
Multi-Version Range Concurrency Control in Deuteronomy
Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui Wang

Microsoft Research

{justin.levandoski, lomet, sudipta, rystutsm, ruiwang}@microsoft.com

ABSTRACT

The Deuteronomy transactional key value store executes millions

of serializable transactions/second by exploiting multi-version

timestamp order concurrency control. However, it has not

supported range operations, only individual record operations (e.g.,

create, read, update, delete). In this paper, we enhance our multi-

version timestamp order technique to handle range concurrency and

prevent phantoms. Importantly, we maintain high performance

while respecting the clean separation of duties required by

Deuteronomy, where a transaction component performs purely

logical concurrency control (including range support), while a data

component performs data storage and management duties. Like the

rest of the Deuteronomy stack, our range technique manages

concurrency information in a latch-free manner. With our range

enhancement, Deuteronomy can reach scan speeds of nearly

250 million records/s (more than 27 GB/s) on modern hardware,

while providing serializable isolation complete with phantom

prevention.

INTRODUCTION

1.1 Phantoms
Serializability with range protection is much harder to provide than

other levels of isolation (say repeatable reads) because it requires

the prevention of phantoms. An example of a phantom is a resource

that does not exist when a transaction T begins execution and is not

seen during T’s execution. However, it is added to the database by

transaction S, which serializes before T so that T should have seen

it if T is to serialize after S.

To prevent phantoms, lock-based concurrency control locks more

than just the records accessed by a transaction. But since phantoms,

by definition, do not yet exist, the question becomes: “exactly what

do we lock?” T needs a way to lock resources that not only include

records that it knows about, but that include all possible records that

do not yet exist but that, if they did, would be read by T. The

conclusion is that locking individual records is insufficient to

provide serializability.

There are a number of locking based solutions to the phantom

problem. One way is to lock a resource that includes not only some

current set of records but also any records that might be added to

this set. Examples of this are table locks, page locks (where pages

are associated in some way with a predicate as in a B-tree key

range), and next key locking, which locks not only a record but also

the range of keys between the record and its successor (see Weikum

and Vossen [35] for a more complete discussion).

1.2 Versions and Timestamp Order
Deuteronomy uses a timestamp order multi-version concurrency

control (MVCC) method [16]. The big plus for multi-version

concurrency is that most read-write conflicts can be avoided. In

particular, a transaction can frequently read a committed version

that is earlier than a current version produced by an uncommitted

transaction. This is an enormous advantage as read-write conflicts

are by far the most common form of conflict since transaction read

sets are typically much larger than write sets.

We recently showed how to use timestamp order (TO) concurrency

control with multiple record versions to provide serializability

when reads are restricted to individual records (but not record

ranges) [16]. The basic idea is as follows. A transaction X is given

a timestamp T when it begins execution, which also serves as its

commit time. Transaction X uses T to identify the version that it

should read, i.e. the latest version with a timestamp less than T.

When X reads the record, it updates the “last read time” for that

record (but only if it monotonically increases this “last read time”

value). If X tries to read an uncommitted version that has a

timestamp earlier than T, then X aborts. If X tries to write a version

of a record, but that record has a “last read time” later than T, then

X will abort (otherwise it would have written into another

transaction’s read set). X also aborts if it tries to write to a record

that already has a prior active but uncommitted version (a write-

write conflict). When X commits, all new versions it created are

stamped with timestamp T. These steps ensure that timestamp order

acts to serialize transactions.

There have been prior solutions to phantom protection in a multi-

version setting, where the approach involves re-reading the

range(s) at the end of the transaction so as to validate that other

transactions have not changed it [5, 12]. Validation has two

characteristics that we find worrisome. (1) Re-reading a range can

be quite costly, requiring doubling the number of record accesses

for validation. This might be fine for memory-only systems, but

Deuteronomy only caches data in main memory, thus validation

could involve extra I/O; this is a deal breaker for us. (2) A

transaction’s reads take place at its start time, but it is serialized as

of its commit time. So any range read needs to be unchanged for

the execution duration of the transaction, increasing the likelihood

of abort as execution time increases.

1.3 Versions and Ranges
The Deuteronomy architecture, depicted in Figure 1, enables a

clean separation of duties, where a transaction component (TC)

performs purely logical concurrency control (but knows nothing

about physical data storage), while a data component (DC)

performs data storage and management duties but knows nothing

about transactions [13, 23]. While Deuteronomy’s DC supports key

range scans using the high performance Bw-tree [15], until now the

TC did not support serializability when key ranges were accessed

since it did not protect against phantoms.

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain

permission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume were

invited to present their results at the 42nd International Conference on Very

Large Data Bases, September 5th – September 9th 2016, New Delhi, India.

Proceedings of the VLDB Endowment, Vol. 8, No. 13

Copyright 2015 VLDB Endowment 2150-8097/15/09.

2146

Transactional concurrency control in the TC does not know

anything about structure modifications done at the DC (e.g., B+-

tree page splits). These are fully handled within the DC. If

pagination information were exposed to the TC, this might require

additional information propagation to keep this information up-to-

date, adding both complexity and execution cost. For Deuteronomy

we need a concurrency control method that is fully “logical”.

Deuteronomy’s TC should have no knowledge of physical record

placement. This, of course, rules out techniques based on pages.

Further, we want to avoid potentially expensive validation (e.g. re-

reading a range) when transactions are executed serializably, which

is our target isolation level, while also avoiding greatly increased

abort rates. A prior paper [20] showed how logical ranges could be

used in Deuteronomy when using pessimistic locking at the TC.

The technique in this paper exploits the idea of logical ranges but

in a setting where we use timestamp order MVCC. This has never

been done before. Hence we want to use versioned ranges, building

on our prior timestamp order MVCC for individual record

operations as described in Section 1.2.

1.4 Contributions
Achieving high performance requires that conflicting accesses be

minimized. MVCC accomplishes this by eliminating most read-

write conflicts. We extend our prior timestamp order MVCC

scheme to include controlling accesses to ranges, thus providing the

phantom protection required for full serializable transactions. The

result is a Deuteronomy storage engine (TC plus DC) that exhibits

great performance while supporting full serializable transactions.

Our contributions in this work are summarized as follows:

1. Defining and managing logical range objects that are

compatible with the Deuteronomy TC:DC logical and

physical separation (Section 2).

2. Coordinating serializable transactions with write access to

records of a range in a multi-version and concurrent way,

treating ranges as part of a multi-granularity resource

hierarchy, all without requiring a validation step (Section 3).

3. Effectively accessing and managing logical and versioned

ranges without materializing any more records of the range

than are requested by a client (Section 4).

We performed experiments to measure performance in a number of

different dimensions (Section 5). We show that the range-enhanced

Deuteronomy TC achieves fully serializable scan throughput of

43 million records/s (more than 4 GB/s): 43% faster than an

approach that requires re-reading the range to validate the scan.

Related work is covered in Section 6, while a discussion and

conclusion is provided in Section 7 and 8, respectively.

2. LOGICAL RANGES
We now provide a brief overview of the Deuteronomy stack in

order to understand the data flow within our TC architecture and

how it interacts with the DC. We then discuss how to define and

manage logical ranges in the Deuteronomy TC; this is important

since we need to support purely logical concurrency control.

2.1 The Deuteronomy Stack
Figure 1 depicts the architecture and lists the basic functionality of

both the transaction component and data component.

Transaction component (TC). The TC provides logical

concurrency control and recovery. It consists of three main

elements.

• MVCC Component: manages concurrency control within the

TC using multi-version timestamp order (as summarized in

Section 1.2). It uses a latch-free hash table to manage version

information for individual records. This consists of a key, last

read time, and the transaction id of each version writer. A

version offset is also stored with the version, used to access the

full record from the version manager.

