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ABSTRACT 

The Deuteronomy transactional key value store executes millions 

of serializable transactions/second by exploiting multi-version 

timestamp order concurrency control.  However, it has not 

supported range operations, only individual record operations (e.g., 

create, read, update, delete).  In this paper, we enhance our multi-

version timestamp order technique to handle range concurrency and 

prevent phantoms. Importantly, we maintain high performance 

while respecting the clean separation of duties required by 

Deuteronomy, where a transaction component performs purely 

logical concurrency control (including range support), while a data 

component performs data storage and management duties. Like the 

rest of the Deuteronomy stack, our range technique manages 

concurrency information in a latch-free manner.  With our range 

enhancement, Deuteronomy can reach scan speeds of nearly 

250 million records/s (more than 27 GB/s) on modern hardware, 

while providing serializable isolation complete with phantom 

prevention.  

INTRODUCTION 

1.1 Phantoms 
Serializability with range protection is much harder to provide than 

other levels of isolation (say repeatable reads) because it requires 

the prevention of phantoms.  An example of a phantom is a resource 

that does not exist when a transaction T begins execution and is not 

seen during T’s execution.  However, it is added to the database by 

transaction S, which serializes before T so that T should have seen 

it if T is to serialize after S.    

To prevent phantoms, lock-based concurrency control locks more 

than just the records accessed by a transaction.  But since phantoms, 

by definition, do not yet exist, the question becomes: “exactly what 

do we lock?”  T needs a way to lock resources that not only include 

records that it knows about, but that include all possible records that 

do not yet exist but that, if they did, would be read by T.  The 

conclusion is that locking individual records is insufficient to 

provide serializability. 

There are a number of locking based solutions to the phantom 

problem.  One way is to lock a resource that includes not only some 

current set of records but also any records that might be added to 

this set.  Examples of this are table locks, page locks (where pages 

are associated in some way with a predicate as in a B-tree key 

range), and next key locking, which locks not only a record but also 

the range of keys between the record and its successor (see Weikum 

and Vossen [35] for a more complete discussion). 

1.2 Versions and Timestamp Order 
Deuteronomy uses a timestamp order multi-version concurrency 

control (MVCC) method [16].  The big plus for multi-version 

concurrency is that most read-write conflicts can be avoided. In 

particular, a transaction can frequently read a committed version 

that is earlier than a current version produced by an uncommitted 

transaction.  This is an enormous advantage as read-write conflicts 

are by far the most common form of conflict since transaction read 

sets are typically much larger than write sets. 

We recently showed how to use timestamp order (TO) concurrency 

control with multiple record versions to provide serializability 

when reads are restricted to individual records (but not record 

ranges) [16].  The basic idea is as follows. A transaction X is given 

a timestamp T when it begins execution, which also serves as its 

commit time.  Transaction X uses T to identify the version that it 

should read, i.e. the latest version with a timestamp less than T. 

When X reads the record, it updates the “last read time” for that 

record (but only if it monotonically increases this “last read time” 

value).  If X tries to read an uncommitted version that has a 

timestamp earlier than T, then X aborts.  If X tries to write a version 

of a record, but that record has a “last read time” later than T, then 

X will abort (otherwise it would have written into another 

transaction’s read set). X also aborts if it tries to write to a record 

that already has a prior active but uncommitted version (a write-

write conflict). When X commits, all new versions it created are 

stamped with timestamp T. These steps ensure that timestamp order 

acts to serialize transactions.  

There have been prior solutions to phantom protection in a multi-

version setting, where the approach involves re-reading the 

range(s) at the end of the transaction so as to validate that other 

transactions have not changed it [5, 12].  Validation has two 

characteristics that we find worrisome.  (1) Re-reading a range can 

be quite costly, requiring doubling the number of record accesses 

for validation. This might be fine for memory-only systems, but 

Deuteronomy only caches data in main memory, thus validation 

could involve extra I/O; this is a deal breaker for us. (2) A 

transaction’s reads take place at its start time, but it is serialized as 

of its commit time.  So any range read needs to be unchanged for 

the execution duration of the transaction, increasing the likelihood 

of abort as execution time increases. 

1.3 Versions and Ranges 
The Deuteronomy architecture, depicted in Figure 1, enables a 

clean separation of duties, where a transaction component (TC) 

performs purely logical concurrency control (but knows nothing 

about physical data storage), while a data component (DC) 

performs data storage and management duties but knows nothing 

about transactions [13, 23]. While Deuteronomy’s DC supports key 

range scans using the high performance Bw-tree [15], until now the 

TC did not support serializability when key ranges were accessed 

since it did not protect against phantoms. 
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Transactional concurrency control in the TC does not know 

anything about structure modifications done at the DC (e.g., B+-

tree page splits).  These are fully handled within the DC.  If 

pagination information were exposed to the TC, this might require 

additional information propagation to keep this information up-to-

date, adding both complexity and execution cost. For Deuteronomy 

we need a concurrency control method that is fully “logical”.  

Deuteronomy’s TC should have no knowledge of physical record 

placement.  This, of course, rules out techniques based on pages. 

Further, we want to avoid potentially expensive validation (e.g. re-

reading a range) when transactions are executed serializably, which 

is our target isolation level, while also avoiding greatly increased 

abort rates.  A prior paper [20] showed how logical ranges could be 

used in Deuteronomy when using pessimistic locking at the TC.  

The technique in this paper exploits the idea of logical ranges but 

in a setting where we use timestamp order MVCC.  This has never 

been done before.  Hence we want to use versioned ranges, building 

on our prior timestamp order MVCC for individual record 

operations as described in Section 1.2. 

1.4 Contributions 
Achieving high performance requires that conflicting accesses be 

minimized.  MVCC accomplishes this by eliminating most read-

write conflicts.  We extend our prior timestamp order MVCC 

scheme to include controlling accesses to ranges, thus providing the 

phantom protection required for full serializable transactions.  The 

result is a Deuteronomy storage engine (TC plus DC) that exhibits 

great performance while supporting full serializable transactions.  

Our contributions in this work are summarized as follows: 

1. Defining and managing logical range objects that are 

compatible with the Deuteronomy TC:DC logical and 

physical separation (Section 2). 

2. Coordinating serializable transactions with write access to 

records of a range in a multi-version and concurrent way, 

treating ranges as part of a multi-granularity resource 

hierarchy, all without requiring a validation step (Section 3). 

3. Effectively accessing and managing logical and versioned 

ranges without materializing any more records of the range 

than are requested by a client (Section 4). 

We performed experiments to measure performance in a number of 

different dimensions (Section 5). We show that the range-enhanced 

Deuteronomy TC achieves fully serializable scan throughput of 

43 million records/s (more than 4 GB/s): 43% faster than an 

approach that requires re-reading the range to validate the scan. 

Related work is covered in Section 6, while a discussion and 

conclusion is provided in Section 7 and 8, respectively. 

2. LOGICAL RANGES 
We now provide a brief overview of the Deuteronomy stack in 

order to understand the data flow within our TC architecture and 

how it interacts with the DC. We then discuss how to define and 

manage logical ranges in the Deuteronomy TC; this is important 

since we need to support purely logical concurrency control. 

