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ABSTRACT

Existing distributed graph processing frameworks, e.g., Pregel, Gi-

raph, GPS and GraphLab, mainly exploit main memory to support

flexible graph operations for efficiency. Due to the complexity

of graph analytics, huge memory space is required especially for

those graph analytics that spawn large intermediate results. Exist-

ing frameworks may terminate abnormally or degrade performance

seriously when the memory is exhausted or the external storage has

to be used.

In this paper, we propose MOCgraph, a scalable distributed graph

processing framework to reduce the memory footprint and improve

the scalability, based on message online computing. MOCgraph

consumes incoming messages in a streaming manner, so as to han-

dle larger graphs or more complex analytics with the same mem-

ory capacity. MOCgraph also exploits message online comput-

ing with external storage to provide an efficient out-of-core sup-

port. We implement MOCgraph on top of Apache Giraph, and test

it against several representative graph algorithms on large graph

datasets. Experiments illustrate that MOCgraph is efficient and

memory-saving, especially for graph analytics with large interme-

diate results.

1. INTRODUCTION
Recently, several in-memory distributed graph processing frame-

works, e.g., Pregel [7], GraphLab [23], Giraph [1], GPS [18], are

proposed to tackle with general graph analytics. They adopt a

vertex-centric computational model, which is very friendly for user-

s to write and debug their parallel graph algorithms. These frame-

works exploit main memory to avoid costly disk random accesses,

which can be incurred by the poor spatial locality in common graph

operations.

Although these frameworks have been widely used for their sim-

plicity and efficiency, the memory limitation issue lurks beneath

their facades. Parallel graph algorithms are usually complex, which

may spawn large volumes of intermediate results. These interme-

diate data, including messages transmitted across the network, val-

ues and states associated with each vertex, can easily exceed the
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memory limit, leading to performance degradation or even pro-

gram crash. For example, we evaluate the minimum memory re-

quirement for running Triangle Counting on Twitter dataset (48M

vertices and 2.8B undirected edges, disk storage of 28GB) in Gi-

raph 1.0 and GraphLab 2.2, two representative distributed graph

processing frameworks. We find that Giraph and GraphLab need

370GB and 800GB respectively to run the case, indicating 13x and

28x memory explosions with respect to the graph size. As the

memory resources become exhausted, the performance of Giraph

degrades seriously due to the growing Java GC overheads or its

inefficient out-of-core execution, while GraphLab simply crashes

because of out-of-memory.

It’s necessary to reduce the memory footprint in these graph

processing frameworks, which potentially enables them to support

larger graphs or more complex graph analytics within the same

memory capacity, thus improves the scalability.

Currently, there are several high level techniques to deal with

the memory footprint issue, all of which are far from ideal. First,

Combiner [7] can be used to reduce the number of buffered mes-

sages. However, it cannot access to the vertex value when com-

bining messages, which restricts its expressiveness. In addition,

there are still lots of combined messages to be preserved in each

superstep. Second, out-of-core execution can be a supplementation

to the in-memory computing flow. Among the popular distributed

graph processing frameworks, Giraph [1] provides an out-of-core

execution support since version 1.0. However, the performance is

affected by its costly sort-merge processing style for the out-of-

core messages. Another technique used to reduce cross-machine

messages is the advanced graph partitioning strategies [11, 19, 8,

20]. Though they can be applied to the existing frameworks, ex-

tra work needs to be done either by preprocessing or setting up a

global lookup table.

Engineering efforts have also been devoted to improve the mem-

ory usage. For example, Facebook uses Giraph to undertake its

graph mining tasks with trillion edges [4]. According to their re-

port, “Reducing memory use was a big factor in enabling the a-

bility to load and send messages to 1 trillion edges”. They reduce

the memory footprint by modifying the underlying in-memory data

structures such as byte array representation for vertices and edges,

native java unsafe serialization, just name a few.

In this paper, we also seek opportunities to reduce the memory

footprint in distributed graph processing frameworks. We observe

that, messages in Pregel-like systems can be computed as soon as

they arrive for a large number of graph analytics. We call this com-

puting style as message online computing. In such a way, the space

for buffering messages can be greatly saved, which reduces the po-

tential disk I/Os that may be incurred by the memory shortage.

There are several challenges in designing and implementing the
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message online computing (MOC) model. Firstly, MOC-model

should have sufficient expressive power to support varieties of graph

analytics, while reducing the memory footprint. Secondly, message

online computing acts like an asynchronous operation, but we still

need to develop an efficient synchronous execution engine to ex-

ploit its advantages. Thirdly, we have to provide an efficient out-

of-core support unified with the MOC-model, in order to deal with

larger graphs or more complex graph analytics.

In this paper, we propose MOCgraph, a scalable distributed graph

processing framework using MOC-model, to reduce the memory

footprint and improve the scalability. We list several contributions

of this paper as follows:

• We introduce a MOC-model to process large graphs. MOC-

model can save memory by digesting the incoming messages

on the fly. The model has a sufficient expressive power, and

is more space-efficient than Combiner which is commonly

used in memory reduction.

• We design MOCgraph, a distributed graph processing frame-

work that runs on top of MOC-model. MOCgraph supports

both synchronous and asynchronous executions, and has an

efficient out-of-core engine. Its fault-tolerance mechanism

enables quick restart as no messages are dumped. Optimiza-

tion strategies for the out-of-core engine such as edge sepa-

ration and hot-aware re-partitioning are proposed to further

reduce disk I/Os.

• We provide succinct and unified programming APIs for both

in-memory and out-of-core executions.

• We implement MOCgraph on top of Apache Giraph. Ex-

tensive experiments illustrate that MOCgraph is efficient and

memory-saving. For space-costly graph analytics with lim-

ited memory resources, MOCgraph can run 20x faster than

Giraph. MOCgraph can also achieve a comparable time cost

with GraphLab while having a nearly 8x memory reduction

in some cases.

The rest of the paper is organized as follows. We first review

the pregel-like systems on the internal structure and data flow in

section 2, then introduce our framework based on the message on-

line computing in section 3. In section 4, two optimizations are

proposed to reduce the buffered messages in the out-of-core exe-

cution. In section 5, we illustrate the programming APIs. Section

6 evaluates our framework in terms of running time and memory

usage. Finally, we review the related works in section 7 and then

conclude the paper in section 8.

2. REVIEW OF PREGEL­LIKE SYSTEMS
In this section, we give a brief introduction to the internal da-

ta flow for a typical superstep in Apache Giraph [1], to shed light

on the memory usage issues in existing pregel-like systems. We

choose Giraph as it’s a well-known open source implementation of

Pregel [7] and is widely used for its convenience to cope with the

Hadoop ecosystem [4]. Besides, it provides the out-of-core execu-

tion, which is needed when the memory is in short.

Giraph inherits the computational model in Pregel [7], which is

built on Bulk Synchronous Parrallel (BSP) [22] model. It adopts a

vetex-centric view for easy programming, so that users only need to

“think as a vertex” and write a compute() function for each vertex

to execute.