• Version manager: manages the redo log (we use redo-only

logging in Deuteronomy). All new writes are immediately

written to a log buffer. Buffers are persisted once full, but they

are retained in memory to serve as a version read cache until

they are eventually recycled and reused. The version manager

services log writes as well as version reads (using the version

offsets in the MVCC table) that may be retrieved from either

an in-memory log buffer, or through the DC, where it is then

cached at the version manager.

• Record manager: sits atop the MVCC and version manager

and is responsible for the user-facing API and running the

transaction logic.

A detailed description of the TC and its techniques for achieving

high performance are available in a previous paper [16]. This paper

describes our method to support range concurrency control within

the MVCC component in order to provide high performance

serializable range scans without the need for validation.

Data component (DC). The data component manages physical

data storage. We assume the DC supports efficient key-ordered

scans. This work uses the Bw-tree [15] as our DC. The DC also

uses its knowledge of key distribution to help the TC craft a set of

logical ranges to optimize scan efficiency and reduce aborts. The

rest of this section describes how to define and manage logical

ranges.

2.2 Possible Logical Ranges
There are a number of ways to define ranges that do not require

physical information. Below we give a brief assessment of some

alternatives.

1. Next key ranges: Such ranges are very precise and might

provide the highest concurrency since the ranges are very

small. There are two downsides. (1) A large number of ranges

need to be managed. (2) On insertion of a record, we need to

check the “next key” to see how and whether the insertion can

be done. Deuteronomy’s separation of TC and DC means that

the next key checking is very expensive. If the TC and DC are

located on separate machines, this check involves a round trip

over a network.

2. Table objects: Tables are usually included in multi-

granularity locking implementations. The big difficulty with

tables is that a table read access would impact every write

access to any record in the table. Such an object would be very

Figure 1: Deuteronomy architecture: The TC performs

purely logical concurrency control and receives logical

range information from the DC. The DC is in charge of

physical data storage and supports key-ordered scans.

2147

heavily accessed and its elements would be under all but

continuous update.

3. Logical partitions: A logical partition, e.g., defined by a

partitioned key space, can be made small enough to avoid the

concurrency bottleneck associated with table objects. If we

bring knowledge of the partitioning to the TC early enough

(e.g., during TC/DC initialization), we avoid having to access

the DC frequently as required by next key ranges. We choose

to work with logical partitions for these reasons. However,

there are issues associated with logical partitions that we

describe below.

2.3 Defining and Identifying Ranges

2.3.1 The Nature of Ranges
The introduction of any resource other than records, and that can

denote some collection of records, introduces multi-granularity

resource management. Multi-granularity locking has a long

history [6], and we would like to leverage some of the thinking

behind such a hierarchy. In particular, like multi-granularity

locking, a higher level logical granule (similar to a page or table)

should be identified by a unique resource identifier to provide high

speed hashed access to the objects. To exploit much of the same

mechanism that we had already built to handle record versions in

the TC MVCC component [16], we designed a similar but separate

latch-free hash table for range objects.

A critical aspect of any multi-granularity scheme is that we need to

be able to determine, when presented with a record access, to which

larger granule (range in our case) it belongs. While not strictly

necessary, a nice simplification is to have our range objects be

disjoint so that we need to track information for only one range

object when a record in the range is accessed. For this reason, we

chose to use a disjoint partitioning of the key space.

2.3.2 Range Definition Protocol
As indicated above when discussing next key ranges, it is important

to ensure that the TC can acquire range information ahead of access

time so that extra trips to the DC are not necessary when processing

requests for records within the range. One simple technique might

be to simply partition the key space into equal size pieces. This can

be done independently of the key distribution.

While simple, we would like a more refined method of establishing

range boundaries that at least takes into account key distributions.

This avoids some very bad possible cases where all the records

might reside in a single partition of the key space. To accomplish

this, the TC asks the DC for partitioning information during the

initialization phase in Deuteronomy. A hash based DC might

respond with an equal “hashed key” space partition.

While the range definition protocol in no way requires a specific

partitioning approach from the DC, system performance is

enhanced when the DC is responsive to key distribution, and

perhaps even key access distribution. As mentioned previously in

Section 2.1, this work uses a DC based on the Bw-tree [15]. Using

the Bw-tree, our DC provides partitioning information based on key

distribution. Its protocol for defining logical key ranges is as

follows.

1. The TC requests of the DC a partitioning of the keys that the

DC is managing, telling the DC how many disjoint partitions

it would like to have.

2. The DC accesses the root of the Bw-tree, and perhaps the level

below the root, dividing the entries into the specified number

of partitions based on the keys found in the internal index

nodes of the B+-tree.

3. The DC responds to the TC, sending it this partitioning. The

TC record manager (the user of the MVCC component) uses

this partitioning to assign resource ids to the ranges.

Subsequent concurrency control requests use these resource

ids to identify the range resource that contains any given key.

Note that the MVCC component itself knows nothing about the

range resources nor does it know what records should be associated

with any of the range resources. This is known only by the record

manager. So far as the MVCC manager is concerned, there is a

resource hierarchy, but it knows only what is conveyed on any

particular request, i.e., record key and/or range id. The record

manager translates key ranges to range ids via a search of a table of

sorted ranges. The MVCC component is described next.

2.4 MVCC Component
As mentioned previously, the Deuteronomy TC already has an

MVCC component to manage concurrency for individual record

operations [16]. It uses a latch-free hash table and accesses record

versions managed by a version manager via logical offsets. These

offsets reference versions either in the redo recovery log, or in a

separate log structured read cache that contains records accessed

originally from an associated DC. The left hand side of Figure 2

illustrates how this hash table is organized, we refer to this table as

MVCCrec throughout the rest of the paper. Note that this data

structure is designed to provide access to versions of a single

record, and it exploits the fact that record updates are strictly

ordered in the version list. Only one version is unambiguously the

last version, and only the last version can be uncommitted.

We have designed a separate hash table specifically for our range

objects, as depicted on the right hand side of Figure 2, referred to

as MVCCran in the rest of the paper. While there are similarities in

the design of this table, we separate the range table from the record

table because of the way versions are handled and the fact that

changes in ranges can commute, meaning that the range versions

can be updated even when uncommitted updates are present. Multi-

granularity for ranges permits range updates to be concurrent, with

conflicting record updates identified when a corresponding

common record is updated.

A range id is purely logical, with no instantiated version referenced

by it. In fact, it is possible (and has not escaped our notice) that our

strategy for logical ranges can be applied more generally to large

objects with incremental updates (e.g., Binary Large Objects, or

BLOBs). In any case, ranges are not instantiated in the MVCCran

table. Rather, a transactionally consistent range is assembled

incrementally using both scan results from the DC and versions

present in the TC (that are stable but have yet to be applied at the

DC). We describe this process in Section 4.

3. MULTI-GRANULARITY MVCC

3.1 Multi-granularity Resources
We borrow the idea of multi-granularity resources and their

hierarchy from the world of pessimistic locking [6]. Table 1

illustrates the conflict matrix for classic multi-granularity locking.

The inner sub-table highlights the various access (lock) modes that

we support. We want to bring multi-granularity access

management to the world of multi-version concurrency control.

Our intent is to preserve the big gain of MVCC in greatly reducing

read-write conflicts to drive down the conflict rate sufficiently so

that abort can be used to deal with residual conflicts, not blocking.

Thus, Table 1 applies to conflicts on a specific version. But given

that we support multiple versions, as described below, concurrent

access to ranges or records is frequently possible, even when modes

conflict.

