
Leveraging Graph Dimensions in Online Graph Search

Yuanyuan Zhu
State Key Laboratory of
Software Engineering

Wuhan University, China

yyzhu@whu.edu.cn

Jeffrey Xu Yu
The Chinese University of

Hong Kong
Hong Kong, China

yu@se.cuhk.edu.hk

Lu Qin
Centre for QCIS, FEIT,

University of Technology,
Sydney, Australia

lu.qin@uts.edu.au

ABSTRACT
Graphs have been widely used due to its expressive power to model
complicated relationships. However, given a graph database DG =
{g1, g2, · · · , gn}, it is challenging to process graph queries since
a basic graph query usually involves costly graph operations such
as maximum common subgraph and graph edit distance compu-
tation, which are NP-hard. In this paper, we study a novel DS-
preserved mapping which maps graphs in a graph databaseDG onto
a multidimensional spaceMG under a structural dimensionM us-
ing a mapping function φ(). The DS-preserved mapping preserves
two things: distance and structure. By the distance-preserving, it
means that any two graphs gi and gj in DG must map to two data
objects φ(gi) and φ(gj) in MG , such that the distance, d(φ(gi),
φ(gj)), between φ(gi) and φ(gj) inMG approximates the graph
dissimilarity δ(gi, gj) in DG . By the structure-preserving, it fur-
ther means that for a given unseen query graph q, the distance be-
tween q and any graph gi in DG needs to be preserved such that
δ(q, gi) ≈ d(φ(q), φ(gi)). We discuss the rationality of using
graph dimension M for online graph processing, and show how
to identify a small set of subgraphs to formM efficiently. We pro-
pose an iterative algorithm DSPM to compute the graph dimension,
and discuss its optimization techniques. We also give an approxi-
mate algorithm DSPMap in order to handle a large graph database.
We conduct extensive performance studies on both real and syn-
thetic datasets to evaluate the top-k similarity query which is to
find top-k similar graphs from DG for a query graph, and show the
effectiveness and efficiency of our approaches.

1. INTRODUCTION
A graph models complex structural relationships among objects

and has been extensively used in a wide range of applications, such
as chemical compound structures in chemistry, attributed graphs
in image processing, food chains in ecology, electrical circuits in
electricity, protein interaction networks in biology, etc. With the
increasing popularity of graph databases that contain a number of
graphs in various applications, graph manipulations become very
important as they are useful in most of the common knowledge dis-
covery tasks like classification, clustering, outlier detection, graph
indexing, etc.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 1
Copyright 2014 VLDB Endowment 2150-8097/14/09.

Despite the great expressive power of graphs, the graph query
processing in real applications is very challenging, because the ba-
sic graph operations are very costly, such as maximum common
subgraph and graph edit distance, which are NP-hard. Such high
complexity causes a severe consequence, i.e., a lack of efficient al-
gorithms and tools to process and analyze the graphs. The key issue
we address in this paper is how to achieve high quality and effi-
ciency in online graph query processing by mapping graphs onto
a multidimensional space. This approach is taken in the PubChem
Compound Database (http://pubchem.ncbi.nlm.nih.gov) for users
to search similar graphs for a given query graph. For the Pub-
Chem Compound Database, the domain experts have identified a
dictionary-based binary fingerprint in total 881 dimensions, where
the dimensions correspond to the substructures as well as some
other additional information. Such dimensions are very difficult
even for domain experts to identify, and the process of identify-
ing such dimensions is very time consuming and expensive, due to
the large number of combinations of possible features in the graph
database to analyze, which can take months or even years. Moti-
vated by this, in this paper, we study how to automatically identify
a small set of subgraphs to form a graph dimensionM, for effective
and efficient graph processing in a graph database DG .

The main contributions of this paper are summarized below. First,
we study a new DS-preserved mapping which maps graphs in a
graph database DG = {g1, g2, . . . , gn} onto a multidimensional
spaceMG under a structural graph dimensionM using a mapping
function φ(), where each dimension represents a feature (or sub-
graph) of graphs in DG . The DS-preserved mapping preserves two
things: distance and structure. By the distance-preserving, it means
that any two graphs gi and gj in DG , must map to two data objects
φ(gi) and φ(gj) inMG , such that the distance between φ(gi) and
φ(gj) inMG , d(φ(gi), φ(gj)), approximates the graph dissimilar-
ity δ(gi, gj) in DG . By the structure-preserving, it further means
that for a given unseen query graph q, which does not necessar-
ily appear in DG , the distance between q and any graph gi in DG
needs to be preserved such that δ(q, gi) ≈ d(φ(q), φ(gi)). Sec-
ond, we show the rationality of using the graph dimensionM for
online graph processing by deriving a bound which indicates that
the structure-preserving can be maintained if distance-preserving is
achieved. Third, we show how to identify a small set of subgraphs
to formM efficiently. We propose an iterative algorithm DSPM,
and discuss its optimization techniques. We also give an approxi-
mate algorithm DSPMap in order to handle a large graph database.
Fourth, we conduct extensive performance studies using both real
and synthetic datasets to evaluate top-k similarity query which is to
find top-k similar graphs from DG for a query graph, and show the
effectiveness and efficiency of our approaches.

The rest of the paper is organized as follows. Section 2 gives the

85

problem statement. Section 3 reviews the related work. Section 4
discusses DS-preserved mapping. In particular, we discuss the ra-
tionality of using the graph dimension and the model for dimension
computation. Section 5 discusses the algorithms. We give an iter-
ative algorithm, discuss its optimization techniques, and also give
an approximate algorithm. Section 6 shows the effectiveness and
efficiency of our algorithms with extensive experimental studies.
Section 7 concludes this paper.

2. PROBLEM STATEMENT
In this paper we deal with undirected labeled graphs. Given a

set of labels Σ, an undirected labeled graph is represented as g =
(V,E, l), where V is the set of vertices, E ⊆ V × V is the set of
edges, and l is a labeling function on vertices and edges. We use
V (g) and E(g) to denote the vertex set and edge set of graph g,
respectively, and use |V (g)| and |E(g)| to denote the number of
vertices and the number of edges in g.

Let DG = {g1, g2, . . . , gn} be a graph database where every gi
is an undirected labeled graph. The graph query processing is to
obtain results, denoted as DG(q), from DG , for a user given query
graph q. The cost of such graph query processing is high because it
involves costly graph operations, such as maximum common sub-
graph, graph edit distance, etc. In order to significantly improve
the efficiency while maintaining the high quality of the query re-
sults, the key is to explore the possibility of replacing the costly
graph operations with much cheaper operations on a multidimen-
sional space. In brief, given a graph databaseDG , letDG(q) denote
the query processing result for a given query graph q. Instead of
conducting query processing using high cost graph operations, we
map the graphs in DG and any unseen query graph to a multidi-
mensional database DM using a mapping function φ(), and obtain
the results DM(φ(q)) (≈ DG(q)). The challenging issue is on the
mapping. Let δ(gi, gj) denote a graph dissimilarity function be-
tween two graphs gi and gj in DG , and let d(φ(gi), φ(gj)) denote
a distance function between two data objects φ(gi) and φ(gj) in
MG that two graphs map to. The mapping needs to preserve two
things: distance and structure. We call it DS-preserved mapping.
By the distance-preserving, it means that any two graphs gi and gj
in DG , must map to two data objects φ(gi) and φ(gj) inMG , such
that δ(gi, gj) ≈ d(φ(gi), φ(gj)). By the structure-preserving, it
further means that for a given unseen query graph q, which does not
necessarily appear in DG , the distance between q and any graph gi
inDG needs to be preserved such that δ(q, gi) ≈ d(φ(q), φ(gi)). It
is important to note that by structure-preserving, it requests to keep
the most informative fingerprint of the graphs in the entire DG .

In this paper, for δ(gi, gi), we focus on two graph dissimilarities
[1] [2] based on Maximum Common Subgraph (MCS). A graph g
is a MCS of two graphs gi and gj , denoted as mcs(gi, gj), if g is
a common subgraph of gi and gj and there is no other common
subgraph g′ larger than g. Note that a graph g′ is a subgraph of g
if g′ is subgraph isomorphic to g. Here we can also say that g is a
supergraph of g′ or g contains g′. We denote such relationship as
g′ ⊆ g or g ⊇ g′.

The first graph dissimilarity [1] is defined below.

δ1(q, g) = 1−
|E(mcs(q, g))|

max{|E(q)|, |E(g)|}
(1)

The second graph dissimilarity [2] is defined as follows.

δ2(q, g) = 1−
2|E(mcs(q, g))|
|E(q)|+ |E(g)|

(2)

These two dissimilarities measure the graph structures from dif-
ferent points of view. The former is normalized by the maximum
graph size, which emphasizes the difference between the maximum

common graph and the larger graph. The latter is normalized by
the average graph size, which emphasizes the difference between
the maximum common graph and both graphs.

Below, we use δ to indicate both δ1 and δ2 unless otherwise spec-
ified, and use δij for δ(gi, gj). The graph dissimilarity δ(,) is sym-
metric and is in the range of [0, 1].
Problem Statement: Given a graph database DG = {g1, g2, . . . ,
gn} and a graph dissimilarity function δ(,), identify a structural
dimension M with a small number of subgraphs such that it can
DS-preserved map graphs (including those graphs in DG as well
as any unseen query graph) onto the multidimensional spaceMG
regarding an Euclidean distance function d(,) defined onMG . As
a result, a multidimensional database DM is constructed that con-
sists of φ(gi) for any gi ∈ DG , and it will be used to process a
query φ(q) for a query graph q. In this paper, we use top-k query
for graph query processing, which finds the top-k similar graphs in
DG for a given query graph. Nevertheless, the identified structural
dimensionM can also be applied in many other graph applications
such as graph pattern matching and graph clustering.