Figure 1 illustrates the data flow in a typical superstep within a

worker of Giraph. In Giraph, graphs are partitioned and assigned
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Figure 1: Data Flow in Original Giraph at Superstep t

to multiple workers. A vertex store in each worker manages sev-

eral graph partitions assigned to it. Each vertex v is preserved in

exactly one graph partition, where the framework can access to its

information by an index with the v.id as the key. This information

includes the vertex value and the out-going edges. Messages sent

to v are organized separately in the message store.

Once a superstep starts, each vertex calls the compute() function,

consumes all of its messages stored by the last superstep and up-

dates its value. During the compute(), it can send messages to its

neighbors based on the updated value. Note that these messages

can only be used in the next superstep, which is determined by

the computational model in Pregel. At the end of each superstep,

the coordination phase ensures that all the messages have been re-

ceived and preserved completely. Thus, in superstep t, Giraph has

to maintain two message stores, MsgStoret and MsgStoret+1, as

illustrated in Figure 1. The former keeps the messages received

in superstep t − 1, and these messages are fed to the vertex com-

putation in superstep t. The latter buffers the incoming messages

generated in superstep t, which implies that they will not be con-

sumed until superstep t+ 1.

Giraph also supports out-of-core execution, by storing partial

vertices and messages on disk, marked as “out-of-core structure”

in Figure 1. Messages flushed out will be sorted first, so that all

messages for a vertex can be concatenated by merging the top ele-

ments of the message files, which prevents message overflow for a

given partition.

Now we discuss the inefficiency for Giraph in terms of its mem-

ory usage and out-of-core support. Giraph has to keep all the in-

coming messages in memory and do nothing with them until the

next superstep, which may cause the memory shortage. Restrict-

ed by the computational model, other pregel-like systems also have

the similar problem. For the out-of-core execution in Giraph, op-

erations like sort and merge are also expensive, which can degrade

the performance.

A common strategy to reduce the space cost for the incoming

messages is to use Combiner [7]. A Combiner may be implemented

either at the sender-side or the receiver-side. The sender-side Com-

biner can reduce the number of messages that transmitted over the

network, but it does not work well as expected in distributed graph

processing frameworks, because of the poor spatial locality among

the destination vertices, as reported in [18]. In fact, neither Gi-

raph [1] nor GPS [18] has implemented the sender-side Combiner.

Receiver-side Combiner, though, releases some pressures brought

to memory, it suffers from three major problems. First, Combiner
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is not applicable for many graph analytics such as Semi-Cluster and

Triangle Counting, in which the vertex values have to be accessed

or updated during the message combining. Second, Combiner stil-

l needs to cache one combined message for each vertex, which is

also remarkable when the message is of large size. Third, it’s not

natural to express Combiner in a vertex centric model. Users have

to write two separate functions, combine and compute, which is

cumbersome for some complex graph analytics.

3. ONLINE COMPUTING FRAMEWORK
In this section, we introduce MOCgraph, a distributed graph pro-

cessing framework based on message online computing, aiming to

achieve efficient memory usage and high scalability.

We first propose a message online computing model, then com-

pare it with the existing vertex-centric models in terms of expres-

siveness and space overheads in section 3.1. Then we discuss the

synchronous and asynchronous execution modes of MOC-model in

section 3.2. Later we illustrate our implementation of MOC-model

in section 3.3. The fault-tolerance mechanism is discussed in sec-

tion 3.4.

3.1 Message Online Computing Model
We first review the vertex-centric computational models of Pregel

and Pregel with Combiner [7]. Then we introduce the MOC-model

and compare their expressive powers and memory usages. These

vertex-centric models differ from each other by the way they ex-

press the vertex updating and the message processing.

We explain the notations as follows. D(v)i represents the vertex

value of v at superstep i. M i
in and M i

out stand for the incoming

and outgoing messages for v at superstep i, respectively. mi
k(1 ≤

k ≤ |M i
in|) is the k-th message in the arriving stream of M i

in.

Pregel-model. Vertex program described by Pregel can be formal-

ized as

M i
in ← ⊙

mi

k
∈Mi

in

mi
k

(D(v)i+1,M i+1
out )← compute(D(v)i,M i

in)

where operator ⊙ concatenates the messages of mi
k to compose

M i
in. Compute function updates the vertex value according to M i

in

and generates outgoing messages for v. We call this computation-

al model as Pregel-model. Graph analytics that can be written by

Pregel-model are then categorized in Pregel-class.

In Pregel-model, for incoming message mi
k at superstep i, ⊙

happens in the same superstep. Compute fuction, however, is called

at superstep i+1 to digest these messages. Clearly, the data carried

across two successive supersteps contains all the Min and D(v),
which can exhaust the memory resources.

Combiner-model. Vertex program described by Pregel with Com-

biner can be formalized as

mi
in combined ← ⊕

mi

k
∈Mi

in

mi
k

(D(v)i+1,M i+1
out )← compute(D(v)i,mi

in combined)

where ⊕ is a combine operator which has to be commutative and

associative. We call this computational model as Combiner-model.

Analytics that can be written by this model are in Combiner-class.

Instead of simply concatenating, Combiner-model combines the

incoming messages all along the way. For analysis simplicity, in

this paper, we require ⊕ to have an effect of reducing memory s-

pace after two messages are combined, that is, we disallow ⊕ to

degenerate into ⊙ used by Pregel-model. Notice that, although the

⊕ operator can reduce the number of incoming messages to be 1

per vertex, it cannot get access to D(v)i during its computation,

which restricts its expressiveness.

Another popular vertex-centric model is GAS-model [8], which

can exploit a sum function to combine the gathered messages. GAS-

model can emulate both Pregel-model and Combiner-model as sug-

gested in [8], which has exactly the same memory consumption

when emulating them, if the extra space cost for vertex replications

is not considered. Therefore we only compare our model to Pregel-

model and Combiner-model in the rest of the paper.

Now we formally define the MOC-model as follows.

DEFINITION 1. Message Online Computing(MOC)-model. In

MOC-model, vertex program can be written as

M i
out ← sendMessages(D(v)ik)

D(v)ik ← onlineCompute(D(v)ik−1,m
i
k)

D(v)i0 ← D(v)i−1

final

MOC-model updates the value of v with the message stream,

forming an update sequence of D(v)ik(1 ≤ k ≤ |M i
in|) during

superstep i. v has an initial value of D(v)i0 at the beginning of

superstep i, where D(v)i0 is the final state of D(v)i−1

final at super-

step i − 1. v is scheduled to send messages only once, based on

D(v)ik that is available at the time of sending. Messages here are

required to be commutative, that is, the final state of the vertex val-

ue at each superstep is regardless of the message updating order.

The applicable class for MOC-model is then called MOC-class.

