in O(nd) time by computing which bucket each point
falls into in O(d) time. Hence, the overall running time is O(nd).
Note that any algorithm that processes all the data (n points of d
dimensions each) will need Ω(nd) time to execute. Also note that
we have assumed that the data is static; the case for dynamically
changing data is outside the scope of this paper.

4.2 Proofs
All of the proofs in this section start with an arbitrary function

in the class of functions being studied. We then bound the regret
for the result of the MinWidth algorithm by comparing the optimal
point for that function with the point picked in the same interval as
the optimal. Finally, we show that including the extremal point in
each of the first d − 1 dimensions gives us a bound on the regret
ratio via the following lemma.

LEMMA 2. If the regret of the MinWidth algorithm for the func-
tion f(x) =

∑d
j=1 fj(xj) is bounded by σ∗maxi≤d−1

∑d
j=1 fj(p

∗
i [j])

for some σ > 0, then the regret ratio for the function is at most
σ

1+σ
.

PROOF. Let f be a utility function f(x) =
∑d
j=1 fj(xj) with

regret rD(S, f) ≤ σ∗maxi≤d−1

∑d
j=1 fj(p

∗
i [j]) when shown the

result of the MinWidth algorithm S rather than the entire database
D. Since p∗1, p∗2, ...p∗d−1 are in S we know that maxp∈S f(p) ≥
maxi≤d−1

∑d
j=1 fj(p

∗
i [j]); thus, rD(S, f)/maxp∈S f(p) ≤ σ.

The regret ratio of f is hence bounded by

rrD(S, f) =
rD(S, f)

maxp∈S f(p) + rD(S, f)

=
1

maxp∈S f(p)/rD(S, f) + 1

≤ 1

1/σ + 1
=

σ

1 + σ
.

4.3 Convex Upper Bound
The MinWidth Algorithm allows us to bound the regret for a

large subset of CONVEX . In this section, we will prove the fol-
lowing theorem:

THEOREM 3. For any k, the regret ratio for monotonically in-
creasing convex utility functions of the form f(p) =

∑d
i=1 fi(pi)

where each fi is of the form fi(x) = xbgi(x), where gi is a differ-
entiable, non-increasing function, is at most b(d−1)

b(d−1)+t
.

PROOF. Let f be an arbitrary function of the form f(p) =∑d
i=1 fi(pi) where each fi is of the form fi(x) = xbgi(x), where

gi is a differentiable, non-increasing function. For all of the proofs
in this section, we will define p and s as follows. Let p be a point
in D such that f(p) = maxx∈D f(x); that is, p maximizes f . Let
s be the point selected by MinWidth in the same combination of
intervals as p (see Line 8 of Algorithm 1).

We will first prove that f(p)−f(s) ≤ b(d−1)
t

maxi≤d−1

d∑
j=1

fj(p
∗
i [j]).

We will show this through the following inequalities:

f(p)− f(s) =

d∑
i=1

(fi(pi)− fi(si))

≤
d−1∑
i=1

(pi − si)f ′i(pi) (1)

≤
d−1∑
i=1

(ci
t

)
f ′i(ci)

≤ d− 1

t
max

i≤(d−1)
(ci)f

′
i(ci)

≤ d− 1

t
max

i≤(d−1)
bfi(ci) (2)

≤ b(d− 1)

t
max

i≤(d−1)

d∑
j=1

fj(p
∗
i [j]).

The transition to equation 1 can be explained as follows: based on
the Mean Value Theorem, we can be assured that there is a point
ai on the curve where f ′i(ai) = f(pi)−f(si)

pi−si
. Thus, f ′i(ai) ∗ (pi −

si) = fi(pi) − fi(si). Further, since ai is between pi and si,
and f ′(x) is a monotonically increasing function for all convex
functions, f ′i(pi) ≥ f ′i(ai). Inequality 2 follows from the fact
that for all functions of the form fi(x) = xbgi(x), where gi is
a differentiable, non-increasing function, we have that xf ′i(x) =
bxbgi(x) + xg′i(x) ≤ bfi(x) (since g′(x) ≤ 0).

By Lemma 2, rrD(S, P ) ≤ b(d−1)
b(d−1)+t

. This bound is guaranteed
for any subset of this sub-class of convex functions when we use
the MinWidth algorithm.

