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ABSTRACT
Efficiently storing and searching collections of similar strings, such
as large populations of genomes or long change histories of doc-
uments from Wikis, is a timely and challenging problem. Sev-
eral recent proposals could drastically reduce space requirements
by exploiting the similarity between strings in so-called reference-
based compression. However, these indexes are usually not search-
able any more, i.e., in these methods search efficiency is sacrificed
for storage efficiency. We propose Multi-Reference Compressed
Search Indexes (MRCSI) as a framework for efficiently compress-
ing dissimilar string collections. In contrast to previous works
which can use only a single reference for compression, MRCSI
(a) uses multiple references for achieving increased compression
rates, where the reference set need not be specified by the user but
is determined automatically, and (b) supports efficient approximate
string searching with edit distance constraints. We prove that find-
ing the smallest MRCSI is NP-hard. We then propose three heuris-
tics for computing MRCSIs achieving increasing compression ra-
tios. Compared to state-of-the-art competitors, our methods target
an interesting and novel sweet-spot between high compression ratio
versus search efficiency.
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1. INTRODUCTION
Information systems for strings are an old [19], yet still highly
relevant research topic. The two most fundamental problems for
such systems are storage efficiency and search efficiency: How can
large string collections be stored in as little space as possible while
still performing string searching as fast as possible. One partic-
ularly important type of search is k-approximate substring search:
Given the collection of strings S and a query q, find all substrings of
strings in S similar to q within a given error threshold k. Several ap-
plications exist for which scalability of such operations is tremen-
dously important. We give two examples. In Bioinformatics, next
generation sequencing produces billions of DNA sequences (called
reads) in a single day, each between 50 and 400 characters long.
Analyzing this data first requires to determine the position of each
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read within the sequenced genome [14]. This problem, called read
mapping, amounts to perform a k-approximate search for each read
in the genome. In entity search, one needs to find the named
entities in text collections despite spelling variations [3]. For in-
stance, the Technische Universität Berlin could be represented as
’Technische-Universität Berlin’, ’Technische-Universitaet Berlin’,
or ’Technische- Universität in Berlin’. Such problems also fre-
quently occur in series of Wikipedia versions [24, 26]. Given a
set of versions, the task is to find all k-approximate occurrences of
the entity in the collection.
Standard approximate string search methods create an index on ei-
ther 1) each string in a collection separately or 2) a concatenation
of all strings. Both approaches typically lead to an index that is
larger than the sum of the length of all indexed strings. However,
in applications like those just described, the indexed documents
are highly similar to each other, which can be exploited to drasti-
cally reduce index sizes and indexing times. A number of methods
have been proposed recently that first referentially compress each
string in the collection against a pre-selected reference string [37,
38]. Then, searching is split up into two subtasks: 1) search the
reference string and 2) search all deviations of strings from the ref-
erence as encoded by referential compression. However, all these
methods are only applicable if all indexed strings are highly sim-
ilar to each other. This is, for instance, a problem when index-
ing genomes, since compressing a set of human genomes actually
means compressing 24 sets of highly similar chromosomes with
almost no similarity between the sets. Another problematic sce-
nario for these methods are histories of Wiki sites, as storing them
requires methods that can deal with a changing set of pages, as
pages may be removed or added. A second problem with being
restricted to a single reference is that these methods cannot exploit
similarities in-between the compressed strings – but only similari-
ties between those strings and the reference. Consider consecutive
versions of Wikipedia articles: Typically, each version is very simi-
lar to its version neighbours, but the first recorded version is usually
quite different from the most recent one, and no single version (i.e.
potential reference) is similar to all other versions.
In this paper, we propose the Multi-Reference Compressed Search
Index (MRCSI) which is capable of working with multiple refer-
ences to increase compression rates, chooses these references au-
tomatically, and also provides fast approximate search. The fun-
damental idea is simple (see Figure 1): MRCSI builds a compres-
sion hierarchy where strings are compressed w.r.t. various other
strings. Implementing this idea yields a number of challenges, in
particular to find appropriate algorithms and data structures (a) for
allowing high compression speed, (b) for choosing the best com-
pression hierarchy in terms of space, and (c) for achieving efficient
k-approximate search in a given compression hierarchy. Our paper
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Figure 1: Basic idea of multi-reference referential compression. Boxes are to-be-compressed strings, edges represent referential
compression; for instance, s=’Koala Coast’ could be represented with reference t=’Kohala Coast-Hawaii’ as [(0,2), a, (4,8)], indi-
cating that s = t(0,2)◦ a ◦t(4,8). Numbers in circles show the number of entries in the compressed representation. Description: a)
Collection of dissimilar strings. b) Prior work uses only one reference. Compression potential is lost. (c) Compression hierarchies
exploit identical substrings.

provides solutions to all these challenges:
1. We develop a framework for multiple reference compressed

search indexes (MRCSIs) for any kind of strings, e.g. text,
biological sequences, and semi-structured documents.

2. The question arises which MRCSI is the best. We present a
theoretical model for estimating the size of a given MRCSI.

3. We prove that finding the space-optimal MRCSI is NP-hard.
4. We propose three heuristics of increasing complexity for cre-

ating a MRCSI from a given string collection: Starting from
flat compression forests over general compression forests to
DAG-structured compression hierarchies. In all these set-
tings, reference strings are picked automatically.

5. Experimental results on real-world datasets show that our
heuristics build indexes up to 90% smaller than the state-of-
the-art while providing comparable search times.

The rest of this paper is structured as follows: We review related
work in Section 2. A formalization of string databases and referen-
tial compression is defined in Section 3. We present our framework
for multi-reference compressed search indexing in Section 4 and
also prove that finding the most compact MRCSI under a certain,
intuitive cost model is NP-hard. We introduce three heuristics for
building increasingly complex MRCSIs in Section 5. We report
on experimental results and compare our algorithms to the most
related approaches in Section 6. The paper concludes in Section 7.

2. RELATED WORK
We give an overview on prior work concerning string compres-
sion algorithms and report how compression techniques are used
for solving indexing/approximate search problems over document
collections in different areas.
String Compression: Compression has a long tradition in com-
puter science and related areas. A relative novel development are
referential compression algorithms [7, 17, 21, 30, 36] which en-
code (long) substrings of the to-be-compressed input with refer-
ence entries to another fixed string, called the reference. The com-
pression ratio of these methods grows with increasing similarity
between to-be-compressed strings and the reference and can sky-
rocket for very similar strings [8, 35]. For instance, standard com-
pression schemes achieve compression rates of 4:1–8:1 for DNA
sequences, while referential compression algorithms reach com-
pressions rates of more than 1,000:1 [7, 36] when applied to a set
of human genomes.
Compressing Semi-Structured Documents: Compressed inverted
text indexes [4, 29] are used for indexing versioned documents.
The general idea is to compress the list of occurrences for each
word using a standard compression algorithm, for instance, PFOR-
DELTA [39]. RLZ [16, 17] is a tool for referentially compressed
storage of web-collections achieving high compression ratios, but

does not directly support approximate search; in Section 6, we will
compare against a modified version of this tool which does allow
searching. A technique for increasing the compression ratio of
RLZ-based compression was proposed recently [34]: By eliminat-
ing rarely used parts from the dictionary, significant improvements
over the compression ratios are reported, but - as RLZ - without a
search index.
Compressed Indexing in Specific Domains: Managing string col-
lections is particularly important in Bioinformatics. Several algo-
rithms recently emerged that compress a set of genomes against
a reference. GenomeCompress [38] creates a tree representation
of differences between a collection of genomes using an align-
ment technique. In our prior work, we presented RCSI [37] which
uses an alignment-free referential compression algorithm [36] and
additionally builds a compressed index for allowing approximate
searches. We showed that RCSI outperforms GenomeCompress
by at least an order of magnitude. Three very recent proposals
are [6, 10, 33], which either 1) achieve impressive compression
rates but exploit the existence of a multiple sequence alignment for
all strings [6, 10] (very time consuming for long/many strings), or
2) do not find all matches for a given query [33], since they only
construct a so-called pan-genome, which contains less information
than the collection of sequences [6].
Theoretical Computer Science: Given upper bounds on pattern
lengths and edit distances, [11] preprocesses the to-be-indexed text
with LZ77 to obtain a filtered text, for which it stores a conven-
tional index. But [11] has not been demonstrated to scale up to
multi-gigabyte genomic data [6]. Grammar-based compressors, as
XRAY [2], RE-PAIR [22], and the LZ77-based compressor LZ-
End [20], have enormous construction requirements, limiting their
application to small collections. Other work addresses related prob-
lems over highly-similar sequence collections, e.g., document list-
ing [12] and top-k-retrieval [27].

3. PRELIMINARIES
A string s is a finite sequence of characters from an alphabet Σ.
The concatenation of two strings s and t is denoted with s ◦ t. A
string s is a substring of string t, if there exist two strings u and v
(possibly of length 0), such that t = u◦ s◦ v. The length of a string
s is denoted with |s| and the substring starting at position i with
length n is denoted with s(i,n). s(i) is an abbreviation for s(i,1).
All positions in a string are zero-based, i.e., the first character is
accessed by s(0). Given strings s and t, s is k-approximate similar
to t, denoted s∼k t, if s can be transformed into t by at most k edit
operations (replacing one symbol in s, deleting one symbol from s,
adding one symbol to s). Given a string s and a string q, the set of all
k-approximate matches in s with respect to q, denoted search(s)k

q,

462



Algorithm 1 Compression against multiple references

Input: to-be-compressed sequence s and collection of reference
sequences REF = {re f1, ...,re fn}
Output: referential compression rcs of s with respect to REF

1: Let rcs be an empty list
2: while |s| 6= 0 do
3: Let pre be the longest prefix of s, such that (pos, pre) ∈

search(re fi)
0
pre, for a number pos, and there exists no 1 ≤ j ≤ n,

with j 6= i and re f j contains a longer prefix of s than re fi
4: if s 6= pre then
5: Add (re fi, pos, |pre|,s(|pre|)) to the end of rcs
6: Remove the first |pre|+1 symbols from s
7: else
8: Add (re fi, pos, |pre|−1,s(|pre|−1)) to the end of rcs
9: Remove the prefix pre from s

10: end if
11: end while

is defined as the set search(s)k
q = {(i,s(i, j)) | s(i, j) ∼k q}. This

definition is naturally extended to searching a database (or col-
lection) of strings: A string database S is a collection of strings
{s1, ...,sn}. Given a query q and a parameter k, we define the
set of all k-approximate matches for q in S as DBsearch(S)k

q =

{(l,search(sl)
k
q) | sl ∈ S}. For example Orchid ∼1 Orchied, be-

cause the symbol e can be removed from Orchied with one delete
operation to obtain Orchid. If S = {s1,s2}, with s1 = Orchid and
s2 = Orchied, DBsearch(S)1

hid = {(1,{(3,hi),(3,hid),(4, id)}),
(2,{(3,hi),(3,hie),(3,hied)})}.
Intuitively, the problem we study in this paper is the following:
How can we encode a string database S, such that (a) the encoding
requires as little space as possible and (b) k-approximate searches
can be performed efficiently. The basic technique we use for storing
strings in a compact manner is to compress them by only storing
differences to other strings, called references [7, 21, 36].

DEFINITION 1 (REFERENTIAL COMPRESSION). Let REF be
a set of reference strings and s be a to-be-compressed string. A
tuple rme = (re f id,start, length,mismatch) is a referential match
entry (RME) if re f id ∈ REF is a (identifier for a) reference string,
start is a number indicating the start of a match within re f id,
length denotes the match length, and mismatch denotes a symbol.
A referential compression of s w.r.t. REF is a list of RMEs
rcs = [(re f id1,start1, length1,mismatch1), ...,
(re f idn,startn, lengthn,mismatchn)] such that
(re f id1(start1, length1)◦mismatch1)◦ ...◦
(re f idn(startn, lengthn)◦mismatchn) = s.
The size of a RME (re f id,start, length,mismatch) is defined as
length+ 1. The offset of a RME rmei in a referential compres-
sion rcs = [rme1, ...,rmen], denoted o f f set(rcs,rmei), is defined
as ∑ j<i |rme j|.
Algorithm 1, shown here only for illustration, is a simple method
for computing a referential compression against multiple references.
It compresses the input string s from left to the right, replacing the
longest prefix of s which can be found in any of the references
in REF = {re f1, ...,re fn} with a RME. This algorithm is space-
optimal, if the storage necessary for RMEs is uniform [5]. De-
compressing a referentially compressed string rcs is equally sim-
ple: We traverse rcs from left to right and replace each RME with
its decompressed string, where the decompression of a single RME
rme = (re f id,start, length,mismatch) is re f id(start, length) with
the mismatch character mismatch concatenated to the end.