Notice that, MOC-model produces and processes messages in

the same superstep, thus having no messages carried across super-

steps, which lowers space overhead.
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Figure 2: SSSP using Online Computing

EXAMPLE 1. SSSP Using Message Online Computing. Fig-

ure 2 shows an example for Single Source Shortest Path(SSSP) us-

ing message online computing. Circles that lie in the same column

represent the update sequence of the same vertex, according to a

top-down timeline. The value in a vertex is its current shortest dis-

tance to v4, and the shaded vertices are active to send message. The

raw distance between two vertices is marked on the edge. We can

see that, at superstep 1, vertex v2 receives messages from v3, v1,

v5 successively. Instead of keeping the messages, v2 online com-

putes these messages one by one, and updates its own value from

∞ to 13, 9, 9 accordingly. At superstep 2, v2 has no message to

compute, thus only needs to send messages based on the value of 9,

which is updated during the last superstep. Clearly, in message on-

line computing model, no message needs to be saved if the memory

can hold all the vertices.
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Now we compare these models in terms of expressiveness, mem-

ory usage and succinctness. First we discuss the effective expres-

sive power of the three computational models and compare their ap-

plicable classes. Notice that, if we allow the operators degenerating

to concatenation operator ⊙, these models are all expressive equiv-

alent. Thus, we only compare their effective applicable-classes,

in which their functionalities to reduce the space cost should take

effects. Clearly, Pregel-model is the most expressive model a-

mong the three, as it has no constrains when dealing with the ver-

tex updating and the message sending. Correspondingly, Pregel-

class is the widest class. MOC-model can emulate the Combiner-

model, while the latter cannot get access to the vertex value when

combining the messages, which indicates that MOC-class contain-

s Combiner-class. In fact, for any vertex program in Combiner-

class, we can extend D(v) to be (D(v),mempty), and combine

the message stream only with mempty in onlineCompute opera-

tor. Thus, after all messages have been processed, the vertex value

of (D(v),mcombined) is prepared. Then we can update the ver-

tex value in sendMessage function and send message based on it,

which has exactly the same computing behaviour with the Combin-

er program. However, Graph analytics like Triangle Counting and

Semi-Clustering are in MOC-class but outside of Combiner-class,

in which messages cannot be combined without reading or writing

the vertex value.

Second, Combiner-model is more space-efficient than Pregel-

model, as it carries only one message per vertex across the super-

step. We then argue that MOC-model is more space-efficient than

Combiner-model. In the worst case, we can achieve the same space

cost by emulating the Combiner-model as discussed above. How-

ever, for analytics whose messages can be directly melt into the

vertex value like PageRank, Shortest Path, Connected Components

and Landmark Construction, MOC-model ideally has no need to

store any message, which makes it more space-efficient than Com-

biner.

Besides, MOC-model is more succinct than Combiner-model. In

Combiner-model, users need to write compute and combine func-

tion with different views on vertex updating (vertex-messages) and

message combining (message-message). In contrast, there’s only

one such function (vertex-message) to be implemented with MOC-

model.

3.2 Synchronous and Asynchronous Compu­
tation with MOC­model

The MOC-model described in Definition 1 is asynchronous, s-

ince it sends messages based on the latest vertex value available

at the sending time. Asynchronous computation has been demon-

strated to speedup the convergence of many iterative graph ana-

lytics, as studied in [2, 6]. On the other hand, it is also highly

needed for MOC-model to support synchronous execution, which

preserves the determinism during the computation. By determin-

ism, we mean that any vertex value at the end of each superstep

can be determined before runtime. Determinism can be helpful

for convergence designing and program debugging, and it can also

contribute to the predictable performance.

In order to support synchronous evaluation of MOC-model, we

restrict the input of sendMessages operator at superstep i to be the

initial state of D(v)i0, instead of any available D(v)ik at the time of

message sending. As the final vertex state D(v)ifinal is determined

regardless of the updating order, we can predict the vertex value at

the end of each superstep, which preserves determinism.

To implement the synchronous MOC-model, we have two op-

tions to deal with a message m that arrives for an unscheduled ver-

tex v, namely, wait until v is scheduled to send its messages or

update on a copy of v. In the former option, we still have to buffer

a large number of such messages, which may take too much space

and go against our goals. Thus we follow the latter idea in this pa-

per and update on a copied value of v, if v has not been scheduled.

That is, there are optionally two values attached to v in each super-

step, namely the initial value v.oldValue and the latest value v.value

respectively.

Algorithm 1 Graph-Level Scheduling

1: function SEND

2: for each vertex v do

3: sendMessage(v);

4: end for

5: end function

6: function RECEIVE(msgs)

7: for each msg msg in msgs do

8: v← locateVertex(msg.targetVid);

9: onlineCompute(msg, v);

10: end for

11: end function

12: function SETUP

13: if SynchronousEngine then

14: wait for global value switch synchronous barrier

15: for each vertex v do

16: v.oldValue← v.value;

17: v.value← createNewVersion(v.oldValue);

18: end for

19: end if

20: end function

Algorithm 2 Vertex-Level Computation

1: function SENDMESSAGE(v)

2: if SynchronousEngine then

3: v.sendMessage(v.oldValue);

4: else

5: v.sendMessage(v.value);

6: end if

7: end function

8: function ONLINECOMPUTE(msg,v)

9: v.onlineCompute(msg, v.value);

10: end function

The graph-level and the vertex-level scheduling algorithm can be

depicted in Algorithm 1 and 2 respectively. In graph-level schedul-

ing, send function schedules each vertex to send message exactly

once in a superstep. Simultaneously, receive function accepts in-

coming messages and online computes them. In the synchronous

mode, extra setup is called for each vertex to switch the two values

of v.value and v.oldValue between two successive supersteps, sur-

rounded by an extra global synchronous barrier, which indeed can

be avoided as will be discussed in section 3.3. In vertex-level com-

putation with the synchronous engine specified, we will send mes-

sage based on the vertex value at the beginning of that superstep,

namely v.oldValue in Line 3. Any incoming message will update

on the most recent value of v, namely v.value, no matter whether

synchronous or asynchronous execution is specified, as shown in

line 9.

From Algorithm 1 and 2, it is easy to know that once the syn-

chronous mode is specified, MOCgraph follows the synchronous

MOC-model described earlier. As for asynchronous mode, it en-

ables vertices to send messages based on the latest vertex value,

which may contribute to a faster convergence.
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3.3 MOCgraph: an Implementation of MOC­
model

Now we present MOCgraph, an implementation of MOC-model

on top of Apache Giraph [1]. Figure 3 illustrates the data storage

and the message online computing data flow within a typical super-

step in a worker. We then explain the major differences between

MOCgraph and Giraph.
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Figure 3: Data Flow in MOCgraph at Superstep t

Data Storage. There are two major types of data that need to be

preserved, the graph topology data and the intermediate data dur-

ing the computation, including the attached vertex values and mes-

sages. Like Giraph, we organize the vertices and their messages

separately in vertex store and message store.

Vertex Store. The vertex store is almost the same with Giraph,

except that in MOCgraph, an extra copy of vertex value may be also

attached temporally to the vertex when the synchronous execution

is specified.

Message Store. Different from Giraph, the message store in

MOCgraph only serves the out-of-core engine and preserves those

messages whose target vertices are out-of-core. The message s-

tore contains several message files, each of which will be fed to

the corresponding vertex partition for the computation in the next

superstep. In addition, we only need to append the message stream

to the message file rather than organize the messages according to

their target vertex ids, which can avoid expensive sort or merge.

This append-only behavior makes it efficient to deal with massive

messages.