Consider a concrete example of this upper bound. Let d = 2 and
let f1(x), f2(x) ∈ {c0 +c1x+c2x

2 | c0, c1, c2 ≥ 0}. Thus b = 2.
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If we let k = 20, then t = k
1

d−1 = 20, and thus the regret ratio is
at most b(d−1)

b(d−1)+t
= 2

2+20
< 10%.

Another example is when f1(x), f2(x) ∈ {cxβ | c > 0, 1 ≤
β ≤ 3} (d = 2, b = 3). If k = 20, then the regret ratio is at most
b(d−1)
b(d−1)+t

= 3
3+20

< 14%.

4.4 Concave Upper Bound
We can also prove a bound for concave functions. We will show

the following theorem to be true:

THEOREM 4. For any k, the regret ratio for utility functions of
the form f(p) =

∑d
i=1 fi(pi) where each fi is some monotonically

increasing,infinitely differentiable concave function such that each
fi(0) ≥ 0 is at most d−1

(d−1)+t
.

PROOF. Let f be an arbitrary utility function of the form f(p) =∑d
i=1 fi(pi), where each fi is some monotonically increasing, con-

cave function with f(0) ≥ 0.
Let p be the optimal point for f in D and let s be the point in the

same interval, as in the previous proof. We will bound the regret
using the Taylor expansion of the fi functions and the following
inequalities:

f(p)− f(s) =

d∑
i=1

(fi(pi)− fi(si))

≤
d−1∑
i=1

∞∑
n=0

fni (0)

n!
(pi)

n −
∞∑
n=0

fni (0)

n!
(si)

n

=

d−1∑
i=1

∞∑
n=0

fni (0)

n!
(pi)

n − fni (0)

n!
(si)

n

=

d−1∑
i=1

∞∑
n=0

fni (0)

n!
((pi)

n − (si)
n)

≤
d−1∑
i=1

∞∑
n=0

fni (0)

n!
(
ci
t

)(2ci)
n−1 (3)

≤ (d− 1)

t
max
i≤d−1

∞∑
n=0

fni (0)

n!
(ci)(2ci)

n−1

≤ (d− 1)

2t
max
i≤d−1

∞∑
n=0

fni (0)

n!
(2ci)

n

=
d− 1

2t
max
i≤d−1

fi(2ci)

≤ d− 1

2t
max
i≤d−1

2 ∗ fi(ci) (4)

=
d− 1

t
max
i≤d−1

fi(ci)

≤ d− 1

t
max
i≤d−1

d∑
j=1

fj(p
∗
j [j]).

The leap to 3 may be explained by factoring the previous state-
ment into (pi − si)(pi + si)

n, and label 4 is readily explained by
the property of subadditivity.

By Lemma 2, rrD(S,Q) ≤ d−1
(d−1)+t

. This bound holds for all
concave functions.

For example, let d = 2 and k = 20. Therefore t = k
1

d−1 = 20.
Thus the regret ratio is at most d−1

(d−1)+t
= 1

1+20
< 5%.

4.5 CES Upper Bound
The MinWidth algorithm can also be used to prove a bound for

the CES functions. We will first prove the following theorem for
CES functions with 0 < b < 1.

THEOREM 5. For any k, the regret ratio for CES utility func-

tions with 0 < b < 1 is at most d
1
b

d
1
b +btb

.

PROOF. Let f be the utility function of a user, where f(p) =(
d∑
i=1

aip
b
i

) 1
b

, 0 < b < 1; that is, f(p) is a CES function with

0 < b < 1.
Let p and s be defined as in the previous proofs. We will first

prove that f(p) − f(s) ≤ (d−1)
1
b

btb

(
maxi≤d

d∑
j=1

ajp
∗b
i[j]

) 1
b

. We

show this through the following inequalities:

f(p)− f(s) =

(
d∑
i=1

aip
b
i

) 1
b

−

(
d∑
i=1

ais
b
i

) 1
b

≤

(
d∑
i=1

aip
b
i −

d∑
i=1

ais
b
i

)
∗ 1

b
∗

(
d∑
i=1

aip
b
i

) 1
b
−1

(5)

