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ABSTRACT
The recent surge in popularity of crowdsourcing has brought with it
a new opportunity for engaging human intelligence in the process
of data analysis. Crowdsourcing provides a fundamental mecha-
nism for enabling online workers to participate in tasks that are ei-
ther too difficult to be solved solely by a computer or too expensive
to employ experts to perform. In the field of social science, four
elements are required to form a wise crowd - Diversity of Opinion,
Independence, Decentralization and Aggregation. However, while
the other three elements are already studied and implemented in
current crowdsourcing platforms, the ‘Diversity of Opinion’ has
not been functionally enabled. In this paper, we address the al-
gorithmic optimizations towards the diversity of opinion of crowd-
sourcing marketplaces.

From a computational perspective, in order to build a wise crowd,
we need to quantitatively modeling the diversity, and take it into
consideration for constructing the crowd. In a crowdsourcing mar-
ketplace, we usually encounter two basic paradigms for worker se-
lection: building a crowd to wait for tasks to come and selecting
workers for a given task. Therefore, we propose our Similarity-
driven Model (S-Model) and Task-driven Model (T-Model) for both
of the paradigms. Under both of the models, we propose efficient
and effective algorithms to enlist a budgeted number of workers,
which have the optimal diversity. We have verified our solutions
with extensive experiments on both synthetic datasets and real data
sets.

1. INTRODUCTION
Recently, with the emergence of crowdsourcing platforms, such

as Amazon Mechanical Turk [3] and CrowdFlower [4], more and
more applications are utilizing human intelligence in processing
various tasks that are either too difficult to be solved only by com-
puters alone or too expensive to employ experts to perform. For
example, data gathering can be done implicitly, through crowd-
sourced sensing and on-line behaviour collection, or explicitly, by
sending targeted information requests to the crowd. Given another
example from an analytical perspective, human input can be used
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to address computationally difficult tasks such as entity resolution
[34], schema matching [35] and the like.

Though humankind is intelligent, meanwhile, they are also er-
roneous and greedy, which makes the quality of crowdsourcing re-
sults quite questionable. Therefore, it is important to select the
“right” workers to build a wise crowd to guarantee the quality. Then
one crucial question to address is “What are the elements of a wise
crowd?”. Fortunately, this question has been thoroughly studied
in the field of social science and many detailed answers have been
given. One of the most recognized answers, from [31] with over
5,000 citations, points out that four elements are essential to form
a wise crowd, which are:

1. Diversity of Opinion - Each person should have private in-
formation even if it’s just an eccentric interpretation of the
known facts.

2. Independence - People’s opinions aren’t determined by the
opinions of those around them.

3. Decentralization - People are able to specialize and draw on
local knowledge.

4. Aggregation - Some mechanism exists for turning private
judgements into a collective decision.

Therefore, in order to construct a wise crowd, we need to make
sure that the constructed crowd satisfies the above four elements.
From the perspective of crowdsourcing systems, independence and
decentralization are easy to achieve, by providing a free and in-
dependent channel for each individual worker, that is, a means to
enable each worker to answer questions based on personal special-
ism without being aware of other workers. Existing crowdsourc-
ing platforms, such as AMT and CrowdFlower, work precisely in
this way. Concerning aggregation, various mechanisms have been
proposed already, such as majority voting [10], to achieve a target
overall reliability. However, to the best of our knowledge, how to
ensure the diversity of opinion in constructing a wise crowd has not
been studied from algorithmic perspectives before. Thus, in this pa-
per, we address the algorithmic optimizations towards the diversity
of opinion for crowd construction.

1.1 When Diversity Trumps Ability
The effect of diversity differs depending on the corresponding

crowdsourced tasks, as pointed out in [23]. In particular, for problem-
solving tasks, diversity is the essential factor affecting the perfor-
mance of a crowd, and it is even much more important than the
average ability of individuals. This phenomenon was discovered
and verified in [24], and referred to the ‘Diversity Trumps Abil-
ity Theorem’, which makes the observation that diverse groups of
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problem solvers - groups of people with diverse tools consistently
outperformed groups of the best and the brightest. People with high
abilities are often trained in the same institutions, tend to possess
similar perspectives and apply similar problem-solving techniques,
or heuristics. Many problems do not succumb to a single heuristic,
or even a set of similar ones. This is why a diverse crowd functions
better than a few experts. Intuitively, if two groups are formed,
one random (and therefore diverse) and one consisting of the best
individual performers, the first group almost always did better.

This theorem ends up indirectly providing convincing arguments
as to why - under certain conditions - citizens may outperform
elected officials and experts [23].

1.2 Two Basic Models for Diversity of Opinion
From a computational perspective, in order to build a wise crowd,

we are interested in quantitatively modeling the diversity, and take
it into consideration for constructing a crowd. In a crowdsourcing
marketplace, we usually encounter two basic paradigms for worker
selection: building a crowd that will wait for tasks to come or se-
lecting workers for a given task. We propose models for both of the
paradigms.

1.2.1 Similarity-driven Model (S-Model)
When there is no explicit query, we resort to the pairwise simi-

larity of workers to model the diversity of opinion. In particular, we
model the similarity of a pair of workers as a similarity score value
(high value indicates high similarity), and use the negative value of
average pairwise similarity to quantify the overall diversity. Intu-
itively, the lower the average similarity, the higher the diversity.

S-Model can be applied to crowdsourcing scenarios which do not
have explicit queries when constructing a crowd and require quick
responses when a query arrives. For example, diners may comment
on a restaurant through Foursquare [1], whereas iPhone users may
post ratings of the applications that they have downloaded from the
Apple Store. Such data is highly valuable for product creators (usu-
ally a company) : as ratings and reviews have a significant impact
on sales; and companies can analyze ratings and review trends to
adjust overall marketing strategies, improve customer service, and
fine-tune merchandising and so on. However, in current web-based
commenting systems, product creators must passively wait for re-
viewers to visit the commenting systems to provide their comments
and ratings. Hence, product creators may have to wait a long time
to receive a satisfactory number of reviews. These drawbacks with
existing commenting systems motivate the quest for effective meth-
ods to actively invite a group of reviewers prior to the arrival of the
query.

1.2.2 Task-driven Model (T-Model)
Another common scenario is that a requester has a specific query,

and enlists workers to join the crowd to answer it. In such a paradigm,
we are able to analyze the diversity of workers according to the con-
tent of the query. Regarding the given query, we model the opinion
of each worker as a probability ranging from 0 to 1, which indicates
opinions from negative to positive, respectively. To guarantee the
desirable diversity of opinion, we allow a user to set up the demand
on the number of workers with positive (negative) opinions. There-
fore, the optimization issue is to maximize the probability that the
user’s demand is satisfied.