EXAMPLE 1. We have a set of strings S = {s1, ...,s6} with
s1 = Kohala Coast-Hawaii,s2 = Koala Coast,

s3 = Koala Coast/Hawaii,s4 = Kola CoasthHawaii,

s5 = Orchid Island,s6 = Orchied Island.

One example for a referential compression of s2 against s1 is rcs2 =
[(1,0,2,a)(1,4,7, t)], since we have s2 = s1(0,2) ◦ a ◦ s1(4,7) ◦ t.
Similarly, we can referentially compress s5 against s1:

rcs5 =[(1,0,0,O),(1,0,0,r),(1,0,0,c),(1,2,1, i),
(1,0,0,d),(1,6,1, I)(1,10,1, l)(1,3,1,n)(1,0,0,d)].

However, this referential compression is obviously not a good com-
pression, since the number of RMEs (9) is very close to the num-
ber of symbols (13) in the original string s5. Intuitively, we would
like to compress strings against similar references only, in order to
exploit similarities for compression. Furthermore, exploitation of
similarities against multiple references often decreases the number
of RMEs further. Below is an example, where s1 and s5 are (uncom-
pressed) references, s2 is referentially compressed against {s1}, s3
is compressed against {s1,s2}, s4 is compressed against {s1,s2},
and s6 is compressed against {s5}:

comp(s1,{s1}) = [(1,0,18, i)]
comp(s2,{s1}) = [(1,0,2,a)(1,4,7, t)]
comp(s3,{s1,s2}) = [(2,0,11,/),(1,13,5, i)]
comp(s4,{s1,s2}) = [(2,0,2, l),(2,4,7,h)(1,13,5, i)]
comp(s5,{s5}) = [(5,0,12,d)]
comp(s6,{s5}) = [6 : (5,0,5,e),(5,5,7,d)].

For convenience of notation, a primary reference is denoted as com-
pressed to itself; an example is comp(s1,{s1}) above. This allows
us to simply represent every string as a compressed string.
Since we consider REF to be a set, as opposed to related work, this
opens the novel and challenging question of which strings should
be considered as references; furthermore, it opens the door to mix
references and none-references, i.e., to also use compressed strings
as references for other compressed strings. We formalize and study
these problems in the following sections.

4. COMPRESSION AND INDEXING
We present a compressed search index using multiple references for
indexing dissimilar string collections, called MRCSI. We present
the general framework in Section 4.1. In Section 4.2, we show
how this framework can be extended to allow efficient approximate
search. A cost-model for MRCSI is described in Section 4.3, where
we also show that the problem of finding the smallest MRCSI for a
given string database under this cost model is NP-hard.

4.1 Compression of Dissimilar Strings
In general, a multi-reference compressed string database encodes
only few strings from a string database in an uncompressed repre-
sentation. These uncompressed strings, called primary references,
are stored literally. They serve as anchor blueprints for the com-
pressed strings; these are stored as referential compressions us-
ing all uncompressed primary references and all other compressed
strings as possible references (we have to take care that the result-
ing structure is cycle-free).

DEFINITION 2 (MRCSD). For string database S= {s1, ...,sn},
a multi-reference compressed string database (MRCSD) is a pair
(PREF,COMP), where PREF ⊆ S is the set of primary references
and COMP is a set of referential compressions such that ∀rcsi ∈
COMP: decomp(rcsi) = si and the chain of references encoded in
the referential compressions is cycle-free (with the exception of the
compressed notation of primary references).
There are several things to note in this definition. First, the set
of primary references PREF may, in general, contain more than
one element, i.e., multiple strings may serve as anchors, which al-
lows higher compression rates by having more choices to find long
matches stored as a single RME. Second, a MRCSD only stores
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strings in PREF in uncompressed form and all other strings from S
as referential compressions; as PREF usually is small, most strings
are stored in compressed format only. Third, strings represented in
COMP are compressed not only using PREF as potential refer-
ences, but also other strings encoded in COMP may serve as ref-
erences. This helps to further reduce space, as it avoids enlarging
PREF (which is not compressed) yet still allows to exploit com-
monalities between essentially all strings in the collection.
To avoid cyclic references, our definition requires that the structure
of compressed-against relations of a MRCSD is cycle-free. This
cycle-freeness is ensured by building a reference dependency graph
(which we shall also use to visualize MRCSD). The reference de-
pendency graph of a given MRCSD is a graph with compressed
strings and its primary references as nodes, and there exists a path
from node n1 to node n2, if n2 occurs in at least one RME of n1.1

DEFINITION 3 (REFERENCE DEPENDENCY GRAPH).
The reference dependency graph rdg = (N,E) of (PREF,COMP)

is a digraph with N = PREF ∪COMP and there is a path from x to
y, if and only if x ∈COMP∧∃s, l,m : (y,s, l,m) ∈ x.
Three possible reference dependency graphs for the strings in Ex-
ample 1 are shown in Figure 2.
Clearly, the space required by a MRCSD for a given string database
S critically depends on the structure of its reference dependency
graph, as this graph determines how and where common substrings
can be represented as RMEs (see Figure 1). Unfortunately, the
space of possible MRCSDs is exponential in n = |S|, as the number
of different cycle-free reference dependency graphs, i.e., O(2(n

2−n))),
is a lower bound for the number of valid compressed string databases.
We get back to the problem of finding an optimal compressed string
database in Section 4.3.

4.2 MRCSI: Approximate Search in MRCSDs
So far, we only considered possible ways for compressing a string
database using multiple references, but we disregarded our second
goal, i.e., to allow efficient k-approximate search. Algorithms using
referential compression with a single reference typically perform
k-approximate search in two stages [37, 32]: In Stage 1, the query
string q is searched only in the (single) reference, which, to support
this stage efficiently, is stored in indexed form, for instance using
suffix trees. Given all matches for q in the reference, matches are
propagated to all RMEs subsuming these matches. Of course, any
implementation must take care to find all k-approximate matches.
In Stage 2, matches stretching over more than one RME must be
detected. To this end, systems like RCSI build and index a set
of additional strings each of which spans over (at least) two adja-
cent RMEs, thus covering those parts of the compressed strings not
present as a consecutive substring in the reference. Combining the
results from both stages yields all k-approximate matches of q in
the compressed strings.
We apply the same idea to MRCSDs with their more complicated
reference structures. First, we find all matches inside RMEs by

1We ignore the reflexive edges introduced by compressed represen-
tations of primary references, see Definition 2.
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Figure 2: Possible reference dependency graphs for strings in
Example 1. In the left graph, PREF = {s1}, in the middle and
right graph, PREF = {s1,s5}.

searching an index over strings in PREF . For Stage 2, we ex-
tract all substrings from each string from COMP not represented
within a single RME in a preprocessing step. Additionally, we have
to propagate all found matches through the reference dependency
graph using breadth-first traversal starting from all primary refer-
ences (recall that the graph is cycle-free).

4.2.1 Stage 1: Searching the references
In our implementation, we store all primary references as com-
pressed suffix trees (CSTs). We compute all matches for query
q following the seed-and-extend paradigm [1], exploiting the fact
that an alignment which allows at most k mismatches must contain
at least one exact match (usually called ”seed”) of a substring of
length

⌊
|q|

k+1

⌋
. Second, we propagate matches from references to

the compressed strings, by keeping track of all compressed refer-
ences using a RME propagation map.

DEFINITION 4 (RME PROPAGATION MAP). Given a refer-
ential compression rcs = [rme1, ...,rmen] against references re f =
{s1, ...,sm}, a RME propagation map pm maps string ids {s1, ...,sm}
to interval trees [25], such that interval (start, length) is contained
in interval tree pm(si), if and only if there exists a RME rme j =
(si,start, length,mismatch) in rcs. In addition to intervals, we add
information of the RME offset to each interval tree entry.
The definition of RME propagation maps are naturally extended to
a set of referential compressions (COMP in MRCSDs), by keeping
track of string ids in addition to RME offsets. We exploit RME
propagation maps to propagate matches from reference strings to
compressed strings. Assume that a k-approximate occurrence of q
is found in reference s1, starting at position matchs with length
matchl . The interval tree of s1 allows us to efficiently find all
RMEs of compressed sequences which are containing the interval
(matchs,matchl). All compressed strings with these RMEs nec-
essarily have a k-approximate occurrence of q. The position of
an occurrence depends on 1) the relative start of the match to the
start of the interval and 2) on the offset of the RME in the com-
pressed sequence. Both are computed and retrieved with the inter-
val tree, since we explicitly added RME offsets. We show an ex-
ample for RME propagation maps below, after discussing Stage 2
of our search algorithm.

4.2.2 Stage 2: Searching overlaps
Matches that are not included inside a RME, must overlap at least
two RMEs2. The position and length of these overlaps depends
on the actual query length and error threshold k. Let δ = maxql +
maxed − 1, where maxql is the maximum length of a query and
maxed is the maximum edit-distance threshold. The value δ re-
stricts the area around mismatch characters (δ characters to the
left/right) within which a match for a query can occur. We extract
all these overlap strings and record their positions in an overlap
map.

DEFINITION 5 (OVERLAP MAP). The overlap string for a
rme = (re f id,start, length,mismatch) in a referential compression
rcs of s is defined as s(o f f set(rcs,rme) + length− δ ,δ ∗ 2+ 1).
Given a MRCSD (PREF,COMP), its overlap map is a map from
strings to a set of pairs (rcs, pos), defined as ovl(o) = {(rcs, pos) |
rcs∈COMP∧o is an overlap string of a rme∈ rcs starting at pos}3.
With an overlap map we can recover the positions of overlap strings
within the compressed strings. However, we still have to define

2More precisely, these matches must overlap at least the mismatch
character of one RME.
3Note that we only store the ID of each rcs in each pair (rcs, pos).
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We have M={(s1,{(8,oa},(8,oas)}),(s2,{(1,oa},(1,oal)})} and set M*=M.

The intervals (8,2) and (8,3) are looked up in the interval tree for s1: Both are 

covered by (0,18) from s1:0 and (4,7) from s2:3. We already have the matches in 

s1, and thus add only {(s2,{(7,oa},(7,oas)})} to M*.

The intervals (1,2) and (1,3) are looked up in the interval tree for s2: Both are 

covered by (0,11) from s3:0. We add {(s3,{(1,oa},(1,oal)})} to M*. 

The first iteration is finished and we set M=M*.

We only need to check for new {(s2,{(7,oa},(7,oas)})} and {(s3,{(1,oa},(1,oal)})}. 

Since we have no RME propagation map for s3, the matches for s3 cannot be 

propagated further. The intervals (7,oa) and (7,oas) are looked up in the interval 

tree for s2: We have covering intervals (0,11) and (4,7), which lead to the 

following new matches in M*: {(s3,{(7,oa},(7,oas)})} and {(s4,{(6,oa},(6,oas)})}

The second iteration is finished and we set M=M*.

Since we have no RME propagation maps for s3 or s4, we are finished.

The overall result is:

M={(s1,{(8,oa},(8,oas)}),(s2,{(1,oa},(1,oal),(7,oa},(7,oas)}),(s3,{(1,oa},(1,oal),

(7,oa},(7,oas)}),(s4,{(6,oa},(6,oas)})}.0:waii 4:land 8:oast 12:chied 17:Koala 22:Kola C 28:asthHaw 35:ast/Haw

Query ‘oad’ is split into seeds ‘oa’ and ‘d’, the seeds’ positions retrieved and 

extended for full 1-approximate matches. This yields the 1-approximate 

matches (8,oa) and (8,oas) in s1 and no match in s5.