3. RELATED WORK
Our work is geared towards mapping graphs to a multidimen-

sional space to preserve the distance and structure simultaneously.
In this section, we briefly review the five related topics of our work,
i.e., graph embedding, graph kernels, feature selection, frequent
subgraph mining, and frequent subgraph based indexing.

Graph embedding. Existing work for graph embedding can be di-
vided into two categories. The first category aims to represent each
vertex in a single graph as a vector that best characterizes the simi-
larities/weights between vertex pairs. The vector representation for
the vertices can be obtained based on the graph spectral theory [3,
4]. The graph spectral techniques are also adopted for dimension-
ality reduction in multidimensional space. Representative works
such as Isomap [5], Locally Linear Embedding [6], and Laplacian
Embedding [7], can all be interpreted in a general graph embedding
framework with different choices of the graph structures. Tetsuo et
al. [8] study the trade-off between time and space of graph embed-
ding. Note that approaches in this category aim to transform the
vertices of a single graph but not a collection of graphs to vectors,
thus inapplicable to the problem studied in this paper.

The approaches in the second category aim at representing each
graph in a dataset as a feature vector based on graph operations or
statistics. Riesen et al. [9] propose a general approach of map-
ping graphs to multidimensional vectors. They heuristically select
k graphs in the graph set as prototypes, and then map each graph to
a k-dimensional vector in which the elements represent the graph
edit distances between this graph and the prototypes. To improve
the quality of the prototypes, they subsequently propose another
approach [10] to first use all the graphs in the graph set as pro-
totypes, and then apply feature selection algorithms to eliminate
redundant prototypes and reduce the dimensionality. An obvious
disadvantage of these two approaches is that they need to perform
k times of the costly graph edit distance computation to obtain the
k-dimensional vector for a query graph, which does not essentially
reduce the the computation complexity in query processing. Gib-
ert et al. [11] propose another embedding methodology to map
graphs to vectors based on statistics of the node/edge attributes.
However, such method only preserves very little structure informa-
tion of graphs and cannot be qualified DS-preserved mapping.

Graph kernels. Graph kernels aim at computing similarity scores
between graphs in a dataset and have been defined on various graph
patterns which generally fall into three classes. The first class,

86

based on random walks/paths, computes the number of matching
pairs of random walks/paths in two graphs [12, 13]. The second
class, subtree graph kernel [14], has higher representation power of
graph structure than the first class, but the processing time grows
exponentially while the recursion depth of the subtree patterns be-
comes deeper. The third class of graph kernels is based on restricted
subgraphs, such as Graphlets [15] and h-hop neighbors [16]. How-
ever, the Graphlet is only be feasible on unlabeled graphs, and both
Graphlets and h-hop neighbors have very limited power to capture
the topological structure of graphs as types and sizes of the ker-
nel substructures are very limited. There are also some research
on selecting useful features for graph kernels in the literature [17,
18]. However, these approaches aim at achieving higher classifica-
tion accuracy but not for DS-preserved mapping. Thus they are not
applicable for the problem studied in this paper.

Feature selection. We review the unsupervised feature selection
approaches since this paper focuses on a graph database with no
class labels. Exiting unsupervised feature selection methods fall
into two categories: wrapper model and filter model [19]. In wrap-
per approaches, feature selection is wrapped in a specific learning
algorithm, which usually results in high computational complexity
and less generality so that the selected features are inapplicable to
other learning algorithms. So we mainly focus on the filter methods
which utilize some intrinsic properties of the data to decide which
features should be kept.

Finding the optimal feature subset is intractable [20]. Therefore,
greedy search strategies such as sequential forward selection (SFS)
[21] and sequential backward elimination (SBE) [20] are typically
used. However, these greedy algorithms perform poorly when the
feature evaluation criterion is non-monotonic. Meanwhile, various
feature evaluation criteria are proposed to evaluate the quality of a
subset. For example, Talavera [22] selects features based on feature
dependence; Dash et al. [23] choose features based on the entropy
of distances between data points; and Mitra et al. [24] select fea-
tures based on a new feature similarity measure called maximum
information compression index (MICI). In recent years, spectral
methods are also explored for feature selection, such as [25] which
selects features based on the Laplacian score, and a unified frame-
work SPEC [26] which considers Laplacian score as a special case.
However, the features selected by these two methods are highly re-
dundant as the correlation among features is neglected. Therefore,
a two step approach, MCFS [27], is proposed to find the subset of
features instead of evaluating each feature independently. Yang.
et al. [28] propose a framework, UDFS, by integrating discrimi-
native information and `2,1 minimization into one step. A more
general framework NDFS [29] is developed to learn the cluster
label and feature selection simultaneously where cluster indicator
is constrained to be nonnegative. However, they only select the
most informative features and do not consider the graph dissimi-
larity when they are applied in the graph database. Therefore, they
cannot achieve good performance on distance-preserving in graph
databases, which will also be showed in the experiments later.

Frequent subgraph mining. Frequent subgraph mining has been
widely studied in the literature, with the aim of finding the set of the
frequent subgraphs, maximal frequent subgraphs, closed frequent
subgraphs, and representative frequent subgraphs. A comprehen-
sive survey can be found in [30]. However, the set of frequent
subgraphs cannot be used directly as dimensions for DS-preserved
mapping due to the anti-monotone property of frequent subgraphs.

Frequent subgraph based indexing. In the literature, frequent
subgraphs have been used to represent graphs as feature vectors to
support graph query, including subgraph containment query and su-

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
tag

e

δ

DSPM
Original

(a) Distribution in DG

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
tag

e

δ

DSPM
Original

(b) Distribution between q and DG

Figure 1: Dissmilarity/Distance Distribution
pergraph containment query. To accelerate subgraph containment
query process, gIndex [31] and FG-Index [32] are proposed for fil-
tering. gIndex generates all size-bounded frequent subgraphs as
well as a subset of size-bounded infrequent subgraphs, while FG-
Index indexes all frequent subgraphs with size-increasing support
function and additionally includes all infrequent edges. Based on
the indexing features used in gIndex, Grafil [33] is developed to
support efficient subgraph similarity containment query. To solve
the supergraph containment query problem, Chen et al. propose a
contrast subgraph-based indexing framework, cIndex [34], to sort
out significant and distinctive contrast subgraphs using a redundancy-
aware feature selection process. However, the selected frequent
subgraphs in the above approaches are only used for efficient filter-
ing but are not aimed to preserve the distance property to avoid the
costly verification phase as we study in this paper.

4. DS-PRESERVED MAPPING
We study how to identify a multidimensional space M where

each dimension represents a feature (subgraph) taken fromDG , and
map graphs (including gi ∈ DG and unseen query graphs) to M
using a mapping function φ(). Below, we use F instead ofM to
indicate that the space is based on features of graphs. LetF = {f1,
f2, . . . , fp}, and assume it is identified. A graph gi can be mapped
to a binary vector φ(gi) = yi = (yi1, yi2, . . . , yip) where yir
= 1 if fr is a subgraph of gi, and yir = 0 otherwise. In this
paper, we use the normalized Euclidean distance in the mapped
space. The Euclidean distance between yi and yj is defined as

d(yi,yj) =
(
1
p
Σp

r=1(yir − yjr)2
) 1

2 , where 0 ≤ d(yi,yj) ≤ 1.
In order to achieve high quality DS-preserved mapping fromDG

toMG , the first difficulty is to discover what properties the mapped
space F should have, and the second difficulty is to identify F
efficiently, considering that the number of possible subgraphs we
need to explore is too large for a large graph database DG .

A possible way is to restrict the search to only frequent sub-
graphs. Recall that a subgraph f is frequent if freq(f) ≥ τ where
freq(f) = |sup(f)|/|DG | for sup(f) = {gi | f ⊆ gi, gi ∈ DG}
and τ ∈ [0, 1] is a user specified threshold. Such restriction is rea-
sonable, because infrequent subgraphs usually preserve very little
structure information of the graphs as they barely occur in DG .

However, the set of frequent subgraphs cannot be used directly as
an effective multidimensional space for DS-preserved mapping due
to the anti-monotone property of frequent subgraphs. This property
implies that all the subgraphs of a frequent subgraph are also fre-
quent. In brief, given such anti-monotone property, a graph gi or
a query graph q will be mapped to those dimensions that represent
the frequent subgraphs contained in gi or q. This leads to the result
that the multidimensional space can be severely unbalanced. Thus,
in this paper, a subset of frequent subgraphs are selected to repre-
sent the multidimensional space. The frequent subgraph selection
is performed by our proposed algorithm, DSPM, to achieve high
quality DS-preserved mapping.

In Fig. 1, we show the distance/dissimilarity distribution on real
chemical compound dataset (see Section 6 for the detailed descrip-
tion of the dataset) for δ, DSPM, Original, where δ is the graph

87

1k

2k

4k

6k

8k

10k

 100 200 300 400 500
Co

rre
lat

ion
 sc

ore

Number of features

DSPM Sample

Figure 2: Correlation Score Between Selected Features
dissimilarity based on Eq.(2), DSPM represents the Euclidean dis-
tance between data objects in our mapped space, and Original rep-
resents the Euclidean distance in the space where all frequent sub-
graphs are considered as the dimensions. Fig. 1(a) shows the dis-
similarity/distance between all graph pairs in 1, 000 randomly se-
lected graphs in the graph database. The x-axis represents the
value of the graph dissimilarity/distance, and the y-axis represents
the percentage of the graph pairs for each dissimilarity/distance
value. We can observe that Euclidean distance generated by DSPM
can approximate graph dissimilarity very well while Original can-
not, which shows the distance-preserving property of DSPM. We
also plot the distribution of the dissimilarity/distance of all graph
pairs between 1, 000 randomly selected query graphs and 1, 000
randomly selected database graphs in Fig. 1(b). DSPM can also
approximate graph dissimilarity well, which shows the structure-
preserving ability of DSPM. These two figures show the necessity
of selecting appropriate features for DS-preserved mapping.