2148

Because we want to avoid blocking, we support range reads but not

range writes. We reason that exclusive access to a range would,

under heavy load, lead to too many aborts. However, a form of

“read with intent to update” (denoted in multi-granularity locking

with an SIX lock) is supported, meaning active scanners are

allowed to update records as they go along. A benefit of not

supporting exclusive access to ranges is that we can dispense with

IS accesses entirely since they only conflict with the unsupported

X mode range lock. Another mechanism is needed should

exclusive range access be required.

As with MVCC with record versioning, range MVCC maintains a

hash table, with each bucket providing access to the set of ranges

mapped to the bucket by the hash function. For each range, we

maintain a latch-free list of IX updates (essentially just the id of the

transaction performing the update to the range) plus a “last read”

time that provides a barrier preventing updates to a range being read

with an earlier time, thus preventing phantoms. What is different

from record updates is that there can be multiple IX updates, where

the IX literally means the same thing as IX in the locking case, i.e.

“Intention eXclusive”. That is, one or more record updates can be

made to the range by the transaction posting the IX.

3.2 Record Updating Protocol
Each single record update will be validated at the record MVCC

hash table. Exactly as with multi-granularity locking, a transaction

updating a record needs to first post an IX access to its range prior

to updating the record. If the transaction previously posted an IX

to the range, it does not have to post it again, so this part of the code

path can be avoided. Posting the IX update first ensures that a range

reader will conservatively see all updating transactions and their

timestamps. This avoids a race condition in which a record is being

updated with this update not known to a range reader.

After posting an IX access at the range object in the MVCCran hash

table, the update can be posted to the MVCCrec hash table entry for

the record. It is the posting of the updated version at the MVCCrec

entry that confirms (or not) that the update can be done serializably.

This is the basic protocol for all record updates.

We maintain a write set for each transaction by chaining a

transaction’s MVCCrec version updates together and retain a pointer

to these record versions in the transaction table (see the middle of

Figure 2 for the basic information retained in the transaction table).

This write set serves as a central location for us to find all updates

relevant to a range object by simply using the transaction id in the

IX entry to access the appropriate transaction table entry. Having a

central location to find these updates is essential when servicing a

range read request (see Section 4). Each of these write set entries

includes the range ID associated with the record, as this information

cannot be calculated inside the MVCC mechanism, but is only

known to the record manager that is external to MVCC component.

3.3 Range Access Conflicts

3.3.1 IX - IX Interactions
The IX access at a range does NOT impede any other transactions

from posting an IX access at the range. Just like in pessimistic

multi-granularity locking, IX accesses are “compatible” and do not

conflict. This differs from how record updates in the MVCCrec

table are handled (i.e., record “X accesses”). Thus, a range object

can have many IX accesses, multiple IX’s can be for uncommitted

transactions, and IX accesses need not be in strict timestamp order.

Thus an IX access never precludes the posting of another IX access

by a different transaction.

Table 1: Multi-granularity access modes and their conflicts.

We support only modes IX, S, and SIX for ranges.

Mode IS IX S SIX X

IS N N N N Y

IX N N Y Y Y

S N Y N Y Y

SIX N Y Y Y Y

X Y Y Y Y Y

3.3.2 IX - Range Read Interactions
Range reads are handled in a way that is similar, but not identical

to individual record reads. As with a record, we maintain a “last

read” time for a range (see the MVCCran table entry in Figure 2).

IX accesses cannot be posted to the range if they are earlier than

this “last read” time, otherwise the transaction would be posting a

phantom update that a scanner (with a later timestamp) should have

seen. Thus, while there are no write-write conflicts captured or

detected in the MVCCran table, read-write conflicts are detected,

where the MVCCran is what is being read (i.e., it has the equivalent

of an S lock on it). This conflict is easily detected during an IX

access, in the same way that an update conflict at an individual

record read in the MVCCrec table is detected during a write access.

A read is more complicated at a range than it is at a record. A range

read access must ensure that the reader transaction’s timestamp is

earlier than the IX accesses of all uncommitted transactions. Since

there is no guaranteed order to the list of IX’s associated with a

range, the entire list of IXs needs to be examined for potential

conflicts. This is different than an individual record read, which

needs to only check the most recently posted version in a record’s

Figure 2: The Deuteronomy TC record MVCC table, range MVCC table, and transaction table. The record MVCC table

handles record-level conflicts, while the range MVCC table handles ranges.

X 200

key Last read

time

Tx ID

tx50

offset

off34

tx10 off23

Version

list

Y 200

tx20 off90

tx4 off10

6 489

Logical

range ID

Last read

time

Tx ID

IX update

list

35 800

tx55

tx6

tx25

tx9tx20

Record MVCC Table Range MVCC TableTransaction Table

• Detects single-record concurrency conflict

• Version list for each key is in timestamp order

• At most one uncommitted update in the version list

• Versions contain tx id and of fset into version store

- tx status

- timestamp

- write set

...

• Consulted by both MVCC tables to

check tx status and timestamp

• Consulted by range MVCC table to

gather updates for a given IX

• Records range IX updates and detects conflicts

• IX list consists of tx id (owner of the IX update)

• Multiple uncommitted IX updates allowed in IX list

• Record-level conflicts detected in record MVCC table

2149

version list (in the MVCCrec table) to see if the read is earlier than

all uncommitted writes (of which there is at most one).

We can optimize read conflict analysis in the MVCCran table by

noting that any read with a timestamp earlier than the “last read”

time in the range entry cannot conflict with any uncommitted IX

accesses, otherwise the reader that posted that “last read” time

would not have been able to perform a scan at that time. We cannot

use equality of read access time with “last read” time because of

SIX accesses, which we discuss next.

3.3.3 SIX Accesses: Updates while Scanning
A fairly common situation is that a transaction wants to read a

range, perhaps looking for an appropriate record to update, and then

wants to update the record (in the same range). Pessimistic multi-

granularity locking provided an SIX lock to deal with this case. An

SIX lock cuts down on the number of items examined by the

concurrency control scheme, since it enables the transaction to read

the range without setting individual read locks on all records, and

permits the transaction to update a record in the range by setting an

X lock on its target record. For the same efficiency reasons, we

also support the equivalent of SIX access in our MVCC approach.

Managing times is a little subtle for this case (see also the read

optimization just presented in Section 3.3.2), but it is not difficult.

When presented with an SIX access, the range item is accessed in

the MVCCran table and conflict tests are made. The transaction time

for SIX must be later than the “last read” time currently on the

range item, as befits an IX access. Further this transaction time

must be earlier than all uncommitted IX accesses, thus testing the

SIX read ability for IX conflicts as would be done by a range reader.

If both tests are passed, the range’s “last read” time is set to the SIX

time and an IX entry is posted to the range as well. The fact that

the “last read” time and an IX time can be the same is the reason

why we require range reads to be earlier than all uncommitted IXs,

even if the read time EQUALS the current “last read” time.

3.4 Locks vs Versions

3.4.1 Pessimistic Concurrency Control
We use a hash table to access records (and their versions) in

Deuteronomy’s MVCC component. Using a hash table and

recording accesses is also the classic way that lock managers work

as well. Also, similar to locking, we know at the time of access

whether an access succeeds or not. No validation is needed. This

has traditionally been called pessimistic concurrency control.

3.4.2 The Difference between Versions and Locks
A big difference between locks and version management is that

locks can be released (discarded) at the end of a transaction. In the

Deuteronomy architecture, record version entries in the MVCC

table (and the full record payloads themselves) must be kept in the

TC until the updates have been applied at the DC (i.e., the data

store). This is one of the extra costs of MVCC, and the hash table

for MVCC is typically much larger than a corresponding lock

manager table. Note, however, that we also use the versions as a

TC cache as well [16].