=> The resulting M is: {(s1,{(8,oa},(8,oas)})}

Query ‘oad’ is split into seeds ‘oa’ and ‘d’, the seeds’ positions retrieved and 

extended for full 1-approximate matches. This yields the following 1-

approximate matchs:

- (0,oa) and (0,oad) in ‘oast’ 

Since ‘oast’ is contained in s2 at position 7, we add matches (7,oa) in s2 

and (7,oa) in s2 to M

- (1,oa) and (1,oal) in ‘Koala’

Since ‘Koala’ is contained in s2 at position 0, we add matches (1,oa) in s2 

and (1,oal) in s2 to M

Figure 3: Index example for the compressed strings from Example 1. The left part of the figure visualizes the index components
and the right parts sketches the 1-approximate search for query ’oad’. We have created the index with maxql = 3 and maxed = 1. In
interval trees, dashed lines denote occurrence annotations.

an efficient technique to find matches in overlaps. Naive traver-
sal over the overlap map at query time is slow, since each overlap
string has to be accessed, while often only few overlap strings do
contain a match for a seed. Therefore, we create an index for all
overlap strings as follows: Given that the overlap map contains
strings o1, ...,on as keys, we create a compressed suffix tree over
the concatenation ototal = o1 ◦ ... ◦ on. The overlap map together
with the compressed suffix tree for ototal is called indexed overlap
map. For very short RMEs and large δ , overlaps can overlap each
other, since they are extracted from nearby locations in the strings.
Indexing a concatenation of these overlaps possibly leads to a waste
of space. It is interesting to address this problem in the future by
using an index structure tailored towards storing short and possi-
bly similar strings. However, naive approaches like Patricia tries
will not work, since these only identical prefixes are exploited for
space reduction. Alternatives are the use of directed acyclic word
graphs [13] or partition-based approaches [18]. We leave this anal-
ysis for future work.
Clearly, using the compressed suffix tree over ototal , we can find
all occurrences of seeds in each oi, given a simple data structure
which keeps track of the position of each oi in ototal . At search
time, we first look up query seeds in the CST of ototal , apply the
extend algorithm to find all k-approximate matches (still working
on ototal only), then project all matching positions from ototal to the
oi, and finally exploit the overlap map to project the matches from
oi back to the compressed strings, using location augmentations.

4.2.3 Finding all Matches
The above technique for finding k-approximate matches is still in-
complete, since matches have to be propagated along paths in the
reference dependency graph. The sound and complete algorithm,
therefore, is described next: First, all matches contained in primary
references are identified, with seed-and-extend and the compressed
suffix trees for primary references. Second, all overlap matches are
identified, with seed-and-extend and the compressed suffix tree for
all concatenated overlaps. At this stage, we have a set of initial
matches in some strings, which we denote with M. These initial
matches in M are propagated from references to referential com-
pressions, by exploiting the interval tree: for each match in M, we
access the interval tree of the string containing the match and iden-
tify all intervals from compressed strings subsuming this match.
From these intervals, we reproduce the original occurrence posi-
tions of matches and add them to M. After one iteration, we obtain
a new M, which contains the initial matches together with the newly
derived matches. The procedure is repeated for the new M, until a
fixed point is reached, i.e. M does not give rise to new matches
regarding the interval trees.

EXAMPLE 2 (MRCSI). In Figure 3, we show an example for
searching the strings from Example 1 for the query ’oad’ with k= 1.
We would like to point out that multiple matches in the reference
have to be evaluated and propagated separately, since a non-identical
interval in the reference could have different subsuming intervals.
Thus, even if the same match is found several times in the refer-
ence, they have to be propagated one-by-one.
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4.2.4 MRCSI
The set of indexed primary references together with an indexed
RME propagation map and indexed overlap map yields a multi-
reference compressed search index (MRCSI).

DEFINITION 6 (MRCSI). Given string database S= {s1, ...,sn}
and a multi-reference compressed string database mrcsd for S, a
multi-reference compressed search index (MRCSI) for S is a tu-
ple mrcsi = (IPREF,rmemap,ovlmap) where IPREF is a collec-
tion of compressed suffix trees for the primary references in mrcsd,
rmemap is an indexed RME propagation map for mrcsd and ovlmap
is an indexed overlap map for mrcsd.
A MRCSI index structure contains all necessary for k-approximate
search in string collections. We prove soundness and completeness
of our search algorithm over MRCSIs.

PROPOSITION 1. Given a string database S = {s1, ...,sn}, ev-
ery MRCSI of S finds all k-approximate matches (and only these).

PROOF. k-approximate matches in a compressed string rcs have
to either 1) be completely covered by a RME or 2) overlap at least
two RMEs. For 1), if the match is contained inside a RME, then
it must occur in one of the references of rcs. If the reference is
primary, then them match is found via the compressed suffix trees
in IPREF and forwarded to rcs with the RME propagation map.
Otherwise, the reference is not primary (which is discussed below).
For 2), the indexed overlap map contains all overlaps of length up
to δ over two or more RMEs. Since a k-approximate match can
never be longer than δ , the match is inside the overlap map and
propagated to the position of the compressed sequence by using
the offset information stored in the interval tree.
The remaining case, that the match is completely covered by a
RME and reference is not primary, can be shown by induction,
since all matches in the non-primary reference are eventually found
(induction hypothesis) and the RME propagation map propagates
all matches covered by RMEs in rcs to their positions (induction
step).
The space requirement of the basic MRCSI index structure is de-
termined by the number N of strings, the maximum length L of
strings, and their degree of similarity. In the worst-case, all strings
are maximum dissimilar, e.g., their alphabets are disjoint, yet all
strings are (inefficiently) compressed against the reference. The
space complexity is estimated as follows: There exists exactly one
reference string re f , with length at most L, and all other N − 1
strings are compressed against re f . In the worst case, each charac-
ter requires its own RME, yielding at most (N−1)∗L RMEs. The
size of the compressed suffix tree for re f is in O(L) and the size
of the RME propagation map is in O(L∗N), since we have at most
L ∗ (N−1)+1 RMEs. The size of the overlap map is in O(L ∗N)
as well, since we create one overlap for each RME, all of which
are unique. We have O(L∗N) augmentations of occurrences in the
RME propagation map and in the overlap map. In total, we obtain
a worst-case space complexity of O(N ∗L). The worst-case space
complexity is the same as if we create a compressed suffix tree over
the concatenation of all strings. We discuss the hardness of creating
a space-optimal MRCSI next.

4.3 Optimal MRCSI’s
We develop a cost-model for estimating the size (in bits) of a given
mrcsi = (IPREF,rmemap,ovlmap) for a string database S. We es-
timate the overall size by an estimation of the size of each of the
three components. In the following we assume that L is the length
of the longest string in S. Thus, position values and length val-
ues for strings can be stored with B = dlog2(L)e bits. Primary
references: For each (uncompressed) primary reference, we store
a compressed suffix tree. Symbolic regression of index sizes for

random strings showed that the size of a compressed suffix tree
for a Σ-string s can be estimated with 8∗ |s| ∗ (1.48+

√
0.01∗ |Σ|)

bits. Thus, the size of IPREF plus their suffix trees is estimated
with COST 1 = ∑s∈IPREF 8 ∗ |s| ∗ (1+ 1.48+

√
0.01∗ |Σ|). Note

that we store the original PREF in addition to the suffix trees,
as extracting substrings from a compressed suffix tree is rather
slow [36]. Thus, we perform the verification-phase of the seed-
end-extend algorithm for approximate search on the original string
and not on the compressed suffix tree. Indexed RME propaga-
tion map: The RME propagation map assigns interval trees with
occurrence augmentations to reference sequences. A single inter-
val entry consists of start and length of the interval, which yields
2 ∗B bits. An occurrence augmentation consists of a string iden-
tifier and a position, which sums up to dlog2(|S|)e+B. The total
amount of storage required for a single interval tree is estimated
with 2 ∗N ∗ (2 ∗B)+Y ∗ dlog2(|S|)e+B), where N is the number
of interval entries in the interval tree and Y is the number of occur-
rence records in the interval tree. Thus, in total we have COST 2 =
∑z∈Z(2 ∗Nz ∗ (2 ∗ B) +Yz ∗ dlog2(|S|)e+ B)) bits for storing the
RME propagation map, where Z is the set of interval trees, i.e. ref-
erences in the original MRCSD. Indexed overlap map: The over-
lap map asserts to each unique overlap string a list of occurrences
in compressed strings. A single map entry needs 8 ∗ (δ ∗ 2+ 1)
bits for the overlap string and N ∗ (dlog2(|S|)e+ B) bits for the
occurrences. In total, the size of the overlap map is estimated
with COST 3 = X ∗(8∗(δ ∗2+1)+Y ∗(dlog2(|S|)e+B))+ovlcst,
where X is the number of unique overlap strings, Y is the number of
occurrence records in the domain of the overlap map, i.e., number
of RMEs in the original MRCSD, and ovlcst is the estimated length
of the CST over all concatenated overlaps.
In total, we have an estimated cost (in bits) for a compressed search
index of COST ((IPREF,rmemap,ovlmap)) =
COST 1+COST 2+COST 3. Based on this model, we define the
problem of finding the smallest MRCSI for a string database S.

DEFINITION 7 (MINIMAL MRCSI). A multi-reference com-
pressed search index mrcsi is minimal for a string database S, if
there exists no other mrcsi2 for S with COST (mrcsi2)<COST (mrcsi).
The MRCSI size optimization problem is to find a minimal mrcsi
for a string database S. The MRCSI size decision problem is to
decide whether there exists a MRCSI with cost C for S.

PROPOSITION 2. MRCSI size decision problem is NP-hard.
PROOF. First, we show that the problem is in NP. Given a multi-

reference compressed search index mrcsi, we obviously can com-
pute the cost of mrcsi and compare it to C. Now we prove that
the problem is NP-complete, by reduction to the Subset-Sum deci-
sion problem, which is known to be NP-complete. Given a set of
integers I = {i1, ..., in} and value z, the question of Subset-Sum is
whether there exists a subset of I∗ ⊆ I, with ∑i∈I∗ i = z. It is easy
to see that the decision problem for a simplified COST1-function
alone is sufficient to model Subset-Sum. Let COST 2=COST 3= 0
and S = {s1, ...,sn}, such that each string s j has length i j. Further-
more, let COST 1 = ∑s∈PREF |s|. The solution to the MRCSI size
decision problem coincides with the Subset-Sum decision problem.
Altogether, the MRCSI size optimization problem is NP-hard.

5. HEURISTICS FOR COMPUTING MRCSI
Given Proposition 2, it is not possible to design a polynomial-time
algorithm for solving the MRCSI size optimization problem, unless
P=NP. In this section we develop three heuristics that each consid-
ers only a certain subset of all possible MRCSD structures, where
the number of possible references is increased from heuristic to
heuristic. This also leads to gradually increasing compression ratio
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in practice (see Section 6):
• Partition (CPart) in Section 5.1: We restrict MRCSI such

that each string is compressed against a single primary refer-
ence, while there can be several primary references in total.
• Compression Forests (CForest) in Section 5.2: We extend

CPart to exploit similarities between non-primary references,
by introducing a new indexing technique, called compression
forests.
• Compression DAG (CDAG) in Section 5.3: Compression

forests are generalized to directed acyclic graphs.
Below, we only describe how to compute PREF and COMP for
each heuristic. Computation of (indexed) RME propagation map
and (indexed) overlap map is straight-forward and the same for all
three heuristics.

5.1 Partition (CPart)
We introduce CPart, a compression strategy that splits a given
string database S = {s1, ...,sn} into a set of primary references and
referentially compressed strings, such that each referentially com-
pressed string is encoded w.r.t. exactly one primary reference. Note
that finding a minimal such MRCSI is again NP-hard, since Subset-
Sum can be reduced to this problem (proof omitted for brevity).
CPart indexes all strings in the collection S={s1, ...sn} iteratively.
Starting with an empty MRCSD (PREF = /0 and COMP = /0), it
begins with processing s1. Since there is no primary reference yet,
s1 cannot be compressed against an existing primary reference. We
add s1 to PREF , and obtain PREF = {s1} and COMP = {s1}4.
Next, we process s2. We have two options: 1) s2 is added as a new
primary reference or 2) s2 is referentially compressed against s1.
Note that we can, in principle, compute the exact storage cost for
both options (see Section 4.3) but this would be slow; how this
can be approximated efficiently is described below. We choose
the option which minimizes storage: If s1 and s2 are rather un-
related, we choose the first option because the referential compres-
sion (plus overlaps) would use more space than if we add s2 as
a new primary reference. In this case we get PREF = {s1,s2}
and COMP = {s1,s2}; if s1 and s2 are rather similar, we would
get PREF = {s1} and COMP = {s1,s2}. When we next add s3,
we have three options: 1) s3 is added as a new primary reference,
or 2) s3 is referentially compressed against s1, or 3) s3 is referen-
tially compressed against s2. CPart first chooses the primary refer-
ence which would allow for the best compression of s3, i.e., it first
chooses among options 2 and 3 and then compares the winner to
option 1. The remaining strings are added in the same way. The
complete CPart-algorithm is shown in Algorithm 2.
To decide which option is the least space-intensive, Algorithm 2
needs to compute the number of RME’s necessary for compress-
ing one string w.r.t. another. We call this property compressibil-
ity. This quantity can be computed quickly if the two strings are
similar using a technique called local matching optimization [36].
In experiments, we achieved main-memory compression speed of
more than 500 MB/s. However, if the to-be-compressed string and
the reference have only few similarities, the compression speed de-
grades recognizably (down to 10-50 KB/s in tests). Algorithm 2
very often has to compute compressibility between probably dis-
similar strings. To cope with this issue, CPart only estimates com-
pressibility using N parts of the to-be-compressed string s: s is split
into N blocks and the longest prefix of each block is looked up in
the existing references. The lengths of the matches are averaged
and exploited as an estimation of the average length of the RMEs
for the whole strings. In our experiments, we fixed N to log2(|s|).
4String s1 is a primary reference, yet denoted with one RME as a
compressed string.