Fig. 2 shows the sum of the correlation scores between selected
features for DSPM and Sample when we vary the dimension num-
ber p from 100 to 500 in the real chemical compound dataset,
where DSPM is our proposed algorithm and Sample is the algo-
rithm which randomly selects p frequent subgraphs as dimensions.
The correlation score between two features is an important measure
to evaluate how similar the features are, which is defined using Jac-
card Coefficient [35]. As shown in Fig. 2, DSPM has much smaller
feature correlation score than Sample, while the query precision of
DSPM is twice larger than that of Sample (see Exp-1 in Section
6 for details). Such a result indicates that a better DS-preserved
mapping tends to use less correlated features so that more structure
information of the database graphs can be preserved.

4.1 The Rationality
Recall that DS-preserved mapping preserves both distance and

structure. For the distance-preserving, it implies d(φ(gi), φ(gj))
≈ δ(gi, gj), when gi and gj in DG are mapped onto MG , us-
ing φ(gi) and φ(gj). This can be possibly achieved by identify-
ing F (a subset of frequent subgraphs) from DG , since the number
of graphs in DG is fixed. For the structure-preserving, it implies
d(φ(q), φ(gi)) ≈ δ(q, gi) for any graph q that does not appear in
DG and any gi in DG , when q and gi are mapped ontoMG . This
is hard to achieve because the number of possible graph queries is
infinite to enumerate.

Below, we assume the distance-preserving can be achieved, and
discuss the bound for the structure-preserving in this subsection.
Specifically, consider q to be a graph inDG whose mapping quality
is bounded, we start our discussion on how to bound the quality
for a query graph q′ ⊆ q or q′ ⊇ q. In the following, we show
this can be bounded in Corollary 4.1 and Corollary 4.2. To obtain
the two corollaries, we first give Lemma 4.1 to show that q′ and
q, for q′ ⊆ q, can be bounded by their graph sizes, based on the
difference of MCS graph similarity between q′/q and a common
graph g. With the common graph g as a basis, we prove δ(q′, g)
can be bounded by δ(q, g) for δ1 and δ2 in Theorem 4.1 and The-
orem 4.2, respectively. We further prove that the mapped distance
of q′ and g can be bounded by the mapped distance of q and g in

1

S0

T1

T0

S

E(mcs(q’,g))

E(q’)

E(mcs(q,g))

E(q)

Figure 3: Proof of Lemma 4.1
Theorem 4.3. As a result, the quality of an arbitrary query graph
q′ can be bounded by Corollary 4.1 and Corollary 4.2. In other
words, we bound the quality of mcs(q′, q) by Corollary 4.1 since
mcs(q′, q) ⊆ q, and bound the quality of q′ by Corollary 4.2 since
q′ ⊇ mcs(q′, q). Given the bound for distance-preserving dis-
cussed in this subsection, we discuss how to address the distance-
preserving which implies the quality of the structure-preserving in
Section 4.2.

Lemma 4.1: Given a graph g, for a graph q and its subgraph q′ ⊆
q, the difference between their MCSs with g, ξ = |E(mcs(q, g))|−
|E(mcs(q′, g))|, can be bounded as

0 ≤ ξ ≤ |E(q)| − |E(q′)|
Proof: We first prove that ξ ≥ 0. Suppose that ξ < 0, which
implies that |E(mcs(q, g))| < |E(mcs(q′, g))|. Since q′ ⊂ q, we
have mcs(q′, g) ⊆ q′ ⊆ q. Thus we conclude that mcs(q′, g) is
a larger common subgraph between q and g than mcs(q, g), which
contradicts the fact that mcs(q, g) is the MCS between q and g. As
a result, ξ ≥ 0 holds.

Next, we prove that ξ≤ |E(q)| − |E(q′)|. Consider the graph q′,
whose edge set can be divided into two parts: E(mcs(q′, g)) and
E(q′) − E(mcs(q′, g)). We check whether the edges in q′ occur
in E(mcs(q, g)), and further divide the part E(mcs(q′, g)) into
E(mcs(q′, g)) ∩ E(mcs(q, g)) and E(mcs(q′, g)) \ E(mcs(q,
g)), denoted as S0 and S1, respectively. Similarly, we divide the
part E(q′) − E(mcs(q′, g)) into (E(q′) − E(mcs(q′, g))) ∩
E(mcs(q, g)) and (E(q′) − E(mcs(q′, g))) \ E(mcs(q, g)), de-
noted as T0 and T1, respectively. The relationship for the above
subsets is illustrated in Fig. 3.

We claim that |S0| + |T0| ≤ |E(mcs(q′, g)|. Indeed, suppose
that |S0| + |T0| > |E(mcs(q′, g)|, from the definition of S0 and
T0, we can derive that S0 ⊆ E(mcs(q, g)) and T0 ⊆ E(mcs(q,
g)). It follows that S0 ∪ T0 ⊆E(mcs(q, g)). Therefore, a common
subgraph q∗ between q′ and g can be induced by the set S0 ∪ T0,
andE(q∗) = |S0|+ |T0|> |E(mcs(q′, g))|, which contradicts the
fact that mcs(q′, g) is the maximum common subgraph between q′
and g. Thus the claim is established. Moreover, we have:

|S1|+ |T1| = E(mcs(q′, g)) \ E(mcs(q, g))

+ (E(q′)− E(mcs(q′, g))) \ E(mcs(q, g))

= E(q′) \ E(mcs(q, g))

= E(q′) ∩ (E(q)− E(mcs(q, g))

≤ |E(q)| − |E(mcs(q, g)|

Thus, we have

|E(q′)| = |S0|+ |S1|+ |T0|+ |T1|
= (|S0|+ |T0|) + (|S1|+ |T1|)
≤ |E(mcs(q′, g)|+ |E(q)| − |E(mcs(q, g)|

It follows that ξ = |E(mcs(q, g)| − |E(mcs(q′, g)| ≤ |E(q)| −
|E(q′)|. This completes the proof. 2

Theorem 4.1: Given two graphs q and g with dissimilarity δ1(q,
g) = α, for any subgraph q′ ⊆ q, the following equation holds:

α− ε1l ≤ δ1(q′, g) ≤ α+ ε1r

where ε1l = |E(q)|−min{|E(q′)|,|E(g)|}
min{|E(q′)|,|E(g)|} (1−α), ε1r = |E(q)|−|E(q′)|

|E(g)| .

88

Proof: We prove this in all three cases regarding the relationship
among the sizes of g, q, and q′.
(Case-1): |E(g)| ≥ |E(q)|. Since q′ ⊆ q, we have |E(q′)| ≤
|E(q)| ≤ |E(g)|. Hence, we have

δ1(q′, g) = 1−
|E(mcs(q′, g))|

max{|E(q′)|, |E(g)|}

= 1−
|E(mcs(q, g))| − ξ

|E(g)|
= α+

ξ

|E(g)|

With Lemma 4.1, we have α ≤ δ1(q′, g) ≤ α+ |E(q)|−|E(q′)|
|E(g)|

(Case-2): |E(q′)| ≥ |E(g)|. Since q′ ⊆ q, we have |E(q)| ≥
|E(q′)| ≥ |E(g)|. Moreover, we have |E(mcs(q, g))| = (1 −
α)|E(q)| by Eq. (1). It follows that

δ1(q′, g) = 1−
|E(mcs(q′, g))|
|E(q′)|

= 1−
|E(mcs(q, g))| − ξ

|E(q′)|

= 1−
(1− α)|E(q)|
|E(q′)|

+
ξ

|E(q′)|

= α−
|E(q)| − |E(q′)|
|E(q′)|

(1− α) +
ξ

|E(q′)|

By Lemma 4.1, we have

α−
|E(q)| − |E(q′)|
|E(q′)|

(1− α) ≤ δ1(q′, g) ≤ α+
|E(q)| − |E(q′)|
|E(q′)|

α

(Case-3): |E(q)| > |E(g)| > |E(q′)|. Similar to the proof for
Case-2, we have

δ1(q′, g) = α−
|E(q)| − |E(g)|
|E(g)|

(1− α) +
ξ

|E(g)|

By Lemma 4.1, we have

α−
|E(q)| − |E(g)|
|E(g)|

(1− α) ≤ δ1(q′, g) ≤ α+ θ

where θ = |E(q)|−|E(g)|
|E(g)| α+ |E(g)|−|E(q′)|

|E(g)| .
Then, consider the overall lower bound and upper bound of δ1(q′, g).
For the lower bound, clearly, the lower bounds in Case-2 and Case-
3 are smaller than α in Case-1. Comparing the lower bounds in
Case-2 and Case-3, their difference is as follows.

α−
|E(q)| − |E(q′)|
|E(q′)|

(1− α)− (α−
|E(q)| − |E(g)|
|E(g)|

(1− α))

= (
|E(q)| − |E(g)|
|E(g)|

−
|E(q)| − |E(q′)|
|E(q′)|

)(1− α)

=
|E(q)|(|E(q′)| − |E(g)|)

|E(g)||E(q′)|
(1− α)

Thus, we have ε1l =
|E(q)| −min{|E(q′)|, |E(g)|}

min{|E(q′)|, |E(g)|}
(1− α)

For the upper bound, since the upper bounds have the same first
term in the above three cases, we only need to compare their second
terms. For the second term in Case-2, we have

|E(q)| − |E(q′)|
|E(q′)|

α ≤
|E(q)| − |E(q′)|

|E(g)|
α ≤

|E(q)| − |E(q′)|
|E(g)|

This implies that the upper bound in Case-2 is smaller than that in
case-1. Similarly, for θ in Case-3, we have

θ =
|E(q)|−|E(g)|
|E(g)| α+

|E(g)| − |E(q)|+ |E(q)| − |E(q′)|
|E(g)|

=
|E(q)| − |E(g)|
|E(g)|

(α− 1) +
|E(q)| − |E(q′)|

|E(g)|
≤
|E(q)| − |E(q′)|

|E(g)|

This shows that the upper bound in Case-3 is smaller than that
in Case-1. Thus we have ε1r = |E(q)|−|E(q′)|

|E(g)| . Therefore, we
conclude that α− ε1l ≤ δ1(q′, g) ≤ α+ ε1r for any q′ ⊆ q. 2

Theorem 4.2: Given two graphs q and g with dissimilarity δ2(q,
g) = α, for any subgraph q′ ⊆ q, the following equation holds:

α− (1− α)ε2 ≤ δ2(q′, g) ≤ α+ (1 + α)ε2

where ε2 = |E(q)|−|E(q′)|
|E(q′)|+|E(g)| .