T-model captures essence of diversity for a wide class of crowd-
sourcing scenarios. A typical example application, which is initi-
ated and currently operated by the US government [2], is an on-
line petitioning system enabling participants to propose, discuss

Table 1: MEANINGS OF SYMBOLS USED
Notation Description
w(wi) a crowdsourcing worker
Sim(wi, wj) the pairwise similarity between wi and wj
Div(C) the diversity of a crowd C of workers
θ1(θ0) the number of positive (negative) workers to be enlisted

with positive (negative)
ti the opinion of worker wi
Pr(t = 1 or 0) the probability of t satisfying or dissatisfying P
N the set of candidate workers to be selected
k the number of workers to be enlisted
S the set of workers to be selected, |S| = k
θ2 θ2 = k − θ0
τ(S) the probability of at least θ1 (θ0) workers existing in S
T0 T0 =

∑
t∈S t, following Poisson Binomial distribu-

tion

and sign political petitions. To determine whether a petition is sig-
nificant enough to get a response from the White House, the current
mechanism is simply a threshold of the number of signatures (cur-
rently 100,000), indicating the number of people who support the
petition. However, to analyze a particular petition fairly, it would
be more constructive if opinions from both the proposition and the
opposition are taken into consideration. So guided by the T-model,
the government may actively collect online comments on both sides
of the petition, which is more constructive for further governmental
processing.

1.3 Challenges and Contributions
As diversity is a loosely defined concept, the first main challenge

is quantitatively measuring the diversity among candidate workers.
Another main challenge to be addressed is to design effective and
efficient algorithms for worker selection with the consideration of
the diversity of opinions. To address these two challenges, we pro-
pose effective measures to estimate the diversity of the crowd under
two common scenarios, S-Model and T-Model, respectively, and
propose effective approximation algorithms for crowd selection. To
summarize, this paper has made the following contributions

1. In Section 2, we study the crowd selection problem under
S-model, and propose an efficient (1 + ε) approximation al-
gorithm for finding a crowd with the highest diversity.

2. In Section 3, we study the crowd selection problem under
the T-model, prove its NP-hardness, and provide a solution
based on distribution approximations.

3. In Sections 4 and 5, we discuss related works and conclude
the paper.

2. SIMILARITY-DRIVEN MODEL
In this section, we formally introduce the model, and propose

efficient algorithms to enlist workers.

2.1 Model and Definitions
We first need to design a computational model to depict the crowd

diversity for the worker selection problem. Under the similarity-
driven model, each pair of workers is associated with a value which
describes their pairwise similarity. We aim to select k workers out
of n candidates, such that the average pairwise distance is maxi-
mized (i.e. the average similarity is minimized).

We formally present the model with the following definitions.
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Figure 1: Find 3 workers with highest diversity

DEFINITION 2.1 (PAIRWISE SIMILARITY). For a given set of
potential crowdsourcing workersW , the diversity of any two work-
ers is computed by a pairwise similarity function Sim(wi, wj)
where wi, wj ∈W .

DEFINITION 2.2 (CROWD DIVERSITY). Given a crowd of work-
ersC = {w1, w2, ..., w|C|}, a pairwise similarity function Sim(.),
the diversity of the crowd is defined as the negative value averaged
pairwise similarity, that is,

Div(C) = −
∑
wi,wj∈C∧i6=j Sim(wi, wj)

|C|

Remark: For the sake of generality, we consider Sim(.) here
as an abstract function, which measures the similarity between two
workers. In the appendix, we list a number of popular methods
to quantify Sim(.). Aside from these measurements, we can also
plug in any reasonable diversity measurements. In our model, users
may also design appropriate similarity functions depending on the
data structure and application requirements.

Essentially, we are interested in finding a subset of candidate
workers with the maximal diversity, using the cardinality constraint.
We formally define this optimization problem as follows.

PROBLEM STATEMENT 1 (DIVERSITY MAXIMIZATION). For
a given set of potential crowdsourcing workers W , each worker
wi ∈ W , an integer k, we aim to find a subset C ⊆ W such that
|C| = k and Div(C) is maximized, that is,

arg max
C⊆W,|C|=k

Div(C)

Running Example: Figure 1 illustrates an example with 6 work-
ers and their pairwise similarity values. We aim to select three of
them, to maximize the crowd diversity. All the possible selections
are enumerated as follows and the associated crowd diversity.

Crowd Div(S) Crowd Div(S) Crowd Div(S)
A, B, C -0.467 A, B, D -0.7 A, B, E -0.467
A, B, F -0.733 A, C, D -0.633 A, C, E -0.533
A, C, F -0.733 A, D, E -0.433 A, D, F -0.833
A, E, F -0.567 B, C, D -0.6 B, C, E -0.6
B, C, F -0.6 B, D, E -0.667 B, D, F -0.867
B, E, F -0.7 C, D, E -0.6 C, D, F -0.73
C, E, F -0.7 D, E, F -0.633

Clearly, the optimal selection is < A,D,E >, with the highest
diversity −0.433.

2.2 NP-Hardness
Unfortunately, the diversity maximization problem under S-Model

is NP-hard, as stated in the following theorem.

THEOREM 2.1. The diversity maximization problem is NP-hard.

PROOF. First, we reduce the diversity maximization problem
to a subset version: relaxing the constant from |S| = k to be
|S| ≤ k. The reduction is correct because, if a polynomial al-
gorithm A solves the crowd selection problem, then we can solve
this by calling A k times, setting |S| = 1, 2, ..., k.

Next, we construct a special case of the diversity maximization
problem, namely the crowd selection problem. We reach the NP-
hardness of crowd selection problem by proving the crowd selec-
tion problem is NP-hard. With a trivial reduction, the crowd selec-
tion problem becomes an nth-order Knapsack Problem according
to Formula 6. Following the proof by H. Kellerer, et al in [19], we
prove the hardness of nOKP.

An nth-order Knapsack Problem(nOKP) is a Knapsack problem
whose objective function has the form as follows:

optimize
∑
i1∈n

∑
i2∈n

· · ·
∑
in∈n

V [i1, i2, · · · , in] · x1x2 · · ·xn

where V [i1, i2, · · · , in] is an n-dimensional vector indicating the
profit achieved if objects [i1, i2, · · · , in] are concurrently selected.
Given an instance of a traditional KP, we can construct an nOKP in-
stance by defining the profit n-dimensional vector as V [i, i, ...i] =
pi and V [otherwise] = 0 for all i, where pi is the profit in a
traditional KP. The weight vector and objective value remain the
same.