Algorithm 2 Computation of MRCSI-CPart

Input: String database S = {s1, ...,sn}
Output: MRCSI (IPREF,rmemap,ovlmap)

1: Let PREF =COMP = rmemap = ovlmap = /0
2: for 1≤ i≤ n do
3: Let cost1 = ∞

4: if |PREF |> 0 then
5: Find pre f ∈ PREF such that |comp(si)| is approximately

minimal (si is compressed with respect to pref)
6: Let rcs = comp(si) (si compressed against pre f )
7: Let cost1 be the cost if rcs is added to MRCSI
8: end if
9: Let cost2 be the cost if si is added as a new primary reference

10: if cost2 > cost1 then
11: Let COMP =COMP∪{rcs}
12: else
13: Let PREF = PREF ∪{si}
14: Let COMP =COMP∪{[(si,0, |si|−1,si[|si|−1]])}
15: end if
16: end for
17: Compute IPREF from PREF
18: Compute rmemap from (PREF,COMP)
19: Compute ovlmap from (PREF,COMP)
20: Return (IPREF,rmemap,ovlmap)

This was sufficient to find any reference with sufficient degree of
similarity.
Obviously, CPart essentially performs a compressibility-based clus-
tering of the strings in the collection. Therefore, existing string
clustering techniques might be applicable as well. However, the
major challenge in clustering is to define a similarity criterion suit-
able for the particular problem at hand. A popular choice when
clustering strings is the edit distance, but computing it is slow (O(|s1|∗
|s2|)), and it is not always positively correlated to compressibility.
For instance, the strings s1 = anbn and s2 = bnan have a large edit
distance (2 ∗ n), but still a high compressibility, i.e. s2 can be en-
coded with two RMEs into s1. Still, it remains an interesting topic
for future work to experiment with other, more efficient similarity
measures, such as the Jaccard coefficient over q-grams.

5.2 CForest
CPart overcomes the shortcoming of methods like RCSI to use only
a single reference during compression. However, each string still
is only compressed against a single primary reference. Similari-
ties between compressed strings are not exploited, which neglects
ample compression potential.

EXAMPLE 3. We have a set of strings S = {s1, ...,s3} with
s1 =Kohala Coast-Hawaii,s2 = Kola CoasthHawaii,

s3 =Kola CoasthHawii.
We obtain the following referential compression:

comp(s2,{s1}) =[(1,0,2, l),(1,5,7,h),(1,13,5, i)]
comp(s3,{s1}) =[(1,0,2, l),(1,5,7,h),(1,13,3, i)(1,0,0, i)]

If s2 is used as additional reference for s3, then we obtain the
shorter compression for s3: [(2,11,2, l), (1,13,3, i)(1,0,0, i)], by
replacing the identical RME sublist [(1,0,2, l),(1,5,7,h)] with a
reference into s2.
We capture such ideas in so-called second-order compression. In
contrast to CPart, second-order compression also considers refer-
ences into referential compressions instead of only uncompressed
strings. This is achieved by greedily rewriting an existing refer-
ential compression (against a primary reference) into one against
other referential compressions, by replacing consecutive RMEs oc-
curring in the to-be-rewritten compressed string and the compressed
reference strings by one second-order RME into the compressed
reference string.
Indexing RMEs: Given a collection of referential compressions
R = {rcs1, ...,rcsn}, as obtained by CPart, we create a hashmap
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Algorithm 3 Rewriting a referential compression against another
referential compression

Input: To-be-rewritten referential compression rcs j , reference ref-
erential compression rcsre f
Output: Referential compression result

1: Let result be an empty list of referential match entries
2: while |s| 6= 0 do
3: Let pre be the longest prefix of rcs j , that is an infix of rcsre f
4: if |pre| ≤ 1 then
5: result = result ◦ rcs j(0)
6: Remove rcs j(0) from rcs j
7: else
8: Add (i,o f f set(rcsre f , pre(0)),(∑rme∈pre |rme|) − 1,c) to

the end of result, where c is the mismatch character of the last
RME in pre

9: Remove the prefix pre from rcs j
10: end if
11: end while
12: Return result

Algorithm 4 Computation of MRCSI-CForest

Input: String database S = {s1, ...,sn}
Output: MRCSI (IPREF,rmemap,ovlmap)

1: Let IPREF be the set of primary references of CPart and COMP
the referential compression

2: Let NEWCOMP = /0
3: Let rdg be an empty reference dependency graph
4: for 0≤ i≤ |COMP−1| do
5: Select (by sampling) the most similar referential compression

to COMP[i] from COMP[0, i−1], let the result be rcs
6: Let re f cands be the set containing rcs and all its direct/indirect

parents in rdg
7: Rewrite COMP[i] against re f cands and let the result be ncomp
8: Append ncomp to NEWCOMP
9: Add ncomp as a child of rcs in rdg

10: end for
11: Compute newrmemap from (PREF,NEWCOMP)
12: Compute newovlmap from (PREF,NEWCOMP)
13: Return (IPREF,newrmemap,newovlmap)

from RMEs to offsets of RMEs in the referential compressions.
For each RME in R we store the identifier of the referential com-
pression and offsets where the RME occurs. Second-order com-
pression is implemented, on top of this RME hashmap, with an
algorithm very similar to the referential compression algorithm for
computing RMEs: We simply replace the alphabet Σ with the set
of all RMEs. This idea is implemented in Algorithm 3 for a single
compressed reference string. The to-be-rewritten referential com-
pression rcs j is traversed from left to right. The longest prefix of
rcs j (i.e., a sequence of RMEs) that can be found in rcsre f is re-
placed by one RME to rcsre f . If no such prefix of length greater 1
is found, we simply copy the first RME from rcs j to the result and
continue searching with the next one. The compression algorithm
terminates once all RMEs have been processed.
Given an algorithm for rewriting a referential compression against
a set of referential compression (the extension is straight-forward),
we develop a second heuristic for selecting rewrite candidates. In
a first phase, the CPart algorithm is used to select primary refer-
ences. In a second phase, we greedily try to rewrite each referen-
tially compressed string against one or more of the other referen-
tially compressed strings. If the new compression yields a smaller
index structure, the rewriting is performed. To keep the effort of
selecting rewritings low, the number of second-order references is
restricted per case.
The reference dependency graph for CForest is a forest with the pri-
mary references as roots. Given the result of CPart (which is a spe-
cial case of CForest with trees of height one), we process all com-
pressed strings one-by-one. For each compressed string, CForest

selects the most similar referential compression seen before based
on sampling: it selects log2(n) equally distributed RMEs from a
referential compression with n RMEs. For each sample RME, the
set of compressed strings containing the RME is computed. The
compressed string rcs which contains the highest number of sam-
pled RMEs is identified. The compressed string rcs plus all its
parents in the reference dependency graph are set as second-order
references for rewriting, following the procedure described above.
After compression, the second-order compressed string is added
as a child of rcs, thus, preserving a forest structure. The Algo-
rithm is summarized in Algorithm 4. Note that we do not compress
the sequences twice against primary references. Although CFor-
est builds on the selection of primary references of CPart (based
on compressibility estimation only), the actual compression takes
place in Algorithm 4.
Overall, CForest tries to rewrite each compressed string only against
compressed strings on the same path to the primary reference. Thus,
CForest is a compromise: On the down side, it does not consider all
possible compressions of sequences of RMEs in the entire MRCSD;
but by doing so, it only has to consider few references for rewriting.

5.3 CDAG
We implemented a third heuristic, termed Compression DAG (or
CDAG). It keeps the general approach of CForest, but now each
referential compression is compressed against all previously com-
pressed strings with the same primary reference (induced by CPart)
instead of only the best one and its parents. We only perform
a single pass over the strings in each partition, which keeps the
dependency graph acyclic; the resulting structure is a DAG. The
algorithm is very similar to Algorithm 4. The only differences
are: re f cands = NEWCOMP replaces Lines 5–6 in Algorithm 4
and the reference dependency graph has to be updated accordingly
(Line 9), by adding COMP[i] as a child to all re f cands. Note that
CDAG still is heuristic, since is explores only a tiny fraction of the
entire search space of all MRCSIs for a given string database; in
particular, it is greedy in selecting primary references, and inherits
the fairly simple method from CPart which determines the actual
number of primary references.

6. EXPERIMENTAL EVALUATION
We experiment with different data sets measuring indexing time,
space requirements, and query performance. All experiments were
run a server with 1 TB RAM and 4 Intel Xeon E7-4870 (in total, hy-
perthreading enables the use of 80 virtual cores). However, all ex-
periments were run in a single thread only. Code was implemented
in C++, using the BOOST library, CST [28], and SeqAn [9]. Failed
experiments are indicated with ’NA’. Our code for MRCSI can be
downloaded5 for free academic use.

6.1 Competitors and Datasets
As baseline comparison, we created a compressed suffix tree [28]
(ConcCST) and an enhanced suffix array [9] (ConcESA) for the
concatenation of all documents in an evaluation dataset. Approx-
imate search on these structures was implemented using the same
seed-and-extend algorithm as for MRCSI. We expected much worse
compression rates for ConcCST/ConcESA (as similarity is not re-
ally exploited) and better query times (as matches are found directly
without any need for propagation or decompression).
Second, we compare against an indexing technique [23] developed
in the Bioinformatics community: Given a maximum query length

5http://www.informatik.hu-berlin.de/~wandelt/MRCSI
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COMP History of www.computer.org 97 510 109,750 56.0

GWB Wikipedia page for George W. Bush 96 45,415 312,473 14,191.9

HG21 Human Chromosome 21 5 1,000 51,221,669 51,221.7

HEL Wikipedia page for Helsinki 96 2,664 216,730 577.4

MOZ History of www.mozilla.org 98 3,333 21,200 70.7

######

######

Avg length Total size (MB)ID Description |Σ| Count

Table 1: Datasets for evaluation. ALL

Helsinki Bush

HEL GWB

|Strings| 40 160 640 2560 40 160 640 2560 |Strings| 80 640 5120 40960 80 640 5120 40960