Proof: Since δ2(q, g) = α, we have 2|E(mcs(q, g))| = (1 −
α)(|E(q)|+ |E(g)|) by Eq. (2). Thus, we have

δ2(q′, g) = 1−
2|E(mcs(q′, g))|
|E(q′)|+ |E(g)|

= 1−
2(|E(mcs(q, g))| − ξ)
|E(q′)|+ |E(g)|

= 1−
(1− α)(|E(q)|+ |E(g)|)
|E(q′)|+ |E(g)|

+
2ξ

|E(q′)|+ |E(g)|

= α−
(1− α)(|E(q)| − |E(q′)|)
|E(q′)|+ |E(g)|

+
2ξ

|E(q′)|+ |E(g)|

By Lemma 4.1, we have α− (1− α)ε2 ≤ δ2(q′, g) ≤ α+ (1 +
α)ε2. This completes the proof. 2

Note that when q′ is very close to q, ε1l, ε1r , and ε2 are very
small. Next, we discuss the bound when they are mapped onto
the corresponding multidimensional space, F . For three graphs q,
g, and q′ ⊆ q, we use F(q), F(g), and F(q′) to denote the sets
of features contained by them respectively. The mapped binary
vectors can be denoted by yq , yg , and yq′ correspondingly. We
have the following theorem.
Theorem 4.3: Given two graphs q and g, if their mapped distance
is d(yq,yg) = β in the multidimensional space F , then for any
subgraph q′ ⊆ q, the following equation holds:

β −
√
t/p ≤ d(yq′ ,yg) ≤ β +

√
t/p

where t = |F(q)| − |F(q′)| and p = |F| .
Proof: Since yq and yg are binary vectors, the mapped distance
between q and g can be rewritten as

d(yq ,yg) =
1
√
p

(
Σ
|F|
r=1(yqr − ygr)2

) 1
2

=
1
√
p

(
|F(q)|+ |F(g)| − 2|F(q) ∩ F(g)|

) 1
2 = β

Then we have |F(q)|+|F(g)|−2|F(q)∩F(g)| = β2p. Similarly,

we have d(yq′ ,yg) = 1√
p

(
|F(q′)|+ |F(g)|−2|F(q′)∩F (g)|

) 1
2

for q′. Let t = |F(q)| − |F(q′)|. Since q′ ⊆ q, we have F(q′) ⊆
F(q), which means that each feature contained by q′ is also con-
tained by q. Then we have t = |F(q)−F(q′)| = |F(q)|−|F(q′)|.
Thus we can rewrite d(yq′ ,yg) as

d(yq′ ,yg) =
1
√
p

(
|F(q′)|+ |F(g)|

− 2|(F(q)− (F(q)−F(q′))) ∩ F(g)|
) 1

2

=
1
√
p

(
|F(q)| − t+ |F(g)| − 2|F(q) ∩ F(g)|

+ 2|(F(q)−F(q′)) ∩ F(g)|
) 1

2

=
1
√
p

(
β2p− t+ 2|(F(q)−F(q′)) ∩ F(g)|)

) 1
2

=
(
β2 −

t

p
+

2

p
|(F(q)−F(q′)) ∩ F(g)|

) 1
2

In fact, term |(F(q)−F(q′))∩F(g)| is determined by the number
of bits of value 1 in the corresponding t bits of yg . We obtain its
bounds by considering two extreme cases. One is that the values in
these t bits of yg are all 1. We have |(F(q)−F(q′))∩F(g)| = t.
The other is that the values in these t bits of yg are all 0, which
leads to |(F(q) − F(q′)) ∩ F(g)| = 0. We have 0 ≤ |(F(q) −

89

F(q′)) ∩ F(g)| ≤ t. It follows that (β2 − t/p)
1
2 ≤ d(yq′ ,yg) ≤

(β2 + t/p)
1
2 . Since (β2− t/p)

1
2 ≥ β−

√
t/p and (β2 + t/p)

1
2 ≤

β +
√
t/p, we have β −

√
t/p ≤ d(yq′ ,yg) ≤ β +

√
t/p. 2

Corollary 4.1: Given two graphs q and g, if δ(q, g) = α and
d(yq,yg) = β and λ = α/β, then for any graph q′ ⊆ q, we have

λ1 =
δ1(q′, g)

d(yq′ ,yg)
∈
[α− ε1l

(β +
√
t/p)

,
α+ ε1r

(β −
√
t/p)

]
λ2 =

δ2(q′, g)

d(yq′ ,yg)
∈
[α− (1− α)ε2

(β +
√
t/p)

,
α+ (1 + α)ε2

(β −
√
t/p)

]
This corollary is obtained based on Theorems 4.1, 4.2, and 4.3.

From this corollary, we can see that if the approximate ratio is good
for q and g, then it can also be well bounded for a subgraph q′ ⊆ q
and g . Similarly, we derive another corollary as follows.

Corollary 4.2: Given two graphs q′ and g, if δ(q′, g) = α′ and
d(y′q,yg) = β′ and λ′ = α′/β′, then for any graph q ⊇ q′, we
have
λ′1 =

δ1(q, g)

d(yq ,yg)
∈
[α′ − ε1r

(β′ +
√
t/p)

,
α′ + ε1l

(β′ −
√
t/p)

]
λ′2 =

δ2(q, g)

d(yq ,yg)
∈
[α′ − ε2

(β′ +
√
t/p)(1 + ε2)

,
α′ + ε2

(β′ −
√
t/p)(1 + ε2)

]
Proof: According to Theorem 4.1, the following formula holds:

α′ − ε1l ≤ δ1(q, g) ≤ α′ + ε1r

According to Theorem 4.2, we can derive the following formula:
α′ − ε2
1 + ε2

≤ δ2(q, g) ≤
α′ + ε2

1 + ε2

According to Theorem 4.3 , we have:

β′ −
√
t/p ≤ d(yq ,yg) ≤ β′ +

√
t/p

Corollary 4.2 can be obtained directly. 2

Discussion: In the following, we show that the selection of the high
quality dimensionsF from the graph databaseDG which lead to the
high quality of distance-preserving can also lead to the high quality
of structure-preserving. Suppose that the quality of mapping for a
graph q(∈ DG) is bounded, we consider a query graph q′ (6∈ DG).
There are two cases:
• (Case-1: q′ is similar to q) Since the quality of mapping for a

graph q(∈ DG) is bounded, the quality of mapping for the query
graph q′ can also be bounded by first considering the quality
of mcs(q′, q) (⊆ q) by Corollary 4.1, and then using Corol-
lary 4.2 since q′ ⊇ mcs(q′, q). In other words, the high qual-
ity of distance-preserving leads to the high quality of structure-
preserving in such a case.
• (Case-2: q′ is dissimilar to q) In such a case, δ(q′, q) is large,

or in other words, mcs(q′, q) is small. Recall that a high quality
DS-preserved mapping should avoid generating dimensions that
are highly overlapped with each other, or in other words, the
dimensions generated by a high quality DS-preserved mapping
tend to be independent. Given such high quality dimensions F ,
and a small mcs(q′, q), the number of features inF contained in
mcs(q′, q) tends to be small, and thus the size of F(q′) ∩ F(q)
tends to be small. Since d(y′q, yq) = 1√

p

(
|F(q′)| + |F(q)| −

2 × |F(q′) ∩ F(q)|
) 1

2 , d(y′q,yq) tends to be large. In other
words, the high quality of distance-preserving also leads to the
high quality of structure-preserving in such a case.

As discussed above, in either of the two cases, the high quality
of distance-preserving can lead to the high quality of structure-
preserving, thus, in the following, we concentrate on how to com-
pute the set of dimensions for distance-preserving mapping.

4.2 Dimension Computation
We discuss how to identify the dimensions F for DS-preserved

mapping. Here, a dimension in F is a subgraph taken from the
set of frequent subgraphs, denoted F = {f1, f2, . . . , fm}, mined
from DG using any existing algorithm with a given τ . Every graph
gi ∈ DG is represented by a binary feature vector yi = (yi1, yi2,
. . . , yim), where yir = 1 if fr is a subgraph of gi, otherwise
yir = 0. We need to evaluate all the features in F and choose
the best F with p (≤ m) features so that the graph dissimilarity is
DS-preserved. Note that here we use the binary vector yi to model
the feature space. Another possible way is to use the actual number
of occurrences of a subgraph fr as yir . However, in such a way,
the number of occurrences for a certain subgraph can be exponen-
tial, which makes the vector yi very unbalanced. Therefore, in this
paper, we only consider yi as a binary vector.

We assign F a weight vector c = (c1, c2, . . . , cm) to be esti-
mated, where cr > 0 (1 ≤ r ≤ m) if fr is selected and otherwise
cr = 0. Then a weighted feature vector is formed for every graph
gi ∈ DG , denoted as xi = (xi1, xi2, . . . , xim), where

xir = yircr (3)
To select the p feature dimensions, we require the weight vector c

to satisfy the constraint Σm
r=1sgn(cr) = p where

sgn(cr) =

{
1 if cr > 0

0 if cr = 0

The set of features selected to form F (⊆ F) is given as F =
{fr|sgn(cr) = 1}, where |F| = p.