Data Flow. We demonstrate the data flow in MOCgraph in a view

of working threads. In the workflow of MOCgraph, there are three

major components, namely in-memory online computing, out-of-

core online computing and dual version switcher. These compo-

nents are located in two different typs of threads, namely message-

receiving thread (shaded) and message-sending thread (white), as

shown in Figure 3. Message-receiving thread is passive to process

every message that comes for the worker, while message-sending

thread is self-motivated to schedule each active vertex to send its

messages, exactly once per superstep. Accordingly, in the schedul-

ing algorithm shown in Algorithm 1, send is in the message-sending

thread and receive is in message-receiving thread. Both threads s-

tart once a superstep begins.

In-memory Online Computing. The shaded OnlineCompute com-

ponent in Figure 3 lies in the message-receiving thread. As the ver-

tex store is accessed by both the sending thread and the receiving

thread, concurrency control mechanism is needed. Compared with

the granularity of vertex-level locking [8], the partition-granularity

locking we use incurs less contention. Once a batch of messages

for a vertex partition p arrives, we try to lock p in the local memory.

As soon as the write lock is attained, the in-memory online com-

puting will consume these messages and update the corresponding

vertex values. If p is out-of-core, we only append these messages

to the message file for p.

Out-of-core Online Computing. The out-of-core OnlineCompute

component resides in the message-sending thread. Once the thread

starts, it will traverse all the vertex partitions to send messages. For

any vertex partition p, the message-sending thread first loads p into

memory if it’s laid on disk. Before p can start sending messages,

it has to consume all its belonging messages left on disk to update

the vertices in p. For each message m of p on disk, the message-

sending thread finds its target vertex v in p, online computes m
and updates v. After all messages of p have been processed, p is

scheduled to send messages for each of its vertices based on the

updated value.

Dual Version Switcher. In order to implement the synchronous

MOC-model in MOCgraph, we can simply follow the scheduling

algorithm illustrated in Algorithm 1 and 2. However, this syn-

chronous scheduling is not efficient in terms of both space and

time cost, in which unnecessary vertex values may be created and

an extra global synchronization is needed for the value switch be-

tween two successive supersteps. MOCgraph provides a dual ver-

sion switcher as a proxy for visiting the vertex values as shown in

Figure 3, to support synchronous execution while reducing such

overheads. Specifically, we create a new value of v if any mes-

sage arrives before v sends messages, and delete the old version

as soon as possible. In addition, we use the current superstep num-

ber to switch the values logically, which avoids the synchronization

overheads for physical switch. The whole algorithm is given in al-

gorithm 3.

Algorithm 3 Dual Version Switch

1: // Optimized code for synchronous execution in Algorithm 2

2: function SYNCHRONOUSONLINECOMPUTE(msg, v)

3: newValue← v.getNewValue();

4: if newValue == null then

5: oldValue← v.getOldValue();

6: newValue← createNewValue(oldValue);

7: end if

8: v.onlineCompute(msg, newValue);

9: end function

10: function SYNCHRONOUSSENDMESSAGE(v)

11: oldValue← v.getOldValue();

12: newValue← v.getNewValue();

13: v.sendMessages(oldValue);

14: if newValue == null then

15: newValue← createNewValue(oldValue);

16: end if

17: oldValue← null;

18: end function

19: // Logical Vertex Value Switch

20: function GETNEWVALUE

21: return getSuperstep()%2==0?v.value0:v.value1;

22: end function

Messages received for v always update on newValue, and the

first message is responsible for initializing the newValue based on

oldValue if newValue is not ready, as shown in lines 2-9. In syn-

chronous mode, each active vertex is scheduled to send messages

based on its old value, exactly one time per superstep. After that, it
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will create newValue based on oldValue if newValue is not attached,

then the oldValue is deleted. The way of value creation is depict-

ed by the createNewValue() function, which by default switches

between the two values.

We avoid the extra global synchronization as well as the physical

value switch, by using the current superstep number as a flag to

tell which physical value is indeed the newValue. Lines 20-22 in

algorithm 3 illustrate the way to retrieve a logical new value. The

retrieval of a logical old value is similar hence we omit it.

Now we analyze that dual version switch can preserve determin-

ism using inductive reasoning. The initialized condition is trivial.

Suppose at superstep i, we can determine any vertex value at the

end of the superstep before runtime. Then at superstep i + 1, for

any vertex v, we send messages based on the old value of D(v)i+1

0 ,

which is determined at the end of superstep i and ensured by the

logical switch. Thus M i+1

in can be determined before runtime.

Lines 5-7, 14-16 ensure that any mi+1

k in M i+1

in will update on

D(v)i+1

0 successively. As messages in MOC-model are commuta-

tive, we can determine the final value of v before runtime. There-

fore, dual version switch preserves the determinism.

Comparison with Giraph. In-memory MOCgraph is much more

space-efficient than Giraph. Asynchronous engine in MOCgraph

can eliminate the space cost incurred by two message stores with an

expected size of |M |Sm, where |M | is the number of messages and

Sm is the average size per message. For synchronous execution, we

need another space of 0.5|V |Sv to hold the new values expectedly

using the dual version switch approach. The space reduction then

becomes to |M |Sm − 0.5|V |Sv , where |V | is the number of ver-

tices and Sv is the average size of a vertex value. As for message

intensive graph analytics, |M | has the same order of magnitude as

|E| which is considered to be much bigger than |V |. Thus, the s-

pace reduction is still notable even we use the synchronous engine.

We also have advantages if the vertices cannot fully reside in

memory, even though we have to preserve messages targeted at out-

of-core vertices as Giraph does. First, MOCgraph can reduce the

disk I/Os because part of messages can be consumed in memory.

Second, MOCgraph avoids costly I/O operations such as sort or

merge during the message dumping and loading. Last but not least,

MOCGraph can support graph analytics on nature graphs well. In

large natural graphs, there are high fan-in vertices with a lot of mes-

sages, which may occupy huge amount of memory resources if we

load them all in memory before computing as Giraph does. Fortu-

nately, MOCgraph processes the out-of-core messages as streams,

and therefore doesn’t suffer from that issue.

3.4 Fault­Tolerance
MOCgraph uses the periodic checkpointing strategy to achieve

fault-tolerance, with much fewer messages saved compared to oth-

er Pregel-like systems. Take Giraph as an example, it has to dump

all of the graph topology, vertex values and incoming messages at

the end of a superstep, to be used for the superstep restart. These

overheads are determined by the Pregel-model, in which vertex val-

ues have to be updated based on the messages in the previous su-

perstep.

In contrast, in MOCgraph, the synchronous barrier ensures that

vertex values have been updated by the incoming messages in the

current superstep. This makes a superstep stateless with respect to

the messages, so that if we purely use the in-memory execution,

no messages are required to be checkpointed. When the out-of-

core execution is enabled, in-memory messages also need not be

saved since they’ve done their jobs in updating the vertices, while

the out-of-core messages are naturally checkpoint files. In this way,

less data is recorded, leading to a faster restart.

4. OPTIMIZATIONS
In this section, we introduce two optimizations for the out-of-

core engine that can further reduce the number of disk I/Os. In

Section 4.1, we propose an edge separation strategy to let more ver-

tices be in memory, allowing more messages to be online-computed

in memory. Section 4.2 provides a partition rearrangement and re-

placement strategy within local machines.