RLZ.025 2.9 5.3 17.4 48.0 4.8 8.5 35.4 120.4 RLZ.025 8.9 40.1 246.2 957.9 19.7 127.0 1,038.1 5,354.9
RLZ.05 3.1 8.9 30.8 84.7 6.8 20.1 86.0 259.7 RLZ.05 10.1 67.7 444.0 1,702.4 23.0 214.1 1,702.1 7,928.2
RLZ.1 4.5 16.6 58.3 160.2 8.2 39.7 157.4 469.3 RLZ.1 18.0 127.6 837.2 3,215.0 41.7 386.2 3,036.0 13,563.4
Tong.025 7.3 2.5 6.3 18.0 15.8 14.5 53.6 172.2 Tong.025 7.2 18.0 110.4 346.5 34.7 194.3 1,550.5 7,415.3
Tong.05 1.9 2.5 7.1 21.0 7.6 18.7 81.6 285.4 Tong.05 4.7 22.6 127.0 NA 32.2 289.1 2,419.6 NA
Tong.1 1.4 2.9 9.4 26.1 9.4 39.7 175.6 537.1 Tong.1 5.2 29.9 152.4 491.2 54.7 488.0 4,108.1 19,323.5
ConcCST 38.7 151.1 533.9 1,473.5 36.4 148.2 544.3 1,521.8 ConcCST 172.5 1,242.5 NA NA NA NA NA NA
ConcESA 443.2 1,722.6 6,077.8 16,642.7 49.3 217.5 733.7 1,990.6 ConcESA 1,921.1 13,891.8 NA NA NA NA NA NA
USConcCST 18.1 23.6 43.3 119.8 41.7 130.6 547.2 1,463.0 USConcCST 46.9 85.1 NA NA 181.4 1,414.8 NA NA
USConcESA 169.1 221.5 406.4 1,121.5 43.2 122.7 460.9 1,711.9 USConcESA 436.4 796.5 NA NA 203.3 1,437.3 NA NA
iRLZ.025 6.2 11.5 37.9 107.8 7.2 12.5 53.2 150.9 iRLZ.025 17.5 80.8 489.9 1,965.9 24.9 141.8 1,109.5 5,790.7
iRLZ.05 6.3 18.6 63.9 180.3 6.8 18.4 88.4 269.6 iRLZ.05 21.6 137.7 877.5 3,460.2 24.9 227.2 1,741.7 8,423.0
iRLZ.1 9.3 33.9 118.6 330.3 8.2 37.5 161.7 480.4 iRLZ.1 37.4 257.5 1,665.6 6,480.3 45.7 398.2 3,186.8 14,689.7
iTong.025 14.6 6.4 16.2 51.4 21.3 17.0 62.2 198.8 iTong.025 14.2 39.2 208.5 768.7 38.8 195.9 1,733.1 8,168.2
iTong.05 4.4 6.2 17.7 56.5 10.8 25.6 105.2 331.1 iTong.05 10.9 48.9 247.9 875.8 37.8 307.2 2,550.5 12,073.3
iTong.1 3.4 6.8 21.8 65.5 10.3 41.9 183.8 582.5 iTong.1 12.2 60.1 302.3 1,034.0 57.4 512.6 4,315.6 20,626.1
RCSI 2.7 5.3 21.7 115.8 2.2 5.1 27.0 165.0 RCSI 10.5 46.1 530.0 4,421.5 9.7 71.5 1,031.3 12,049.2
CPart 2.7 5.3 21.7 115.8 2.2 4.6 15.9 70.9 CPart 11.4 46.1 427.2 2,818.6 9.3 37.0 437.8 4,132.1
CForest 2.7 4.4 11.3 44.1 2.3 4.8 17.9 121.9 CForest 10.3 22.5 122.7 778.8 9.6 39.1 887.6 15,778.0
CDAG 2.6 4.1 9.5 31.7 2.2 4.5 15.0 67.8 CDAG 10.2 19.9 80.6 390.2 9.5 35.3 441.7 4,307.1

MOZ COMP

MOZ COMP

|Strings| 80 320 1280 3332 80 320 1280 3332 |Strings| 10 40 160 509 10 40 160 509

RLZ.025 0.3 1.1 3.3 6.4 0.5 1.9 6.1 12.4 RLZ.025 2.1 1.7 4.0 7.2 2.3 2.7 6.7 14.5
RLZ.05 0.4 1.6 5.1 9.6 0.7 2.5 10.1 21.5 RLZ.05 0.7 1.1 3.7 8.9 1.1 1.8 6.7 18.9
RLZ.1 0.7 2.6 9.3 16.7 1.0 3.9 16.7 34.8 RLZ.1 0.7 1.6 6.0 13.9 1.1 2.2 10.7 28.6
Tong.025 0.2 0.9 1.9 4.2 0.8 2.9 8.7 19.7 Tong.025 1.7 3.8 3.4 6.2 4.1 8.1 11.5 24.5
Tong.05 0.2 0.8 1.8 4.4 1.0 3.8 12.8 27.9 Tong.05 1.1 0.8 1.9 5.7 2.6 2.9 9.8 28.5
Tong.1 0.2 0.7 2.4 4.9 1.5 5.6 21.3 44.6 Tong.1 1.0 0.6 1.7 5.2 2.6 3.3 14.8 41.1
ConcCST 6.6 24.1 86.5 152.5 5.3 20.6 76.7 139.4 ConcCST 3.5 13.6 51.4 120.1 2.9 12.2 49.6 118.6
ConcESA 73.5 267.1 954.9 1,683.8 3.1 15.9 83.8 170.0 ConcESA 38.7 151.8 565.3 NA 1.7 11.1 62.1 NA
USConcCST 2.1 5.5 12.0 35.7 5.0 19.3 64.3 119.3 USConcCST 8.5 10.0 28.3 60.4 8.2 16.4 58.0 144.2
USConcESA 19.6 51.7 112.4 331.9 4.0 13.8 54.4 112.9 USConcESA 78.3 92.9 261.2 NA 7.1 15.9 58.2 NA
iRLZ.025 0.7 2.7 7.2 17.3 0.7 2.6 7.8 19.0 iRLZ.025 6.6 3.7 10.8 20.3 5.7 4.0 12.8 23.4
iRLZ.05 0.9 3.4 10.9 23.2 0.8 2.8 10.1 23.7 iRLZ.05 2.3 2.6 10.3 23.1 2.0 2.3 9.4 22.8
iRLZ.1 1.6 5.5 19.1 36.9 1.3 4.6 18.3 40.0 iRLZ.1 2.0 3.4 14.3 32.3 1.7 2.7 13.5 36.0
iTong.025 0.6 2.3 4.9 14.2 1.1 4.1 11.3 27.4 iTong.025 6.7 9.0 11.1 21.7 7.9 12.1 18.9 37.9
iTong.05 0.5 2.2 4.7 13.7 1.3 4.8 14.5 33.8 iTong.05 4.4 2.0 8.2 18.5 4.9 3.6 14.5 39.0
iTong.1 0.5 1.7 5.5 14.3 1.8 6.1 23.9 51.9 iTong.1 3.9 1.6 7.1 16.7 4.7 4.0 18.8 50.4
RCSI 0.5 4.8 38.8 79.0 0.6 4.3 40.2 79.6 RCSI 0.9 1.5 15.2 64.3 0.7 1.2 14.9 73.1
CPart 0.5 3.5 8.6 25.7 0.5 2.1 5.5 19.2 CPart 0.9 1.5 7.6 23.3 0.7 1.2 6.0 20.0
CForest 0.4 1.5 3.6 12.9 0.5 4.4 13.2 32.9 CForest 0.9 1.4 6.1 15.5 0.7 1.2 6.0 19.9
CDAG 0.4 1.2 2.7 9.9 0.5 1.8 4.7 15.6 CDAG 0.9 1.4 6.0 14.4 0.7 1.2 5.9 18.0

Indexing time (s)

C
o
m

p
re

ss
io

n
 

o
n
ly

In
d
ex

-b
as

ed

In
d
ex

-b
as

ed

Index size (MB) Indexing time (s)

C
o
m

p
re

ss
io

n
 

o
n
ly

Index size (MB)

Index size (MB) Indexing time (s)

C
o
m

p
re

ss
io

n
 

o
n
ly

Index size (MB) Indexing time (s)

C
o
m

p
re

ss
io

n
 

o
n
ly

In
d
ex

-b
as

ed

In
d
ex

-b
as

ed

Page 1

Table 2: Index size and indexing time for HEL.ALL

Helsinki Bush

HEL GWB

|Strings| 40 160 640 2560 40 160 640 2560 |Strings| 80 640 5120 40960 80 640 5120 40960

RLZ.025 2.9 5.3 17.4 48.0 4.8 8.5 35.4 120.4 RLZ.025 8.9 40.1 246.2 957.9 19.7 127.0 1,038.1 5,354.9
RLZ.05 3.1 8.9 30.8 84.7 6.8 20.1 86.0 259.7 RLZ.05 10.1 67.7 444.0 1,702.4 23.0 214.1 1,702.1 7,928.2
RLZ.1 4.5 16.6 58.3 160.2 8.2 39.7 157.4 469.3 RLZ.1 18.0 127.6 837.2 3,215.0 41.7 386.2 3,036.0 13,563.4
Tong.025 7.3 2.5 6.3 18.0 15.8 14.5 53.6 172.2 Tong.025 7.2 18.0 110.4 346.5 34.7 194.3 1,550.5 7,415.3
Tong.05 1.9 2.5 7.1 21.0 7.6 18.7 81.6 285.4 Tong.05 4.7 22.6 127.0 NA 32.2 289.1 2,419.6 NA
Tong.1 1.4 2.9 9.4 26.1 9.4 39.7 175.6 537.1 Tong.1 5.2 29.9 152.4 491.2 54.7 488.0 4,108.1 19,323.5
ConcCST 38.7 151.1 533.9 1,473.5 36.4 148.2 544.3 1,521.8 ConcCST 172.5 1,242.5 NA NA 159.4 1,258.9 NA NA
ConcESA 443.2 1,722.6 6,077.8 16,642.7 49.3 217.5 733.7 1,990.6 ConcESA 1,921.1 13,891.8 NA NA 200.6 1,564.5 NA NA
USConcCST 18.1 23.6 43.3 119.8 41.7 130.6 547.2 1,463.0 USConcCST 46.9 85.1 NA NA 181.4 1,414.8 NA NA
USConcESA 169.1 221.5 406.4 1,121.5 43.2 122.7 460.9 1,711.9 USConcESA 436.4 796.5 NA NA 203.3 1,437.3 NA NA
iRLZ.025 6.2 11.5 37.9 107.8 7.2 12.5 53.2 150.9 iRLZ.025 17.5 80.8 489.9 1,965.9 24.9 141.8 1,109.5 5,790.7
iRLZ.05 6.3 18.6 63.9 180.3 6.8 18.4 88.4 269.6 iRLZ.05 21.6 137.7 877.5 3,460.2 24.9 227.2 1,741.7 8,423.0
iRLZ.1 9.3 33.9 118.6 330.3 8.2 37.5 161.7 480.4 iRLZ.1 37.4 257.5 1,665.6 6,480.3 45.7 398.2 3,186.8 14,689.7
iTong.025 14.6 6.4 16.2 51.4 21.3 17.0 62.2 198.8 iTong.025 14.2 39.2 208.5 768.7 38.8 195.9 1,733.1 8,168.2
iTong.05 4.4 6.2 17.7 56.5 10.8 25.6 105.2 331.1 iTong.05 10.9 48.9 247.9 875.8 37.8 307.2 2,550.5 12,073.3
iTong.1 3.4 6.8 21.8 65.5 10.3 41.9 183.8 582.5 iTong.1 12.2 60.1 302.3 1,034.0 57.4 512.6 4,315.6 20,626.1
RCSI 2.7 5.3 21.7 115.8 2.2 5.1 27.0 165.0 RCSI 10.5 46.1 530.0 4,421.5 9.7 71.5 1,031.3 12,049.2
CPart 2.7 5.3 21.7 115.8 2.2 4.6 15.9 70.9 CPart 11.4 46.1 427.2 2,818.6 9.3 37.0 437.8 4,132.1
CForest 2.7 4.4 11.3 44.1 2.3 4.8 17.9 121.9 CForest 10.3 22.5 122.7 778.8 9.6 39.1 887.6 15,778.0
CDAG 2.6 4.1 9.5 31.7 2.2 4.5 15.0 67.8 CDAG 10.2 19.9 80.6 390.2 9.5 35.3 441.7 4,307.1

MOZ COMP

MOZ COMP

|Strings| 80 320 1280 3332 80 320 1280 3332 |Strings| 10 40 160 509 10 40 160 509