≤ 1

b
∗

(
d∑
i=1

ai(p
b
i − sbi )

)(
d∑
i=1

aip
b
i

) 1
b
−1

≤ 1

b
∗

(
d−1∑
i=1

ai(p
b
i − sbi )

)(
d−1∑
i=1

aip
b
i

) 1
b
−1

≤ 1

b

(
d−1∑
i=1

ai(pi − si)b
)(

d−1∑
i=1

aip
b
i

) 1
b
−1

(6)

≤ 1

b

(
d−1∑
i=1

ai
(ci
t

)b)(d−1∑
i=1

aip
b
i

) 1
b
−1

=
d− 1

btb

(
max
i≤d−1

aic
b
i

)(
(d− 1) max

i≤d
aic

b
i

) 1
b
−1

=
(d− 1)

1
b

btb

(
max
i≤d−1

aic
b
i

) 1
b

≤ (d− 1)
1
b

btb

(
maxi≤d−1

d∑
j=1

ajp
∗b
i[j]

) 1
b

.

Equation 5 is proved by the following: g(x) = x
1
b is a convex

function for 0 < b < 1. Because of the convexity of g, we know
that g(x)− g(y) is bounded by (x− y)f ′(x), its first order Taylor
approximation, due to Jensen’s inequality.

Equation 6 is true since h(x) = xb is a concave function when
0 < b < 1, and thus h(x)− h(y) ≤ h(x− y). By a proof similar

to that of Lemma 2, rrD(S,C) ≤ (d−1)
1
b

(d−1)
1
b +btb

.

For an example of this upper bound for CES utility functions
with 0 < b < 1, let b = 0.75, d = 2, and k = 20. Thus

t = k
1

d−1 = 20. Therefore the regret ratio is at most d
1
b

d
1
b +btb

=

24/3

24/3+0.75∗200.75 < 27%.
Finally, we will prove the upper bound for CES functions with

b > 1.
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THEOREM 6. For any k, the regret ratio for CES utility func-

tions with b > 1 is at most (b(d−1))
1
b

(b(d−1))
1
b +t

1
b

.

PROOF. Let f be a CES function with b > 1. Let p and s be
as in the previous proofs. We will first prove that f(p) − f(s) ≤(
b(d−1)
t

) 1
b

(
maxi≤d−1

d∑
j=1

aip
∗b
i[j]

) 1
b

. We show this through the

following inequalities:

f(p)− f(s) =

(
d∑
i=1

aip
b
i

) 1
b

−

(
d∑
i=1

ais
b
i

) 1
b

≤

(
d−1∑
i=1

ai(p
b
i − sbi )

) 1
b

≤

(
d−1∑
i=1

ai(pi − si)(bpb−1
i )

) 1
b

(7)

≤

(
d−1∑
i=1

ai
(ci
t
bcb−1
i

)) 1
b

≤
(
d− 1

t
max
i≤d−1

aibc
b
i

) 1
b

≤

(
b(d− 1)

t
max
i≤d−1

d∑
j=1

aip
∗b
i[j]

) 1
b

=

(
b(d− 1)

t

) 1
b

(
max
i≤d−1

d∑
j=1

aip
∗b
i[j]

) 1
b

where 7 and its consequent equations follow from the convex bound
proof. We use two facts to prove the transition. First, notice that
ads

b
d ≥ adp

b
d, and let adsbd − adpbd = z where z ≥ 0. Second,

since g(x) = x
1
b is a concave function, g(x) + g(y) ≥ g(x+ y);

thus g(x)− g(y) ≤ g(x−y). Hence x
1
b −y

1
b ≤ (x+y)

1
b . Using

these two facts, the following inequalities are true:(
d−1∑
i=1

aip
b
i + adp

b
d

) 1
b

−

(
d−1∑
i=1

ais
b
i + ads

b
d

) 1
b

≤

(
d−1∑
i=1

aip
b
i + adp

b
d −

d−1∑
i=1

ais
b
i − adsbd

) 1
b

≤

(
d−1∑
i=1

aip
b
i −

d−1∑
i=1

ais
b
i − z

) 1
b

≤

(
d−1∑
i=1

aip
b
i −

d−1∑
i=1

ais
b
i

) 1
b

.