4.1 Edge Separation
We observe that compute() function in many graph analytics

does not need the information on the out-going edges to update the

vertex value, where edges are only used to send messages. These

tasks include Pagerank, Connected Components, Landmark Index

Construction, BFS, Shortest Path, just name a few. For these graph

analytics, we can safely separate the edges from a vertex parti-

tion, and sacrifice the memory space of these edges to let more

vertex partitions be in memory, such that each incoming message

has much more probabilities to be computed on the fly. We call this

strategy edge separation as the vertex partition no longer contains

the edge information.

Now we analyze the percentage of I/O reduction using edge sep-

aration strategy. We use Sm, Sv , Se to represent the average size

per message, per vertex value and per edge value, respectively,

and |M |, |V |, |E| represent the number of messages, vertices and

edges, accordingly. Let C be the memory capacity, λbasic and λes

be the fraction of the vertex partitions that can reside in memory,

for the basic strategy and the edge separation strategy respectively.

We have,

C = λbasic(|V |Sv + |E|Se) = λes|V |Sv (1)

with constrains of

0 < λbasic < λes ≤ 1 (2)

Assume messages are uniformly distributed among vertex parti-

tions, the I/O cost for these two strategies in one superstep will

be as follows,

costbasic = 2(1− λbasic) · (|V |Sv + |E|Se + |M |Sm)

costes = 2(1− λes) · (|V |Sv + |M |Sm) + 2|E|Se

(3)

in which the out-of-core vertex partition associated with the mes-

sages sent to it needs to be read and written once. As for edge sep-

aration, though it requires to load and offload edges of in-memory

vertex partitions, λes can be much larger than λbasic , and we can

calculate the I/O reduction by:

reduction = 1−
costse

costbasic

=
|M |Sm

|V |Sv(|V |Sv + |M |Sm + |E|Se)

·
|E|Se

[(|V |Sv + |E|Se)/C − 1]

(4)

As can be inferred by equation (1)(2)(4), we have

C ≤ |V |Sv

0 < reduction ≤
|M |Sm

|V |Sv + |M |Sm + |E|Se

(5)

From equation (4)(5), we can see that the edge separation strat-

egy can always spawn less I/O compared to the basic method and

gains the maximum reduction when C = |V |Sv , that is, the mem-

ory is just enough to hold all the edge-separated vertex partitions.

For example, in PageRank, Sv = Sm = Se, and |M | = |E| ≫
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|V | for many graphs, then we can get a nearly 50% I/O reduction

theoretically by using edge separation.

4.2 Hot­Aware Re­Partitioning
In MOCgraph, vertex partitions have to be swapped onto disk

when memory is insufficient, so we need a well-suited partition

replacement policy for MOCgraph, to reduce the total number of

disk I/Os.

First, we need to decide whether we should load partition p in-

to memory or offload the messages onto disk when the messages

come for an out-of-core vertex partition p. We choose the latter s-

trategy and only allow the message-sending thread to do the vertex

partition replacement, because the messages arrive continuously in

an unpredictable manner and it’s not worth frequently swapping a

vertex partition in and out.

Then we choose a proper replacement strategy for the message-

sending thread. According to the actions we take, the victim parti-

tion swapped out cannot consume messages belonging to it until it’s

reloaded into memory. If we assume the messages arrive uniformly

for each partition, any partition replacement strategy will have the

same effects. However, when the messages are not uniformly dis-

tributed among the partitions, we can always keep those partitions

that tend to receive more messages to be in memory. Therefore, the

number of message I/Os can be lowered.

Based on these observations, we propose a hot-aware partition-

ing method, to differentiate the expected number of messages of

each partition, providing opportunities for a more suitable replace-

ment strategy.

DEFINITION 2. Hot/Cold Partition. A vertex partition p is hot

if its heat is in the top-k list of the local partitions, where the heat

of p is regarded as the expected number of messages that it will

receive, and k is the maximum number of partitions that can reside

in memory. Other partitions are then the cold partitions. In this

paper, we measure the heat by the total number of edges in p.

A widely used graph partitioning method is hash partitioning,

which generates roughly equal-sized partitions with respect to both

vertex number and edge number. Though it’s good at eliminat-

ing data skew across different workers as well as space-efficient,

we cannot benefit directly from it. Our purpose is to differenti-

ate the partition heats within each local worker, while maintaining

load balance across workers. Thus, we can create opportunities for

devising an I/O efficient partition replacement strategy. Now we

introduce the hot-aware re-partitioning as follows.

DEFINITION 3. Hot-Aware Re-Partitioning. Let P =
⋃n

i=1
pi

be the partition sets assigned to the local worker, hot-aware re-

partition is to reorganize P into P ′ =
⋃n

i=1
p′i, such that

P ′ = argmax
P ′

(
∑

p′
h
∈P ′

hot

heat(p′h)−
∑

p′
c
∈P ′

cold

heat(p′c))

s.t.
∑

p′
h
∈P ′

hot

size(p′h) = totalMemForV tx

where P ′
hot and P ′

cold represent the hot/cold partition set in P ′

respectively, and the maximal size of memory allocated for vertices

is represented by totalMemForVtx.

It’s easy to have an exact solution of this equation, e.g., sorting

vertices in all local partitions by degree and reassign them to new

partitions accordingly. However, it’s worth doing so especially for

cases that memory is not enough to hold all the vertices. In this

paper, we use a streaming strategy to reorganize the local partition-

s. We process the vertices as streams within a buffer of size k ∗ p,

where p is the number of the generated partitions and k is the pa-

rameter to control the partition effects. We read k ∗ p vertices from

local partitions, sort them according to their degree, and assign the

vertex to the i-th partition if it has the i-th largest degree. Experi-

ments in section 6.3 show that a small k of 100 or 1000 works just

fine.

The hot-aware re-partitioning is a reorganization strategy of the

local vertex partitions. It can be applied to any existing graph par-

tition technique, as it does not break the vertex-worker ownership.

We only need to maintain a local lookup table after the repartition,

which is space-efficient. The graph partitioning method we use in

this paper is hash partitioning, mainly for its power of eliminating

data skew across workers.

Notice that, hot-aware re-partition strategy alone may be less ef-

fective for reducing the total disk I/Os, because hot partitions may

be also in large size with more edges, which means more partition-

s have to be left out-of-core. However, we can use the hot-aware

re-partitioning strategy together with the edge separation technique

introduced earlier, because the size of each hot partition is roughly

the same as that of each cold partition. Thus we can decrease the

number of messages failed to be online computed in memory, by

letting hot partitions in memory.

EXAMPLE 2. Figure 4 shows an example for the hot-aware re-

partitioning. Vertex 1,3,5,7 are sent to worker 1 by hash partition-

ing, then partitions 1,3 are reorganized to form new ones with var-

ious partition heat. Suppose we only have room for one partition,

we prefer partition 1 to be in memory since it has more edges, so

that there will be potentially more messages consumed on the fly,

thus reduce the disk I/Os.