RLZ.025 0.3 1.1 3.3 6.4 0.5 1.9 6.1 12.4 RLZ.025 2.1 1.7 4.0 7.2 2.3 2.7 6.7 14.5
RLZ.05 0.4 1.6 5.1 9.6 0.7 2.5 10.1 21.5 RLZ.05 0.7 1.1 3.7 8.9 1.1 1.8 6.7 18.9
RLZ.1 0.7 2.6 9.3 16.7 1.0 3.9 16.7 34.8 RLZ.1 0.7 1.6 6.0 13.9 1.1 2.2 10.7 28.6
Tong.025 0.2 0.9 1.9 4.2 0.8 2.9 8.7 19.7 Tong.025 1.7 3.8 3.4 6.2 4.1 8.1 11.5 24.5
Tong.05 0.2 0.8 1.8 4.4 1.0 3.8 12.8 27.9 Tong.05 1.1 0.8 1.9 5.7 2.6 2.9 9.8 28.5
Tong.1 0.2 0.7 2.4 4.9 1.5 5.6 21.3 44.6 Tong.1 1.0 0.6 1.7 5.2 2.6 3.3 14.8 41.1
ConcCST 6.6 24.1 86.5 152.5 5.3 20.6 76.7 139.4 ConcCST 3.5 13.6 51.4 120.1 2.9 12.2 49.6 118.6
ConcESA 73.5 267.1 954.9 1,683.8 3.1 15.9 83.8 170.0 ConcESA 38.7 151.8 565.3 NA 1.7 11.1 62.1 NA
USConcCST 2.1 5.5 12.0 35.7 5.0 19.3 64.3 119.3 USConcCST 8.5 10.0 28.3 60.4 8.2 16.4 58.0 144.2
USConcESA 19.6 51.7 112.4 331.9 4.0 13.8 54.4 112.9 USConcESA 78.3 92.9 261.2 NA 7.1 15.9 58.2 NA
iRLZ.025 0.7 2.7 7.2 17.3 0.7 2.6 7.8 19.0 iRLZ.025 6.6 3.7 10.8 20.3 5.7 4.0 12.8 23.4
iRLZ.05 0.9 3.4 10.9 23.2 0.8 2.8 10.1 23.7 iRLZ.05 2.3 2.6 10.3 23.1 2.0 2.3 9.4 22.8
iRLZ.1 1.6 5.5 19.1 36.9 1.3 4.6 18.3 40.0 iRLZ.1 2.0 3.4 14.3 32.3 1.7 2.7 13.5 36.0
iTong.025 0.6 2.3 4.9 14.2 1.1 4.1 11.3 27.4 iTong.025 6.7 9.0 11.1 21.7 7.9 12.1 18.9 37.9
iTong.05 0.5 2.2 4.7 13.7 1.3 4.8 14.5 33.8 iTong.05 4.4 2.0 8.2 18.5 4.9 3.6 14.5 39.0
iTong.1 0.5 1.7 5.5 14.3 1.8 6.1 23.9 51.9 iTong.1 3.9 1.6 7.1 16.7 4.7 4.0 18.8 50.4
RCSI 0.5 4.8 38.8 79.0 0.6 4.3 40.2 79.6 RCSI 0.9 1.5 15.2 64.3 0.7 1.2 14.9 73.1
CPart 0.5 3.5 8.6 25.7 0.5 2.1 5.5 19.2 CPart 0.9 1.5 7.6 23.3 0.7 1.2 6.0 20.0
CForest 0.4 1.5 3.6 12.9 0.5 4.4 13.2 32.9 CForest 0.9 1.4 6.1 15.5 0.7 1.2 6.0 19.9
CDAG 0.4 1.2 2.7 9.9 0.5 1.8 4.7 15.6 CDAG 0.9 1.4 6.0 14.4 0.7 1.2 5.9 18.0
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Table 3: Index size and indexing time for GWB.
maxql and an upper bound for the error rate maxed , only unique sub-
strings are recorded6 and an index over the concatenation is created
(USConcCST for compressed suffix tree as index, USConcESA for
enhanced suffix array). This technique was proposed more as a
proof of concept for human genomes, but has never be tested on
datasets outside the Bioinformatics community.
Third, we compare against RLZ [17], which specifically addresses
referential compression of dissimilar data sets. RLZ only focuses
on space and does not per-se support searching the compressed
data; for comparison, we implemented a search procedure on top of
the RLZ archives which dynamically decompresses strings before
searching them. RLZ has a parameter, called coverage value, which
has to be set manually before compressing data. We found the im-
pact of this parameter to be quite strong and therefore report results
with different values (0.1, 0.05, and 0.025, as proposed in [17]). In
addition we compare to a very recently proposed extension to RLZ:
Tong [34]. By analyzing the dictionary and eliminating rarely used
parts, the authors reported significant improvements of Tong over
the results of RLZ. We expect RLZ and Tong to excel in compres-
sion ratio but to be (much) worse in terms of search speed. For
both competitors, RLZ and Tong, the coverage value is appended
to the name, e.g. RLZ.025 refers to RLZ with a coverage of 0.025
(dictionary sampling at a rate of 2.5%).

6The original paper’s supplementary file [23] also proposes to
group similar non-unique strings, but does not state how to se-
lect/represent these similar strings.
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Figure 4: Impact of iTong’s sampling threshold on index size
(left) and indexing time (right) for HEL with 2,560 strings.
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Figure 5: Size of index components for CDAG and HEL.
In addition, we extended the methodology behind RLZ/Tong and
implemented a search index on top of their compression techniques,
following the same idea as in MRCSI (as described in Section 4.2):
the sampled dictionary is indexed as a reference and compressed
strings are managed in an indexed RME propagation map and an in-
dexed overlap map. These competitors are denoted with iRLZ/iTong
and coverage value appended as above. We expect these competi-
tors to be the most challenging. These competitors, however, have
not been proposed in the literature and thus are considered as a vir-
tual baseline only.
Finally, we compared against our own prior work RSCI [37], which
uses the same search procedure as MRCSI but can only compress
against a single reference. For homogeneous data sets, we expect
similar or even better performance than MRCSI, but much worse
results when collections are dissimilar. There are also some other
somewhat related methods against which we do not compare to
experimentally; these are described in Section 6.4. Overall, we
have 20 competitors/setups, grouped as follows:

1. Compression only: Related-work techniques that only com-
press documents and have to use index-less search (RLZ.025,
RLZ.05, RLZ.1, Tong.025, Tong.05, Tong.1).

2. Index-based: Related-work techniques with a search index
(ConcCST, ConcESA, USConcCST, USConcESA, iRLZ.025,
iRLZ.05, iRLZ.1, iTong.025, iTong.05, iTong.1, RCSI) and
our multi-reference compressed search index (CPart, CFor-
est, CDAG).

We evaluated a total of five datasets. These datasets are described
in Table 1. To measure on semi-structured documents, we use the
history of two web pages downloaded from Wayback Machine:
COMP and MOZ. Second, we downloaded the complete history
of versions for Wikipedia page Helsinki (HEL) and George W.
Bush (GWB). All these datasets contain strings of varying simi-
larity over a mid-sized alphabet. For instance, while the first ever
recorded Wikipedia article in HEL is very different to today’s arti-
cle, consecutive versions of Wikipedia articles often only have mi-
nor modifications. Our biological dataset, HG21, consists of very
long, highly-similar strings over a small alphabet.
For each dataset we generated a set of 5,000 queries, by taking
random substrings of the input (for HG21 of length 80-100, for
the other datasets of length 12-18). k-approximate searching was
performed using values k ∈ {0, . . . ,5}.
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ALL

Helsinki Bush

HEL GWB

|Strings| 40 160 640 2560 40 160 640 2560 |Strings| 80 640 5120 40960 80 640 5120 40960

RLZ.025 2.9 5.3 17.4 48.0 4.8 8.5 35.4 120.4 RLZ.025 8.9 40.1 246.2 957.9 19.7 127.0 1,038.1 5,354.9
RLZ.05 3.1 8.9 30.8 84.7 6.8 20.1 86.0 259.7 RLZ.05 10.1 67.7 444.0 1,702.4 23.0 214.1 1,702.1 7,928.2
RLZ.1 4.5 16.6 58.3 160.2 8.2 39.7 157.4 469.3 RLZ.1 18.0 127.6 837.2 3,215.0 41.7 386.2 3,036.0 13,563.4
Tong.025 7.3 2.5 6.3 18.0 15.8 14.5 53.6 172.2 Tong.025 7.2 18.0 110.4 346.5 34.7 194.3 1,550.5 7,415.3
Tong.05 1.9 2.5 7.1 21.0 7.6 18.7 81.6 285.4 Tong.05 4.7 22.6 127.0 NA 32.2 289.1 2,419.6 NA
Tong.1 1.4 2.9 9.4 26.1 9.4 39.7 175.6 537.1 Tong.1 5.2 29.9 152.4 491.2 54.7 488.0 4,108.1 19,323.5
ConcCST 38.7 151.1 533.9 1,473.5 36.4 148.2 544.3 1,521.8 ConcCST 172.5 1,242.5 NA NA NA NA NA NA
ConcESA 443.2 1,722.6 6,077.8 16,642.7 49.3 217.5 733.7 1,990.6 ConcESA 1,921.1 13,891.8 NA NA NA NA NA NA
USConcCST 18.1 23.6 43.3 119.8 41.7 130.6 547.2 1,463.0 USConcCST 46.9 85.1 NA NA 181.4 1,414.8 NA NA
USConcESA 169.1 221.5 406.4 1,121.5 43.2 122.7 460.9 1,711.9 USConcESA 436.4 796.5 NA NA 203.3 1,437.3 NA NA
iRLZ.025 6.2 11.5 37.9 107.8 7.2 12.5 53.2 150.9 iRLZ.025 17.5 80.8 489.9 1,965.9 24.9 141.8 1,109.5 5,790.7
iRLZ.05 6.3 18.6 63.9 180.3 6.8 18.4 88.4 269.6 iRLZ.05 21.6 137.7 877.5 3,460.2 24.9 227.2 1,741.7 8,423.0
iRLZ.1 9.3 33.9 118.6 330.3 8.2 37.5 161.7 480.4 iRLZ.1 37.4 257.5 1,665.6 6,480.3 45.7 398.2 3,186.8 14,689.7
iTong.025 14.6 6.4 16.2 51.4 21.3 17.0 62.2 198.8 iTong.025 14.2 39.2 208.5 768.7 38.8 195.9 1,733.1 8,168.2
iTong.05 4.4 6.2 17.7 56.5 10.8 25.6 105.2 331.1 iTong.05 10.9 48.9 247.9 875.8 37.8 307.2 2,550.5 12,073.3
iTong.1 3.4 6.8 21.8 65.5 10.3 41.9 183.8 582.5 iTong.1 12.2 60.1 302.3 1,034.0 57.4 512.6 4,315.6 20,626.1
RCSI 2.7 5.3 21.7 115.8 2.2 5.1 27.0 165.0 RCSI 10.5 46.1 530.0 4,421.5 9.7 71.5 1,031.3 12,049.2
CPart 2.7 5.3 21.7 115.8 2.2 4.6 15.9 70.9 CPart 11.4 46.1 427.2 2,818.6 9.3 37.0 437.8 4,132.1
CForest 2.7 4.4 11.3 44.1 2.3 4.8 17.9 121.9 CForest 10.3 22.5 122.7 778.8 9.6 39.1 887.6 15,778.0
CDAG 2.6 4.1 9.5 31.7 2.2 4.5 15.0 67.8 CDAG 10.2 19.9 80.6 390.2 9.5 35.3 441.7 4,307.1

MOZ COMP

MOZ COMP

|Strings| 80 320 1280 3332 80 320 1280 3332 |Strings| 10 40 160 509 10 40 160 509