2.1 The Deuteronomy Stack 
Figure 1 depicts the architecture and lists the basic functionality of 

both the transaction component and data component. 

Transaction component (TC). The TC provides logical 

concurrency control and recovery. It consists of three main 

elements. 

• MVCC Component: manages concurrency control within the 

TC using multi-version timestamp order (as summarized in 

Section 1.2). It uses a latch-free hash table to manage version 

information for individual records.  This consists of a key, last 

read time, and the transaction id of each version writer. A 

version offset is also stored with the version, used to access the 

full record from the version manager. 

• Version manager: manages the redo log (we use redo-only 

logging in Deuteronomy). All new writes are immediately 

written to a log buffer. Buffers are persisted once full, but they 

are retained in memory to serve as a version read cache until 

they are eventually recycled and reused. The version manager 

services log writes as well as version reads (using the version 

offsets in the MVCC table) that may be retrieved from either 

an in-memory log buffer, or through the DC, where it is then 

cached at the version manager. 

• Record manager:  sits atop the MVCC and version manager 

and is responsible for the user-facing API and running the 

transaction logic. 

A detailed description of the TC and its techniques for achieving 

high performance are available in a previous paper [16].  This paper 

describes our method to support range concurrency control within 

the MVCC component in order to provide high performance 

serializable range scans without the need for validation. 

Data component (DC). The data component manages physical 

data storage. We assume the DC supports efficient key-ordered 

scans. This work uses the Bw-tree [15] as our DC. The DC also 

uses its knowledge of key distribution to help the TC craft a set of 

logical ranges to optimize scan efficiency and reduce aborts. The 

rest of this section describes how to define and manage logical 

ranges. 

2.2 Possible Logical Ranges 
There are a number of ways to define ranges that do not require 

physical information.  Below we give a brief assessment of some 

alternatives. 

1. Next key ranges: Such ranges are very precise and might 

provide the highest concurrency since the ranges are very 

small.  There are two downsides.  (1) A large number of ranges 

need to be managed.  (2) On insertion of a record, we need to 

check the “next key” to see how and whether the insertion can 

be done.  Deuteronomy’s separation of TC and DC means that 

the next key checking is very expensive. If the TC and DC are 

located on separate machines, this check involves a round trip 

over a network. 

2. Table objects: Tables are usually included in multi-

granularity locking implementations.  The big difficulty with 

tables is that a table read access would impact every write 

access to any record in the table.  Such an object would be very 

Figure 1: Deuteronomy architecture: The TC performs 

purely logical concurrency control and receives logical 

range information from the DC. The DC is in charge of 

physical data storage and supports key-ordered scans. 
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heavily accessed and its elements would be under all but 

continuous update. 

3. Logical partitions: A logical partition, e.g., defined by a 

partitioned key space, can be made small enough to avoid the 

concurrency bottleneck associated with table objects.  If we 

bring knowledge of the partitioning to the TC early enough 

(e.g., during TC/DC initialization), we avoid having to access 

the DC frequently as required by next key ranges.  We choose 

to work with logical partitions for these reasons. However, 

there are issues associated with logical partitions that we 

describe below. 

2.3 Defining and Identifying Ranges 

2.3.1 The Nature of Ranges 
The introduction of any resource other than records, and that can 

denote some collection of records, introduces multi-granularity 

resource management.  Multi-granularity locking has a long 

history [6], and we would like to leverage some of the thinking 

behind such a hierarchy.  In particular, like multi-granularity 

locking, a higher level logical granule (similar to a page or table) 

should be identified by a unique resource identifier to provide high 

speed hashed access to the objects.  To exploit much of the same 

mechanism that we had already built to handle record versions in 

the TC MVCC component [16], we designed a similar but separate 

latch-free hash table for range objects.   

A critical aspect of any multi-granularity scheme is that we need to 

be able to determine, when presented with a record access, to which 

larger granule (range in our case) it belongs.  While not strictly 

necessary, a nice simplification is to have our range objects be 

disjoint so that we need to track information for only one range 

object when a record in the range is accessed. For this reason, we 

chose to use a disjoint partitioning of the key space. 

2.3.2 Range Definition Protocol 
As indicated above when discussing next key ranges, it is important 

to ensure that the TC can acquire range information ahead of access 

time so that extra trips to the DC are not necessary when processing 

requests for records within the range.  One simple technique might 

be to simply partition the key space into equal size pieces.  This can 

be done independently of the key distribution. 

While simple, we would like a more refined method of establishing 

range boundaries that at least takes into account key distributions.  

This avoids some very bad possible cases where all the records 

might reside in a single partition of the key space.  To accomplish 

this, the TC asks the DC for partitioning information during the 

initialization phase in Deuteronomy.  A hash based DC might 

respond with an equal “hashed key” space partition.   

While the range definition protocol in no way requires a specific 

partitioning approach from the DC, system performance is 

enhanced when the DC is responsive to key distribution, and 

perhaps even key access distribution.  As mentioned previously in 

Section 2.1, this work uses a DC based on the Bw-tree [15].  Using 

the Bw-tree, our DC provides partitioning information based on key 

distribution.  Its protocol for defining logical key ranges is as 

follows. 

1. The TC requests of the DC a partitioning of the keys that the 

DC is managing, telling the DC how many disjoint partitions 

it would like to have. 

2. The DC accesses the root of the Bw-tree, and perhaps the level 

below the root, dividing the entries into the specified number 

of partitions based on the keys found in the internal index 

nodes of the B+-tree. 

3. The DC responds to the TC, sending it this partitioning.  The 

TC record manager (the user of the MVCC component) uses 

this partitioning to assign resource ids to the ranges.  

Subsequent concurrency control requests use these resource 

ids to identify the range resource that contains any given key. 

Note that the MVCC component itself knows nothing about the 

range resources nor does it know what records should be associated 

with any of the range resources.  This is known only by the record 

manager.  So far as the MVCC manager is concerned, there is a 

resource hierarchy, but it knows only what is conveyed on any 

particular request, i.e., record key and/or range id. The record 

manager translates key ranges to range ids via a search of a table of 

sorted ranges. The MVCC component is described next.   

2.4 MVCC Component 
As mentioned previously, the Deuteronomy TC already has an 

MVCC component to manage concurrency for individual record 

operations [16].  It uses a latch-free hash table and accesses record 

versions managed by a version manager via logical offsets.  These 

offsets reference versions either in the redo recovery log, or in a 

separate log structured read cache that contains records accessed 

originally from an associated DC.  The left hand side of Figure 2 

illustrates how this hash table is organized, we refer to this table as 

MVCCrec throughout the rest of the paper.  Note that this data 

structure is designed to provide access to versions of a single 

record, and it exploits the fact that record updates are strictly 

ordered in the version list. Only one version is unambiguously the 

last version, and only the last version can be uncommitted. 

We have designed a separate hash table specifically for our range 

objects, as depicted on the right hand side of Figure 2, referred to 

as MVCCran in the rest of the paper.  While there are similarities in 

the design of this table, we separate the range table from the record 

table because of the way versions are handled and the fact that 

changes in ranges can commute, meaning that the range versions 

can be updated even when uncommitted updates are present.  Multi-

granularity for ranges permits range updates to be concurrent, with 

conflicting record updates identified when a corresponding 

common record is updated.  