2.3 Approximation Algorithm
In the previous section, we show that the diversity maximization

problem is NP-hard. Therefore, we are interested in developing fast
approximation algorithms.

Now we revisit the optimization function defined in Definition 2.2:

Div(C) = −
∑
wi,wj∈C∧i6=j

Sim(wi,wj)

|C| , in which |C| is a fixed
value, indicating the number of workers to be selected. Hence,
the goal is actually to maximize −

∑
wi,wj∈C∧i 6=j Sim(wi, wj),

which we use Sum(C) to denote. As a result, we have

Sum(C) = −
∑

wi,wj∈C∧i 6=j

Sim(wi, wj)

Then, the optimization is equivalently transformed as

arg max
C⊆W,|C|=k

Sum(C)

Furthermore, we discover that the optimization function Sum(.)
is a submodular function of the set of candidate workers W .

A function f is submodular if

f(A ∪ {a1}) + f(A ∪ {a2}) ≥ f(A ∪ {a1, a2}) + f(A)

for any A and a1, a2 /∈ A. Submodularity implies the property of
diminishing marginal returns. Intuitively, in our problem, this says
that adding a new worker would lead to an enhanced improvement
if there were less workers already in the crowd. The problem of
selecting a k-element subset maximizing a sub-modular function
can be approximated with a performance guarantee of (1 − 1/e),
by iteratively selecting the best element given the ones selected so
far.

With theorem 2.2, we indicate that function Sum(.) is submod-
ular.
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Input: C ← ∅
Output: Find C s.t. |C| = k and Div(C) is maximized.
C ← {w0, w1}
while |C| ≤ k do

x = arg max
wx∈W

Div(C ∪ {wx})

C ← C ∪ {wx}
end
return C

Algorithm 1: Diversity Maximization

THEOREM 2.2. For an arbitrary instance of the diversity max-
imization problem, the resulting optimization function Sum(.) is
submodular.

PROOF. In order to establish this result, we need to prove that
∀C,w0, w1, we have

Sum(C∪{w0})+Sum(C∪{w1}) ≥ Sum(C∪{w0, w1})+Sum(C)

where C ⊆ W , w0, w1 ∈ W − C, By definition 2.2, we express
the left-hand-side and right-hand-side as follows

LHS = −
∑

wi,wj∈C∧i 6=j

Sim(wi, wj)−
∑
w∈C

Sim(w,w0)

−
∑

wi,wj∈C∧i 6=j

Sim(wi, wj)−
∑
w∈C

Sim(w,w1)
(1)

RHS = −
∑

wi,wj∈C∧i6=j

Sim(wi, wj)−
∑
w∈C

Sim(w,w0)

−
∑

wi,wj∈C∧i 6=j

Sim(wi, wj)−
∑
w∈C

Sim(w,w1)− Sim(w0, w1)

(2)
Therefore, we have

LHS −RHS = Sim(w0, w1) ≥ 0

which competes the proof.

Facilitated by Theorem 2.2, our first main result is that the opti-
mal solution for diversity maximization can be efficiently approx-
imated within a factor of (1 − 1/e − ε) [7]. Here e is the base
of the natural logarithm and ε is any arbitrary small positive real
number. Thus, this is a performance guarantee slightly better than
(1− 1/e) = 63%.

Algorithm 1 lists the detailed steps of this approximation algo-
rithm. This algorithm, which achieves the performance guarantee,
is a natural greedy hill-climbing strategy related to the approach
considered in [7]. Thus the main content of this result is the anal-
ysis framework needed for obtaining a provable performance guar-
antee, and the fairly surprising fact that hill-climbing is always
within a factor of at least 63% of the optimal for this problem.

3. TASK-DRIVEN MODEL
Under the task-driven model, each worker is associated with a

probability, describing his/her opinion about the given task. We
aim to select k workers out of n candidates, such that the numbers
of positive and negative workers satisfy a user’s demand.

We formally define the optimization problem and related impor-
tant notations in this section.

DEFINITION 3.1 (WORKER OPINION). A crowdsourcing worker
wi is associated with an opinion ti about the given task, which is

Figure 2: Find 4 workers including 1 supporter and 1 objector

a Bernoulli random variable. We denote the probability Pr(ti =
1) = 1−Pr(ti = 0), where Pr(ti = 1) (Pr(ti = 0)) is the prob-
ability of wi having a positive (negative) opinion about the task.
We assume that the opinions of all the workers are independent.

There are two possible ways to obtain the probabilities for the
workers. Firstly, when a crowdsourcing platform is implemented
on a public online community (e.g. social networks, online fo-
rums), we can analyze the historical data and profile information
of a given user. Any of the current techniques can be used as a
plug-in for our system to detect relevance of a worker to a sub-
ject of interest. Secondly, before selecting a worker to participate
in a crowd, we may simply ask individual workers for their opin-
ions towards the given subject. On common crowdsourcing plat-
forms, such questions can be designed as so-called Qualification
Tests, which are prerequisites for workers to answer any questions
thereafter.

3.1 Crowd Selection with T-Model
Now we illustrate how to optimize the process of worker selec-

tion under T-model. Before providing the formal definition, we
introduce the rationale of the optimization. Since each worker’s
opinion is probabilistic, the total number of workers with positive
(negative) opinions is also a probabilistic distribution. We assume
that we have the user’s demand of the number of workers with pos-
itive (negative) opinions, and the optimization is to select the best
subset of workers such that the user’s demand is satisfied.

As follows, we define the optimization problem under T-model.