It is the dramatic reduction in conflicts via using versions that

makes it possible to avoid blocking on conflicts and instead simply

abort a transaction making a conflicting access. However, lack of

blocking should not be confused with optimistic concurrency

control. Indeed, one could abort transactions making a conflicting

access when using two phase locking. This is not usually done

because of conflict frequency. Using a multi-version approach

dramatically reduces this frequency. Our view is that performance

is improved when both validation and blocking are avoided.

4. SERVICING A RANGE REQUEST
The previous sections discussed how ranges are defined and how

conflicts are detected and dealt with in the MVCC component. In

this section, we describe how ranges of records are materialized as

a result of a transaction issuing a range scan request.

4.1 Overview
Ranges are not stored as versioned objects within our MVCCran

table. Nor are they managed as versioned objects by the Version

Manager. Rather, range results are generated only when a

transaction requests to read a range. We generate records of the

range incrementally as a transaction processes the records in an

order defined by the request. In this way, it is not required that the

entire range be materialized within our transaction component,

which would lead to burdensome memory overhead. Only the parts

of the range that are incrementally read and processed by the

transactional user are materialized.

A salient feature of the Deuteronomy components we have built is

that while the TC uses multi-version concurrency control, the DC

is a single-version data store (see [15]). We merely assume that the

DC will contain only the latest version of a record sent to it from

the TC. Further, these latest versions do not present a

transactionally consistent view of the data. It is only when the DC

data is combined with the appropriate versions in the version

manager at the TC (i.e., identified by the IX updates) that it is

possible to construct a transactionally consistent view of the data.

A transactionally consistent view of a record is trivial to construct.

If a record is in the version store at the TC, we chose the version to

read that is associated with the latest committed transaction ≤ the

timestamp of the requesting transaction. If the record is not in the

version store at the TC, then it has not been updated since it was

stored in the DC and hence we request the record from the DC. In

both cases, we protect the version we are reading by posting, if need

be, a “last read” time that ensures this version can only be changed

at a time that is later than our reader transaction (Section 3.3.2).

4.2 Transactionally Consistent Ranges

4.2.1 The Basic Idea
Figure 3 depicts the basic idea of how we generate transactionally

consistent ranges. This process consists of the following steps.

1. Determine the range objects that intersect with the range

requested by the user; this determines the exact set of range

objects that play a role in the scan.

2. Find the IX entries for each such range whose transaction

timestamps are ≤ the time of the range read. Find the updates

for these transactions (using the transaction write set) that are

part of the range. Filter this set of updates, selecting only the

most recent updated versions, and discarding earlier ones.

3. Issue a range scan against the DC (e.g., the Bw-tree). The scan

boundary is defined by the high and low keys of the logical

range we are currently processing (or a tighter boundary if the

user-provided keys are more constrained).

4. “Merge” the sorted list of record versions from step 2 with the

scan result retrieved from the DC in step 3.

This processing is done incrementally, one logical range at a time.

If the user-provided scan boundaries span multiple logical ranges,

we repeat these steps for each logical range. See Section 4.4 for

details.

2150

4.2.2 Gathering Records of a Range
We need to determine how to access versions of records relevant to

the range requested by a user. This user-requested range is

expressed in terms of a low key and perhaps optionally, a high key

(both the low and high key can be open-ended as well). Since we

incrementally deliver ranges, we start with the records that share

the same logical range object as the low key, and access additional

records as the range is progressively delivered to the user. Our

strategy is thus to access relevant records that are included in one

logical range object before proceeding to the next range object if

that is required.

Transaction Component Records (Step 2): We query the

MVCCran table for the versions of records that are appropriate for

the range. These are the versions for records that have been updated

recently and should be visible to the scanning transaction. Recall

that each logical range object has a list of IX postings that indicate

what transaction has updated the range object. Each of these

transactions must be committed for the range read request to have

succeeded. Further each of the transactions has a timestamp that

determines its place in the serializable schedule. For each IX access

that precedes the read time requested, we scan the associated

transaction’s list of updates (using the write set for that transaction),

looking for record versions that are associated with the range

object, which is included in the MVCC entry. When we have

gathered all such updates, we prune them so that only the latest

update to the range object that is earlier than the read time remains

in our key-sorted list of updates to the range object.

Data Component Records (Step 3): We access records from the

DC, starting with the low key of the range that is of interest. This

is either the low key from the user request, or the low key of the

logical range object (when the user requested range intersects more

than one range). Records from the DC are incrementally delivered

(see Section 4.4).

4.2.3 The Merge (Step 4)
We now describe the basic idea of how to perform the merge

between the TC and DC records. However, please see Section 4.3

for a subtle difficulty and Section 4.4 for the final answer.

The record versions from the DC represent the most recent versions

of records posted to the DC. We expect them to usually be older

than record versions we retrieve from the TC. From the TC, we

retrieve precisely the updated record versions that we need for

reading the range as of the time of the transactional reader. But

these will usually be a small subset of the records of the range.

Our strategy then is to merge the sorted list of records in a range

result from the DC with the sorted list of updated versions from the

IXs for the range to bring the DC range up-to-date with (i.e.,

transactionally consistent with) the time of the reading transaction.

Thus, whenever a version for a record occurs in both lists, we use

the version from the TC. Otherwise (mostly), when a record

version is present in only one of the lists, we use that version.

If a record has been recently deleted, it will have a “delete” marker

from the TC. That delete stub will remove a version for the record

that comes from the DC. If a record has been recently inserted, it

will have a record from the TC, but not from the DC. If it has been

recently updated, it may have a version from the DC, and from the

TC, but we know that the TC version is correct for the time we

need, so we use the TC version.

4.3 A Difficulty

4.3.1 Late Inserts
Deuteronomy is a non-blocking, latch-free asynchronous system.

Thus many things can be going on concurrently. One of those

things can interfere with the success of the merge as described in

Section 4.2. The following steps, though uncommon, can occur to

produce incorrect results.

1. There is no record version for a record K at the DC.

2. A range reader reads record versions from the TC version

manager as of the time requested, and there is no record K in

the TC either.

3. An insert operation creates a version for K.

4. The transaction for the insert is committed, and the version for

K is eventually posted to the DC.

5. The range read now reaches the DC records that include the

newly inserted record K. This record is returned to the range

merge function.

Now we have a record from the DC that is too late to appear in the

range, but we have no easy way of determining that. The real

difficulty here is that we have no way of knowing whether ANY of

Figure 3: An outline of the steps required to service a range read request in Deuteronomy. A set of IX updates not yet applied

at the DC are merged with the DC scan result to form a transactionally consistent range result. Scan results are incrementally

built in manageable batches and returned to the transaction.

6 489

Logical

range ID

Last read

time

IX update

list

tx6

tx25

tx9

1. Gather relevant IX updates 3. Merge to create transactionally

consistent range result

2. Issue range scan at DC

• IX updates gathered from tx write sets

• Keys can be gathered from MVCCrec table entry

• Payloads (optiona l) read from Version Manager.

• Vector sor ted by key

- tx status

- timestamp

- write set

...

• Scan issued at DC based on logical

range boundaries (or tighter

boundaries if user-provided key

range is more constrained).

• Returned result is ordered by key

• Merge sorted vectors to create transactionally

consistent scan result.

• If entries are equal, favor the IX update over

the DC scan result, since we are sure th is is

the version the transaction should see.

Tx Table

IX Update Vector

DC

DC Scan Result

IX Update Vector

DC Scan Result

Transaction Scan Result

2151

the records from the DC that do not have matches from the TC are

too late (i.e., should not be seen by the transaction) or not. That is,

we cannot easily distinguish the too young records from the old

records. Every unmatched record from the DC would need to be

checked to see whether it was a late insert.