A range id is purely logical, with no instantiated version referenced 

by it.  In fact, it is possible (and has not escaped our notice) that our 

strategy for logical ranges can be applied more generally to large 

objects with incremental updates (e.g., Binary Large Objects, or 

BLOBs).  In any case, ranges are not instantiated in the MVCCran 

table. Rather, a transactionally consistent range is assembled 

incrementally using both scan results from the DC and versions 

present in the TC (that are stable but have yet to be applied at the 

DC). We describe this process in Section 4. 

3. MULTI-GRANULARITY MVCC  

3.1 Multi-granularity Resources 
We borrow the idea of multi-granularity resources and their 

hierarchy from the world of pessimistic locking [6].  Table 1 

illustrates the conflict matrix for classic multi-granularity locking.  

The inner sub-table highlights the various access (lock) modes that 

we support.  We want to bring multi-granularity access 

management to the world of multi-version concurrency control.  

Our intent is to preserve the big gain of MVCC in greatly reducing 

read-write conflicts to drive down the conflict rate sufficiently so 

that abort can be used to deal with residual conflicts, not blocking.  

Thus, Table 1 applies to conflicts on a specific version.  But given 

that we support multiple versions, as described below, concurrent 

access to ranges or records is frequently possible, even when modes 

conflict.   
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Because we want to avoid blocking, we support range reads but not 

range writes.  We reason that exclusive access to a range would, 

under heavy load, lead to too many aborts.  However, a form of 

“read with intent to update” (denoted in multi-granularity locking 

with an SIX lock) is supported, meaning active scanners are 

allowed to update records as they go along.  A benefit of not 

supporting exclusive access to ranges is that we can dispense with 

IS accesses entirely since they only conflict with the unsupported 

X mode range lock.  Another mechanism is needed should 

exclusive range access be required. 

As with MVCC with record versioning, range MVCC maintains a 

hash table, with each bucket providing access to the set of ranges 

mapped to the bucket by the hash function. For each range, we 

maintain a latch-free list of IX updates (essentially just the id of the 

transaction performing the update to the range) plus a “last read” 

time that provides a barrier preventing updates to a range being read 

with an earlier time, thus preventing phantoms.  What is different 

from record updates is that there can be multiple IX updates, where 

the IX literally means the same thing as IX in the locking case, i.e. 

“Intention eXclusive”.  That is, one or more record updates can be 

made to the range by the transaction posting the IX. 

3.2 Record Updating Protocol 
Each single record update will be validated at the record MVCC 

hash table.  Exactly as with multi-granularity locking, a transaction 

updating a record needs to first post an IX access to its range prior 

to updating the record.  If the transaction previously posted an IX 

to the range, it does not have to post it again, so this part of the code 

path can be avoided. Posting the IX update first ensures that a range 

reader will conservatively see all updating transactions and their 

timestamps.  This avoids a race condition in which a record is being 

updated with this update not known to a range reader. 

After posting an IX access at the range object in the MVCCran hash 

table, the update can be posted to the MVCCrec hash table entry for 

the record.    It is the posting of the updated version at the MVCCrec 

entry that confirms (or not) that the update can be done serializably. 

This is the basic protocol for all record updates.   

We maintain a write set for each transaction by chaining a 

transaction’s MVCCrec version updates together and retain a pointer 

to these record versions in the transaction table (see the middle of 

Figure 2 for the basic information retained in the transaction table). 

This write set serves as a central location for us to find all updates 

relevant to a range object by simply using the transaction id in the 

IX entry to access the appropriate transaction table entry. Having a 

central location to find these updates is essential when servicing a 

range read request (see Section 4). Each of these write set entries 

includes the range ID associated with the record, as this information 

cannot be calculated inside the MVCC mechanism, but is only 

known to the record manager that is external to MVCC component.   

3.3 Range Access Conflicts  

3.3.1 IX - IX Interactions 
The IX access at a range does NOT impede any other transactions 

from posting an IX access at the range. Just like in pessimistic 

multi-granularity locking, IX accesses are “compatible” and do not 

conflict.  This differs from how record updates in the MVCCrec  

table are handled (i.e., record “X accesses”).  Thus, a range object 

can have many IX accesses, multiple IX’s can be for uncommitted 

transactions, and IX accesses need not be in strict timestamp order.  

Thus an IX access never precludes the posting of another IX access 

by a different transaction. 

Table 1: Multi-granularity access modes and their conflicts.  

We support only modes IX, S, and SIX for ranges. 

Mode IS IX S SIX X 

IS N N N N Y 

IX N N Y Y Y 

S N Y N Y Y 

SIX N Y Y Y Y 

X Y Y Y Y Y 

 

3.3.2 IX - Range Read Interactions 
Range reads are handled in a way that is similar, but not identical 

to individual record reads.  As with a record, we maintain a “last 

read” time for a range (see the MVCCran table entry in Figure 2).  

IX accesses cannot be posted to the range if they are earlier than 

this “last read” time, otherwise the transaction would be posting a 

phantom update that a scanner (with a later timestamp) should have 

seen.  Thus, while there are no write-write conflicts captured or 

detected in the MVCCran table, read-write conflicts are detected, 

where the MVCCran is what is being read (i.e., it has the equivalent 

of an S lock on it).  This conflict is easily detected during an IX 

access, in the same way that an update conflict at an individual 

record read in the MVCCrec table is detected during a write access. 

A read is more complicated at a range than it is at a record. A range 

read access must ensure that the reader transaction’s timestamp is 

earlier than the IX accesses of all uncommitted transactions.  Since 

there is no guaranteed order to the list of IX’s associated with a 

range, the entire list of IXs needs to be examined for potential 

conflicts.  This is different than an individual record read, which 

needs to only check the most recently posted version in a record’s 

Figure 2: The Deuteronomy TC record MVCC table, range MVCC table, and transaction table. The record MVCC table 

handles record-level conflicts, while the range MVCC table handles ranges. 
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version list (in the MVCCrec table) to see if the read is earlier than 

all uncommitted writes (of which there is at most one).   

We can optimize read conflict analysis in the MVCCran table by 

noting that any read with a timestamp earlier than the “last read” 

time in the range entry cannot conflict with any uncommitted IX 

accesses, otherwise the reader that posted that “last read” time 

would not have been able to perform a scan at that time.  We cannot 

use equality of read access time with “last read” time because of 

SIX accesses, which we discuss next. 

3.3.3 SIX Accesses: Updates while Scanning 
A fairly common situation is that a transaction wants to read a 

range, perhaps looking for an appropriate record to update, and then 

wants to update the record (in the same range).  Pessimistic multi-

granularity locking provided an SIX lock to deal with this case.  An 

SIX lock cuts down on the number of items examined by the 

concurrency control scheme, since it enables the transaction to read 

the range without setting individual read locks on all records, and 

permits the transaction to update a record in the range by setting an 

X lock on its target record.  For the same efficiency reasons, we 

also support the equivalent of SIX access in our MVCC approach. 

Managing times is a little subtle for this case (see also the read 

optimization just presented in Section 3.3.2), but it is not difficult.  