By a proof similar to that of Lemma 2, rrD(S,M) ≤ (b(d−1))
1
b

(b(d−1))
1
b +t

1
b

.

Consider a concrete example of an upper bound for CES utility
functions with b > 1. Let b = 2, d = 2, and k = 20. Thus t =

k
1

d−1 = 20. Therefore the regret ratio is at most (b(d−1))
1
b

(b(d−1))
1
b +t

1
b

=
√

2√
2+
√

20
< 25%.

Algorithm 3 AREA-GREEDY algorithm(D, k, n)
Input: D, a database of n d-dimensional points {p1, p2, ..., pn}
and k, the number of points to output.
Output: A subset S of D with cardinality k.

1: For i = 1, 2, ..., d−1, let p∗i be the point with the largest value
in the ith dimension.

2: Let S = {p∗i , p∗2, ..., p∗d−1}.
3: while ||S|| < k do
4: A∗ = 0,
5: for each p ∈ D do
6: Let A be the area bounded by the axes and S ∪ {p}
7: if p /∈ S and A > A∗ then
8: Let A∗ = A and pω = p
9: S = S ∪ {pω}

10: return S.

Note that for b = 1, CES functions become linear functions.
From the proofs in this section, it follows that the MinWidth algo-
rithm is capable of bounding the regret for a large set of convex
functions and concave functions as well as all CES functions with
b > 0.

5. HEURISTICS
In addition to the theoretical guarantee of MinWidth, we provide

here two heuristics which yield low regret-ratios when evaluated.

5.1 Area-Greedy
The first heuristic is Area-Greedy (Algorithm 3), a greedy-style

heuristic, which can be informally described as follows: firstly, as
in MinWidth, it picks the maximal points in every dimension and
adds them to the solution. Once this is done, it greedily adds the
point to the solution that greatest increases the area under the points
in the solution, repeating this process until a subset of k points is
returned. Due to the limited number of points, it is possible to find
these integrals via simple calculations of the quadrature of areas,
generalizing this to higher dimensions the same way one general-
izes finding the area of a rectangle to finding the area of a rectan-
gular prism.

This primary rationale behind this algorithm’s design is that it ef-
fectively creates a solution set dependent on the distance between
points, which we will show is an important aspect for the lower
bound to this problem (see Section 6). Other heuristics have pro-
posed similar ideas, but they have fallen short due to their issues
with the earlier-discussed property of stability. Area-Greedy neatly
avoids this problem, and therefore is able to give very low regret-
ratios in practice, especially on CES utility functions.
Running time: The Area-Greedy algorithm is the most compu-
tationally intensive of the ones studied in this paper. It iterates k
times over the n points and takes O(kd) time to compute the area
in each iteration, leading to a total running time of O(ndk2).

5.2 Angle
The second heuristic is called Angle. First, the Angle algorithm

uses polar coordinates to divide every dimension into t equidis-
tant angles with the x-axis, where t is initialized to k

1
d−1 . It then

searches through every combination for each angle and identifies
the farthest point in that direction, adding it to the solution. See Al-
gorithm 4 for details. Unfortunately, it is often the case that this al-
gorithm gives too few distinct points as some points will be the far-
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Algorithm 4 ANGLEPOINTS algorithm(D, n, t)
Input: D, a database of n d-dimensional points {p1, p2, ..., pn}
and t, an integer parameter.
Output: A subset S of D

1: Let S = ∅
2: for each 0 ≤ b2, . . . , bd < t do
3: Let ~v be the vector defined by setting the angle between the

ith dimension and the x-axis to π·bi
2t

, for each 1 < i ≤ d.
4: Let p∗ be the point in D that is farthest in the direction ~v.
5: Let S = S ∪ {p∗}.
6: return S

Algorithm 5 ANGLE algorithm(D, k, n)
Input: D, a database of n d-dimensional points {p1, p2, ..., pn}
and k, the number of points to output.
Output: A subset S of D with cardinality k.

1: Let t = bk
1

d−1 c.
2: Let S = AnglePoints(D,n, t).
3: while ||S|| < k do
4: t = t+ 1.
5: Let S = AnglePoints(D,n, t).
6: return S

thest in many different directions. To get around this, we increase
the value of t until we get k distinct points (see Algorithm 5).