4.3.2 Timestamps to the Rescue
If we knew the transaction timestamp associated with DC records,

then determining late inserts becomes trivial. Such a late insert will

have a timestamp that is later than the timestamp of the reading

transaction. Until this point, we did not have such timestamps at

the DC.

In Deuteronomy, a DC must provide idempotent operations. In

previous work we described one way to manage idempotence in the

DC based on a B+-tree (the Bw-tree) [15, 16]. The idea is to use

TC-provided sequence numbers (these are log sequence numbers,

or LSNs) that uniquely identify each operation. The Bw-tree

associates an LSN with each operation it receives. Occasionally,

the TC sends a control operation to the Bw-tree (an “end of stable

log” message, or EOSL) denoting that the Bw-tree has seen all

operations with LSNs less than the given EOSL value. At this point

the Bw-tree is able to consolidate LSN information, using a single

page LSN (the highest LSN of all operations on the page). In

addition to idempotence, the LSN was also used for log

management at the TC, e.g. checkpointing and log truncation.

Given that our current incarnation of the TC uses timestamp

ordering, we can use timestamps instead of LSNs, so long as we

can relate timestamps to LSNs for checkpoint purposes. And we

can return these idempotence markers (now timestamps) with the

records read from the DC. One complication is when a record is

updated multiple times within a transaction. We need to distinguish

these updates and ensure that it is the last update that is posted as

the result of the transaction. We add a sequence number to our

timestamps to deal with this case.

As with LSNs, we do not need to retain a timestamp for every

record at the DC. After no more updates can be made with earlier

timestamps (previously lower LSNs), we can consolidate a page,

providing the entire page with a single timestamp, as we did

previously with a page LSN. That means that we would not be able

to provide a precise timestamp for every record version from the

DC, but it does permit us to easily identify old versions from the

versions that result from late inserts. That is, the page timestamp is

an upper bound on the record timestamps and hence identifies the

records as earlier than any range requested by an active transaction.

Using timestamps instead of LSNs, we can now perform a merge

that we know is correct. What we add is a test of each record’s

version that comes from the DC and that does not have a matching

version from the TC. If its timestamp is less than the reading

transaction’s timestamp, we use it in the resulting range. Otherwise

we drop it from the result.

An added bonus of using timestamps is that it enables us to

optionally support temporal access methods in a very

straightforward way. Many such access methods perform a time-

split to separate historical versions from current data [2, 17, 18].

Such time-splits need transaction timestamps to work correctly.

4.4 Incremental Range Delivery
As mentioned previously, range records are not materialized in

MVCCran tables. However, records that have been updated or read

individually (using the MVCCrec table) will be present within the

Version Manager, and that is what permits us to merge DC and TC

record versions. But we believe it is important to avoid

materializing an entire range, which might contain a few records,

but also might contain many thousands of records (or more).

Note that there are two range sizes that enter the picture.

1. The set of records between the user provided range boundaries

(the low and high key) might well be small, but it also might

be very large (or open-ended), encompassing several of our

logical range objects that partition the entire set of keys.

2. The set of records for a single logical range object also can

vary enormously in size. So even if the (low key, high key)

range requested by a user is small, trying to cache the records

of even one logical range object might be costly.

Ranges are represented logically in the MVCCran table (see Section

2) and are assembled incrementally when we need to deliver

records to the user that requested them. We intersect the (low key,

high key) range requested by the user with the range partition used

for our logical range objects. We then access the DC for the result

of this intersection one range partition at a time.

We perform one further breakdown of the records coming in

batches from the DC. The Bw-tree returns batches of records, and

it can usefully make a batch correspond to a page. So the unit of

transfer that we use, and the unit that we materialize at the record

manager, is this batch (page) of records. It is this sequence of page

size chunks coming from the DC that are merged with the set of

record versions for range objects that come from the TC.

We optimize the delivery of the DC record batch by providing a

“box” (a “page size” storage allocation) into which the records are

returned to the record manager. This avoids multiple allocations,

e.g. one per record. It also provides excellent cache locality when

we access the records of the batch at the record manager.

TC record versions for a range are materialized one logical range

object at a time. If the user-requested range is contained within the

key boundaries that define the logical range, then we only

materialize records within the user-requested range boundaries.

Once a merge is done between the DC scan result and the relevant

TC records, the incremental result is batched, again “in a box”, and

delivered to the user. We do not retain (cache) records of a range

at the TC. Once ranges are delivered to the user, they are dropped.

This design can be changed if cursor support is needed. But we

would rather have that done outside of the TC.

5. EVALUATION

5.1 Purpose and Goals
Our goal in evaluation is to answer five key questions.

What is the total transaction throughput that Deuteronomy can

deliver for transactions that perform scans? Section 5.2 shows

that our range-based MVCC scales well on multicore, multisocket

hardware to facilitate more than 2.25 million scans per second

covering nearly 112 million records per second for the YCSB E

workload.

What is the performance impact of adding scan support on

point update and lookup operations? Section 5.3.1 shows that

range MVCC support increases per-operation latency by about

80%.

What is the throughput cost for range concurrency control?

How does performance of TC range scans compare with range

scans issued directly against the DC? Section 5.3.2 shows that short

serializable scans only decrease scan throughput by 20% compared

to direct (un-serializable) scans issued against the DC. Longer

scans are up to 35% slower.

2152

How do varying workloads impact range scan performance?

For example, are large scans that cross many range partitions

efficient? Section 5.3.2 shows that long scans achieve scan rates of

nearly 250 million records per second (or more than 27 GB/s of

data).

Does the TC’s use of logical ranges outperform other schemes?
Section 5.5.1 shows that our approach provides 43% higher scan

throughput than an approach that uses validation. Compared with

Silo [34], a high performance integrated key-value store, our

component based approach is 19 to 53% slower on short ranges, but

avoids the performance penalty that Silo suffers under longer scans

(see Section 5.5.2).

We want Deuteronomy to be competitive with main memory

databases when the working set of an application fits in

Deuteronomy main memory. Consequently, we focus evaluation on

loads that highlight range concurrency control overheads rather

than I/O device bandwidth limits. All experiments use our

previously built DC (including Bw-tree and LLAMA, evaluated

elsewhere [14, 15, 16]) and TC augmented with the new range

support. All experiments also include the full cost of I/O for

durability and all background “garbage collection” (e.g. for pointer

stability for lock-free structures, MVCC version reclamation, etc.)

needed for stable performance.

Our experimental machine set up is described in Table 2. Each of

its four CPUs reside in separate NUMA nodes, which are organized

as a ring. The machine has 32 cores total, and each core hosts two

hardware threads. Additional hardware threads are used to perform

updates against the DC, though the extra threads are lightly loaded

since the benchmarks are scan intensive and perform few updates.

Recovery logging and DC updates share a single commodity SSD.

5.2 Experimental Workload
For these experiments we use workloads similar to the YCSB

benchmarks. For all experiments, the DC database is preloaded

with 50 million 100-byte values. Our main workload is the YCSB E

workload, which includes range scans. Client threads execute of a

mix of 95% scan and 5% update operations. Each operation is

executed in a separate transaction to create a transactional

workload. Both the keys to update and the scan start keys are

chosen randomly using a skewed Zipfian distribution (θ=0.877)

that creates an “80-20” hot-cold mix. Scan transactions retrieve 1

to 100 values, with the scan length selected at uniform random.

Points are averaged over 5 runs; variance is insignificant in all

shown graphs.

5.3 Scalability and Peak Throughput
Figure 4 shows YCSB E scan transaction throughput as the

workload is scaled across multiple hardware threads and sockets.

With all of the cores issuing transactions, Deuteronomy sustains

2.25 million scan transactions per second in steady state

(250 million total records scanned per second) with an insignificant

abort rate.