When presented with an SIX access, the range item is accessed in 

the MVCCran table and conflict tests are made.  The transaction time 

for SIX must be later than the “last read” time currently on the 

range item, as befits an IX access.  Further this transaction time 

must be earlier than all uncommitted IX accesses, thus testing the 

SIX read ability for IX conflicts as would be done by a range reader.  

If both tests are passed, the range’s “last read” time is set to the SIX 

time and an IX entry is posted to the range as well.  The fact that 

the “last read” time and an IX time can be the same is the reason 

why we require range reads to be earlier than all uncommitted IXs, 

even if the read time EQUALS the current “last read” time. 

3.4 Locks vs Versions 

3.4.1 Pessimistic Concurrency Control 
We use a hash table to access records (and their versions) in 

Deuteronomy’s MVCC component. Using a hash table and 

recording accesses is also the classic way that lock managers work 

as well.  Also, similar to locking, we know at the time of access 

whether an access succeeds or not.  No validation is needed.  This 

has traditionally been called pessimistic concurrency control. 

3.4.2 The Difference between Versions and Locks 
A big difference between locks and version management is that 

locks can be released (discarded) at the end of a transaction. In the 

Deuteronomy architecture, record version entries in the MVCC 

table (and the full record payloads themselves) must be kept in the 

TC until the updates have been applied at the DC (i.e., the data 

store).  This is one of the extra costs of MVCC, and the hash table 

for MVCC is typically much larger than a corresponding lock 

manager table.  Note, however, that we also use the versions as a 

TC cache as well [16]. 

It is the dramatic reduction in conflicts via using versions that 

makes it possible to avoid blocking on conflicts and instead simply 

abort a transaction making a conflicting access.  However, lack of 

blocking should not be confused with optimistic concurrency 

control.  Indeed, one could abort transactions making a conflicting 

access when using two phase locking.  This is not usually done 

because of conflict frequency.  Using a multi-version approach 

dramatically reduces this frequency. Our view is that performance 

is improved when both validation and blocking are avoided. 

4. SERVICING A RANGE REQUEST 
The previous sections discussed how ranges are defined and how 

conflicts are detected and dealt with in the MVCC component.  In 

this section, we describe how ranges of records are materialized as 

a result of a transaction issuing a range scan request. 

4.1 Overview 
Ranges are not stored as versioned objects within our MVCCran 

table. Nor are they managed as versioned objects by the Version 

Manager.  Rather, range results are generated only when a 

transaction requests to read a range. We generate records of the 

range incrementally as a transaction processes the records in an 

order defined by the request.  In this way, it is not required that the 

entire range be materialized within our transaction component, 

which would lead to burdensome memory overhead.  Only the parts 

of the range that are incrementally read and processed by the 

transactional user are materialized. 

A salient feature of the Deuteronomy components we have built is 

that while the TC uses multi-version concurrency control, the DC 

is a single-version data store (see [15]).  We merely assume that the 

DC will contain only the latest version of a record sent to it from 

the TC. Further, these latest versions do not present a 

transactionally consistent view of the data.  It is only when the DC 

data is combined with the appropriate versions in the version 

manager at the TC (i.e., identified by the IX updates) that it is 

possible to construct a transactionally consistent view of the data. 

A transactionally consistent view of a record is trivial to construct.  

If a record is in the version store at the TC, we chose the version to 

read that is associated with the latest committed transaction ≤ the 

timestamp of the requesting transaction.  If the record is not in the 

version store at the TC, then it has not been updated since it was 

stored in the DC and hence we request the record from the DC.  In 

both cases, we protect the version we are reading by posting, if need 

be, a “last read” time that ensures this version can only be changed 

at a time that is later than our reader transaction (Section 3.3.2). 

4.2 Transactionally Consistent Ranges 

4.2.1 The Basic Idea 
Figure 3 depicts the basic idea of how we generate transactionally 

consistent ranges.  This process consists of the following steps. 

1. Determine the range objects that intersect with the range 

requested by the user; this determines the exact set of range 

objects that play a role in the scan. 

2. Find the IX entries for each such range whose transaction 

timestamps are ≤ the time of the range read. Find the updates 

for these transactions (using the transaction write set) that are 

part of the range. Filter this set of updates, selecting only the 

most recent updated versions, and discarding earlier ones. 

3. Issue a range scan against the DC (e.g., the Bw-tree). The scan 

boundary is defined by the high and low keys of the logical 

range we are currently processing (or a tighter boundary if the 

user-provided keys are more constrained).  

4. “Merge” the sorted list of record versions from step 2 with the 

scan result retrieved from the DC in step 3. 

This processing is done incrementally, one logical range at a time. 

If the user-provided scan boundaries span multiple logical ranges, 

we repeat these steps for each logical range. See Section 4.4 for 

details. 
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4.2.2 Gathering Records of a Range 
We need to determine how to access versions of records relevant to 

the range requested by a user. This user-requested range is 

expressed in terms of a low key and perhaps optionally, a high key 

(both the low and high key can be open-ended as well).  Since we 

incrementally deliver ranges, we start with the records that share 

the same logical range object as the low key, and access additional 

records as the range is progressively delivered to the user.  Our 

strategy is thus to access relevant records that are included in one 

logical range object before proceeding to the next range object if 

that is required. 

Transaction Component Records (Step 2): We query the 

MVCCran table for the versions of records that are appropriate for 

the range. These are the versions for records that have been updated 

recently and should be visible to the scanning transaction.  Recall 

that each logical range object has a list of IX postings that indicate 

what transaction has updated the range object.  Each of these 

transactions must be committed for the range read request to have 

succeeded.  Further each of the transactions has a timestamp that 

determines its place in the serializable schedule.  For each IX access 

that precedes the read time requested, we scan the associated 

transaction’s list of updates (using the write set for that transaction), 

looking for record versions that are associated with the range 

object, which is included in the MVCC entry.  When we have 

gathered all such updates, we prune them so that only the latest 

update to the range object that is earlier than the read time remains 

in our key-sorted list of updates to the range object. 

Data Component Records (Step 3): We access records from the 

DC, starting with the low key of the range that is of interest.  This 

is either the low key from the user request, or the low key of the 

logical range object (when the user requested range intersects more 

than one range).  Records from the DC are incrementally delivered 

(see Section 4.4). 

4.2.3 The Merge (Step 4) 
We now describe the basic idea of how to perform the merge 

between the TC and DC records. However, please see Section 4.3 

for a subtle difficulty and Section 4.4 for the final answer. 

The record versions from the DC represent the most recent versions 

of records posted to the DC.  We expect them to usually be older 

than record versions we retrieve from the TC.  From the TC, we 

retrieve precisely the updated record versions that we need for 

reading the range as of the time of the transactional reader.  But 

these will usually be a small subset of the records of the range. 

Our strategy then is to merge the sorted list of records in a range 

result from the DC with the sorted list of updated versions from the 

IXs for the range to bring the DC range up-to-date with (i.e., 

transactionally consistent with) the time of the reading transaction. 

Thus, whenever a version for a record occurs in both lists, we use 

the version from the TC.  Otherwise (mostly), when a record 

version is present in only one of the lists, we use that version.  