RLZ.025 0.3 1.1 3.3 6.4 0.5 1.9 6.1 12.4 RLZ.025 2.1 1.7 4.0 7.2 2.3 2.7 6.7 14.5
RLZ.05 0.4 1.6 5.1 9.6 0.7 2.5 10.1 21.5 RLZ.05 0.7 1.1 3.7 8.9 1.1 1.8 6.7 18.9
RLZ.1 0.7 2.6 9.3 16.7 1.0 3.9 16.7 34.8 RLZ.1 0.7 1.6 6.0 13.9 1.1 2.2 10.7 28.6
Tong.025 0.2 0.9 1.9 4.2 0.8 2.9 8.7 19.7 Tong.025 1.7 3.8 3.4 6.2 4.1 8.1 11.5 24.5
Tong.05 0.2 0.8 1.8 4.4 1.0 3.8 12.8 27.9 Tong.05 1.1 0.8 1.9 5.7 2.6 2.9 9.8 28.5
Tong.1 0.2 0.7 2.4 4.9 1.5 5.6 21.3 44.6 Tong.1 1.0 0.6 1.7 5.2 2.6 3.3 14.8 41.1
ConcCST 6.6 24.1 86.5 152.5 5.3 20.6 76.7 139.4 ConcCST 3.5 13.6 51.4 120.1 2.9 12.2 49.6 118.6
ConcESA 73.5 267.1 954.9 1,683.8 3.1 15.9 83.8 170.0 ConcESA 38.7 151.8 565.3 NA 1.7 11.1 62.1 NA
USConcCST 2.1 5.5 12.0 35.7 5.0 19.3 64.3 119.3 USConcCST 8.5 10.0 28.3 60.4 8.2 16.4 58.0 144.2
USConcESA 19.6 51.7 112.4 331.9 4.0 13.8 54.4 112.9 USConcESA 78.3 92.9 261.2 NA 7.1 15.9 58.2 NA
iRLZ.025 0.7 2.7 7.2 17.3 0.7 2.6 7.8 19.0 iRLZ.025 6.6 3.7 10.8 20.3 5.7 4.0 12.8 23.4
iRLZ.05 0.9 3.4 10.9 23.2 0.8 2.8 10.1 23.7 iRLZ.05 2.3 2.6 10.3 23.1 2.0 2.3 9.4 22.8
iRLZ.1 1.6 5.5 19.1 36.9 1.3 4.6 18.3 40.0 iRLZ.1 2.0 3.4 14.3 32.3 1.7 2.7 13.5 36.0
iTong.025 0.6 2.3 4.9 14.2 1.1 4.1 11.3 27.4 iTong.025 6.7 9.0 11.1 21.7 7.9 12.1 18.9 37.9
iTong.05 0.5 2.2 4.7 13.7 1.3 4.8 14.5 33.8 iTong.05 4.4 2.0 8.2 18.5 4.9 3.6 14.5 39.0
iTong.1 0.5 1.7 5.5 14.3 1.8 6.1 23.9 51.9 iTong.1 3.9 1.6 7.1 16.7 4.7 4.0 18.8 50.4
RCSI 0.5 4.8 38.8 79.0 0.6 4.3 40.2 79.6 RCSI 0.9 1.5 15.2 64.3 0.7 1.2 14.9 73.1
CPart 0.5 3.5 8.6 25.7 0.5 2.1 5.5 19.2 CPart 0.9 1.5 7.6 23.3 0.7 1.2 6.0 20.0
CForest 0.4 1.5 3.6 12.9 0.5 4.4 13.2 32.9 CForest 0.9 1.4 6.1 15.5 0.7 1.2 6.0 19.9
CDAG 0.4 1.2 2.7 9.9 0.5 1.8 4.7 15.6 CDAG 0.9 1.4 6.0 14.4 0.7 1.2 5.9 18.0
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Table 4: Index size and indexing time for MOZ.
6.2 Index generation
First, we analyze the results for Wikipedia datasets. Table 2 and
Table 3 show the index size and indexing time for HEL and GWB,
respectively. Tong always computes the smallest compression. The
optimal coverage value depends on number of strings in the dataset:
the more (similar) strings are to be compressed, the smaller cover-
age values become efficient. CDAG is always the smallest index-
based competitor: up to 10 times smaller than RCSI and approx.
half as small as best variant of iTong. We have further analyzed
the impact of coverage value on index size (and indexing time) of
iTong to see whether other coverage values lead to a smaller index.
The results are shown in Figure 4. It can be seen that the coverage
value 0.025 (index size: 51.4 MB) is relatively close to the optimal
coverage value 0.0114 (index size: 50.3 MB).
The results for GWB provide interesting insights in terms of het-
erogeneity: Over time, this Wikipedia page has undergone a huge
number of (major) revisions, where a single revision often changes
the page completely (especially in 2003, during the US’s war against
Iraq). It can be seen that additional references can have a huge posi-
tive impact on the index size. RCSI, which only uses one reference,
needs 4,421.5 MB, while CPart can already reduce the search index
down to 2,818.6 MB. Further exploitation of similarities can reduce
the index down to 390.2 MB using CDAG.
We show the distribution of index components for CDAG and HEL
in Figure 5. The results demonstrate how the number of primary
references (size Pref raw and Pref CST) is steadily increased with a
growing number of strings in the collection. Remarkably, the stor-
age for overlaps (raw + CST) consumes the largest part of the index.
Thus, further analysis regarding less redundant storage of overlaps
could significantly reduce the size of the search index. We have fur-
ther analyzed the number of RMEs for competitors for HEL with
2,560 strings: CDAG has the smallest number of RMEs (sum over
all compressed strings) of all index-based competitors (298,176).
The next best competitors have already almost one order of magni-
tude more RMEs: iRLZ.025 (1,294,190), CForest (1,337,072), and
iTong.025 (1,767,274). RCSI has 10,590,470 RMEs. In general,
fewer RMEs, yield a smaller index, but the size of the reference in-
dex has to be taken into account as well, e.g., iTong.025 produces
more RMEs than iRLZ.025, but the final index is 50% smaller.
CDAG/CPart are often the fastest competitors, even outperforming
compression-only competitors. The rationale is as follows: since
RLZ/Tong create a dictionary from sampling, the maximum match
length is restricted by the sample block size (1,000 in our exper-
iments). During compression, following at most 1,000 matching
symbols, it is always necessary to perform a (slow) lookup in the
index of the primary references to find the next longest prefix. Our
MRCSI techniques, in contrast, index whole documents, which al-
lows for much longer matches and often much fewer lookups in
the index of the primary references. The time saving is often so

ALL

Helsinki Bush

HEL GWB

|Strings| 40 160 640 2560 40 160 640 2560 |Strings| 80 640 5120 40960 80 640 5120 40960

RLZ.025 2.9 5.3 17.4 48.0 4.8 8.5 35.4 120.4 RLZ.025 8.9 40.1 246.2 957.9 19.7 127.0 1,038.1 5,354.9
RLZ.05 3.1 8.9 30.8 84.7 6.8 20.1 86.0 259.7 RLZ.05 10.1 67.7 444.0 1,702.4 23.0 214.1 1,702.1 7,928.2
RLZ.1 4.5 16.6 58.3 160.2 8.2 39.7 157.4 469.3 RLZ.1 18.0 127.6 837.2 3,215.0 41.7 386.2 3,036.0 13,563.4
Tong.025 7.3 2.5 6.3 18.0 15.8 14.5 53.6 172.2 Tong.025 7.2 18.0 110.4 346.5 34.7 194.3 1,550.5 7,415.3
Tong.05 1.9 2.5 7.1 21.0 7.6 18.7 81.6 285.4 Tong.05 4.7 22.6 127.0 NA 32.2 289.1 2,419.6 NA
Tong.1 1.4 2.9 9.4 26.1 9.4 39.7 175.6 537.1 Tong.1 5.2 29.9 152.4 491.2 54.7 488.0 4,108.1 19,323.5
ConcCST 38.7 151.1 533.9 1,473.5 36.4 148.2 544.3 1,521.8 ConcCST 172.5 1,242.5 NA NA 159.4 1,258.9 NA NA
ConcESA 443.2 1,722.6 6,077.8 16,642.7 49.3 217.5 733.7 1,990.6 ConcESA 1,921.1 13,891.8 NA NA 200.6 1,564.5 NA NA
USConcCST 18.1 23.6 43.3 119.8 41.7 130.6 547.2 1,463.0 USConcCST 46.9 85.1 NA NA 181.4 1,414.8 NA NA
USConcESA 169.1 221.5 406.4 1,121.5 43.2 122.7 460.9 1,711.9 USConcESA 436.4 796.5 NA NA 203.3 1,437.3 NA NA
iRLZ.025 6.2 11.5 37.9 107.8 7.2 12.5 53.2 150.9 iRLZ.025 17.5 80.8 489.9 1,965.9 24.9 141.8 1,109.5 5,790.7
iRLZ.05 6.3 18.6 63.9 180.3 6.8 18.4 88.4 269.6 iRLZ.05 21.6 137.7 877.5 3,460.2 24.9 227.2 1,741.7 8,423.0
iRLZ.1 9.3 33.9 118.6 330.3 8.2 37.5 161.7 480.4 iRLZ.1 37.4 257.5 1,665.6 6,480.3 45.7 398.2 3,186.8 14,689.7
iTong.025 14.6 6.4 16.2 51.4 21.3 17.0 62.2 198.8 iTong.025 14.2 39.2 208.5 768.7 38.8 195.9 1,733.1 8,168.2
iTong.05 4.4 6.2 17.7 56.5 10.8 25.6 105.2 331.1 iTong.05 10.9 48.9 247.9 875.8 37.8 307.2 2,550.5 12,073.3
iTong.1 3.4 6.8 21.8 65.5 10.3 41.9 183.8 582.5 iTong.1 12.2 60.1 302.3 1,034.0 57.4 512.6 4,315.6 20,626.1
RCSI 2.7 5.3 21.7 115.8 2.2 5.1 27.0 165.0 RCSI 10.5 46.1 530.0 4,421.5 9.7 71.5 1,031.3 12,049.2
CPart 2.7 5.3 21.7 115.8 2.2 4.6 15.9 70.9 CPart 11.4 46.1 427.2 2,818.6 9.3 37.0 437.8 4,132.1
CForest 2.7 4.4 11.3 44.1 2.3 4.8 17.9 121.9 CForest 10.3 22.5 122.7 778.8 9.6 39.1 887.6 15,778.0
CDAG 2.6 4.1 9.5 31.7 2.2 4.5 15.0 67.8 CDAG 10.2 19.9 80.6 390.2 9.5 35.3 441.7 4,307.1

MOZ COMP

MOZ COMP

|Strings| 80 320 1280 3332 80 320 1280 3332 |Strings| 10 40 160 509 10 40 160 509

RLZ.025 0.3 1.1 3.3 6.4 0.5 1.9 6.1 12.4 RLZ.025 2.1 1.7 4.0 7.2 2.3 2.7 6.7 14.5
RLZ.05 0.4 1.6 5.1 9.6 0.7 2.5 10.1 21.5 RLZ.05 0.7 1.1 3.7 8.9 1.1 1.8 6.7 18.9
RLZ.1 0.7 2.6 9.3 16.7 1.0 3.9 16.7 34.8 RLZ.1 0.7 1.6 6.0 13.9 1.1 2.2 10.7 28.6
Tong.025 0.2 0.9 1.9 4.2 0.8 2.9 8.7 19.7 Tong.025 1.7 3.8 3.4 6.2 4.1 8.1 11.5 24.5
Tong.05 0.2 0.8 1.8 4.4 1.0 3.8 12.8 27.9 Tong.05 1.1 0.8 1.9 5.7 2.6 2.9 9.8 28.5
Tong.1 0.2 0.7 2.4 4.9 1.5 5.6 21.3 44.6 Tong.1 1.0 0.6 1.7 5.2 2.6 3.3 14.8 41.1
ConcCST 6.6 24.1 86.5 152.5 5.3 20.6 76.7 139.4 ConcCST 3.5 13.6 51.4 120.1 2.9 12.2 49.6 118.6
ConcESA 73.5 267.1 954.9 1,683.8 3.1 15.9 83.8 170.0 ConcESA 38.7 151.8 565.3 1,395.3 1.7 11.1 62.1 128.8
USConcCST 2.1 5.5 12.0 35.7 5.0 19.3 64.3 119.3 USConcCST 8.5 10.0 28.3 60.4 8.2 16.4 58.0 144.2
USConcESA 19.6 51.7 112.4 331.9 4.0 13.8 54.4 112.9 USConcESA 78.3 92.9 261.2 584.3 7.1 15.9 58.2 118.4
iRLZ.025 0.7 2.7 7.2 17.3 0.7 2.6 7.8 19.0 iRLZ.025 6.6 3.7 10.8 20.3 5.7 4.0 12.8 23.4
iRLZ.05 0.9 3.4 10.9 23.2 0.8 2.8 10.1 23.7 iRLZ.05 2.3 2.6 10.3 23.1 2.0 2.3 9.4 22.8
iRLZ.1 1.6 5.5 19.1 36.9 1.3 4.6 18.3 40.0 iRLZ.1 2.0 3.4 14.3 32.3 1.7 2.7 13.5 36.0
iTong.025 0.6 2.3 4.9 14.2 1.1 4.1 11.3 27.4 iTong.025 6.7 9.0 11.1 21.7 7.9 12.1 18.9 37.9
iTong.05 0.5 2.2 4.7 13.7 1.3 4.8 14.5 33.8 iTong.05 4.4 2.0 8.2 18.5 4.9 3.6 14.5 39.0
iTong.1 0.5 1.7 5.5 14.3 1.8 6.1 23.9 51.9 iTong.1 3.9 1.6 7.1 16.7 4.7 4.0 18.8 50.4
RCSI 0.5 4.8 38.8 79.0 0.6 4.3 40.2 79.6 RCSI 0.9 1.5 15.2 64.3 0.7 1.2 14.9 73.1
CPart 0.5 3.5 8.6 25.7 0.5 2.1 5.5 19.2 CPart 0.9 1.5 7.6 23.3 0.7 1.2 6.0 20.0
CForest 0.4 1.5 3.6 12.9 0.5 4.4 13.2 32.9 CForest 0.9 1.4 6.1 15.5 0.7 1.2 6.0 19.9
CDAG 0.4 1.2 2.7 9.9 0.5 1.8 4.7 15.6 CDAG 0.9 1.4 6.0 14.4 0.7 1.2 5.9 18.0
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Table 5: Index size and indexing time for COMP.