This heuristic is very useful because its design leads it to natu-
rally pick points that yield low regret ratios for convex functions.
Convex functions heavily favor points that have close to the max-
imum value in some (or perhaps multiple) dimensions, and since
these points are farthest out in any given direction, these are the
points Angle tends to select. Contrast this with MinWidth and
Area-Greedy, which attempt to optimize for an even spread of points.
Based on this reasoning, one expects Angle to outperform them
both with regards to convex functions.
Running time: The Angle algorithm takes O(ndk) time to exe-
cute as it finds the optimal point in each of k different directions.
This algorithm, unlike the others, has the advantage that it is easy
to update when new tuples are inserted—each insertion takes just
O(kd) time to check if should replace one of the k points.

6. LOWER BOUNDS
In this section, we present maximum regret ratio lower bounds

for convex, CES, and concave utility functions. In each case we
show that the maximum regret ratio must be at least some function
of the number of points, k. We start with the result for convex
functions:

THEOREM 7. For any d ≥ 2, b ≥ 1, there exists a database
of d-dimensional points such that any algorithm that displays k
points must have a regret ratio of at least 1

2

(
1

2dk

)2b/(d−1) for
F = {f(x) =

∑d
i=1 aix

b
i}ai∈R+ , a subset of the convex class

of functions.

PROOF. Fix any d ≥ 2, b ≥ 1 and define F = {f(x) =∑d
i=1 aix

b
i}ai∈R+ . Note that F is a subset of the class of con-

vex functions as b ≥ 1. Our database consists of the set of points
in the set D = {(p1, . . . , pd) ∈ Rd+ |

∑d
i=1 p

2b
i = 1}. In other

words, D is the set of d-dimensional points on the positive part of
the unit super-sphere of degree 2b in d dimensions.

Let ε > 0 be the maximum regret ratio for a set of k points S. We
claim that for every point p in the database, there must exist some
point q among S such that

∑d
i=1(pi − qi)2b ≤ 2ε. We prove this

claim using contradiction by assuming that it is not the case. Fix
a point p in the database but not in the set of k points and another
point q that is in the set of k points. We know from the definition of
D that

∑d
i=1 p

2b
i = 1,

∑d
i=1 q

2b
i = 1, and by our assumption that∑d

i=1(pi − qi)2b > 2ε. We consider the utility function f(x) =∑d
i=1 p

b
ix
b
i fromF . The utility of p is f(p) =

∑d
i=1 p

2b
i = 1. The

utility of q on the other hand can be bounded as:

f(q) =

d∑
i=1

qbi p
b
i ≤

d∑
i=1

1

2
(p2b
i + q2b

i − (pi − qi)2b) (induction on b)

=
1

2
(2−

d∑
i=1

(pi − qi)2b) < 1− ε.

The regret for point p is hence greater than (f(p)− f(q))/f(p) =
1− (1− ε) = ε, which is a contradiction, proving our claim.

Now that we have established our claim that no point in the
database can be too far (in terms of `2b distance) from one of the k
points, we can establish a bound on the number of points needed.
It is known that the a d-dimensional n-degree super-sphere of ra-
dius r has a surface area of Cd,nrd−1, for some constant Cd,n
that depends only on d and n (and not r). The surface area of
the points in the database D is hence Cd,n/2d since it consists of
the all positive points in the unit super-sphere. For the k points to
be not too far from the points in the database, the surface area of
the super-sphere of radius (2ε)1/2b centered at each of the k points
must cover the entire database. The surface area of each of these is
Cd,n(2ε)(d−1)/2b. Hence, there should be at least

k ≥ Cd,n/2
d

Cd,n(2ε)(d−1)/2b
=

1

2d(2ε)(d−1)/2b

points shown. Solving for ε, we get that using k points can only
guarantee a regret of 1

2

(
1

2dk

)2b/(d−1), completing the proof.

Observe that when b and d are constant in the proof above, the
regret ratio is effectively Ω( 1

k2b/(d−1) ). Compare this to the upper
bound for convex functions from Section 4 of O( 1

k1/(d−1) ) (once
again assuming constant b and d). We leave as future work the
problem of closing the 2b gap in the exponent.