If a record has been recently deleted, it will have a “delete” marker 

from the TC.  That delete stub will remove a version for the record 

that comes from the DC.  If a record has been recently inserted, it 

will have a record from the TC, but not from the DC.  If it has been 

recently updated, it may have a version from the DC, and from the 

TC, but we know that the TC version is correct for the time we 

need, so we use the TC version. 

4.3 A Difficulty 

4.3.1 Late Inserts 
Deuteronomy is a non-blocking, latch-free asynchronous system. 

Thus many things can be going on concurrently.  One of those 

things can interfere with the success of the merge as described in 

Section 4.2.  The following steps, though uncommon, can occur to 

produce incorrect results. 

1. There is no record version for a record K at the DC.  

2. A range reader reads record versions from the TC version 

manager as of the time requested, and there is no record K in 

the TC either. 

3. An insert operation creates a version for K. 

4. The transaction for the insert is committed, and the version for 

K is eventually posted to the DC. 

5. The range read now reaches the DC records that include the 

newly inserted record K.  This record is returned to the range 

merge function. 

Now we have a record from the DC that is too late to appear in the 

range, but we have no easy way of determining that.  The real 

difficulty here is that we have no way of knowing whether ANY of 

Figure 3: An outline of the steps required to service a range read request in Deuteronomy. A set of IX updates not yet applied 

at the DC are merged with the DC scan result to form a transactionally consistent range result. Scan results are incrementally 

built in manageable batches and returned to the transaction. 
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the records from the DC that do not have matches from the TC are 

too late (i.e., should not be seen by the transaction) or not.  That is, 

we cannot easily distinguish the too young records from the old 

records.  Every unmatched record from the DC would need to be 

checked to see whether it was a late insert. 

4.3.2 Timestamps to the Rescue 
If we knew the transaction timestamp associated with DC records, 

then determining late inserts becomes trivial.  Such a late insert will 

have a timestamp that is later than the timestamp of the reading 

transaction.  Until this point, we did not have such timestamps at 

the DC. 

In Deuteronomy, a DC must provide idempotent operations. In 

previous work we described one way to manage idempotence in the 

DC based on a B+-tree (the Bw-tree) [15, 16]. The idea is to use 

TC-provided sequence numbers (these are log sequence numbers, 

or LSNs) that uniquely identify each operation. The Bw-tree 

associates an LSN with each operation it receives. Occasionally, 

the TC sends a control operation to the Bw-tree (an “end of stable 

log” message, or EOSL) denoting that the Bw-tree has seen all 

operations with LSNs less than the given EOSL value. At this point 

the Bw-tree is able to consolidate LSN information, using a single 

page LSN (the highest LSN of all operations on the page). In 

addition to idempotence, the LSN was also used for log 

management at the TC, e.g. checkpointing and log truncation.  

Given that our current incarnation of the TC uses timestamp 

ordering, we can use timestamps instead of LSNs, so long as we 

can relate timestamps to LSNs for checkpoint purposes.  And we 

can return these idempotence markers (now timestamps) with the 

records read from the DC. One complication is when a record is 

updated multiple times within a transaction.  We need to distinguish 

these updates and ensure that it is the last update that is posted as 

the result of the transaction.  We add a sequence number to our 

timestamps to deal with this case. 

As with LSNs, we do not need to retain a timestamp for every 

record at the DC.  After no more updates can be made with earlier 

timestamps (previously lower LSNs), we can consolidate a page, 

providing the entire page with a single timestamp, as we did 

previously with a page LSN.  That means that we would not be able 

to provide a precise timestamp for every record version from the 

DC, but it does permit us to easily identify old versions from the 

versions that result from late inserts.  That is, the page timestamp is 

an upper bound on the record timestamps and hence identifies the 

records as earlier than any range requested by an active transaction. 

Using timestamps instead of LSNs, we can now perform a merge 

that we know is correct.  What we add is a test of each record’s 

version that comes from the DC and that does not have a matching 

version from the TC.  If its timestamp is less than the reading 

transaction’s timestamp, we use it in the resulting range.  Otherwise 

we drop it from the result. 

An added bonus of using timestamps is that it enables us to 

optionally support temporal access methods in a very 

straightforward way.  Many such access methods perform a time-

split to separate historical versions from current data [2, 17, 18].  

Such time-splits need transaction timestamps to work correctly.  

4.4 Incremental Range Delivery 
As mentioned previously, range records are not materialized in 

MVCCran tables.  However, records that have been updated or read 

individually (using the MVCCrec table) will be present within the 

Version Manager, and that is what permits us to merge DC and TC 

record versions.  But we believe it is important to avoid 

materializing an entire range, which might contain a few records, 

but also might contain many thousands of records (or more). 

Note that there are two range sizes that enter the picture.   

1. The set of records between the user provided range boundaries 

(the low and high key) might well be small, but it also might 

be very large (or open-ended), encompassing several of our 

logical range objects that partition the entire set of keys. 

2. The set of records for a single logical range object also can 

vary enormously in size.  So even if the (low key, high key) 

range requested by a user is small, trying to cache the records 

of even one logical range object might be costly. 

Ranges are represented logically in the MVCCran table (see Section 

2) and are assembled incrementally when we need to deliver 

records to the user that requested them.  We intersect the (low key, 

high key) range requested by the user with the range partition used 

for our logical range objects.  We then access the DC for the result 

of this intersection one range partition at a time.   

We perform one further breakdown of the records coming in 

batches from the DC.  The Bw-tree returns batches of records, and 

it can usefully make a batch correspond to a page.  So the unit of 

transfer that we use, and the unit that we materialize at the record 

manager, is this batch (page) of records.  It is this sequence of page 

size chunks coming from the DC that are merged with the set of 

record versions for range objects that come from the TC.  

We optimize the delivery of the DC record batch by providing a 

“box” (a “page size” storage allocation) into which the records are 

returned to the record manager.  This avoids multiple allocations, 

e.g. one per record.  It also provides excellent cache locality when 

we access the records of the batch at the record manager. 

TC record versions for a range are materialized one logical range 

object at a time.  If the user-requested range is contained within the 

key boundaries that define the logical range, then we only 

materialize records within the user-requested range boundaries.   

Once a merge is done between the DC scan result and the relevant 

TC records, the incremental result is batched, again “in a box”, and 

delivered to the user.  We do not retain (cache) records of a range 

at the TC.  Once ranges are delivered to the user, they are dropped.  

This design can be changed if cursor support is needed.  But we 

would rather have that done outside of the TC. 

5. EVALUATION 

5.1 Purpose and Goals 
Our goal in evaluation is to answer five key questions. 

What is the total transaction throughput that Deuteronomy can 

deliver for transactions that perform scans? Section 5.2 shows 

that our range-based MVCC scales well on multicore, multisocket 

hardware to facilitate more than 2.25 million scans per second 

covering nearly 112 million records per second for the YCSB E 

workload. 

What is the performance impact of adding scan support on 

point update and lookup operations? Section 5.3.1 shows that 

range MVCC support increases per-operation latency by about 

80%. 

What is the throughput cost for range concurrency control? 