ALL

HG21 ?????

HG21 ALL

|Strings| 10 40 160 640 10 40 160 640 |Strings| 10 40 160 509 10 40 160 509

RLZ.025 175.6 380.9 561.1 2,039.4 218.5 853.9 5,125.8 67,943.7 RLZ.025 2.1 1.7 4.0 7.2 2.3 2.7 6.7 14.5
RLZ.05 161.3 332.2 956.9 NA 261.5 965.5 6,607.7 NA RLZ.05 0.7 1.1 3.7 8.9 1.1 1.8 6.7 18.9
RLZ.1 178.9 460.8 1,799.8 NA 379.7 1,496.5 10,311.6 NA RLZ.1 0.7 1.6 6.0 13.9 1.1 2.2 10.7 28.6
Tong.025 185.5 738.0 225.3 NA 469.1 1,857.9 6,808.7 NA Tong.025 1.7 3.8 3.4 6.2 4.1 8.1 11.5 24.5
Tong.05 183.5 204.4 223.8 NA 655.8 2,136.4 10,246.1 NA Tong.05 1.1 0.8 1.9 5.7 2.6 2.9 9.8 28.5
Tong.1 204.0 131.7 294.8 NA 1,307.5 4,336.4 22,574.2 NA Tong.1 1.0 0.6 1.7 5.2 2.6 3.3 14.8 41.1
ConcCST 1,139.6 NA NA NA 1,378.7 NA NA NA ConcCST 3.5 13.6 51.4 120.1 2.9 12.2 49.6 118.6
ConcESA 12,028.2 NA NA NA 1,126.7 NA NA NA ConcESA 38.7 151.8 565.3 NA 1.7 11.1 62.1 NA
USConcCST 11,729.0 NA NA NA 18,555.9 NA NA NA USConcCST 8.5 10.0 28.3 60.4 8.2 16.4 58.0 144.2
USConcESA NA NA NA NA NA NA NA NA USConcESA 78.3 92.9 261.2 NA 7.1 15.9 58.2 NA
iRLZ.025 1,616.4 1,287.9 1,154.5 4,101.7 1,828.9 1,901.6 5,678.3 68,463.0 iRLZ.025 6.6 3.7 10.8 20.3 5.7 4.0 12.8 23.4
iRLZ.05 1,233.4 911.3 1,965.0 NA 1,391.0 1,332.3 6,869.9 NA iRLZ.05 2.3 2.6 10.3 23.1 2.0 2.3 9.4 22.8
iRLZ.1 958.7 1,008.9 3,691.0 NA 1,080.3 1,630.9 10,594.1 NA iRLZ.1 2.0 3.4 14.3 32.3 1.7 2.7 13.5 36.0
iTong.025 2,130.8 2,718.8 512.9 NA 2,544.7 4,511.2 7,309.1 NA iTong.025 6.7 9.0 11.1 21.7 7.9 12.1 18.9 37.9
iTong.05 2,038.7 698.8 516.0 NA 2,745.3 2,792.4 10,747.0 NA iTong.05 4.4 2.0 8.2 18.5 4.9 3.6 14.5 39.0
iTong.1 1,906.1 362.5 664.5 NA 3,218.1 4,526.1 23,058.4 NA iTong.1 3.9 1.6 7.1 16.7 4.7 4.0 18.8 50.4
RCSI 277.5 314.7 380.6 687.0 432.3 499.4 693.6 1,562.4 RCSI 0.9 1.5 15.2 64.3 0.7 1.2 14.9 73.1
CPart 277.5 314.7 380.6 687.0 416.8 507.8 806.1 1,671.8 CPart 0.9 1.5 7.6 23.3 0.7 1.2 6.0 20.0
CForest 276.4 309.4 357.0 581.9 435.4 502.8 764.1 1,894.8 CForest 0.9 1.4 6.1 15.5 0.7 1.2 6.0 19.9
CDAG 275.9 305.6 341.5 512.9 433.6 509.0 745.0 1,745.0 CDAG 0.9 1.4 6.0 14.4 0.7 1.2 5.9 18.0
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Table 6: Index size and indexing time for HG21.
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Figure 6: Index size against variable maxql for HEL with 2,560
strings (left) and HG21 with 640 strings (right).
big, that the additional overhead for second-order indexing, e.g. in
CDAG, is compensated. The fact that CDAG often (slightly) out-
performs CPart is counter intuitive, since CDAG is based on the
primary references of CPart and initially performs the same com-
pression. Our analysis showed that much time in CPart is spent
on creating the RME propagation map and overlap map. Because
CDAG often has fewer RMEs than CPart, since similarities to other
compressed strings are exploited, this phase is often much faster in
CDAG, since less RMEs have to be managed.
We analyze the results for our webpage datasets next. Table 4 and
Table 5 show the index size and indexing time for MOZ and COMP,
respectively. Overall, the results confirm our analyses of Wikipedia
datasets before. CDAG creates the smallest index-based represen-
tation, while Tong creates the smallest compression-only represen-
tation, where the best coverage value depends on the number strings
in the dataset. For COMP, however, the largest coverage value of
0.1 produces the smallest representation.
Table 6 shows index size (in MB) and indexing time (in s) for up
to 640 human chromosome 21. Many competitors fail to create an
index within a single day. For 640 strings of HG21, ConcESA and
ConcCST would need to create a compressed suffix tree/enhanced
suffix array over a string of approx. 35 GB length. Even the other
referential competitors (RLZ/Tong) cannot compute an index for
several reasons: if the coverage value is too big, then the initial in-
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Figure 7: Median query answering times for HEL (top), MOZ
(middle), and HG21 (bottom).
dex is large (and takes a lot of time to create) and if the coverage
value is too small, then the compression takes a long time, since
only short matches can be found in the dictionary. CDAG com-
putes the smallest MRCSI index and also the smallest overall index
(25% smaller than RCSI, eight times smaller than iRLZ.025). It is
interesting to note, that the compressed search index of CDAG is
even four times smaller than the compression-only representation
of RLZ.025. This demonstrates that the selection of a dictionary
sample is in fact a very difficult problem, and heuristics depend on
the number of strings and their alphabets. The shortest indexing
time is achieved by RCSI, which was developed exactly for com-
pression of chromosomes from the same species.
In Figure 6, we show the index size for a variable maximum query
length for two selected datasets: HEL (up to maxql = 50) and HG21
(up to maxql = 500). The index size grows approx. linearly with
the maximum query length, since the overlap map contains longer
overlaps. The super-linear increase for HG21 is explained as fol-
lows: With an increasing maxql , some overlaps which were previ-
ously identical, become distinct, since they start to overlap more
RMEs than before. These now-distinct overlaps have to be indexed
separately.

6.3 Query answering
We evaluated a set of 5,000 queries for datasets HEL, MOZ, and
HG21. Median query answering times for k ∈ {0, ...,5} and a vari-
able number of strings are shown in Figure 7. Compression-only
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Figure 8: Median query answering times for large k and HG21:
10 strings (left) and 640 strings (right).

Competitor RCSI iRLZ* iTong* RLZ* Tong* CPart CForest CDAG

COMP 1:1 3:1 3:1 8:1 11:1 2:1 4:1 4:1 56 COMP

GWB 3:1 7:1 18:1 15:1 41:1 5:1 18:1 36:1 14191.9 GWB

HG21 75:1 12:1 NA 25:1 NA 75:1 88:1 100:1 51221.7 H-22

HEL 5:1 5:1 11:1 12:1 32:1 5:1 13:1 18:1 577.4 HEL

MOZ 1:1 4:1 5:1 11:1 17:1 3:1 5:1 7:1 70.7 MOZ

Table 7: Summary table: Compression ratio for main competi-
tors. (*) We show the best results of RLZ/Tong only.
competitors have a orders of magnitudes higher median query an-
swering times compared to index-based competitors, since strings
are decompressed and searched at query time. The fastest com-
petitor for small k is usually ConcESA, which stores an enhanced
suffix array over the concatenation of all strings. For all index-
based competitors working with referential compression, there is
no clear trend for a fastest competitor. There is a trade-off between
number of RMEs and maximum path length in reference depen-
dency graphs. On one hand, if a string is compressed with a lot of
RMEs, many overlaps have to be generated and thus increase in-
dex size and overhead for managing overlaps. If fewer RMEs are
needed, however, the number of overlaps is reduced at the cost of
longer time spent on propagation of results through the reference
dependency graph. In Figure 8, we analyze median query answer-
ing times for HG21 and k up to 10, which yields an error rate of
approx. 10%. As expected, with increasing k, median query an-
swering times significantly increase, since 1) more results are re-
turned and 2) much more false positives have to be verified by the
seed-and-extend algorithm. For other datasets, error rates of more
than 25% have been already covered by the experiments in Fig-
ure 7, since queries are much shorter (only 12-18 characters).

6.4 Discussion
We show the compression ratios of the most challenging competi-
tors in Table 7. CDAG generates often the most compact search in-
dex, sometimes as compact as compression-only competitors (RLZ/
Tong). At the same time CDAG is always among the fastest com-
petitors for creating the index structure. The median query run
times are quite similar for all competitors which create an index
based on referential compression. The fast competitors create an
index over the concatenated strings in the collection. The slower
competitors are based on online search in compressed strings and
need to decompress strings at query run time.
Besides our competitors RLZ/iRLZ [17], Tong/iTong [34], RCSI [37],
and CaBLAST [23], there are also other methods which have partly
a similar scope: GenomeCompress [38], MuGI [6], and AliBI [10]
create an index structure based on multiple sequence alignments
(MSAs). Creating an optimal MSA is computationally expensive.
We computed multiple sequence alignments following a consistency-
based progressive alignment strategy [31] implemented in SeqAn [9].
Even for a small fraction of our evaluation dataset (up to 20 strings),
the alignment time alone is larger than indexing time of best meth-
ods for the complete dataset. This shows that MSA-based ap-
proaches cannot scale up well with the number of strings. For
instance, the computation of a MSA for two strings from HEL al-
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ready takes 10 minutes and for three strings 23 minutes (CDAG
needs a little more than one minute to index the whole dataset
HEL). Computing an optimal MSA of four human chromosomes
22 takes more than one day with highly-parallelized GPU-based
implementations. Notably, all compressed indexing techniques in
the Bioinformatics area work on MSAs, since data from sequenc-
ing individuals of the same species is usually published in a pre-
aligned format. We have already shown in previous work [37]
that RCSI outperform GenomeCompress in terms of index size.
GCSA [33] cannot find all matches, since their index is build on
a pan-genome [6].
Furthermore, for an index over dissimilar strings, it is desirable that
the space consumption during construction is smaller than the ac-
tual text size (the sum of the length of all strings). For instance,
a collection of 1000 human genomes requires more than three TB
of storage. Computing intermediate data structures larger than the
actual text, what we call blow-up effect, makes the index construc-
tion infeasible, similarly to computing an alignment. Other related
techniques have a severe blow-up effect. Some indexes need a com-
plete suffix array of the to-be-indexed text as input (see Section 6.2
for sizes and indexing times of suffix arrays over concatenation of
strings). LZ-End creates an intermediate index roughly five times
larger than the input. Switching to compact constructions [15] can
reduce the space requirements, but poses the problem that the space
is compressed in terms of, at best, the k-th order empirical entropy
of the text, not in terms of the size of its LZ77 parse [20]. In con-
trast, all MRCSI variants and iRLZ/iTong ran on all our data sets
with just a few gigabyte of memory; this also applies for the hard
chromosomes (data not shown).

7. CONCLUSION
In this work, we presented a novel framework for referential com-
pression supporting approximate search. The main advantage to
prior works lies in the fact that our algorithms are capable of ex-
ploiting multiple references during compression, which makes them
applicable also to dissimilar string collections, which usually are
out-of-scope of referential compression methods.
An interesting direction for future work is the investigation of cost-
models for query answering times, instead of index size only. Fur-
thermore, it is interesting to analyze/restrict the main memory us-
age during index creation.
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