Performance scales well across all four CPU sockets until all of the

cores are busy performing transactions. Overall, performance is

limited by DRAM latency, primarily due to MVCC and range table

accesses, read cache and log buffer accesses, and Bw-tree traversal

and data page accesses. The large working set hampers the

effectiveness of CPU caches and the DTLBs. We experimented

with 1 GB super pages for large or relatively fixed-size structures

like the recovery log buffers, the read cache, and the transaction

table to reduce TLB pressure, but the limited number of TLB

entries for super pages made them difficult to exploit.

5.4 Concurrency Control Overhead

5.4.1 Point Operation Latency
Figure 5 breaks down the overhead added due to range support. It

shows (in linear and log scale) the cumulative fraction of single

update operations that completed within a given time. The figure

shows that range support increases update latency by about 80%.

Average case latency is shown with a circle marker.

OS Windows® Server 2012

CPUs 4× Intel® Xeon® E5-4650L

32 total cores

64 total hardware threads

Memory 192 GB DDR3-1600 SDRAM

Storage 320 GB Flash SSD

 Effective read/write: 430/440 MB/s

 Effective read/write IOPS: 91,000/41,000

Table 2: Details of the system used for experiments.

Figure 5: Update operation latency both with and without

range support.

Figure 4: YCSB E scan transaction throughput as the

number of client threads is varied.

2153

The first “shelve” in the graph (which crosses 10 μs) distinguishes

updates whose versions must first be read from the DC from those

whose version is already local at the TC. The second shelve (which

crosses 100 μs) distinguishes DC read operations that execute

quickly from those that have to perform delta page consolidations.

Overall, the fast path operations are impacted most significantly,

since consulting the range MVCC adds a few cache misses to a

well-tuned path (without range support the original TC incurred as

few as 6 cache misses per operation).

While the impact on latency is non-trivial, the impact on throughput

is not large. We ran the OLTP style workload (YCSB with 84%

reads, four operation transactions) used in our previous paper [16]

with range support disabled and with it enabled. The test used the

same thread management and data placement, and ran using 48

threads. Under these conditions, we achieved 1.28M tps without

range support, and 1.25M tps with range support turned on. This is

a difference of 2.3%. Under these conditions, supporting ranges

has only a modest impact on overall performance.

5.4.2 Scan Throughput
Figure 6 shows the scan throughput for varying scan lengths and

compares the TC’s serializable scan performance to raw non-

transactional DC scan performance. In this figure, the direct DC

scans are effectively running “read uncommitted” since the DC

does not provide any form of concurrency control. The serializable

scans in this graph have an insignificant abort rate (not shown).

This (and the remaining figures of the paper) are measured with 48

hardware threads executing the YCSB E workload.

Figure 6 shows cost of the TC’s range concurrency control: range

scan throughput is about 20 to 35% slower with concurrency

control than when the scans are issued directly against the DC

without concurrency control. Note that 250 million records/s draws

data from the DC at 27 GB/s; the TC’s serializable scans are fast

enough to support even the most demanding applications even

when records are fine-grained as in this benchmark.

Finally, Figure 6 also highlights the cost of traversing range

boundaries. In this figure, a scan of length 1 million is likely to

cross about 49 range boundaries, whereas a scan of length 10,000

is highly unlikely to cross any. The difference is nearly

imperceptible for our default partitioning; the measured difference

is well within the margin of error.

5.5 Choosing Partitions
Figure 7 explores the impact of partition granularity on overall scan

performance. In this experiment, the number of logical range

partitions is varied while worker threads execute scans that each

collect 10,000 records. The scan-to-update ratio is also varied to

explore the performance of workloads with updates.

Initially, scan throughput is improved by increasing the number of

logical range partitions. Updates are fast and scan transaction aborts

are insignificant at all points in this graph (hence, only the results

for committed scan transactions are shown). So, the improved

performance comes from the reduced number of versions chained

in each partition’s IX update list. Updates are spread across more

partitions, and the cost of collecting and merging them is reduced

as more partitions are introduced. However, above 64,000

partitions, scan performance begins to degrade. With a large

number of partitions, the key space is already divided well enough

to keep IX update lists small, and scans are incurring increased

overhead by having to cross additional partition boundaries.

5.6 Performance Comparisons

5.6.1 Validation Strategy
Figure 8 compares the performance of Deuteronomy’s logical

range concurrency control approach with an approach that re-scans

ranges at commit time to perform validation. The results show that,

as expected, the validation scan almost exactly doubles the cost of

scans (compared to the inconsistent scans of Figure 6). Overall, TC

range scans are up to 43% faster, using our IX approach, than these

same scans using validation. Further, our “validation” scan is

simply a re-scan of the range, and does not do the comparison with

the original range, so it illustrates only part of the validation cost

and misses entirely validation failures. With full validation, the

results would be much closer to Silo’s.

In fact, this represents a best case for validation based on re-reading

the range, since the DC caches scan results between the initial scan

Figure 6: Aggregate scan throughput for varying scan

lengths.

Figure 7: Aggregate scan throughput as logical range

partition count is varied.

Figure 8: MVCC range scan throughput for various

approaches.

2154

and the validation scan. For large scans that cannot be cached the

validation approach doubles the use of I/O bandwidth, which we

expect to be one of the scarcest system resources.

5.6.2 Comparison with Silo
Finally, Figure 8 also shows Deuteronomy’s TC scan performance

compared to Silo [34]. Silo’s tightly-coupled and optimistic,

validation-based approach works well on short ranges, but breaks

down as scans get long. For long ranges, Silo explicitly tracks each

key read as well as the version of each node seen in a tree in order

to ensure that concurrent updates have not affected the scan at

commit time. In addition to the basic bookkeeping cost, large scans

are more likely to abort due to intervening updates as they cover

more keys and remain uncommitted for longer intervals.

Figure 8 shows this affect. On short scans the TC is 19 to 53%

slower than Silo, but Silo’s optimistic approach breaks down on

large scans, and its performance falls significantly. Scan

performance in Deuteronomy is stable and predictable independent

of scan length.

6. RELATED WORK
Concurrency control methods have existed for as long as there have

been database systems. There is too much literature to make an

adequate survey here. We focus more narrowly on phantom

prevention—while acknowledging that it too has a very long

history.

6.1 Multi-granularity Locking
Multi-granularity locking was introduced in System R [1, 6]. This

simple idea was a powerful one, as it permitted a resource higher in

the granularity hierarchy to be locked without the need to lock each

of its included lower level resources. Hierarchies typically

included at least tables and their contained records. Frequently,

physical pages were also included in the hierarchy.

There is a tension between reduced locking overhead and the

granularity of the resource. The larger the granule, the larger the

number of accesses that compete to use the resource. The smaller

the granule, the more locks are needed when the resource requested

is itself large.

One way of dealing with this tension is to support more levels in

the hierarchy. For example, pages can be included between tables

and records. The difficulty here is that one cannot control access

to pages if the concurrency control method knows nothing about

page boundaries, as is the case for the Deuteronomy TC. Thus,

locking pages effectively forces transactional concurrency control

to intrude into access method page management.

An additional problem is lock manager contention that can add

substantial overhead and restrict scalability when supporting, e.g.,

IS mode locks. In many approaches, readers need to post an IS

lock. Johnson et al [9] avoid this problem via a form of lock

inheritance that avoids many interactions with the lock manager. In

contrast, we avoid most of this contention by not supporting IS

mode locks, which are unnecessary since we do not support X mode

locks on higher level resources. Our contention is further reduced

via the use of latch-free data structures in our version manager

(which serves also as our “lock” manager).

6.2 Next Key Locking
Another idea that started with System R is called next key locking.

The idea is that a lock on a key identifying a record in a table locks

not only the record but the key space between that record and the

next (or previous) record with its key [1, 6, 20, 21, 27]. When a

record is to be insert into a table, the next key is checked. If it is

locked (in some manner) then the insertion may be blocked.