How does performance of TC range scans compare with range 

scans issued directly against the DC? Section 5.3.2 shows that short 

serializable scans only decrease scan throughput by 20% compared 

to direct (un-serializable) scans issued against the DC. Longer 

scans are up to 35% slower. 
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How do varying workloads impact range scan performance? 

For example, are large scans that cross many range partitions 

efficient? Section 5.3.2 shows that long scans achieve scan rates of 

nearly 250 million records per second (or more than 27 GB/s of 

data). 

Does the TC’s use of logical ranges outperform other schemes? 
Section 5.5.1 shows that our approach provides 43% higher scan 

throughput than an approach that uses validation. Compared with 

Silo [34], a high performance integrated key-value store, our 

component based approach is 19 to 53% slower on short ranges, but 

avoids the performance penalty that Silo suffers under longer scans 

(see Section 5.5.2). 

We want Deuteronomy to be competitive with main memory 

databases when the working set of an application fits in 

Deuteronomy main memory. Consequently, we focus evaluation on 

loads that highlight range concurrency control overheads rather 

than I/O device bandwidth limits. All experiments use our 

previously built DC (including Bw-tree and LLAMA, evaluated 

elsewhere [14, 15, 16]) and TC augmented with the new range 

support. All experiments also include the full cost of I/O for 

durability and all background “garbage collection” (e.g. for pointer 

stability for lock-free structures, MVCC version reclamation, etc.) 

needed for stable performance. 

Our experimental machine set up is described in Table 2. Each of 

its four CPUs reside in separate NUMA nodes, which are organized 

as a ring. The machine has 32 cores total, and each core hosts two 

hardware threads. Additional hardware threads are used to perform 

updates against the DC, though the extra threads are lightly loaded 

since the benchmarks are scan intensive and perform few updates. 

Recovery logging and DC updates share a single commodity SSD. 

5.2 Experimental Workload 
For these experiments we use workloads similar to the YCSB 

benchmarks. For all experiments, the DC database is preloaded 

with 50 million 100-byte values. Our main workload is the YCSB E 

workload, which includes range scans. Client threads execute of a 

mix of 95% scan and 5% update operations. Each operation is 

executed in a separate transaction to create a transactional 

workload. Both the keys to update and the scan start keys are 

chosen randomly using a skewed Zipfian distribution (θ=0.877) 

that creates an “80-20” hot-cold mix. Scan transactions retrieve 1 

to 100 values, with the scan length selected at uniform random. 

Points are averaged over 5 runs; variance is insignificant in all 

shown graphs. 

5.3 Scalability and Peak Throughput 
Figure 4 shows YCSB E scan transaction throughput as the 

workload is scaled across multiple hardware threads and sockets. 

With all of the cores issuing transactions, Deuteronomy sustains 

2.25 million scan transactions per second in steady state 

(250 million total records scanned per second) with an insignificant 

abort rate. 

Performance scales well across all four CPU sockets until all of the 

cores are busy performing transactions. Overall, performance is 

limited by DRAM latency, primarily due to MVCC and range table 

accesses, read cache and log buffer accesses, and Bw-tree traversal 

and data page accesses. The large working set hampers the 

effectiveness of CPU caches and the DTLBs. We experimented 

with 1 GB super pages for large or relatively fixed-size structures 

like the recovery log buffers, the read cache, and the transaction 

table to reduce TLB pressure, but the limited number of TLB 

entries for super pages made them difficult to exploit. 

 

5.4 Concurrency Control Overhead 

5.4.1 Point Operation Latency 
Figure 5 breaks down the overhead added due to range support. It 

shows (in linear and log scale) the cumulative fraction of single 

update operations that completed within a given time. The figure 

shows that range support increases update latency by about 80%. 

Average case latency is shown with a circle marker. 

OS Windows® Server 2012 

CPUs 4× Intel® Xeon® E5-4650L 

32 total cores 

64 total hardware threads 

Memory 192 GB DDR3-1600 SDRAM 

Storage 320 GB Flash SSD 

    Effective read/write: 430/440 MB/s 

    Effective read/write IOPS: 91,000/41,000 

Table 2: Details of the system used for experiments. 

 

 

Figure 5: Update operation latency both with and without 

range support. 

 

 

Figure 4: YCSB E scan transaction throughput as the 

number of client threads is varied. 
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The first “shelve” in the graph (which crosses 10 μs) distinguishes 

updates whose versions must first be read from the DC from those 

whose version is already local at the TC. The second shelve (which 

crosses 100 μs) distinguishes DC read operations that execute 

quickly from those that have to perform delta page consolidations. 

Overall, the fast path operations are impacted most significantly, 

since consulting the range MVCC adds a few cache misses to a 

well-tuned path (without range support the original TC incurred as 

few as 6 cache misses per operation).  

While the impact on latency is non-trivial, the impact on throughput 

is not large.  We ran the OLTP style workload (YCSB with 84% 

reads, four operation transactions) used in our previous paper [16] 

with range support disabled and with it enabled.  The test used the 

same thread management and data placement, and ran using 48 

threads.  Under these conditions, we achieved 1.28M tps without 

range support, and 1.25M tps with range support turned on.  This is 

a difference of 2.3%.  Under these conditions, supporting ranges 

has only a modest impact on overall performance. 

5.4.2 Scan Throughput 
Figure 6 shows the scan throughput for varying scan lengths and 

compares the TC’s serializable scan performance to raw non-

transactional DC scan performance. In this figure, the direct DC 

scans are effectively running “read uncommitted” since the DC 

does not provide any form of concurrency control. The serializable 

scans in this graph have an insignificant abort rate (not shown). 

This (and the remaining figures of the paper) are measured with 48 

hardware threads executing the YCSB E workload. 

Figure 6 shows cost of the TC’s range concurrency control: range 

scan throughput is about 20 to 35% slower with concurrency 

control than when the scans are issued directly against the DC 

without concurrency control. Note that 250 million records/s draws 

data from the DC at 27 GB/s; the TC’s serializable scans are fast 

enough to support even the most demanding applications even 

when records are fine-grained as in this benchmark. 

Finally, Figure 6 also highlights the cost of traversing range 

boundaries. In this figure, a scan of length 1 million is likely to 

cross about 49 range boundaries, whereas a scan of length 10,000 

is highly unlikely to cross any. The difference is nearly 

imperceptible for our default partitioning; the measured difference 

is well within the margin of error. 

5.5 Choosing Partitions 
Figure 7 explores the impact of partition granularity on overall scan 

performance. In this experiment, the number of logical range 

partitions is varied while worker threads execute scans that each 

collect 10,000 records. The scan-to-update ratio is also varied to 

explore the performance of workloads with updates. 

Initially, scan throughput is improved by increasing the number of 

logical range partitions. Updates are fast and scan transaction aborts 

are insignificant at all points in this graph (hence, only the results 

for committed scan transactions are shown). So, the improved 

performance comes from the reduced number of versions chained 

in each partition’s IX update list. Updates are spread across more 

partitions, and the cost of collecting and merging them is reduced 

as more partitions are introduced. However, above 64,000 

partitions, scan performance begins to degrade. With a large 

number of partitions, the key space is already divided well enough 

to keep IX update lists small, and scans are incurring increased 

overhead by having to cross additional partition boundaries.  