DEFINITION 3.2 (K-BEST WORKERS SELECTION). Given a
set of |N |workersw1, w2, ..., w|N| with opinionsN = {t1, t2, ..., t|N|}.
Let θ1 and θ0 be the user’s demand on the numbers of workers be-
ing supportive or opposing with respect to the given task, respec-
tively. We aim to select k workers, so that the probability of the
user’s demand being fulfilled is maximized. To ensure this proba-
bility is positive for any k ≥ 1, we assume θ0+θ1 <= k. Formally,
let S be the subset of N, and let τ be the probability that at least θ1
(θ0) workers existing in S supporting (opposing) the given task,

τ(S) = Pr

{∑
t∈S

t ≥ θ1 ∧
∑
t∈S

(1− t) ≥ θ0

}
(3)

we have the optimization problem as follows:

S := arg max
|S|=k

τ(S) (4)
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By taking a closer look at Formula 3, we have
∑
t∈S t+

∑
t∈S(1−

t) = k. For the sake of presentation, we denote T =
∑
t∈S t,

θ2 = k − θ0. Then, Formula 3 can be rewritten as

τ(S) =Pr(θ1 ≤ T ≤ θ2)

=

θ2∑
i=θ1

Pr(T = i)
(5)

Since each worker can be treated as a random variable following
Bernoulli distributions, T follows a standard Poison Binomial dis-
tribution (PBD). Therefore, by adopting the probability mass func-
tion (pmf) of PBD, we have

τ(S) =

θ2∑
i=θ1

∑
A∈Ft

∏
tα∈A

Pr(tα = 1)
∏

tβ∈Ac
Pr(tβ = 0) (6)

where Ft is the set of all the subsets of S.
Running Example: A concrete example to illustrate the opti-

mization problem as illustrated in Figure 2. Assume we have a set
of candidate workers, with worker opinions 0.2, 0.3, 0.4, 0.6, 0.8
and 0.9, respectively. We further assume that a user wants to select
4 of them, and one of them has a positive opinion and one of them
has a negative opinion. Hence, we have θ1 = 1, θ0 = 1, k = 4,
then θ2 = 4− 1 = 3. There are totally C4

6 possible combinations,
each of which indicates a PBD. We present all the possible size-4
combinations, and compute τ(S) for each of them. Figure 3 illus-
trates the PBD of the number of workers with positive opinions,
and indicates the range of probabilities we aim to maximize.

Crowd τ(S) Crowd τ(S)
A, B, C, D 0.7616 A, B, C, E 0.7272
A, B, C, F 0.8992 A, B, D, E 0.4832
A, B, D, F 0.7152 A, B, E, F 0.6784
A, C, D, E 0.7884 A, C, D, F 0.9224
A, C, E, F 0.9108 A, D, E, F 0.7448
B, C, D, E 0.6188 B, C, D, F 0.8568
B, C, E, F 0.8356 B, D, E, F 0.5736
C, D, E, F 0.8732

Figure 3: The Poisson-Binomial Distribution

One can see that < A,C,D, F > is the optimal choice, since it
maximizes the probability that the user’s demand is satisfied.

3.2 Method with Poisson Approximation
To select the exact optimal combination of k workers, we have

to enumerate all O(nk) PBDs, and output the one with the highest
τ(S). However, this naive method leads to very high computational
cost. In this subsection, we consider each PBD as a Poisson distri-
bution, and conduct the selection among the approximated Poisson

distributions. By aborting the bounded imprecision introduced by
the approximation, we significantly improve the efficiency.

A Poisson binomial distribution can be well approximated by a
Poisson distribution. Then, we consider T approximately following
a Poisson distribution, with parameter λ =

∑
t∈S Pr(t = 1).

Then, we have

Pr(θ1 ≤ T ≤ θ2) ≈ FP (θ2, λ)− FP (θ1, λ)

where FP is the cumulative mass function (CMF) of the Poisson
distribution. As a result, we find S′ to maximize

GP (λ) := FP (θ2, λ)− FP (θ1, λ)

and return S′ as the approximate answer. In the reminder of this
subsection, we first analyze the monotonicity of GP (λ), and then
provide two algorithmic solutions.

3.2.1 Monotonicity Analysis
In the following, we first analyze the monotonicity of GP (λ).

We discover that GP (λ) has a nice monotonic property, which is
algorithmically useful. This discovery is concluded with the fol-
lowing theorem.

THEOREM 3.1. Considering λ as a continues independent vari-
able with range (0, k), GP (λ) monotonously increases and de-

creases on [0, (
θ2!

θ1!
)

1
θ2−θ1 ] and [(

θ2!

θ1!
)

1
θ2−θ1 , k], respectively.

PROOF. First, we expand FP , the CMF of Poisson distribution,
and rewrite GP (λ) as

GP (λ) = e−λ
θ2∑
i=0

λi

i!
− e−λ

θ1∑
j=0

λj

j!

=

θ2∑
i=θ1+1

e−λλi

i!

Then, we take the partial derivative of GP (λ) w.r.t λ:

∂GP (λ)

∂λ
=

θ2∑
i=θ1+1

∂( e
−λλi

i!
)

∂λ
=

θ2∑
i=θ1+1

e−λ(iλi−1 − λi)
i!

= e−λ
θ2∑

i=θ1+1

(iλi−1 − λi)
i!

= e−λ
θ2∑

i=θ1+1

{ λi−1

(i− 1)!
− λi

i!
}

= e−λ{
θ2∑

i=θ1+1

λi−1

(i− 1)!
−

θ2∑
i=θ1+1

λi

i!
} = e−λ{λ

θ1

θ1!
− λθ2

θ2!
}

= e−λλθ1{ 1

θ1!
− λθ2−θ1

θ2!
}

(7)
To analyze the monotonicity of GP (λ), we solve λ for inequation
∂GP (λ)

∂λ
> 0. Note that, in Eq 7, we have e−λλθ1 > 0, and

θ2 > θ1, so

∂GP (λ)

∂λ
= e−λλθ1{ 1

θ1!
− λθ2−θ1

θ2!
} > 0

⇔ λθ2−θ1 <
θ2!

θ1!
⇔ λ < (

θ2!

θ1!
)

1
θ2−θ1

(8)

Similarly, we have
∂GP (λ)

∂λ
< 0 ⇔ λ > (

θ2!

θ1!
)

1
θ2−θ1 , which

completes the proof.
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3.2.2 Transformation to Exact k-item Knapsack Prob-
lem (E-kKP)

Based on the discovered monotonicity property, we show that
maximizingG(λ) is equivalent to the classical “Exact k-object Knap-
sack (E-kKP)” problem as shown by the following Theorem.

THEOREM 3.2. By considering each PBD approximately as a
Poisson distribution, the k-best workers selection problem can be
solved by any algorithm for the Exact k-item Knapsack Problem
(E-kKP).

PROOF. Facilitated with theorem 3.1, our optimization is re-
vised to select S such that λ =

∑
t∈S Pr(t = 1) approaches

(
θ2!

θ1!
)

1
θ2−θ1 , which is a constant number. Furthermore, we have

λ =
∑
t∈S Pr(t = 1), then by defining

ΩP := (
θ2!