3 1

7

2

5

6

4 8

1 5 3 7

7 5 1 3

P1: heat=7 P3: heat=6

P1: heat=10 P3: heat=3

2 6 4 8

P2: heat=5 P0: heat=6

Hash Partition

(mod 4)

6 8 2 4

P0: heat=4P2: heat=7

Worker 1 Worker 2

Hot-Aware Repartition

Figure 4: Hot-Aware Partitioning

Now we depict the whole picture of vertex partition replacement

strategy in MOCgraph. We reorganize the vertex partitions with-

in each worker to differentiate the edge counts among local par-

titions, and keep all the hot partitions in memory before the first

superstep. We leave one partition space to exchange with the cold

partitions left on disk. Before the message-sending thread starts on-

line computing and sending messages of an out-of-core partition, it

will move out the cold partition that previously swapped in. By do-

ing this, we can have more messages online computed in memory,

thus reduce the number of messages to be preserved.

Next, we illustrate how the hot-aware re-partitioning can help

lower the disk I/Os. Let µcold ≤ 1 represent the ratio of average
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number of edges in cold partitions to that in all partitions, and other

notations have the same meaning as in section 4.1. We have

costes+hot = 2(1− λes) · (|V |Sv + µcold|M |Sm) + 2|E|Se

= costes − 2(1− λes)(1− µcold)|M |Sm

(6)

The more notable effects of the re-partitioning strategy, the s-

maller µcold will be, therefore the more disk I/Os can be reduced,

as can be seen in the equation (6).

5. PROGRAMMING APIS
In this section, we provide the programming APIs used in MOC-

graph, and give an example to demonstrate their usages.

We illustrate the major part of APIs here in Figure 5, in order to

tell the differences with Giraph. We split the compute() function

into two parts, onlineCompute() and sendMessages(), with totally

different responsibilities.

// user applied computing function

void compute(Iterator<M> msgs);

// combine the two messages to form one

// which is from Combiner class

void combine(M oldMsg, M newMsg);

// vertex value accessor

V getValue();

void setValue(V value);

// get the current superstep number

long getSuperstep()

// online compute with a single message

void onlineCompute(M msg, V newValue, int

superstepNum);

// send messages based on the appropriate

// value provided by the framework

void sendMessages(V value);

// optional, user can overwrite this for

// synchronous execution

V createNewVersion(V oldValue);

Figure 5: API Changes in MOCgraph compared to Giraph

The function of onlineCompute() describes only about how to

compute a message and update the vertex value, while sendMes-

sages() is responsible only for sending messages based on the cur-

rent value, which is called only once during a superstep. The frame-

work will choose the correct vertex value as the input of sendMes-

sages() and onlineCompute() automatically, according to the exe-

cution mode specified by users. Thus, we hide the original value

accessor in Giraph from user, to avoid obfuscation. Combiner is

also no more needed and we simply remove it.

The createNewVersion() function tells MOCgraph about how to

generate a new value based on the old one, when the synchronous

execution is specified. The default way is to switch the old value to

the new, which can be adopted by many graph analytics. Users can

override this function to meet their own requirements.

EXAMPLE 3. SSSP Example. We list our SSSP implementa-

tion using Giraph 1.0 and MOCgraph in Figure 6 and Figure 7,

respectively. We can see that the original compute() is divided

into onlineCompute() and sendMessages(). The onlineCompute()

function computes a message and updates the current distance.

In sendMessages(), a vertex will send its changed distance to its

neighbors if it’s waked up. For asynchronous execution, the dis-

tance sent by each vertex is the latest version available at the send-

ing time, while in synchronous mode, it’s the initial value at each

superstep. Users are not aware of the existence of the two versions,

which are auto-provided by the framework.

public void compute(Iterable<DoubleWritable>

messages) throws IOException {

double minDist = isSource() ? 0d :

Double.MAX_VALUE;

for (DoubleWritable message : messages) {

minDist = Math.min(minDist,

message.get());

}

if (minDist < getValue().get()) {

setValue(new DoubleWritable(minDist));

for (Edge<LongWritable, DoubleWritable>

edge : getEdges()) {

double distance = minDist +

edge.getValue().get();

sendMessage(edge.getTargetVertexId(),

new DoubleWritable(distance));

}

}

voteToHalt();

}

Figure 6: Original SSSP in Giraph

public void onlineCompute(DoubleWritable

message, DoubleWritable curDst, int

superstep) throws IOException {

double dist = messge.get();

if(dist < curDst.get()){

curDst.set(dist);

//wake up the vertex explicitly

//so that it can be scheduled to send

messages.

wakeUp();

}

}

//only awaken vertices are scheduled to send

messages

public void sendMessages(DoubleWritable dst){

double curDst = dst.get();

for (Edge<LongWritable, DoubleWritable>

edge : getEdges()) {

double distance = curDst +

edge.getValue().get();

sendMessage(edge.getTargetVertexId(),

new DoubleWritable(distance));

}

voteTohalt();

}

Figure 7: SSSP For Message Online Computing

6. EXPERIMENT
In this section, we conduct extensive experiments to evaluate the

performance of MOCgraph, in terms of the task execution time and

the memory usage.

6.1 Experimental Setup

Environment. All experiments are evaluated on a 23-node cluster.

Each node has two 2.60GHz AMD Opteron 4180 processors with
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48GB of RAM and 2TB hard disk. SUSE Linux Enterprise Server

11 and Java 1.7 with 64-bit server JVM are installed on these nodes.

All these nodes are connected to the same 1GB network switch. We

use Giraph version 1.0 and Hadoop version 0.20.3, with the HDFS

block size of 64M.

Dataset. Three real-world graph datasets are used in our exper-

iments. uk-2007-05 is a time-aware graph generated by combin-

ing 12 monthly snapshot of the .uk domain [15]. twitter-2010 is

a follower-following topology in the social network Twitter [12].

livejournal is a friendship network of an online community site

LiveJournal. We also have some synthetic random graphs whose

numbers of edge range from 1 billion to 5 billion. We convert these

graphs into undirected ones since some of our applications need an

undirected graph as input. Some statistics about these graphs are

summarized in Table 1. Each edge is assigned a weight random-

ized between 1 and 100.

DataSet # Nodes # UndirectedEdges

livejournal 4,847,571 68,993,773

twitter-2010 41,652,230 2,405,026,390

uk-2007-05 105,896,555 6,625,316,807

ranNb 0.05*N billion N billion

Table 1: Statistics of Graph DataSets

Graph Analytics. We test our framework on several representative

graph analytics, with different features on the size of vertex value

and the size of message value, as listed in Table 2.

Graph Analytic Task Size of Size of

Vertex Value Message

PageRank(PR) small small

Connected Components(CC) small small

Reachability(RC) small small

Single Source Shortest Path(SSSP) small small

Triangle Counting(TC) small large

Semi-Cluster(SC) large large

Landmark Index Construction(LM) large large

Table 2: Types of Graph Analytics

Competitors. We compare MOCgraph with Giraph of version 1.0

and GraphLab of version 2.2. We directly use the CC, PR, TC,

SSSP examples provided in the toolkits of GraphLab 2.2, and im-

plement LM by our own.