5.6 Performance Comparisons 

5.6.1 Validation Strategy 
Figure 8 compares the performance of Deuteronomy’s logical 

range concurrency control approach with an approach that re-scans 

ranges at commit time to perform validation. The results show that, 

as expected, the validation scan almost exactly doubles the cost of 

scans (compared to the inconsistent scans of Figure 6). Overall, TC 

range scans are up to 43% faster, using our IX approach, than these 

same scans using validation. Further, our “validation” scan is 

simply a re-scan of the range, and does not do the comparison with 

the original range, so it illustrates only part of the validation cost 

and misses entirely validation failures.  With full validation, the 

results would be much closer to Silo’s. 

In fact, this represents a best case for validation based on re-reading 

the range, since the DC caches scan results between the initial scan 

 

Figure 6: Aggregate scan throughput for varying scan 

lengths. 

Figure 7: Aggregate scan throughput as logical range 

partition count is varied. 

 

Figure 8: MVCC range scan throughput for various 

approaches. 
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and the validation scan. For large scans that cannot be cached the 

validation approach doubles the use of I/O bandwidth, which we 

expect to be one of the scarcest system resources. 

 

5.6.2 Comparison with Silo 
Finally, Figure 8 also shows Deuteronomy’s TC scan performance 

compared to Silo [34]. Silo’s tightly-coupled and optimistic, 

validation-based approach works well on short ranges, but breaks 

down as scans get long. For long ranges, Silo explicitly tracks each 

key read as well as the version of each node seen in a tree in order 

to ensure that concurrent updates have not affected the scan at 

commit time. In addition to the basic bookkeeping cost, large scans 

are more likely to abort due to intervening updates as they cover 

more keys and remain uncommitted for longer intervals. 

Figure 8 shows this affect. On short scans the TC is 19 to 53% 

slower than Silo, but Silo’s optimistic approach breaks down on 

large scans, and its performance falls significantly. Scan 

performance in Deuteronomy is stable and predictable independent 

of scan length. 

6. RELATED WORK 
Concurrency control methods have existed for as long as there have 

been database systems.  There is too much literature to make an 

adequate survey here.  We focus more narrowly on phantom 

prevention—while acknowledging that it too has a very long 

history. 

6.1 Multi-granularity Locking 
Multi-granularity locking was introduced in System R [1, 6].  This 

simple idea was a powerful one, as it permitted a resource higher in 

the granularity hierarchy to be locked without the need to lock each 

of its included lower level resources.  Hierarchies typically 

included at least tables and their contained records.  Frequently, 

physical pages were also included in the hierarchy.  

There is a tension between reduced locking overhead and the 

granularity of the resource.  The larger the granule, the larger the 

number of accesses that compete to use the resource.  The smaller 

the granule, the more locks are needed when the resource requested 

is itself large. 

One way of dealing with this tension is to support more levels in 

the hierarchy.  For example, pages can be included between tables 

and records.  The difficulty here is that one cannot control access 

to pages if the concurrency control method knows nothing about 

page boundaries, as is the case for the Deuteronomy TC.  Thus, 

locking pages effectively forces transactional concurrency control 

to intrude into access method page management.   

An additional problem is lock manager contention that can add 

substantial overhead and restrict scalability when supporting, e.g., 

IS mode locks.  In many approaches, readers need to post an IS 

lock.  Johnson et al [9] avoid this problem via a form of lock 

inheritance that avoids many interactions with the lock manager.  In 

contrast, we avoid most of this contention by not supporting IS 

mode locks, which are unnecessary since we do not support X mode 

locks on higher level resources.  Our contention is further reduced 

via the use of latch-free data structures in our version manager 

(which serves also as our “lock” manager). 

6.2 Next Key Locking 
Another idea that started with System R is called next key locking.  

The idea is that a lock on a key identifying a record in a table locks 

not only the record but the key space between that record and the 

next (or previous) record with its key [1, 6, 20, 21, 27].  When a 

record is to be insert into a table, the next key is checked.  If it is 

locked (in some manner) then the insertion may be blocked. 

Next key locking has the advantage of being fine grained (each 

adjacent pair of keys defines a range resource) and also be logical 

and hence not depend on the physical attributes such as how records 

are assigned to pages.  The difficulty is that, when doing an insert, 

one needs to check a lock on the “next key”.  In Deuteronomy, 

where data may be remote from the concurrency control function, 

discovering the next key adds significant overhead to the insert 

operation, e.g., in the form of a round-trip traversal to a remote DC. 

6.3 Multi-version Methods 
When full versioning in a database exists [19, 25], and even 

temporary versioning (as is done for snapshot isolation in Oracle, 

SQL Server, and others), those versions can support serializable 

read transactions.  The difficulty has always been to deal with and 

serialize read-write transactions correctly.  Usually, one finds only 

snapshot isolation being supported, which avoids the need to 

validate read sets. 

Concurrency control to provide serializable transactions using 

multiple versions has been explored as well. For instance, Cahill et 

al explore adding a lock manager in Postgres that otherwise used 

versions to support only snapshot isolation [3].  Jensen et al. and 

Lomet et al. explored using a lock manager to access multiple 

versions [7, 22].  A major difficulty was the inherent overhead of 

locks which were proxies for the versions, and blocking that was 

used in the face of conflicts.  The result was more concurrency 

when supporting serializable transactions, but much greater 

overheads.   

6.4 Recent Systems 
Newly implemented systems have recognized that concurrency 

control overhead and blocking behavior are serious impediments to 

achieving high performance.  Thus we have seen the exploration of 

a number of new non-blocking approaches.  These approaches are 

pursued in the context of main memory databases that remove 

secondary storage and user latencies.   

6.4.1 Serial Execution 
One of the most straightforward ways to removing blocking is to 

run transactions serially one after the other. VoltDB [32] and its 

academic precursor HStore [31] provide serializable transactions 

by executing transactions in serial order to completion.  The initial 

version of the HyPer main-memory database also executed 

transactions sequentially [11].  Calvin [33] is a partitioned 

distributed system that orders transaction execution 

deterministically to avoid cross-partition contention. Transactions 

in Calvin run serially on each partition. 

6.4.2 Optimistic Methods 
The Hekaton main-memory OLTP engine uses an optimistic multi-

version concurrency control technique [5, 12]. The basic idea is as 

follows: records are multi-versioned and versions have disjoint 

valid time ranges. Transactions read records as of a logical read 

time, while updates create new versions. At the end of execution, 

transactions are given a unique timestamp denoting the commit 

time of the transaction; this is also the write time for any new 

versions created by the transaction. For isolations levels stronger 

than snapshot, this technique requires validating read sets, and in 

the case of serializable isolation, also requires re-doing all scans in 

order to perform phantom detection. Since Hekaton’s target is 

snapshot isolation, this scheme works well. The goal in 

Deuteronomy is to provide efficient execution of transactions 

running in full serializable isolation. We deem concurrency control 
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schemes that require post-processing validation too high a price to 

pay to achieve serializability. In Section 5.5, we showed that our 

approach is up to 43% more efficient than a validation-based 

approach. This is a best-case scenario for validation, since the 

workload was read-only (no aborts) and memory bound.  The 

situation would be much worse if validation required extra I/O to 

perform the second scan. Since Deuteronomy is not a memory-only 

engine, we want to avoid validation at all costs. 