θ1!
)

1
θ2−θ1

our optimization is further revised as selecting S such that
∑
t∈S Pr(t =

1) approaches ΩP . Despite having the nice property of monotonic-
ity, GP (λ) may not be symmetric, and λ =

∑
t∈S Pr(t = 1) is a

discrete variable. This indicates, we need to find λl and λr , which

achieve maximums ofGP on [0, (
θ2!

θ1!
)

1
θ2−θ1 ] and [(

θ2!

θ1!
)

1
θ2−θ1 , k],

respectively. Then we choose between them by comparing GP (λl)
and GP (λr). Consequently, we aim to find two size-k subsets Sl
and Sr of the given N , such that

∑
t∈Sl

Pr(t = 1) is largest to
but no larger than ΩP , and

∑
t∈Sr Pr(t = 1) is smallest to but

smaller than ΩP . Actually, algorithmically speaking, finding Sl is
the same as finding Sr . This is because finding Sr is equivalent to
findingN−Sr , which is |N |−k sized, such that

∑
t∈N−Sr Pr(t =

1) is the largest but no larger than
∑
t∈N Pr(t = 1)−ΩP . There-

fore, the remaining optimization problem is: finding Sl, which is a
size-k subset of N , and we want to maximize the sum of values in
Sl without exceeding ΩP . This is a typical E-kKP problem.

It is known that E-kKP can be solved by
(1) a backtracking approach with O(|N |k/k!) time;
(2) dynamic programming with O(γ|N |) ;
(3) 1/2-approximation algorithm by linear programming with

O(|N |).
These three algorithms are proposed in [11]. For showing how to

adopt these algorithms, we only demonstrate (1), that is, the back-
tracking algorithm with Algorithm 2. The other two algorithms are
analogous.

With Algorithm 2, we find Sl and Sr byBt(k,ΩP , N) andN−
Bt(|N | − k,

∑
t∈N Pr(t = 1)− ΩP , N), receptively. Note λl =∑

Sl
Pr(t = 1) and λr =

∑
Sr
Pr(t = 1), we set the output

S′ = Sl as the final result if G(λl) > G(λr) ; otherwise S′ = Sr
is returned.

3.3 Method with Binomial Approximation
It is known that Binomial approximation is also an effective method

to deal with the high complexity of the Poisson Binomial distribu-
tion. Similar to the Poisson approximation, we have

Pr(θ1 ≤ T ≤ θ2) ≈ FB(θ2;n, p)− FB(θ1;n, p)

where FB is the CMF of Binomial Distribution with parameter

n = k and p =

∑
t∈S Pr(t = 1)

k
. Then, the optimization is to

maximize:

GB(p) := FB(θ2;n, p)− FB(θ1;n, p)

Input: k, Ω, N = {t0, t1, ..., t|N|}
Output: A size-k subset of N
Fuction Bt(k,Ω, N)
if |N | = k then

return N ;
end
else if

∑k−1
i=0 Pr(ti = 1) > Ω then

return null;
end
else if Bt(k,Ω, N − t|N|) > Bt(k − 1,Ω− Pr(t|N| =
1), N − t|N|) + Pr(t|N| = 1) then

return Bt(k,Ω, N − t|N|);
end
else

return Bt(k − 1,Ω− Pr(t|N| = 1), N − t|N|) ∪ t|N|
end

Algorithm 2: Backtracking Algorithm (Bt)

Please note n is a fixed parameter since k is a constant in K-best
workers selection problem. Therefore, what we can do is to simply
adjust p with different selections of S. Analogous to the Poisson
Approximation in Section 3.2, we first analyze the monotonicity,
and then discuss the algorithm.

Monotonicity Analysis:
With theorem 3.3, we show that GB(p) also has a useful mono-

tonic feature, which is similar to the Poisson approximation.

THEOREM 3.3. Considering p as a continues independent vari-
able with range (0, n), GB(p) monotonously increases and de-

creases on [0,
1

1 + (
(n− θ2)Cθ2n

(n− θ1)Cθ1n
)

1
θ2−θ1

] and

[
1

1 + (
(n− θ2)Cθ2n

(n− θ1)Cθ1n
)

1
θ2−θ1

, n], respectively

PROOF. The CMF of a Binomial distribution, FB , can be repre-
sented in terms of the regularized incomplete beta function:

FB(θ;n, p) = (n− θ)Cθn
∫ 1−p

0

tn−θ−1(1− t)θdt (9)

Facilitated with formula 9, we compute the partial derivative of
GB(p) w.r.t p:

∂GB(p)

∂p
=(n− θ2)Cθ2n

∂
∫ 1−p
0

tn−θ2−1(1− t)θ2dt
∂p

− (n− θ1)Cθ1n
∂
∫ 1−p
0

tn−θ1−1(1− t)θ1dt
∂p

=(n− θ2)Cθ2n {−(1− p)n−θ2−1pθ2}

− (n− θ1)Cθ1n {−(1− p)n−θ1−1pθ1}

=pθ1(1− p)n−θ2−1{(n− θ1)Cθ1n (1− p)θ2−θ1

− (n− θ2)Cθ2n p
θ2−θ1}

(10)

Then, by solving equations
∂GB(p)

∂p
>= 0 and

∂GB(p)

∂p
<=

0, we have results p <=
1

1 + (
(n− θ2)Cθ2n

(n− θ1)Cθ1n
)

1
θ2−θ1

and p >=
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Figure 4: Effectiveness of Methods for S-model with Various Distributions
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Figure 5: Efficiency of Methods for S-model with Various Distributions

1

1 + (
(n− θ2)Cθ2n

(n− θ1)Cθ1n
)

1
θ2−θ1

, respectively, which completes the proof.

Algorithms
Algorithm 2 (and other algorithms for E-kKP problem) can be

reused for finding the approximate solution based on binomial ap-
proximation. Specifically, we define

ΩB :=
|N |

(1 + (
(n− θ2)Cθ2n

(n− θ1)Cθ1n
)

1
θ2−θ1

and the solution subset is between S′l = Bt(k,ΩB , N) and S′r =
N − Bt(|N | − k,

∑
t∈N Pr(t = 1) − ΩB , N). Here, let pl =∑

t∈S′
l
Pr(t = 1) and pr =

∑
t∈S′r

Pr(t = 1), then we return S′l
as result if GB(pl) > GB(pr); otherwise return S′r .

4. EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation of the

performances of T-model and S-model, as well as an experimental
study of the crowd selection problem, namely finding the optimal
set of workers with a given budget. The goal of our experiments
is twofold: first, we study the effect of different parameters for
the proposed algorithms; second, we compare the two proposed
algorithms with a baseline algorithm, that is, selecting the workers
randomly. In order to explore the various settings of parameter
values in our methods, we have used synthetic data for the testing.
In addition, we verify the effectiveness of our methods on data from
the Foursquare [1], a very popular social network. Specifically,
we used the Foursquare API to gather sample data of the existing

venues and the tips posted on them. In particular, for each collected
venue, the crawler collects all its tips, the identifications of the users
who posted each of them. Our crawler ran from March 15th to
May 19th, which collected data from 69,423 users. Additionally, to
evaluate the practicability of the proposed models, we conducted a
case study on Amazon Mechanical Turk (AMT).

All the experiments are conducted on a server equipped with In-
tel(R) Core(TM)i7 3.40GHz PC and 16GB memory, running on
Microsoft Windows 7.

4.1 Experiments on S-model
We first conducted evaluation on S-model. In particular, we com-

pared the proposed greedy algorithm, namely greedy, with two al-
ternative methods- (1) exact: a brute-force algorithm, which com-
putes the exact optimal solution; (2) random: the workers are se-
lected randomly. Due to the high computational cost for the exact
algorithm, we only generate a small data set with 30 workers. Each
pair of workers is assigned a similarity ranging from −1 to 0 (so
Div(C) > 0), following three different distributions - Uniform,
Normal and Zipf.

Effectiveness: We generated 100 such data sets, and reported
their average performance in Figure 4. Note the x-axis denotes the
budget number of workers to be enlisted, and y-axis indicates the
diversity of the selected crowd.

It is straightforward to interpret our findings: from the experi-
mental results, we can see that greedy well approximates the per-
formance of the exact. This is consistent with our theoretical anal-
ysis that greedy performs an approximation guarantee of 63%, as
shown in Section 2.3. In addition, greedy outperforms random for
all three distributions. We also find that the diversity grows with the
increasing number of k for all three algorithms, which confirms the

491



k
0 50 100 150

0

10

20

30

40

greedy
random

di
ve

rs
ity

D
iv

(C
)

Figure 6: Effectiveness of S-model on Foursquare (Real) data
.
fact that large crowds tend to have high diversity. Another interest-
ing finding is that, by comparing it with random, the advantages of
greedy are more evident in Normal/Zipf distributions than in Uni-
form distributions. This is because Normal/Zipf distributions are
skewed, thereby random is very likely to select the values around
the mean, which leads to low diversity.

On the real data set, the exact algorithm cannot be performed
due to its factorial time cost. So we only plotted the performance
of random and greedy, as demonstrated in Figure 6. The result is
basically consistent with the synthetic data.

Efficiency: In this subsection, we empirically examine the time-
efficiency of the proposed algorithm for S-model. In particular, we
compare the greedy algorithm (Algorithm 2) with the exact algo-
rithm (Brute-force enumeration). As shown in Figure 5, the exact
algorithm (denoted by exact) entails exponential computation time,
and the greedy algorithm (greedy) is much more effective than ex-
act. Please note that we stop exact after running it over 500 sec-
onds.

4.2 Experiments on T-model

4.2.1 Synthetic Data
In this subsection, we demonstrate a series of experimental re-

sults on synthetic data. To simulate individual opinions without
bias, in this section we produced synthetic datasets following three
different distributions - normal, uniform and Zipf, each of which
has varying mean values and variance values. The characteristics
of K-Best selection are investigated with both Poisson Approxima-
tion and Binomial Approximation. Then we evaluate the efficiency
and effectiveness of both methods.

The synthetic dataset is generated as follows: we generated 100
data sets, each including 30 candidate workers. The number of
candidate workers is small because we want to use a brute-force
algorithm to traverse the searching space, and find the absolute op-
timal solution. Then, we can evaluate how far the proposed ap-
proximation algorithm is from this optimum. The setting of param-
eters is: k = 10, θ1 = 3, θ0 = 3, k = 15, θ1 = 5, θ0 = 5 and
k = 20, θ1 = 6, θ0 = 6.

The results of effectiveness are reported in Figure 7. In each sub-
figure of Figure 7, x-axis indicates the index of the 100 data sets,
and y-axis denotes the value of τ(S), which is the function we try
to maximize. The methods with poisson and binomial approxima-
tions are named ‘poisson’ and ‘binomial’, respectively. To better
illustrate the advantage of the proposed methods, we also com-
pare them with a baseline method, which randomly select workers,
denoted by ‘random’. From the experimental results, we can see
that the performance of ‘random’ can be arbitrarily bad, while the
‘poisson’ and ‘binomial’ have similar performance, and well ap-
proximate the optimum. In addition, we present the comparison of
efficiency in Figure 8. One can see that the approximation tech-
niques are much more efficient than computing the exact solutions.
Moreover, we observe that ‘poisson’ and ‘binomial’ have similar
performance in terms of efficiency.

4.2.2 Real Data
In this subsection, we evaluated the proposed methods on real

data sets from Foursquare. In particular, we select 10000 active
workers (i.e. Foursquare users) from all the data collected. We
evaluate sentiment of all the historical comments for each worker,
and use average opinion sentiment value for this experiment. With
this large data set, we examine the performance of the proposed
algorithms with different settings of θ0, θ1 and k. In Figure 9, we
use x-axis to denote the value of k, whereas θ0 and θ1 are set to be
different portions of k.

First, we can observe that the proposed approximation-based
methods significantly outperforms the random baseline. In partic-
ular, the advantage of proposals is evident when θ0 and θ1 are far
from the k/2, such as figures 9(a),9(d) and 9(h). Comparatively,
when they are close to k/2, the performance of random baseline be-
comes better, but still worse than our proposals. This phenomenon
can be explained by the Central Limit Theorem [29] - the sum of
0-1 random variables (i.e. a Poisson Binomial Distribution) is ap-
proximately a normal distribution, and the random baseline is more
likely to pick the workers with probability close to the mean. So
when the user’s demand is also close to the mean, the random base-
line would have a better performance. When the user’s demand
is far to the mean, randomly selecting workers is very unlikely to
satisfy the user’s demand. Overall speaking, our proposal demon-
strates very stable and outstanding performance. Moreover, when
k is fairly large, the user’s demand can be almost 100% guaranteed.

4.3 Case Study
We conducted a case study to exhibit the goodness of crowds se-

lected by our proposed models. In particular, we ask the crowds
to produce pairwise comparisons for a number of restaurants. One
thing worth noting is that the goodness of a crowdsourced result
for restaurants is not absolute. Nevertheless, in order to present a
fairly objective evaluation, we carefully select 40 pairs of restau-
rants, such that each of them is consistently ranked by three dif-
ferent third-party systems, namely Yelp! (http://www.yelp.com/ ),
Michelin (http://www.michelin.com/), as well as OpenRice
(http://www.openrice.com/). The pairwise comparisons agreed by
all the systems are assumed to be the ground truth.