Experiments Design. We first illustrate the benefits brought by the

asynchronous execution of MOCgraph in section 6.2. We further

evaluate the effects of the proposed optimization strategies in sec-

tion 6.3, namely edge separation and hot-aware re-partition. Then

we compare MOCgraph with Giraph, Giraph Combiner and their

out-of-core supports varying the memory capacity in section 6.3.

In section 6.5, we compare MOCgraph with GraphLab separately

since GraphLab has no out-of-core implementation.

6.2 Synchronous vs. Asynchronous Execution
in MOCgraph

In order to have a clear sight about how asynchronous execu-

tion in MOCgraph can help speedup the tasks, we run three dif-

ferent graph analytics on Twitter with sufficient memories using

both synchronous and asynchronous execution mode, as illustrated

in Figure 8. We will show more comprehensive results when the

memory capacity is taken into account in section 6.3.
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Figure 8: Superstep and Time Cost for both sync and async

mode: we choose Twitter as the dataset, and set the number

of workers 23, 23, 46 for Reachability, Connected Components

and Landmark, respectively. The number of landmarks is set

to 25. All cases are running with sufficient memory.

Figure 8 shows that asynchronous execution in MOCgraph can

accelerate the convergence of many applications such as Landmark

Index Construction, Connected Components and Reachability, gain-

ing notable reductions of supersteps, which contributes to the time

speedup. In fact, in asynchronous execution of MOCgraph, vertices

send messages based on their most recent values, which may be up-

dated by some incoming messages in the current superstep. These

experiments demonstrate that although the asynchronous computa-

tion in MOCgraph still reside in supersteps, it can also speedup the

convergence of many graph analytics as many other asynchronous

systems [23, 8] do.

6.3 Effects for Optimization Strategies
Next, we test the performance for the optimization strategies pro-

posed in section 4, namely edge separation(es) and hot-aware re-

partition(hp), against the basic MOCgraph. As the optimization

works for out-of-core execution, we only assign 1GB memory for

each worker, and run three graph analytics with different strategies.

Figure 9(a) shows the edge number within each partition in a

typical worker after the hot-aware re-partitioning on Twitter. k is

a user-specified parameter to control the size of the sort buffer,

as mentioned in section 4. We can see that even with a small

k=100, MOCgraph can still differentiate the partition heat remark-

ably, which provides an opportunity to further reduce the number

of disk I/Os.
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Figure 9: Effects for edge separation and hot-aware re-

partition

As can be seen in Figure 9(b), edge separation strategy(es) is ef-

fective in all the cases, which gains 30%, 10%, 16% time speedup

for PR, CC, and LM, respectively. Hot-aware re-partition strat-

egy(hp) alone is less effective or even degrade the performance,

because hot partitions are also in large size, as explained in sec-

tion 4.2. However, the combination of es and hp works well for all

these tasks. Take PageRank as an example, es works well because
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it reduces the large amount of disk I/Os as illustrated in section 4.1.

For hp, hot partitions also have more edges, which take up more

spaces, so that the increased number of online computed messages

are trivial. For hp+es, it makes more vertices be in memory hence

decreases the number of disk I/Os.

6.4 Comparison with Giraph and Combiner
We compare MOCgraph with Giraph, Giraph Combiner, as well

as their out-of-core supports.

Parameter tuning is not easy for out-of-core execution in Giraph.

Given a limited memory capacity, we have to manually specify the

out-of-core options in Giraph. We need to specify whether the

vertex partitions and the messages should be outside of memory

separately. Then we may need to provide two other parameters:

maxPartitionsInMemory and maxMessagesInMemory. The former

indicates how many vertex partitions can reside in memory, while

the latter limits the number of messages that can fit in memory.

We try our best to do the parameter tunings in Giraph’s out-of-

core engine using following strategies: our first choice is to use

in-memory messages and out-of-core vertices with Combiner if it

supports. If the task fails, we tend to have as many as partitions

to be in memory while adjusting the number of maxMessagesIn-

Memory. The other parameters are set by default. We only report

the best performance of the out-of-core Giraph as long as we can

run it since there are too many failures during our tests.

Figure 10 illustrates the running time (graph loading time not in-

cluded) of MOCgraph and its competitors, on graph analytics men-

tioned in table 2, varying the memory capacity per worker.

MOCgraph vs. Giraph. We can see that in Figure 10, MOCgraph

can be an order of magnitude faster than Giraph with limited mem-

ory on message-intensive analytics, including PR, TC, LM, and SC.

The performance of Giraph degrades seriously as the memory ca-

pacity becomes less, because of the inefficient out-of-core execu-

tion. For TC on Twitter in Figure 10(a), with memory capacity of

2g*46, MOCgraph can finish within 40 minutes, while out-of-core

Giraph fails after 10 hours, which leads to a 15x speedup. Similar-

ly, MOCgraph spends 25 minutes to finish LM of 100 landmarks

on LiveJournal with 1g*23 memory, while it costs Giraph for more

than 500 minutes to do the same job.

MOCgraph vs. Combiner. MOCgraph is more expressive than

Combiner. For example, Combiner cannot be applied to TC and

SC in Figure 10(a) and 10(b). For graph analytics with large in-

termediate results that can be expressed by Combiner, MOCgraph-

async can run much faster than Combiner. For LM in Figure 10(b),

MOCgraph-async achieves a 2x speedup than Combiner for 3g*46

memory capacity and a 5x speedup for 2.5g*46 on LiveJournal.

When there’s only 2g*46 memory, the running time of Combiner

soars incidently, and the speedup for MOCgraph-async comes to

15x. This is because the memory is in short to hold all combined

messages while we cannot make it run in the out-of-core mode, so

that the excessive garbage collection overheads degrade the perfor-

mance of Combiner seriously. Although MOCgraph-sync has the

similar time cost when the memory is sufficient, it can also achieve

a 9x speedup to Combiner when the memory is limited to 2g*46,

since it can exploit message online computing using the out-of-core

engine of MOCgraph.

For analytics whose message and vertex values are both small,

MOCgraph can still outperform Combiner, but the speedup drops.

For CC shown in Figure 10(c), MOCgraph-async gains the speedup

of 1.5x for both Twitter and UK datasets, while the MOCgraph-

sync achieves very similar performance with Combiner. For PR in

Figure 10(d), we only evaluate the MOCgraph-sync to make this

comparison on the same output. Similar with the case explained

for Figure 10(b), MOCgraph-sync can also outperform Combiner

in PR, when the memory cannot hold all the combined messages.

MOCgraph-sync vs. MOCgraph-async. In these cases, we can

see that MOCgraph-async runs faster than MOCgraph-sync. The

reasons are twofolds. i) MOCgraph-async can accelerate the con-

vergence therefore reduce the total number of supersteps as indicat-

ed in section 6.2. ii) MOCgraph-sync has extra overheads to create

copies of the vertex values.