6.4.3 Other Systems 
Silo is a high-performance transaction processing engine targeting 

multi-core machines with large main memories [34]. Transactions 

in Silo keep write sets private during processing. During commit 

processing, a transaction installs its write set in the underlying data 

structure (the Masstree range index [24]). During this time, it 

temporarily locks (latches) the record while installing its write set, 

aborting if it detects a conflict. Silo provides serializable 

transactions. It detects phantoms by versioning the leaf nodes of the 

Masstree.  Range scans record the version of the leaf pages they 

encounter during a scan, and re-check the versions during commit 

to ensure the versions are the same. This scheme couples 

concurrency control with data storage; Deuteronomy, on the other 

hand, performs purely logical concurrency control, including range 

concurrency.  

HyPer recently explored the use of timestamp order concurrency 

control  in main-memory database systems and showed that this 

technique performs well in modern database architectures [26]. 

HyPeR recently added support for serializable transactions based 

on multi-versioning, precision locking, and validation [28]. 

VLL [30] is a lightweight locking technique designed for main-

memory database system. VLL supports range concurrency by 

defining range boundaries using prefixes of key space. While this 

technique is purely logical, nonetheless unlike Deuteronomy, VLL 

is a (pessimistic) locking scheme. 

7. DISCUSSION 

7.1 Serializability 
Serializability has an extra cost that manifests itself in two ways.  

(1) Either concurrency is reduced, or (2) execution path is 

increased.  This pushes users toward lower levels of isolation.  This 

is unfortunate as it is serializability that provides the illusion to 

applications that they have the entire system to themselves: if a 

transaction executes correctly in a single user setting, it will execute 

correctly in a fully concurrent setting.  Our goal is serializability 

with a sufficiently small penalty, both in performance and in 

concurrency, as to enable it to be the default for users.   

The most challenging aspect, as we focus on in this paper, is 

preventing phantoms when a transaction reads sets of data. Without 

an index, the usual approach is to evaluate predicates during a table 

scan.  Preferable when possible, is to replace the table scan with a 

key range scan as then only the key range needs to be read and 

protected.  This has been the focus of the current paper. 

We had previously implemented an MVCC mechanism that 

provided serializability for all cases except for dealing with ranges 

[16]. This provided both our starting point and a very large 

challenge.  As a starting point, we had achieved very high 

performance with a very low abort rate, which was great.  However, 

this meant that any added overhead or lost concurrency when 

dealing with ranges risked having a large relative performance 

impact. 

7.2 Concurrency and Aborts 
When a timestamp is defined at transaction end, the longer the 

transaction executes, the more conflicts it is likely to encounter 

since a version is subject to conflict from access time to transaction 

end.  A start time timestamp avoids this difficulty, as done with our 

timestamp order approach.  And, indeed, once a range object is 

successfully read (the read is posted as of the transaction’s start 

time) its read time will ensure that the incremental reading of 

records at the range cannot be subject to interference. 

Concurrent write transactions early in the range reader’s execution 

may be forced to abort.  Or it may need to abort because of an 

uncommitted update of a record in the range that was posted prior 

to the range read.  But writers that start after the range reader are 

not interfered with as they update records with versions that will 

come after the range reader’s transactions. Hence these writers will 

neither themselves abort because an earlier range version is being 

read nor cause abort difficulties for the earlier range reader. 

The “magic” of MVCC is that range reads can be concurrent with 

record updating.  This is exactly what is achieved with snapshot 

isolation, in exactly the same way- the range reader reads the earlier 

version while updaters modify later versions.  There is some 

concurrency lost when serializability is the isolation level.  But 

much of the MVCC concurrency gain from snapshot isolation can 

be realized also with MVCC serializable concurrency control. 

7.3 Overhead and Contention 
We cap the resource hierarchy at two levels.  Every level of a multi-

granularity resource hierarchy increases overhead for simple record 

updates by potentially requiring a check of the resources in the 

hierarchy path leading to a record.   

We targeted ranges that are a modest fraction of the “table size”, on 

the order of a few tenths of one percent. Modest size ranges work 

to spread out IX postings and hence avoid hot spots in our MVCC 

hash table.  Modest range size reduces the potential that any given 

write will impact and perhaps conflict with concurrent range reads.  

This also reduces the overhead of conflict checking since the IX 

accesses are spread out over a larger number of ranges. 

This existence of multiple versions and use of MVCC reduces the 

access contention from locks. Low transaction latency also reduces 

contention, which results from Deuteronomy treating a transaction 

as committed once its commit record is in the volatile recovery 

buffer (often called “fast commit”) [4].  We wait for transaction 

durability only for notifying clients.  Contention on physical 

resources can also be serious, including access to the recovery log 

[10].  This contention is reduced via our latch-free access to these 

resources [16], particularly the use of the FAI atomic instruction, 

7.4 Pessimism vs Optimism 
One can debate whether transactions only accessing record level 

resources should use optimistic vs pessimistic concurrency control.  

Record level conflicts tend to be quite low.  However, range objects 

have a much higher “conflict profile”.  This reduces greatly the 

desirability of optimistic methods, even with MVCC. 

The higher potential for conflict with ranges means that between 

the original access of records in a range and subsequent commit 

time validation, there is a greatly increased likelihood of validation 

failing.  Pessimistic concurrency control “validates” at access time.  

This coupled with the TO approach means that later writers (with 

later timestamps) are not impacted at all.  And earlier writers are 

already partially executed.  So a successful posting of a range 

access has only modest impact on writers that come to the resource 

later, regardless of their timestamps.  
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The pessimistic approach does have “up front” overhead, which can 

be seen in the comparison with Silo in section 5.6.2.  However, as 

also seen there, it avoids the problems that occur with optimistic 

methods as scans get longer. 

7.5 Performance 
The performance results we report here are for serializable 

transactions.  The high transaction throughput and the low abort 

rate for supporting serializable isolation validate our design 

decisions, and provide additional confirmation that a carefully 

architected and modular system can achieve terrific performance. 

8. Conclusion 
This paper presented a high performance range concurrency control 

technique that extends multi-version timestamp ordering to support 

range resources and fully supports phantom prevention. We 

described a protocol to define a set of logical ranges that is 

compatible with the Deuteronomy TC:DC logical and physical 

partitioning. This protocol uses the inner leaf nodes of a range-

based DC to provide the TC with a balanced logical partitioning of 

the key space. The TC uses this key partitioning to define a set of 

logical range objects that are used in a multi-granularity resource 

hierarchy in our multi-version timestamp order scheme.  These 

range resources are used to both detect serializable conflicts in the 

timestamp order, as well as help range readers construct a 

transactionally consistent range scan result. Our technique 

incrementally returns range results to the user in manageable 

batches, thus only materializing relevant record results. Our 

evaluation shows that this concurrency control scheme reaches scan 

speeds of nearly 250 million records/s (more than 27 GB/s) on 

modern hardware, while providing serializable isolation complete 

with phantom prevention. The approach is 43% faster than an 

approach that relies on re-reading the range scan for validation. 
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