Let xi and xj be the data objects in F for the corresponding
graphs gi and gj inDG . The Euclidean distance between xi and xj

is computed as

d(xi,xj) =
(
Σm

r=1(xir − xjr)2
) 1

2 =
(
Σm

r=1(yircr − yjrcr)2
) 1

2

where Σm
r=1c

2
r = 1 so that the distance is normalized to [0, 1].

In the following, for simplicity, we do not consider such a con-
straint, since after computing c1, c2, . . . , cm, we can normalize
them to [0, 1] easily in a post-processing stage. The error between
the Euclidean distance and the dissimilarity is defined as eij =
(d(xi,xj)− δij)2. The total error for DS-preserved mapping is to
sum up the errors over all gi and gj in DG as follows.

E(x1,x2, . . . ,xn) = Σ1≤i,j≤n(d(xi,xj)− δij)2 (4)

Then, the problem of idenitying F of p-dimensions becomes a
least square optimization problem with a constraint as follows.

minimize E(x1,x2, . . . ,xn)

subject to xi = (yi1c1, yi2c2, . . . , yimcm) for i = 1, . . . , n

Σm
r=1sgn(cr) = p

(5)

5. THE ALGORITHMS
In this section, we study how to minimize E(x1, x2, . . . , xn)

to compute F . We propose an iterative algorithm, and discuss sev-
eral optimization techniques to reduce the computational cost. We
further derive an approximate algorithm to handle a large graph
database.

Our algorithm, denoted as DSPM, is inspired by the majoriza-
tion strategy in [36]. Unlike many traditional minimization meth-
ods, the majorization strategy iteratively generates a converging se-
quence of function values without a stepsize procedure that may
be computationally expensive and unreliable. For the sake of com-
pleteness, we give a brief overview of majorization strategy before
describing the details of our algorithms.

The basic idea of majorization is, for a complicated function
h(x) which is hard to obtain an analytical solution, we find a sim-
pler auxiliary function, g(x, z), whose value is no smaller than
h(x). The auxiliary function, also called the majorizing function,
should equal the original function at a supporting point z = x, i.e.,

90

h(x) = g(x, z). Suppose that the minimum value of g(x, z) over
x is attained at configuration x, then we have the following chain
of inequalities:

h(z) = g(z, z) ≥ g(x, z) ≥ h(x)

Here, x becomes the supporting point of the next majorizing func-
tion. We iterate this process until convergence occurs due to a lower
bound of the function or due to constraints. As stated in [37], the
configuration of the supporting point and the parameter can be up-
dated for Eq. (5) in the following form.

xir =
1

n
Σn

k=1bikzkr (6)

cur =
Σ1≤i,j≤n(xir − xjr)(yir − yjr)

Σ1≤i,j≤n(yir − yjr)2
(7)

where bij is defined as

bij =

−
δij

d(zi, zj)
for i 6= j and d(zi, zj) 6= 0

0 for i 6= j and d(zi, zj) = 0

bii = −Σn
j=1,j 6=ibij

(8)

for i, j = 1, . . . , n, and r = 1, . . . ,m.
Let k be the number of iterations, and recall that n = |DG | and

m = |F |. In the majorization iteration, there are three costly op-
erations: compute E(z1, z2, . . . , zn), update the configuration x,
and update the weight vector c. According to Eq. (4), Eq. (6), and
Eq. (7), the time complexity of these three parts are all O(m · n2).
Thus the overall complexity of majorization method isO(k·m·n2).
Therefore, a straightforward implementation of the algorithm will
induce very high computational cost when n and m are large. In
the following, we propose a fast algorithm DSPM by exploiting the
characteristics of the graph features to optimize the computation.

5.1 The DSPM Algorithm
We first give the outline of DSPM in Algorithm 1 and will dis-

cuss the optimization techniques later. For simplicity, we use Ek to
denote the value of the objective function E(z1, z2, . . . , zn) in the
k-th iteration. The initial objective function E0 is set to infinity in
line 2. The weight parameter cr is initialized as 1/

√
m for each

feature fr in line 3. Lines 4-6 initialize the binary vector yi for
each graph gi ∈ DG . We update the value of zir by Eq. (3) and
compute the current value of the objective function E by function
Computeobj(DG , F, [zir]n×m) in lines 7-8. Then, we compute
xir by function Updatexbar ([zir]n×m) in line 10, and update c
by function Updatec (DG , F, [xir]n×m) in line 11. A new config-
uration of zir is obtained in line 12. Such process repeats until the
difference between the objective function values in two consecutive
iterations is smaller than a threshold ε or the maximum number of
iterations is reached.

Next we show how to derive a simpler formula for the weight
vector c by considering the characteristics of subgraph features,
and present the optimization techniques used in the three func-
tions Computeobj, Updatexbar, and Updatec in DSPM. Note
that these optimization functions will not affect the convergence
property of our algorithm DSPM.

5.1.1 Simplify the Formula of c
We discuss how to derive a simpler formula of c by exploring

the characteristics of subgraph features and the binary vectors for
each graph. We first show a proposition as follows.

Proposition 5.1: Given a graph databaseDG , a frequent subgraph
set F , and the binary vector yi for each graph gi ∈ DG , for
each fr ∈ F , we have

∑n
i=1 yir = |sup(fr)| and

∑n
i=1 y

2
ir =

|sup(fr)|.

Algorithm 1 DSPM
Input: A graph databaseDG and a frequent feature set F .
Output: A selected feature set F .
1: k ← 1;
2: E0 ← +∞;
3: cr ← 1/

√
m for r = 1, . . . ,m;

4: yir ← 0 for i = 1, . . . , n, r = 1, . . . ,m;
5: for all fr ∈ F and gi ∈ sup(fr) do
6: yir ← 1 ;
7: zir ← yircr for i = 1, . . . , n, r = 1, . . . ,m;
8: Ek ← Computeobj(DG , F, [zir]n×m) ;
9: while Ek−1 − Ek > ε and k ≤ maximum iteration number do
10: [xir]n×m ← Updatexbar([zir]n×m) ;
11: c← Updatec(DG , F, [xir]n×m) ;
12: zir ← yircr for i = 1, . . . , n, r = 1, . . . ,m;
13: k ← k + 1;
14: Ek ← Computeobj(DG , F, [zir]n×m) ;
15: F ← p features with largest cr ;
16: return F ;

Algorithm 2 Updatec (DG , F, [xir]n×m)

1: for all fr ∈ F do
2: cr ← 0;
3: for all gi ∈ DG do
4: if gi ∈ IFr then
5: cr ← cr +

xir(1−|sup(fr)|)
|sup(fr)|(n−|sup(fr)|) ;

6: else
7: cr ← cr +

xir(0−|sup(fr)|)
|sup(fr)|(n−|sup(fr)|) ;

8: return c;

Recall that sup(f) = {gi | f ⊆ gi, gi ∈ DG}. The proof of this
proposition is omitted as it can be easily derived from sup(fr) and
the characteristics of the binary vector yi for each gi ∈ DG . Based
on this proposition, we have the following theorem.
Theorem 5.1: The calculation of the weight vector c in Eq. (7) can
be simplified as

cur =

∑n
i=1 xir(nyir − |sup(fr)|)
|sup(fr)|(n− |sup(fr)|)

(9)

Proof: We prove this by considering the numerator and denom-
inator on the right side of Eq. (7) respectively. First, we consider
the numerator which can be rewritten as

Σ1≤i,j≤n(xir − xjr)(yir − yjr)

= Σ1≤i,j≤n(xiryir + xjryjr − xjryir − xiryjr)

= 2nΣn
i=1xiryir − 2Σn

i=1xirΣn
j=1yjr

= 2Σn
i=1xir(nyir − |sup(fr)|) (by Proposition 5.1)

Then we rewrite denominator as
Σ1≤i,j≤n(yir − yjr)2

= Σ1≤i,j≤n(y2ir + y2jr − 2yiryjr)

= 2nΣn
i=1y

2
ir − 2Σn

i=1yirΣn
j=1yjr

= 2n|sup(fr)| − 2Σn
i=1yir|sup(fr)| (by Proposition 5.1)

= 2|sup(fr)|(n− |sup(fr)|) (by Proposition 5.1)

Thus we have

cur =

∑n
i=1 xir(nyir − |sup(fr)|)
|sup(fr)|(n− |sup(fr)|)

This completes the proof. 2

5.1.2 Optimize the Computation of the Functions
We introduce two data structures used in the algorithms before

presenting the techniques to optimize the computation of the three
functions Updatec, Updatexbar, and Computeobj used in DSPM.
For each feature fr ∈ F , we construct an inverted list IFr to store
the set of graphs which contain the feature fr , i.e., IFr = {gi|gi ⊇
fr, gi ∈ DG}. For each graph gi in the graph databaseDG , we also
construct an inverted list IGi to store the set of frequent features that
is contained in graph gi, i.e., IGi = {fr|fr ⊆ gi, fr ∈ F}.