Next, we show that for the class of CES utility functions with
exponent b we cannot hope to bound the regret ratio to less than
O(1/bk2) in the two-dimensional case. This is demonstrated by
the following theorem.

THEOREM 8. For any k, there is a database of two-dimensional
points such that for any subset of k points in the database the re-
gret ratio for CES utility functions with exponent b > 0 is at least
Ω(1/bk2).

PROOF. Consider the database of points D = {(x, y) | x2b +
y2b = 1, x, y ≥ 0}. These points can also be represented para-
metrically as {(cos1/b θ, sin1/b θ) | θ ∈ [0, π/2]}. Now, consider
any set S of k of these points defined by their angles: 0 ≤ θ1 <
θ2 < . . . < θk ≤ π/2. We also define the angles θ0 = 0 and
θk+1 = π/2. It must be the case that for some 0 ≤ i ≤ k,
θi+1 − θi ≥ π

2(k+1)
. This is because there are (k + 1) angles

that all sum to π/2, so they all cannot be strictly less than π
2(k+1)

.
Fix i to be some value such that θi+1 − θi ≥ π

2(k+1)
and let

θ = (θi+1 + θi)/2. We will show that there exists a CES function
for which we will have high regret when not including the point in
the database corresponding to the angle θ.
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Let (x̂, ŷ) be the point corresponding to the θ defined above,
i.e., x̂ = cos1/b θ, ŷ = sin1/b θ. Consider the CES utility func-

tion f(x, y) =
(

x̂b

x̂b+ŷb
· xb + ŷb

x̂b+ŷb
· yb
)1/b

. The utility for the

point (x̂, ŷ) is f(x̂, ŷ) =
(

x̂2b

x̂b+ŷb
+ ŷ2b

x̂b+ŷb

)1/b

= ( 1
x̂b+ŷb

)1/b. In

contrast, the utility obtained from any point (cos1/b θj , sin
1/b θj),

where |θj − θ| = ∆ ≥ π
4(k+1)

, will be

f(cos1/b θj , sin
1/b θj)

=

(
x̂b

x̂b + ŷb
· (cos1/b θj)

b +
ŷb

x̂b + ŷb
· (sin1/b θj)

b

)1/b

=

(
1

x̂b + ŷb

)1/b

(cos θ cos θj + sin θ sin θj)
1/b

=

(
1

x̂b + ŷb

)1/b

(cos θ cos (θ + ∆) + sin θ sin (θ + ∆))1/b

=

(
1

x̂b + ŷb

)1/b (
cos2 θ cos ∆ + sin2 θ cos ∆

)1/b
=

(
1

x̂b + ŷb

)1/b

(cos ∆)1/b .

Hence, the regret ratio for this point will be((
1

x̂b + ŷb

)1/b

−
(

1

x̂b + ŷb

)1/b

(cos ∆)1/b

)
/

(
1

x̂b + ŷb

)1/b

= 1− (cos ∆)1/b .

We can now use the MacLaurin series expansion of cosn x:

cosn x = 1− nx2

2
+
n(3n− 2)x4

24
− . . .

to bound this regret by ∆2

2b
− O(∆4/b2) = Ω(∆2/b). Lastly,

we use the fact that ∆ ≥ π
4(k+1)

to get that this regret ratio is
Ω(1/bk2).

Lastly, for the concave case we have the following result:

THEOREM 9. For any k, there exists a database of two-dimensional
points such that for any subset of k points in the database the regret
ratio of the class F = {f(x) =

∑d
i=1 aix

b
i}ai∈R+ (0 < b < 1), a

subset of the concave class of functions, is at least Ω( 1
k2

).

The proof of this theorem is nearly identical to that of the theorem
for the CES case and is omitted to avoid redundancy. This bound is
off by a quadratic factor from the O( 1

k
) bound (for the case d = 2)

from Section 4, and we leave the closing of this gap to future work.

7. EXPERIMENTAL EVALUATION
In Section 4, we proved bounds on concave, convex, and CES

functions using the MinWidth algorithm. These proofs show that,
when using the MinWidth algorithm, the regret can always be bounded.
While it is important to be able to prove these bounds in theory, we
also want to show that regret can be quite small in practice. To this
end, we provide experimental results in this section.