6.5 Comparison with GraphLab
We conducted experiments against GraphLab, as illustrated in

Figure 11. Note that, GraphLab currently does not have an out-of-

core support, so we run MOCgraph all in memory to have a fair

comparison.
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Figure 11: Comparison with GraphLab

We first evaluate graph analytics of CC, SSSP, TC on Twitter

in Figure 11(a). We can see that GraphLab-sync is faster than

MOCgraph at the price of huge memory consumptions. This is

because GraphLab exploits a vertex-replication strategy to reduce

inter-machine messages. Though it can lower the time cost, the

memory burden increases. We also notice that GraphLab-async

does not perform well as expected. For example, it runs nearly

2x and 7x slower than its async engine in CC and SSSP respec-

tively. This may due to its heavy lock contention, communication

overheads in distributed locking and the lack of message batching,

which has also been discussed in [9]. In contrast, MOCgraph-async

usually runs faster than MOCgraph-sync, as can be seen in Fig-

ure 10. In fact, the asynchronous execution in MOCgraph also re-

sides in supersteps, which allows asynchronous vertex updating to
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Figure 10: Memory Usage and Speedups: Lines marked as Giraph represent tasks running with Giraph. MOCgraph and Giraph can

run both in-memory and out-of-core. Giraph+Combiner stands for tasks running with Giraph and Combiner, which can run all in

memory, or with message partitions all in memory but vertex partitions out of core.

speedup convergence while reducing lock contentions by exploit-

ing message batching and partition-granularity locking.

Figure 11(b) compares the performance in terms of space/time

cost for running PageRank on varies of datasets. We run each case

for 5 iterations and report the average time. As can be seen that,

memory consumptions of GraphLab is about 5x larger than MOC-

graph, and GraphLab even fails to allocate memory with random5b

dataset. This is mainly due to the additional space for storing local

vertex replications. For natural graphs, this replication strategy is

effective in reducing the time cost, and it’s 2-3x faster than MOC-

graph on PageRank. However, the performance gap is narrowed

for random graphs, which are also commonly seen in bi-directional

social networks.

For applications with large intermediate results, MOCgraph can

achieve a similar or better performance than GraphLab. In Figure

11(c), we increase the number of landmarks and show the time/s-

pace cost. The results illustrate that time/space cost increases lin-

early as the landmark number increases for both GraphLab and

MOCgraph. GraphLab is still much more memory-consuming than

MOCgraph, and GraphLab-sync is even slower than MOCgraph for

running LM. In fact, even if a tiny part of the vertex value (a dis-

tance to a landmark) changes, GraphLab has to synchronize the

whole value (the distance table) among all the replicas, which is

very expensive. In contrast, MOCgraph allows users to send only

the affected parts, which saves a lot of time.

In addition, we should stress that the straightforward comparison

of Giraph and GraphLab is not the purpose of this paper, due to the

different implementation details between them, like programming

languages (e.g., GraphLab using C++ and Giraph using Java) and

communication layer implementations (MPI vs. Netty).

6.6 Summary
To sum up, we have the following observations. i) Asynchronous

execution in MOCgraph can speedup the convergence for many it-

erative graph analytics, which contributes to the time speedup. i-

i) Message online computing is memory-saving, and the proposed

optimization strategies can reduce the amount of disk I/Os, leading

to time reduction. iii) Compared with Giraph and its Combiner,

MOCgraph can achieve a 20x speedup on applications with large

intermediate results (Triangle Counting and Landmark Index Con-

struction), when the memory resources are limited. iv) Although

GraphLab is usually faster than MOCgraph, MOCgraph can still

gain a significant memory reduction. In addition, MOCgraph can

achieve a similar or better performance than GraphLab for some

analytics with large intermediate results.

Note that, in our implementation, we neither modified the core

in-memory data structures nor did any eager memory resource man-

agement. The performance gain may indicate the benefits of the

MOC-model and its data flow design, which can be also applied

to other existing distributed graph processing frameworks such as

GPS [18] and GraphLab [23].

7. RELATED WORKS
In this section, we review the related works on graph processing

frameworks.

Distributed Graph Processing System. Recently, a bunch of dis-

tributed graph processing frameworks have emerged. MapReduce

[5] is a general purpose framework for processing big data. Howev-

er, it’s not suitable to process large graphs due to its high iteration

costs, too many disk I/Os and complex representation for graph

algorithms. Pregel [7] introduces an all-in-memory vertex-centric

distributed graph processing framework. It adopts the BSP [22]

model and provides friendly user APIs. Apache Giraph [1], an

open source implementation of Pregel that runs on top of Hadoop,

is used by the Graph Search Service in Facebook [4], which can

process graphs with trillion edges. GPS [18] introduces the master

computation and optimizations like dynamic partitioning as well as

large adjacency lists partitioning.

GraphLab [23] and its latest version PowerGraph [8] abstract the

distributed graph operations as Gather, Apply and Scatter(GAS).
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PowerGraph requires a sum function to combine the gathered mes-

sages. It supports both synchronous and asynchronous executions,

and uses a vertex-cut graph partitioning method to handle natural

graphs. Though the vertex-cut approach releases the burden of net-

work communications, PowerGraph needs extra memory for stor-

ing the vertex mirrors, which is remarkably large especially when

the vertex value is of big size.

Giraph++ [21] adopts the idea of “think like a graph” to speedup

convergency of applications like Connected Components, by intro-

ducing asynchronous computing among local vertices. This strat-

egy works well on graph analytics whose local convergence can

help lead to a global convergence. Trinity [3] introduces dedicated

memory management, and supports both online and offline graph

analytics. However, it’s not open-sourced and does not mention its

out-of-core support [3].

Disk-Backed Graph Processing on a Single Machine. There are

also published works of large graph processing on a single ma-

chine, such as GraphChi [14], XStream [17], and TurboGraph [10].

These works are disk-backed, because the memory for a single ma-

chine is very limited. They improve the performance by reducing

the random access to disk or using modern SSD. Although they

can achieve comparable performances with distributed systems on

their test data, they still face the scalability issue. These systems

have inspired us to develop a distributed graph analysis framework

with disk support, to improve the scalability for applications with

massive intermediate data and for users with limited memories.

Graph Partitioning. Large graphs need to be partitioned, stored

and processed across multiple machines. There are many works fo-

cusing on the problem of graph partitioning [11, 8, 19]. Their par-

titioning strategies aim at reducing the number of edge-cuts [11]

or the number of vertex-cuts [8], to reduce the amount of inter-

machine messages. As reported in [13, 16], none of these parti-

tioning methods is always the best. Our hot partition strategy, on

the other hand, is a local reorganization strategy, which can be used

along with them to reduce the out-of-core I/O overheads.

8. CONCLUSION
This paper proposes MOCgraph, a distributed graph processing

framework to support scalable graph analytics. MOCgraph adopts

the message online computing model, which greatly reduces the

memory footprint. MOCgraph supports both asynchronous and

synchronous execution, to achieve convergence speedup and de-

terminism respectively. MOCgraph has an streaming-style out-of-

core execution, unified with the online computing data flow. Op-

timizations such as edges separation and hot-aware re-partitioning

can be used to further reduce the potential disk I/Os. Experiments

indicate that MOCgraph is space-efficient, providing opportunities

to support larger graphs or more complex analytics under the same

memory capacity. MOCgraph is also time-efficient especially for

those graph analytics with large intermediate results.
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