91

Algorithm 3 Updatexbar ([zir]n×m)

1: for all gi, gj ∈ DG do
2: compute bij by Eq. (8);
3: for all gi ∈ DG do
4: for all fr ∈ F do
5: xir ← 0;
6: for all gk ∈ IFr do
7: xir ← xir + 1

n bikzkr ;
8: return [xir]n×m;

Algorithm 4 Computeobj (DG , F, [zir]n×m)

1: E(z1, z2, . . . , zn)← 0
2: for all gi, gj ∈ DG do
3: d(zi, zj)← 0;
4: for all fr ∈ IGi

⋃
IGj − I

G
i

⋂
IGj do

5: d(zi, zj)← d(zi, zj) + c2r ;

6: d(zi, zj)← d(zi, zj)
1
2 ;

7: E(z1, z2, . . . , zn)← E(z1, z2, . . . , zn) + (d(zi, zj)− δij)2

8: return E(z1, z2, . . . , zn);

Function Updatec. Algorithm 2 shows how to compute Updatec
(DG , F , [xir]n×m) to simplify the update of c. According to The-
orem 5.1, cr can be calculated by considering two cases of yir:
yir = 0 and yir = 1. At the beginning, we initially set cr to 0 for
each feature fr ∈ F in line 2. Then for each graph gi, we check if
it is in the inverted list IFr . If yes, the value of yir is 1, and cr is
increased by xir(1−|sup(fr)|)

|sup(fr)|(n−|sup(fr)|) ; otherwise, yir = 0, and cr is

increased by xir(0−|sup(fr)|)
|sup(fr)|(n−|sup(fr)|) .

Function Updatexbar. The function Updatexbar ([zir]n×m) to
compute the value of xir is shown in Algorithm 3. First, we com-
pute bij by Eq. (8) for any two graphs gi, gj ∈ DG in lines 1-2.
Then we start to compute xir for each graph gi ∈ DG and fr ∈ F
based on bij in lines 3-7. As shown in Eq. (6), in each computation
we need to add the value of bikzkr for each graph gk ∈ DG . Note
that zkr is 0 if feature fr is not contained in graph gk. This means
that the computation of xir will not be affected if we skip adding
bikzkr for those gk 6∈ IFr . Therefore, we only consider the graphs
gk ∈ IFr for the computation of xir in lines 6-7.

Function Computeobj. We give the algorithm Computeobj (DG ,
F , [zir]n×m) to compute the value of the objective function Ek in
each iteration. According to Eq. (4), we need to calculate d(zi, zj)

for each pair of graphs gi, gj ∈ DG by
(
Σm

r=1(yircr − yjrcr)2
) 1

2 .
In fact, we only need to consider the feature fr with yir 6= yjr
to calculate d(zi, zj) as the distance will not change if yir = yjr .
The algorithm is shown in Algorithm 4. Initially, E(z1, z2, . . . , zn)
is set to be 0 in line 1. Then, for any two graphs gi, gj ∈ DG ,
we do not examine all the features to compute their distance. In-
stead, we only examine their inverted lists IGi and IGj , and in-
crease the distance for the feature which is contained in only one
of these two lists in lines 4-5. Finally, we increase the value of
E(z1, z2, . . . , zn) by (d(zi, zj)−δij)2 in line 7 according to Eq. (4).

Theorem 5.2: The time complexity of Algorithm 1 is O(k · n · (m
·|IF |max + n · |IG |max)), where |IF |max = max1≤r≤m |IFr |,
and |IG |max = max1≤i,j≤n |IGi

⋃
IGj |.

Proof: The time complexity of Updatec (DG , F , [xir]n×m) in
Algorithm 2 is O(m · n). The time complexity of Updatexbar
([zir]n×m) in Algorithm 3 is O(n2 + m · n · |IF |max). Func-
tion Computeobj (DG , F , [zij]n×m) in Algorithm 4 needs O(n2 ·
|IG |max) time. Thus, the overall complexity of DSPM in Algo-
rithm 1 is O(k · (m ·n+n2 +m ·n · |IF |max +n2 · |IG |max)) =
O(k · n · (m · |IF |max + n · |IG |max)). 2

Algorithm 5 DSPMap
Input: A graph databaseDG and a frequent feature set F .
Output: A weight vector c.
1: P ←Partition (DG , F);
2: c← Computec (P, F);
3: return c;

Algorithm 6 Computec (P, F)
1: if |P| = 1 then
2: D′G ← P ;
3: F ′ ← {fr|fr ∈ F , sup(fr) ∩ D′G 6= ∅};
4: c← DSPM(D′G , F

′);
5: else
6: cl ← Computec (Pl, F);
7: cr ← Computec (Pr, F);
8: co ← DSPM (DGo, F

′
o);

9: c← cl + cr + co;
10: return c;

Discussion: In practice, the computation cost of Algorithm 1 will
be much smaller than the worst time complexity shown in Theorem
5.2. Although the worst time complexity is bounded by |IF |max

and |IG |max, which might be as large as n andm in the worst case,
the computation time in practice is actually determined by the aver-
age sizes of the indexes, |IF |avg and |IG |avg , which are far smaller
than n and m respectively, i.e., |IF |avg � n and |IG |avg � m.
Thus the practical computation time can be reduced significantly.

5.2 The Approximate Algorithm DSPMap

In the previous subsection, we present the algorithm DSPM with
several optimization techniques to reduce the computational cost.
However, DSPM consumes a lot of memory if we deal with a very
large graph database. It’s because we need to store the configura-
tion matrix [x̄ir]n×m as well as the dissimilarity/distance for each
pair of graphs, which needsO(n · (n+m)) space in total. Thus, to
make the algorithm more scalable on large graph databases, we fur-
ther propose an approximate algorithm DSPMap which can reduce
both space and time consumption. The computational complexity
of DSPMap increases linearly with the size of the graph database.

We give the outline of DSPMap in Algorithm 5, which includes
two phases. In the first phase, we partition the graph database
into np = dn

b
e parts, denoted as P = {DG1,DG2, . . . ,DGnp

},
where b is the size of each partition. We give our partition method
in Algorithm 7 which will be explained later. The second part
is to compute the parameter c. Here, we compute c in a recur-
sive way. As shown in Algorithm 6, we divide the partition into
the left part Pl = {DG i|1 ≤ i ≤ dnp

2
e} and the right part

Pr = P \ Pl, and recursively compute their weight vectors, cl
and cr . We then randomly select two parts, DG l and DGr , from
Pl and Pr , respectively, and generate DGo by randomly picking b
graphs from DG l ∪ DGr . Then we compute co in line 8 where
F ′o ← {fr|fr ∈ F, sup(fr) ∩ DGo 6= ∅}. The recursive pro-
cess will terminate when P contains only 1 partition, and we can
compute c by DSPM directly.

Now we discuss the partition method in Algorithm 7. According
to Eq. (6), the computation of x̄ir will not be affected if we omit
the part bikzkr for all gk 6∈ sup(fr). To reduce the cost on the
update of x̄ir , we group the graphs with similar binary vectors into
the same partition. This is processed in a recursive manner. We
first sample no graphs from DG , and cluster them into Ol and Or

as the center sets in line 4 using a classical clustering method such
as k-means . Then we compute the graph-center distance for the
rest of the graphs in DG and add them into the closer part. The
graph-center distance between graph gi and center setO is defined
as d(gi,O) =

∑
gj∈O

d(yi,yj)

|O| . To balance the partition, we adjust

92

Algorithm 7 Partition (DG , F)

1: if |DG | ≤ b then
2: addDG to P ;
3: else
4: generateOl andOr ;
5: for all gi ∈ DG \ (Ol ∪ Or) do
6: if d(gi,Ol) ≤ d(gi,Or) then
7: DG l ← DG l ∪ {gi};
8: else
9: DGr ← DGr ∪ {gi};
10: adjust the size ofDG l andDGr to balance;
11: Partition (DG l, F);
12: Partition (DGr, F);
13: return P ;

the graph numbers in these two parts in line 10. We set the number
of graphs required in DG l as nl = bnp

2
c × b. If |DG l| > nl,

we move |DG l| − nl graphs with the largest d(g,Ol) from DG l
to DGr; otherwise, we move nl − |DG l| graphs with the largest
d(g,Or) from DGr to DG l. We stop the partition if the number of
graphs in DG is no larger than the partition size b.

Theorem 5.3: Algorithm 5 needs O(k ·m′ · b · n) time and O(b ·
(b+m′)) memory space, where m′ ≤ m is the maximum number
of features contained in each partition.

Proof: In Algorithm 5, both Partition and Computec are opera-
tions on binary tree structure. In each level of Partition, we need
O(n) time as no is usually very small and can be considered as
a constant factor. Since the binary tree has O(log2dnb e) levels,
Partition needs O(n · log2dnb e) time overall. For Computec, in
each node of the tree, we need to call function DSPM with time
complexityO(k·b·(m′ ·b+b·m′)) = O(k·m′ ·b2). The number of
nodes in the tree is 2np−1 and Computec needsO(k·m′·b2·np) =
O(k ·m′ · b · n) time. The memory space is mainly determined by
the function DSPM in the second phase, and it is O(b · (b + m′))
as we need to store the configuration matrix [x̄ir]b×m′ and dissim-
ilarity/distance matrix with b× b values. 2

6. PERFORMANCE STUDIES
In this section, we show the effectiveness and efficiency of our

approaches through extensive experiments. We compare our algo-
rithms with seven algorithms: Original, Sample, SFS [21], MICI
[24], MCFS [27], UDFS [28], and NDFS [29]. Original and Sample
are two straightforward baselines where all the original frequent
subgraphs and p randomly sampled frequent subgraphs are adopted
as the dimensions, respectively. SFS sequentially selects the best
p features, which is one of state-of-the-art greedy feature selection
algorithms. MICI is a representative of the algorithms which se-
lect features based on feature similarity. MCFS, UDFS, and NDFS
are the up-to-date methods in unsupervised feature selection to our
best knowledge. We obtained the Matlab source code of MCFS
and UDFS from the authors and implemented the rest of the algo-
rithms except NDFS using Microsoft Visual C++. NDFS is im-
plemented using Matlab since it involves the spectral analysis as
MCFS and UDFS do. The tests were conducted on a 2.66GHz
CPU and 3.43GB memory PC running Windows XP.