We publish questions on Amazon Mechanical Turk (AMT), which
is a widely used crowdsourcing marketplace. Each question con-
tains two restaurants, and requires a worker to provide comments
(at least 200 words) on each restaurant and decide which one is
better. We accept 100 workers for each question. We apply the
S-model and T-model on the data obtained from AMT, and se-
lect a subset of workers out of the 100 for each pair of restau-
rants. Specifically, we adopt the distance function detailed in Ap-
pendix A.3 for S-model; and use the sentiment analysis tool from
Natural Language Toolkit (NLTK [5]) for the T-model. To aggre-
gate crowdsourced answers, we use the majority as the crowd’s
result. Moreover, for comparison, we randomly select the same
number of workers, denoted by rand.

The size of the selected subset of workers is set to 11, 21, ..., 51,
and the proposed models consistently outperform rand. Due to the
page limit, we demonstrate the precision and recall when the size
is 21. In Figure 10, we use rand, t-model and s-model to denote
the results for random selection, t-model and s-model, respectively.
From the experimental results, we can see that the proposed mod-
els achieve fairly high precision and recall (70%+). Besides, we
observe that rand has quite low precision and recall, which indi-
cate that the diversity of opinion is very important for constructing
a crowd.
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(g) Zipf k = 10, θ1 = 3, θ0 = 3
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Figure 7: Effectiveness of Methods with Poisson and Binomial Approximations
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Figure 8: Efficiency of Methods for T-model with Various Distributions

5. RELATED WORK

5.1 Crowd-based Queries
The recent development of crowdsourcing brings us a new op-

portunity to engage human intelligence into the process of answer-
ing queries (see [13] as a survey). Crowdsourcing provides a new
problem-solving paradigm [8, 21], which has been blended into
several research communities. In particular, crowdsourcing-based
data management techniques have attracted many attentions in the
database and data mining communities recently. In the practical
viewpoint, [15] proposed and develop a query processing system
using microtask-based crowdsourcing to answer queries. More-
over, in [26], a declarative query model is proposed to cooper-
ate with standard relational database operators. In addition, in the

viewpoint of theoretical study, many fundamental queries have been
extensively studied, including filtering [25], max [17], sorting [22],
join [22, 33], etc. Besides, crowdsourcing-based solutions of many
complex algorithms are developed, such as categorization based on
graph search [27], clustering [16], entity resolution [32, 34], analy-
sis over social media [10], and tagging in social networks [12], trip
planning [18], pattern mining [6] etc.

5.2 Team Formation
Another related problem in the field of data mining is Team For-

mation Problem [20]. Before taking diversity into consideration,
previous Team Formation problems focus on satisfying the spe-
cific requirements of given tasks for certain skills which are pos-
sessed by different candidates experts. Normally, the cost of choos-
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Figure 9: Testing on real data
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ing one expert is also defined, e.g. influence on personal relation-
ship and communication cost etc. Aside from using explicit graph
constraints, some attempts of solving team formation problem are
based on communication activities [9, 14].

The difference between Team Formation problem and ours is
twofold. First, Team Formation mainly considers on individual
capabilities, while we consider the crowd as a whole - the most
capable workers may not make a wise crowd [31]. Second, we fo-
cus on the diversity of opinions of the crowd, which has not been
addressed in the Team Formation problem.

5.3 Diversity of Opinions in Social Science
The importance of diversity of opinions for crowdsourcing is al-

ready well studied in the field of social science. In particular, [23]
is known as one of the most representative book in the field. It high-
lights the importance of cognitive diversity for collective problem-
solving (where diversity trumps ability), and takes a complex sub-
ject, moves beyond metaphor and mysticism and politics and places
the claims of diversity’s benefits on a solid intellectual foundation.

To our best knowledge, this is the first work of algorithmic study
on a how to construct a wise crowd with the consideration of the
diversity of opinion.

6. CONCLUSION AND FUTURE WORK
In this paper, we study how to construct a wise crowd with the

consideration of diversity of opinions. In particular, two basic paradigms
for worker selection is addressed - building a crowd waiting for
tasks to come and selecting workers for a given task. Accordingly,
we propose Similarity-driven (S-Model) and Task-driven Model (T-
Model) for these two paradigms. Under both of the models, we
propose efficient and effective algorithms to enlist workers with
a budgeted constraint. We have verified the solutions with exten-
sive experiments on both synthetic datasets and real data sets. The
experimental studies demonstrate that the proposals are robust for
varying parameters, and significantly outperform the baselines.

There are many further research directions to explore. One im-
mediate future direction is how to consider the different influence
of workers for the diversity of opinions. The influence may di-
minish the range of opinions, and polarize people’s opinions mak-
ing group feedback less reliable in guiding decision-makers. Influ-
encers tend to improve people’s confidence, but this so-called ‘con-
fidence effect’ will boost an individual’s confidence, while at the
same time, decrease their accuracy. Another interesting dimension
is to differentiate the cost for recruiting different workers, then the
problem is to minimize the total cost while fulfilling the require-
ment of diversity. Besides, we are interested in designing better
similarity/distance functions for our T-model.
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APPENDIX
A. SIMILARITY MEASUREMENT

OF S-MODEL
We assume we are given a set T of historical tasks and a setW of work-

ers. Each Task t ∈ T is associated with a unique identifier tid and a
set of workers tW ⊆ W who have worked on t. A record e is a triple
of the form [tid, wid, features] where wid is a unique identifier of the
worker and features contain certain useful information(e.g. correctness, la-
tency, submission time, etc.) which this record refers. The set of all records
belonging to a worker w forms the experience of the worker denoted by
experience(w). Without loss of generality, we assume a worker has at most
one record per task.

For each task t, we characterize it with a set of attributes such as cat-
egory, complexity, workload, requester and nature (e.g. problem solving
task, survey). Similarly, a worker w could carry demographic information
such as gender, age, expertises, occupation and geographic location.

A.1 Pairwise Relevance
In a typical crowdsourcing environment, relevance between a task and a

candidate worker serves as an important criterion to guarantee the quality
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of the crowdsourced results. Therefore, we first introduce the definition and
measurement of relevance before formally defining the concept of diversity.