Next key locking has the advantage of being fine grained (each

adjacent pair of keys defines a range resource) and also be logical

and hence not depend on the physical attributes such as how records

are assigned to pages. The difficulty is that, when doing an insert,

one needs to check a lock on the “next key”. In Deuteronomy,

where data may be remote from the concurrency control function,

discovering the next key adds significant overhead to the insert

operation, e.g., in the form of a round-trip traversal to a remote DC.

6.3 Multi-version Methods
When full versioning in a database exists [19, 25], and even

temporary versioning (as is done for snapshot isolation in Oracle,

SQL Server, and others), those versions can support serializable

read transactions. The difficulty has always been to deal with and

serialize read-write transactions correctly. Usually, one finds only

snapshot isolation being supported, which avoids the need to

validate read sets.

Concurrency control to provide serializable transactions using

multiple versions has been explored as well. For instance, Cahill et

al explore adding a lock manager in Postgres that otherwise used

versions to support only snapshot isolation [3]. Jensen et al. and

Lomet et al. explored using a lock manager to access multiple

versions [7, 22]. A major difficulty was the inherent overhead of

locks which were proxies for the versions, and blocking that was

used in the face of conflicts. The result was more concurrency

when supporting serializable transactions, but much greater

overheads.

6.4 Recent Systems
Newly implemented systems have recognized that concurrency

control overhead and blocking behavior are serious impediments to

achieving high performance. Thus we have seen the exploration of

a number of new non-blocking approaches. These approaches are

pursued in the context of main memory databases that remove

secondary storage and user latencies.

6.4.1 Serial Execution
One of the most straightforward ways to removing blocking is to

run transactions serially one after the other. VoltDB [32] and its

academic precursor HStore [31] provide serializable transactions

by executing transactions in serial order to completion. The initial

version of the HyPer main-memory database also executed

transactions sequentially [11]. Calvin [33] is a partitioned

distributed system that orders transaction execution

deterministically to avoid cross-partition contention. Transactions

in Calvin run serially on each partition.

6.4.2 Optimistic Methods
The Hekaton main-memory OLTP engine uses an optimistic multi-

version concurrency control technique [5, 12]. The basic idea is as

follows: records are multi-versioned and versions have disjoint

valid time ranges. Transactions read records as of a logical read

time, while updates create new versions. At the end of execution,

transactions are given a unique timestamp denoting the commit

time of the transaction; this is also the write time for any new

versions created by the transaction. For isolations levels stronger

than snapshot, this technique requires validating read sets, and in

the case of serializable isolation, also requires re-doing all scans in

order to perform phantom detection. Since Hekaton’s target is

snapshot isolation, this scheme works well. The goal in

Deuteronomy is to provide efficient execution of transactions

running in full serializable isolation. We deem concurrency control

2155

schemes that require post-processing validation too high a price to

pay to achieve serializability. In Section 5.5, we showed that our

approach is up to 43% more efficient than a validation-based

approach. This is a best-case scenario for validation, since the

workload was read-only (no aborts) and memory bound. The

situation would be much worse if validation required extra I/O to

perform the second scan. Since Deuteronomy is not a memory-only

engine, we want to avoid validation at all costs.

6.4.3 Other Systems
Silo is a high-performance transaction processing engine targeting

multi-core machines with large main memories [34]. Transactions

in Silo keep write sets private during processing. During commit

processing, a transaction installs its write set in the underlying data

structure (the Masstree range index [24]). During this time, it

temporarily locks (latches) the record while installing its write set,

aborting if it detects a conflict. Silo provides serializable

transactions. It detects phantoms by versioning the leaf nodes of the

Masstree. Range scans record the version of the leaf pages they

encounter during a scan, and re-check the versions during commit

to ensure the versions are the same. This scheme couples

concurrency control with data storage; Deuteronomy, on the other

hand, performs purely logical concurrency control, including range

concurrency.

HyPer recently explored the use of timestamp order concurrency

control in main-memory database systems and showed that this

technique performs well in modern database architectures [26].

HyPeR recently added support for serializable transactions based

on multi-versioning, precision locking, and validation [28].

VLL [30] is a lightweight locking technique designed for main-

memory database system. VLL supports range concurrency by

defining range boundaries using prefixes of key space. While this

technique is purely logical, nonetheless unlike Deuteronomy, VLL

is a (pessimistic) locking scheme.

7. DISCUSSION

7.1 Serializability
Serializability has an extra cost that manifests itself in two ways.

(1) Either concurrency is reduced, or (2) execution path is

increased. This pushes users toward lower levels of isolation. This

is unfortunate as it is serializability that provides the illusion to

applications that they have the entire system to themselves: if a

transaction executes correctly in a single user setting, it will execute

correctly in a fully concurrent setting. Our goal is serializability

with a sufficiently small penalty, both in performance and in

concurrency, as to enable it to be the default for users.

The most challenging aspect, as we focus on in this paper, is

preventing phantoms when a transaction reads sets of data. Without

an index, the usual approach is to evaluate predicates during a table

scan. Preferable when possible, is to replace the table scan with a

key range scan as then only the key range needs to be read and

protected. This has been the focus of the current paper.

We had previously implemented an MVCC mechanism that

provided serializability for all cases except for dealing with ranges

[16]. This provided both our starting point and a very large

challenge. As a starting point, we had achieved very high

performance with a very low abort rate, which was great. However,

this meant that any added overhead or lost concurrency when

dealing with ranges risked having a large relative performance

impact.

7.2 Concurrency and Aborts
When a timestamp is defined at transaction end, the longer the

transaction executes, the more conflicts it is likely to encounter

since a version is subject to conflict from access time to transaction

end. A start time timestamp avoids this difficulty, as done with our

timestamp order approach. And, indeed, once a range object is

successfully read (the read is posted as of the transaction’s start

time) its read time will ensure that the incremental reading of

records at the range cannot be subject to interference.

Concurrent write transactions early in the range reader’s execution

may be forced to abort. Or it may need to abort because of an

uncommitted update of a record in the range that was posted prior

to the range read. But writers that start after the range reader are

not interfered with as they update records with versions that will

come after the range reader’s transactions. Hence these writers will

neither themselves abort because an earlier range version is being

read nor cause abort difficulties for the earlier range reader.

The “magic” of MVCC is that range reads can be concurrent with

record updating. This is exactly what is achieved with snapshot

isolation, in exactly the same way- the range reader reads the earlier

version while updaters modify later versions. There is some

concurrency lost when serializability is the isolation level. But

much of the MVCC concurrency gain from snapshot isolation can

be realized also with MVCC serializable concurrency control.

7.3 Overhead and Contention
We cap the resource hierarchy at two levels. Every level of a multi-

granularity resource hierarchy increases overhead for simple record

updates by potentially requiring a check of the resources in the

hierarchy path leading to a record.

We targeted ranges that are a modest fraction of the “table size”, on

the order of a few tenths of one percent. Modest size ranges work

to spread out IX postings and hence avoid hot spots in our MVCC

hash table. Modest range size reduces the potential that any given

write will impact and perhaps conflict with concurrent range reads.

This also reduces the overhead of conflict checking since the IX

accesses are spread out over a larger number of ranges.

This existence of multiple versions and use of MVCC reduces the

access contention from locks. Low transaction latency also reduces

contention, which results from Deuteronomy treating a transaction

as committed once its commit record is in the volatile recovery

buffer (often called “fast commit”) [4]. We wait for transaction

durability only for notifying clients. Contention on physical

resources can also be serious, including access to the recovery log

[10]. This contention is reduced via our latch-free access to these

resources [16], particularly the use of the FAI atomic instruction,

7.4 Pessimism vs Optimism
One can debate whether transactions only accessing record level

resources should use optimistic vs pessimistic concurrency control.