Datasets: We evaluate the performance of the algorithms on both
real and synthetic datasets. The real chemical compound database
is downloaded from the PubChem website. Each compound struc-
ture in this dataset can be modelled as an undirected labeled graph.
We extract six datasets containing 1k, 2k, 4k, 6k, 8k, and 10k
graphs, respectively. We also randomly extract another 1,000 graphs
as the query set. Unless otherwise specified, we set the dataset with
1k graphs as the default dataset and use the other five datasets for
scalability testing. The numbers of nodes in graphs range from 10

to 20. The frequent feature set F is mined by gSpan [38] with
a minimum support 5%, which is a typical setting in frequent sub-
graph mining to generate a moderate number of frequent subgraphs.
We generate a synthetic dataset with 1,000 database graphs and
1,000 query graphs using Graphgen [39]. The default parameters
are set in a similar way as in [32], i.e., the average number of edges
in each graph is 20, the number of distinct labels is 20, and the aver-
age graph density is 0.2. We further generate another ten synthetic
datasets each with 1,000 database graphs and 1,000 query graphs to
show the performance of the algorithms when varying the size and
density of the graphs. Among them, five datasets are generated by
varying the average number of edges from 12 to 20 with an average
density of 0.2, and the other five datasets are generated by varying
the density from 0.1 to 0.3 with an average edge number of 20.

Measures: Following the previous work in [2], we use Eq.(2) as δ
to compute the graph dissimilarity in the experiment. The results of
using Eq.(1) as δ are similar to those of using Eq.(2), thus are omit-
ted in the paper due to space limit. For query q, we use T to repre-
sent the ranked list of the exact top-k results returned according to
the graph dissimilarity, and use A to denote the ranked list of the
approximate top-k results returned according to the graph distance
in the feature space. To assess the effectiveness of the mapped fea-
ture space, we adopt the following widely-used measures [40] [41]
[42] to evaluate the quality of the approximate top-k results.

(1) Precision: the fraction of answers in the approximate top-k
results that belong to the exact top-k results, which is defined as
p(k) = |A ∩ T |/k.

(2) Kendall’s tau: a measure to evaluate the correlation between
two permutations [42]. Here, we adopt the definition which is mod-
ified to only evaluate the top-k members in the ranked list [40]:

τ (k) =
∑

ri∈A
|Ai+1∩Tt(ri)+1|

k(2n−k−1)
, where ri is the i-th element in the

ranked list A, t(ri) is the true rank of element ri in T , Ai is part
of listA starting from the i-th element to the end, and Tt(ri) is part
of list T starting from the t(ri)-th element to the end.

(3) Rank distance: the footrule distance between the ranks of
members in the approximate top-k results and their true ranks in

the exact top-k results, which is defined as γ(k) =
∑

ri∈A
|i−t(ri)|
k

in [40] [41]. Here, we use the inverse form γ
(k)
inv = k∑

ri∈A
|i−t(ri)|

to make sure that γ(k)
inv is larger for result with better quality.

To the best of our knowledge, the optimal dimensional features
of a graph database are unknown yet. Nevertheless, the experts in
the chemical domain have provided a dictionary-based binary fin-
gerprint for chemical structures in Pubchem dataset for similarity
search. The similarity of two graphs is defined as the Tanimoto
score of their fingerprints in PubChem. The fingerprint algorithm
generates the top-k results based on the Tanimoto score. We con-
sider the fingerprint algorithm as the benchmark and report the rel-
ative value for each evaluation measure, which is the ratio of the
value achieved by each algorithm to the value achieved by the fin-
gerprint algorithm. Since there is no fingerprint identified for the
synthetic dataset, we use the best result generated among all these
algorithms as the benchmark.

Parameters: We tune the parameters of MICI as suggested in paper
[24]. For MCFS, UDFS, and NDFS, we adopt the default common
parameter, 5, to specify the size of the neighborhoods, and tune the
rest parameters by the way given in the corresponding papers. For
DSPM, MICI, MCFS, UDFS, and NDFS, we report the best query
result when we vary the number of selected features from {100,
200, 300, 400, 500} in a similar way to how it is done in [27] [28]
[29]. For Sample and SFS, the number of selected features is set to
the same as that in DSPM. In the following, we first compare the

93

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Pre
cis

ion
DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(a) Vary top-k

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Ke
nda

ll’s
 tau

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(b) Vary top-k

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Ra
nk

dis
tan

ce

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(c) Vary top-k

10

100

1K

10K

DSPM
SFS MICI

MCFS
UDFS

NDFS

Ind
exi

ng
 tim

e (
s)

(d) Indexing time
Figure 4: Effectiveness Testing on Real Dataset

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Pre
cis

ion

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(a) Vary top-k
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Ke
nd

all
’s t

au

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(b) Vary top-k
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 40 60 80 100

Ra
nk

 di
sta

nce

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(c) Vary top-k

10

100

1K

10K

DSPM
SFS MICI

MCFS
UDFS

NDFS

Ind
exi

ng
 tim

e (
s)

(d) Indexing time
Figure 5: Effectiveness Testing on Synthetic Dataset (Vary Top-k)

effectiveness of DSPM with the seven existing algorithms on both
real and synthetic datasets, and then compare the performance of
DSPM and DSPMap with other algorithms in terms of query ef-
ficiency, approximation quality, and scalability. For simplicity, we
sequentially scan all vectors in the mapped multidimensional space
to answer each query for all the algorithms, since the dominant cost
for all algorithms is spent on computing the mappings.

(Exp-1) Effectiveness Testing on Real Dataset: We evaluate the
performance of DSPM by comparing it with seven baseline algo-
rithms on the real dataset, and report the results in Fig. 4. Fig. 4(a)
shows the query precision for all the algorithms when we vary top-
k. DSPM achieves the highest precision among all the algorithms
and remains stable when k increases. The precisions for DSPM,
MICI, MCFS, UDFS, and NDFS are higher than that of Original.
This demonstrates that feature selection is very necessary for the
frequent subgraph set to better preserve the dissimilarity and struc-
ture of graphs. The precision of Sample is very low compared with
Original, which shows that random sampling is not a good choice
for selecting dimensional features in graph databases. Surprisingly,
we observe that SFS performs even worse than Sample. The under-
lying reason is that the objective function is non-monotonic which
will causes SFS to get trapped in a local minimum far away from
the optimal value. Fig. 4(b) shows the Kendall’s tau for all the al-
gorithms, where DSPM also outperforms all the baseline methods.
There are large gaps between Original and NDFS, UDFS, MCFS,
and MICI. The Kendall’s tau for Original and that for Sample are
both very low. SFS still has the worst performance among all the
algorithms. Fig. 4(c) shows the rank distance for all the algorithms.
DSPM still achieves the best result among all the algorithms, and
the performance of other algorithms are similar as that in Fig. 4(a).
In Fig. 4(d), we report the indexing time of these algorithms. The
indexing time is the time of running the corresponding feature se-
lection algorithm to choose the feature subset. Since there is no fea-
ture selection process in Original and Sample, we only report the
indexing time for DSPM, SFS, MICI, MCFS, UDFS, and NDFS.
As shown in the figure, both DSPM and MICI can select the fea-
tures within 10 seconds. Note that although DSPM needs more
time than MCFS, it in fact has the same worst time complexity as
MCFS. SFS is the most expensive method among all the algo-
rithms, because in each step to greedily select the next best feature,
it has to compute the distance for all the graph pairs to obtain the
value of objective function, which is very costly.

(Exp-2) Effectiveness Testing on Synthetic Dataset by Varying

Top-k: We evaluate the performance of all the algorithms on syn-
thetic dataset by varying top-k, and report the results in Fig. 5.
Fig. 5(a) shows the query precision for all the algorithms when we
vary top-k. DSPM still achieves the highest precision among all
the algorithms and this is consistent with the result in Fig. 4(a).
MICI, MCFS, UDFS, and NDFS perform better than Original,
which shows that feature selection is also very necessary for syn-
thetic dataset. Note that MCFS outperforms NDFS on synthetic
data. This is different from the result in Fig. 4(a) in which NDFS
outperform MCFS. This is because the performance of NDFS
largely depends on the clustering characteristic of the dataset. The
real chemical dataset usually has natural clusters/classes while the
synthetic dataset generated by Graphgen does not have such char-
acteristic. The performance of Original is almost as bad as Sample,
which shows that the generated frequent subgraph is even more un-
balanced for synthetic dataset compared with real dataset. SFS still
performs the worst among all the algorithms. Fig. 5(b) shows the
Kendall’s tau for all the algorihtms, where DSPM outperforms all
the baseline methods and SFS has the worst performance among
all the algorithms. Fig. 5(c) shows the rank distance for all the
algorithms. DSPM still achieves the best result among all the algo-
rithms and the performance of other algorithms are similar as that
in Fig. 5(a). Fig. 5(d) shows the indexing time of these algorithms
on synthetic dataset. Both DSPM and MCFS are very fast and SFS
is the most expensive among all the algorithms. Compared with the
real dataset, all the algorithms have longer indexing time on syn-
thetic dataset, given the fact that the number of frequent subgraphs
mined in the synthetic dataset is larger than that in the real dataset.

In the following, we use query precision as the effectiveness
measure. The results for both Kendall’s tau and rank distance are
consistent with that in precision for each algorithm, and thus are
omitted due to lack of space.