DEFINITION A.1 (PAIRWISE RELEVANCE). For a given set of po-
tential workers W and tasks T , the relevance between any worker and
task is computed by a given function Rel(wi, ti) = 1/drel(wi, t), where
wi,∈ W , ti ∈ T .

Given a task t and a threshold radius r, we define the set of workers
relevant to t as the set of workers wi ∈ W within the relevant distance r
from t, e.g. Rel(wi, t) ≤ r. For example, the distance between a task and
a worker (represented by their sets of features x and y) could be computed
by Jaccard distance, e.g. drel(x, y) = 1− Jaccard(x, y). In this paper,
features are extracted from the descriptions of tasks and profile of workers
by running Porter Algorithm [28].

A.2 Pairwise Profile-Based Diversity
Intuitively, we define diversity between two workers wi and wj as a

function of entities extracted from their profiles.

DEFINITION A.2 (PAIRWISE SIMILARITY). For a given set of po-
tential crowdsourcing workers W , the diversity of any two workers is com-
puted by the similarity function Sim(wi, wj) = Jaccard(wi, wj), where
wi, wj ∈W .

Thus, two workers maybe similar because they have the same gender and
age, but still different(diverse), if one is living in Hong Kong and the other
in New York.

A.3 Pairwise Experience-Based Diversity
For a more sophisticated measurement, we denote the experience E as

a collection of historical records of each worker. Diversity between two
workerswi andwj is defined as a function of experience engaged by works
through their activities on the historic tasks. There are two steps for infer-
ring pairwise experience-based diversity of two workers

A.3.1 Probabilistic Topic Model
We use a probabilistic model to model user’s experience Ei as a un-

ordered collection of words (a.k.a. bag of words). Such collection of words
(i.e. task identifier, task features, etc.) can be extracted from the records of
different tasks that the worker has been performed. Specifically, we use a
mixture model in which each component corresponds to one of K differ-
ent topics. Let πk , for k = 1, ...,K, denote the prior probability that a
collection contains topic Tk . For each topic, there is a corresponding multi-
nomial distribution over the M distinct words in all collections. Let µkj ,
for k = 1, ...,K, j = 1, ...,M , denote the probability that topic Tk con-
tains word ωj in all collections. Suppose a collectionUi contains a totalNi
words in which each word is generated i.i.d from the mixture model above.
The number of occurrences of word ωj inEi is equal to nij , which follows
that

∑M
j=i nij = Ni. We assume there are N i.i.d collections denoted by

E1, E2, ..., EN that associated with N users.
Let Φ = (πk, µkj) denote the model parameters. We estimate Φ using

EM, the E-step computes for each collection Di the posterior probability
that Di belongs to topic Tk given the model parameters Φt of the previous
iteration. We can apply Bayes’ rule to express P (Tk|Ei,Φt) as

p(Tk|Ei,Φt) =
P (Tk)P (Ei|Ti,Φt)∑K
l=1 P (Tl)P (Ei|Tl,Φt)

=
πtk

∏M
j=1(µkj)

nij∑K
l=1 π

t
l

∏M
j=1(µtlj)

nij

(11)

In the M-step, to maximize Ψ(Φ|Φt) w.r.t Φ to obtain the next estimate
Φt+1, we can obtain

πt+1
k =

1

N

N∑
i=1

h
(i)
k (12)

We note that there are K constraints due to the multinomial distribution
for the K topics:

M∑
j=1

µkj = 1 k = 1, ...,K (13)

To solve a constrained optimization problem, we introduce K Lagrange
multipliers.

∂

∂µkj
[
N∑
i=1

K∑
k=1

h
(i)
k logP (Ei|Tk,Φ)−

K∑
k=1

λk(
M∑
j=1

µkj−1)] = 0 (14)

where h(i)k denotes P (Tk|Ei,Φt). This gives

µt+1
kj =

∑N
i=1 h

(i)
k nij∑M

j′=1

∑N
i=1 h

(i)
k nij′

(15)

The EM algorithm converges to a stationary point of the likelihood func-
tion. Then we obtain the probabilistic topic distribution, which is denote by
wi.ϕ, of each worker.

A.3.2 Worker Distance Function
Given two workers wi, wj ∈ W , the topic distance between two work-

ers is defined as

D(wi, wj) = KL(wi.ϕ||wj .ϕ)

where KL(.) measures the distance between the topic distributions wi.ϕ
and wj .ϕ, i.e.

KL(wi.ϕ||wj .ϕ) =
∑
i

Pr(wi.ϕ(i)) log
Pr(wi.ϕ(i))

Pr(wj .ϕ(i))

.Then we have Sim(wi, wj) = −D(wi, wj)

B. POISSON AND BINOMIAL APPROXI-
MATION

In Section 3, we use Poisson distribution and Binomial distribution to
approximate Poisson Binomial distribution. Here, we conclude the quality
of approximation in [30, 29].

Let X1,X2,...,Xn be a set of Bernoulli trials such that Pr(Xj = 1) =
pj and X =

∑n
j=1Xj . Then X follows a Poisson binomial distribution.

Suppose µ = E[X] =
∑n
j=1 pj . The probability of X = i and X ≤ i

can be approximated by the probability density function (PDF) and cumula-
tive mass function (CMF) of Poisson distribution and Binomial distribution.

Poisson Approximation:

Pr(X ≤ i) ≈ FP (i, u) =
Γ(i+ 1, u)

i!
e−u

[30] provides an upper bound of the error of the approximation:

|Pr(X ≤ i)− Fp(i, u)| ≤ min(µ−1 ∧ 1)
n∑
j=1

p2j

for i = 0, 1, 2, ..., n Clearly, this upper bound of the error is greater than
or equal to 0. When µ ∈ [0, 1]

|Pr(X ≤ i)− Fp(i, u)| =
n∑
j=1

p2j ≤
n∑
j=1

pj ≤ 1

When µ ∈ [1,+∞)

|Pr(X ≤ i)− Fp(i, u)| =
∑n
j=1 p

2
j∑n

j=1 pj
≤

∑n
j=1 pj∑n
j=1 pj

= 1

So, in ether case:

0 ≤ |Pr(X ≤ i)− Fp(i, u)| ≤ 1

Binomial Approximation:
In [29], the metric of error is defined as

derr =
1

2

∑
i∈Z
|fB(X = i)−Bi(i;n, p)|

By using binomial distribution Bi(i;n, p) approximate the distribution of
X , where p = µ/n, we have

derr ≤
1− pn+1 − (1− p)n+1

(n+ 1)p(1− p)

n∑
i=1

(pi − p)2
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