Record level conflicts tend to be quite low. However, range objects

have a much higher “conflict profile”. This reduces greatly the

desirability of optimistic methods, even with MVCC.

The higher potential for conflict with ranges means that between

the original access of records in a range and subsequent commit

time validation, there is a greatly increased likelihood of validation

failing. Pessimistic concurrency control “validates” at access time.

This coupled with the TO approach means that later writers (with

later timestamps) are not impacted at all. And earlier writers are

already partially executed. So a successful posting of a range

access has only modest impact on writers that come to the resource

later, regardless of their timestamps.

2156

The pessimistic approach does have “up front” overhead, which can

be seen in the comparison with Silo in section 5.6.2. However, as

also seen there, it avoids the problems that occur with optimistic

methods as scans get longer.

7.5 Performance
The performance results we report here are for serializable

transactions. The high transaction throughput and the low abort

rate for supporting serializable isolation validate our design

decisions, and provide additional confirmation that a carefully

architected and modular system can achieve terrific performance.

8. Conclusion
This paper presented a high performance range concurrency control

technique that extends multi-version timestamp ordering to support

range resources and fully supports phantom prevention. We

described a protocol to define a set of logical ranges that is

compatible with the Deuteronomy TC:DC logical and physical

partitioning. This protocol uses the inner leaf nodes of a range-

based DC to provide the TC with a balanced logical partitioning of

the key space. The TC uses this key partitioning to define a set of

logical range objects that are used in a multi-granularity resource

hierarchy in our multi-version timestamp order scheme. These

range resources are used to both detect serializable conflicts in the

timestamp order, as well as help range readers construct a

transactionally consistent range scan result. Our technique

incrementally returns range results to the user in manageable

batches, thus only materializing relevant record results. Our

evaluation shows that this concurrency control scheme reaches scan

speeds of nearly 250 million records/s (more than 27 GB/s) on

modern hardware, while providing serializable isolation complete

with phantom prevention. The approach is 43% faster than an

approach that relies on re-reading the range scan for validation.

9. REFERENCES
[1] M. M. Astrahan et al. System R: Relational Approach To Database

Management. ACM TODS 1(2): 97-137, 1976.

[2] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An
Asymptotically Optimal Multiversion B-Tree. VLDBJ 5(4): 264-

275, 1996.

[3] M. J. Cahill, U. Rohm, and A. D. Fekete. Serializable Isolation for
Snapshot Databases. In Sigmod, 2008, pp. 729 – 738.

[4] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker,

D. A. Wood. Implementation Techniques for Main Memory
Database Systems. SIGMOD, 1984, pp. 1-8

[5] C. Diaconu et al. Hekaton: SQL Server’s Memory-Optimized

OLTP Engine. In SIGMOD, 2013, pp. 1243-1254.

[6] J. Gray, R. A. Lorie, G. R. Putzolu, I. L. Traiger. Granularity of
Locks in a Shared Data Base. In VLDB, 1975, pp. 428-451.

[7] C. S. Jensen and D. B. Lomet. Transaction Timestamping in

(Temporal) Databases. In VLDB, 2001, pp. 441-450.

[8] C. S. Jensen and R. T. Snodgrass. Temporal Data Management.
TKDE 11(1): 36-44, 1999.

[9] R. Johnson, I. Pandis, A. Ailamaki: Improving OLTP Scalability

using Speculative Lock Inheritance. PVLDB 2(1): 479-489, 2009.

[10] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, A. Ailamaki.
Scalability of Write-Ahead Logging on Multicore and Multisocket

Hardware. VLDBJ 21(2): 239-263, 2012.

[11] A. Kemper and T. Nuemann. HyPer: A Hybrid OLTP & OLAP
Main Memory Database System Based on Virtual Memory

Snapshots. In ICDE, 2011, pp. 195-206.

[12] P-A Larson et al: High-Performance Concurrency Control
Mechanisms for Main-Memory Databases. PVLDB 5(4): 298-

309, 2011.

[13] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao. Deuteronomy:

Transaction Support for Cloud Data. In CIDR, 2011, pp. 123–133.

[14] J. Levandoski, D. Lomet, S. Sengupta. LLAMA: A Cache/Storage
Subsystem for Modern Hardware. PVLDB 6(10): 877-888, 2013.

[15] J. Levandoski, D. Lomet, and S. Sengupta. The Bw-Tree: A B-tree
for New Hardware Platforms. In ICDE 2013: 302-313.

[16] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman, and R. Wang.

High Performance Transactions in Deuteronomy. In CIDR, 2015.

[17] D. B. Lomet and B. Salzberg. Access Methods for Multiversion
Data. In SIGMOD, 1989. pp. 315-324.

[18] D. B. Lomet and F Nawab. High Performance Temporal Indexing

on Modern Hardware. To appear in ICDE, 2015.

[19] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang,
and Y Zhu. Immortal DB: Transaction Time Support for SQL

Server. In SIGMOD, 2005, pp. 939-941.

[20] D. B. Lomet and M. F. Mokbel. Locking Key Ranges with
Unbundled Transaction Services. PVLDB 2(1): 265-276, 2009.

[21] D. B. Lomet. Key Range Locking Strategies of Improved

Concurrency. In VLDB, 1993, pp. 655 – 664.

[22] D. Lomet, A. Fekete, R. Wang, and P. Ward. Multi-Version
Concurrency via Timestamp Range Conflict Management. In

ICDE, 2012, pp. 714-725.

[23] D. Lomet, A. Fekete, G. Weikum, M. Zwilling. Unbundling
Transaction Services in the Cloud. In CIDR, 2009, 123–133.

[24] Y. Mao, E. Kohler, R. T. Morris. Cache Craftiness for Fast

Multicore Key-Value Storage. In EuroSys, 2012, pp. 183-196.

[25] E. McKenzie and R. Snodgrass. Extending the Relational Algebra
to Support Transaction Time. In SIGMOD, 1987, pp. 467-478.

[26] H. Mühe, S. Wolf, A. Kemper, and T. Neumann. An Evaluation of
Strict Timestamp Ordering Concurrency Control for Main-

Memory Database Systems. In IMDM Workshop, 2013, 74-85.

[27] C. Mohan. ARIES/KVL: A Key-Value Locking Method for

Concurrency Control of Multiaction Transactions Operation on B-
Tree Indexes. In VLDB, 1990, pp. 392-405.

[28] T. Neumann, T. Mühlbauer, A. Kemper. Fast Serializable Multi-

Version Concurrency Control for Main-Memory Database
Systems. In SIGMOD, 2015, pp. 677-689.

[29] D. P. Reed. Implementing Atomic Actions on Decentralized Data.

ACM TOCS 1(1): 3-23, 1983.

[30] K. Run et al. VLL: A Lock Manager Redesign for Main Memory
Database Systems. VLDBJ: 1-25, 2015.

[31] M. Stonebraker et al. The End of an Architectural Era: (It’s Time

for a Complete Rewrite). In VLDB, 2007, pp. 1150-1160.

[32] M. Stonebraker and A. Weisberg. The VoltDB Main Memory
DBMS. IEEE Data Eng. Bulletin 36(2): 21-27, 2013.

[33] A. Thomson et al. Calvin: Fast Distributed Transactions for

Partitioned Database Systems. In SIGMOD, 2012, pp. 1-12.

[34] S. Tu et al. Speedy Transactions in Multicore In-Memory
Databases. In SOSP, 2013, pp. 18-32.

[35] G. Weikum and G. Vossen. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and

Recovery. Morgan Kaufmann, 2002.

2157