To evaluate our functions across convex, concave, and CES func-
tions, we randomly generate 10,000 different functions of each
type and compute the regret ratio for the chosen algorithm, tak-
ing the greatest of these as the maximum regret ratio. Although
this method does not guarantee a bound, in practice we have found
that it approximates the maximum regret ratio to a high degree of
accuracy.
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Figure 2: Runtimes, Anti-correlated, k = 20 (Note: y-axis is in
logscale)

We implemented all algorithms in C++, and ran the runtime tests
on a 64-bit 3.20GHz HP EliteDesk 800 machine which was running
Ubuntu 3.13. Since there was some variation between each trial, we
ran every experiment one hundred times and averaged the data over
these trials.

7.1 Datasets
We chose to run our experiments on both real-world and syn-

thetic anti-correlated data created using the dataset generator of
Börzsönyi et al. [2]. Our synthetic datasets have between 2 and
10 dimensions, 100 and 1,000,000 points, and our queries returned
anywhere from 4 to 20 points. The two real-world datasets we have
chosen are “NBA”, which is a 5-dimensional dataset consisting of
17,264 points, and “Color”, which is a 9-dimensional dataset con-
taining 68,040 points.

7.2 Algorithms
In our tests, we included

1. the MinWidth algorithm (Algorithm 1) that has provable bounds,
and functions effectively across all types of datasets,

2. our Area-Greedy heuristic (Algorithm 3), which provides strongest
results on convex utility functions, due to its usage of a distance-
based heuristic to avoid outliers in the data,

3. our Angle heuristic (Algorithm 5), which functions well across
all types of functions, particularly convex functions, when
given a sufficient k value, and

4. the Max-Dom Greedy heuristic which was shown to perform
well for linear utilities by Nanongkai et al. [23]. Originally
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Figure 3: Anti-correlated, 3D, n = 10,000, Varying k
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Figure 4: Anti-correlated, Varying d, n = 10,000, k = 20

proposed by Lin et al. [18], it seeks to pick the points on
the skyline that dominate the most points overall, and returns
k of those points. Although the algorithm does not exhibit
the property of stability, it seems to work well in practice.
Additionally, we found that, because of Max-Dom Greedy’s
tendency to select ideal points from the center of the dataset
versus the edges, it performs especially well on Concave and
CES utility functions.

7.3 Running Times
Our MinWidth and Angle algorithms have negligible running

time, consistently completing in less than a second even for very
large inputs. However, Max-Dom Greedy and Area-Greedy have
more problematic running times. As can be seen in Figure 2(a),
Max-Dom Greedy takes significantly longer as the database size
increases, since it performs a skyline-style operation that is compu-
tationally expensive for additional points. Area-Greedy runs very
slowly in higher dimensions (Figure 2(b)) due to its method of in-
tegrating higher-dimensional spaces. Therefore, while both algo-
rithms are high-performance, their running time proves to be a sig-
nificant drawback. In further work, however, the runtime of the
Area-Greedy algorithm could be greatly reduced by incorporating
dynamic programming techniques, and so this barrier to implemen-
tation could be eliminated in the future.

7.4 Maximum Regret Ratios
Referring back to the upper bounds on regret ratios from Section

4, we can see that the experimental results verify these bounds by
providing even lower regret ratios in practice than was predicted by
theory. The results demonstrate the expected trends within a slight

range of error, particularly on convex functions, which displayed
the greatest variation between regret ratios on similar datasets.

As expected from the proven bounds as well as previous exper-
imental results, all the algorithms in Figure 3 show lower regret
ratios with higher k. The lone aberration at some points is Angle,
which occasionally demonstrates somewhat erratic behavior with
respect to k. This is because the points that Angle picks can vary
drastically with even a slight increase in k, since altering k changes
the directions in which Angle chooses its points. As k became
larger, however, Angle eventually proved more effective than the
other algorithms across all function types.

Interestingly, in Figures 4(a) and 4(b), both Area-Greedy and
Max-Dom Greedy retained very similar regret ratios, despite the
increase in d. Angle and MinWidth, however, diverged early on,
with Angle producing its anticipated wild behavior. All of the al-
gorithms in Figure 4, though, produced an interesting result: there
was a clear increase in regret ratios as d increased to 5, but beyond
that point, there was only a slight upward inflection among the al-
gorithms, i.e. the rate of growth leveled out. This trend can be
explained by the fact that, as the number of dimensions increases,
extreme points in the dataset are the user’s ideal point less often,
due to the fact that there are so many more attributes that must be
optimized. Ergo, the utility lost by not choosing the ideal point is
diminished, and so the regret ratios grow more slowly as d becomes
larger.

Figure 5 displays a few interesting trends: while the regret ra-
tios are relatively stable, which is consistent with our upper bounds
that are independent of database size, Angle and Max-Dom Greedy
both decrease with respect to n. This is especially notable in Fig-
ure 5(a) and Figure 5(c). The reason for this is the algorithm’s
method of point selection. Max-Dom Greedy selects the points
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Figure 5: Anti-correlated, 3D, Varying n, k = 10
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Figure 6: NBA, 5D, n = 17,264, varying k

which dominate the most other points in the dataset. When there
are comparatively few points, this heuristic is less reliable, but as
the number of points increases, its reliability increases. Angle ex-
hibits similar tendencies, as each iteration through it seeks to pick
the maximal point in a specific direction. When there are fewer
points, however, Angle must choose a point that is close to, but not
truly in the path of, its ideal direction. With more points, however,
this concern is negated.

All of our algorithms performed extremely well on the NBA
dataset (Figure 6). None of the regret ratios ever went higher than
2%. The highest regret ratio was for convex regret ratios (Fig-
ure 6(c)), though even this was for MinWidth, not any of the heuris-
tics which proved effective in practice. The efficacy of our opera-
tors on this dataset can best be explained by the limited number of
points in the skyline (253) and the closeness of such points. Given
that this approximates a real-world scenario, however, we can count
this as a great success, showing that even convex regret ratios can
be usefully bounded in practice.

The Color dataset (Figure 7) shows that the differences between
algorithms can be significant. For example, even as k is increased,
Figure 7(a) shows very little variation, and there is a consistent
difference of at least 10% between MinWidth and Area-Greedy. A
similar effect holds true for the concave regret ratios in Figure 7(b),
as well as for the convex ratios in Figure 7(c). In this last case,
however, Max-Dom Greedy is clearly defeated for convex utility
functions by Angle, Area-Greedy, and even MinWidth, which it
performed as well or better than in synthetic data.

Overall, the regret ratios from convex functions were still the
most significant, as per our original expectations. Angle proved
most efficacious at minimizing these regret ratios when given suffi-
cient points, although Area-Greedy and MinWidth proved effective

no matter the k value. Max-Dom Greedy, however, was the best
performing heuristic for concave and CES utilities. In all cases,
we were able to show that the maximum regret ratio can be much
smaller than the theoretical bounds.

8. CONCLUSIONS
In this paper, we have expanded on previous research on repre-

sentative databases and k-regret queries. We generalized the mod-
els of user preference, showing that the maximum regret ratio can
be bounded for large classes of non-linear utility functions inde-
pendent of the number of tuples in the database. In light of these
results, we proposed several new algorithms which give very low
regret for a broad range of non-linear utility functions both in the-
ory and practice. We also provided new lower bounds for this prob-
lem that take into account nonlinear functions.

We performed simulations on real and synthetic data, evaluat-
ing the maximum regret ratios of our new classes of functions. We
showed that the majority of the algorithms perform well against
concave utility functions, but there was much greater variation amongst
CES and convex utility functions, with Area-Greedy and Angle
proving superior in these areas.

Based on our results, we believe there is the possibility of fur-
ther research in expanding the class of utility functions to non-
independent concave and convex utility functions, such as Cobb-
Douglas functions, exponential functions, and submodular utility
functions. There is also interesting work to be done considering
the regret ratios of independent functions containing both concave
as well as convex terms. Furthermore, it is possible that similar
techniques to those shown in this paper can extend other represen-
tative database techniques that assume linear utility functions.
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Figure 7: Color, 9D, n = 68,040, varying k
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