(Exp-3) Effectiveness Testing on Synthetic Dataset by Varying
Graph Size and Density: We evaluate the performance of all the
algorithms on synthetic dataset by varying the graph size and den-
sity, and show the results in Fig. 6. Fig. 6(a) shows the query pre-
cision for all the algorithms when we vary the graph sizes from 12
to 20. DSPM achieves the highest precision among all the algo-
rithms while SFS performs the worst. MICI, MCFS, UDFS, and
NDFS also perform better than Original which shows the necessity
of feature selection no matter how the graph size varies. Compared
with DSPM, the precision for other algorithms decreases slightly
as the graph size increases. It’s because more frequent subgraphs

94

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 12 14 16 18 20

Pre
cis

ion
DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(a) Vary graph size

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.15 0.2 0.25 0.3

Pre
cis

ion

DSPM
Original
Sample
SFS

MICI
MCFS
UDFS
NDFS

(b) Vary graph density
100

101

102

103

104

105

 12 14 16 18 20

Ind
exi

ng
 tim

e (
s)

DSPM
SFS
MICI

MCFS
UDFS
NDFS

(c) Vary graph size
100

101

102

103

104

105

 0.1 0.15 0.2 0.25 0.3

Ind
exi

ng
 tim

e (
s)

DSPM
SFS
MICI

MCFS
UDFS
NDFS

(d) Vary graph density

Figure 6: Effectiveness Testing on Synthetic Dataset (Vary Graph Size and Density)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 12 14 16 18 20

Q
ue

ry
 ti

m
e

(s
)

DSPM Original

(a) Vary |V (q)|
10-2

10-1

100

101

102

103

104

 12 14 16 18 20

Q
ue

ry
 ti

m
e

(s
)

DSPM Exact

(b) Vary |V (q)|
Figure 7: Query Efficiency Testing

are generated when the graphs are larger and it will be harder to
select good features from larger number of features for other algo-
rithms. Fig. 6(b) shows the query precision for all the algorithms
on synthetic dataset when we vary the graph density from 0.1 to
0.3. DSPM still achieves the best result among all the algorithms
while SFS still performs the worst. Compared with DSPM, the
precision for other algorithms also decreases when the graph size
decreases. Note that the precision deceases more rapidly compared
with the results in Fig. 6(a). It’s because the number of frequent
subgraphs increases more rapidly when the graphs become denser.
In Fig. 6(c), we report the indexing time of these algorithms on
synthetic dataset when we vary the graph size. MCFS and DSPM
are always the fastest algorithms among these methods, and SFS is
always the most expensive one. The indexing time for all the algo-
rithms increases when the graph size increases. It’ because more
frequent subgraphs are generated from larger graphs. Note that the
indexing time of DSPM and MCFS increases slower than that of
UDFS, NDFS and MICI, due to the fact that the computation com-
plexity of former two algorithms is linear with respect to number
of features while the complexity of the latter three algorithms is at
least quadratic with respect to the number of features. Fig. 6(d)
shows the indexing time for synthetic dataset when we vary the
graph density. The indexing time of all the algorithms increases
when the graph density increases, because there are more frequent
subgraphs generated in denser graphs as analyzed in Fig. 6(b).

In the following, we focus on real dataset. The curves for the
synthetic dataset are similar to those on the real dataset for all the
following tests, thus are omitted due to space limit.

(Exp-4) Query Efficiency Testing: We evaluate the query effi-
ciency of the algorithms by varying the size of the query graph
|V (q)|. We divide the query graphs into 5 groups: 10–12, 12–14,
14–16, 16–18, and 18–20 based on the value of |V (q)|. Fig. 7(a)
shows the query time for DSPM and Original. For clarity, we do
not show the query time for other algorithms as their query times
are quite close to DSPM. This is because that they select similar
number of features as DSPM does, and the query time largely de-
pends on the number of features selected. The query time includes
two parts: feature matching time and multidimensional search time.
The former is to match each mapped feature with the query graph to
generate a binary vector, which is done by the VF2 algorithm [43].
The latter is to retrieve the top-k result in the mapped feature space.
The query time of Original is 3–5 times longer than that of DSPM
because the number of mapped features, |F |, in Original is larger
than the number of mapped features, p, in DSPM. As the size of

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 20 40 60 80 100

Pr
ec

isi
on

DSPMap DSPM

(a) Vary b

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100

In
de

xi
ng

 ti
m

e
(s

) DSPMap DSPM

(b) Vary b
Figure 8: Approximation Quality Testing

query graph increases, the query time for both Original and DSPM
increases slightly, because larger query graphs cost longer feature
matching time by VF2. In Fig. 7(b), we compare DSPM with the
exact algorithm which computes the exact top-k results based on
the graph dissimilarity. The exact algorithm is very slow because it
has to compute the MCS to obtain the graph dissimilarity. DSPM
is 3–5 orders of magnitude faster than the exact algorithm.

(Exp-5) Approximation Quality Testing: We evaluate the perfor-
mance of DSPMap regarding different partition sizes, and compare
DSPMap with DSPM in terms of query precision and the indexing
time. Fig. 8(a) shows the precision of DSPMap, which increases
as the partition size increases from 20 to 100. The precision of
DSPMap is almost the same as the precision of DSPM when the
partition size is large, e.g., the gap between DSPMap and DSPM
is less than 1% when the partition size is larger than 60. Even if
the partition size is small, the precision of DSPMap is still very
close to that of DSPM, e.g., the gap between DSPMap and DSPM
is less than 2% when the partition size is reduced to 20. Fig. 8(b)
shows the indexing time of DSPMap, which increases linearly as
the partition size increases. This trend is consistent with the com-
plexity analysis of DSPMap shown in Section 5. Considering both
Fig. 8(a) and Fig. 8(b), when setting b to be 20, DSPMap loses 2%
precision comparing to DSPM using 10 times faster indexing time.

(Exp-6) Scalability Testing: We evaluate the scalability of the
DSPMap algorithm by comparing it with other algorithms when
we vary the size of the graph database from 2k to 10k. We set
the partition size to b =

|DG |
20

. Fig. 9(a) shows the precision
for all the algorithms except SFS as it cannot finish in 5 hours
even for |DG | = 2k. We can see that DSPMap constantly ap-
proximates DSPM well and outperforms all the other algorithms.
MICI, MCFS, UDFS, NDFS, and DSPM cannot generate the re-
sults when the size of the graph database is larger than 6k as the
data cannot fit into the PC memory. Fig. 9(b) shows the query
time for DSPMap and the exact algorithm. For clarity, we did not
plot the query time for other algorithms since they are very close
to DSPMap. As the size of the graph database increases, the query
time for both DSPMap and the exact algorithm increases, because
we need to examine more graphs in a larger graph database. Over-
all, DSPMap is 3–5 orders of magnitude faster than the exact al-
gorithm. Fig. 9(c) shows the indexing time for all the algorithms.
DSPMap is the fastest and can deal with large graph databases very
quickly. We did not obtain the indexing time for the rest of the al-
gorithms when the graph database size is larger than 6k due to the

95

 0.4

 0.6

 0.8

 1

 1.2

2k 4k 6k 8k 10k

Pr
ec

isi
on

DSPM
Original
Sample
DSPMap

MICI
MCFS
UDFS
NDFS

(a) Vary |DG |
10-2

10-1

100

101

102

103

104

2k 4k 6k 8k 10k

Qu
ery

 ti
me

 (s
)

DSPMap Exact

(b) Vary |DG |
10-2

10-1

100

101

102

103

104

105

2k 4k 6k 8k 10k

In
de

xin
g t

im
e (

s)

DSPM
DSPMap
MICI

MCFS
UDFS
NDFS

(c) Vary |DG |

Figure 9: Scalability Testing
memory limit. Overall, DSPMap is 2–3 orders of magnitude faster
than the other algorithms.

7. CONCLUSION
In this paper we study the DS-preserved mapping that preserves

both distance and structure for online graph search. We show that
the structure-preserving can be maintained up to a level, by show-
ing a bound, if distance-preserving is achieved. We concentrate on
identifying a small number of dimensions, where a dimension is a
subgraph. We formulate the problem as a least square optimiza-
tion problem and propose an iterative algorithm with optimization
techniques. We also give an approximate algorithm to deal with
large graph databases. The time complexity of the approximate
algorithm linearly increases with the database size and it is scal-
able on large graph databases. Our experiments on real and syn-
thetic datasets confirmed the effectiveness and efficiency of our ap-
proaches.

Acknowledgements. Yuanyuan Zhu was supported by FRFCU of
China, No. 273363 and No.274172. Jeffrey Xu Yu was supported
by grant of the RGC of Hong Kong SAR, No. CUHK 418512. Lu
Qin was supported by ARC DE140100999.

8. REFERENCES
[1] H. Bunke and K. Shearer, “A graph distance metric based on the

maximal common subgraph,” Pattern Recognition Letters, vol. 19,
no. 3-4, 1998.

[2] Y. Zhu, L. Qin, J. X. Yu, and H. Cheng, “Finding top-k similar
graphs in graph databases,” in Proc. of EDBT’12, 2012.

[3] B. Luo, R. C. Wilson, and E. R. Hancock, “Spectral embedding of
graphs,” Pattern Recognition, vol. 36, no. 10, 2003.

[4] R. C. Wilson, E. R. Hancock, and B. Luo, “Pattern vectors from
algebraic graph theory,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 7, 2005.

[5] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, 2000.

[6] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, 2000.

[7] D. Luo, C. H. Q. Ding, H. Huang, and T. Li, “Non-negative laplacian
embedding,” in Proc. of ICDM’09, 2009.

[8] T. Asano, P. Bose, P. Carmi, A. Maheshwari, C. Shu, M. Smid, and
S. Wuhrer, “A linear-space algorithm for distance preserving graph
embedding,” Computational Geometry, vol. 42, no. 4, 2009.

[9] K. Riesen, M. Neuhaus, and H. Bunke, “Graph embedding in vector
spaces by means of prototype selection,” in Graph-Based
Representations in Pattern Recognition, 2007.

[10] H. Bunke and K. Riesen, “Improving vector space embedding of
graphs through feature selection algorithms,” Pattern Recognition,
vol. 44, no. 9, 2011.

[11] J. Gibert, E. Valveny, and H. Bunke, “Graph embedding in vector
spaces by node attribute statistics,” Pattern Recognition, vol. 45,
no. 9, 2012.

[12] K. M. Borgwardt, N. N. Schraudolph, and S. Viswanathan, “Fast
computation of graph kernels,” in Advances in Neural Information
Processing Systems, 2006.

[13] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in Proc. of ICDM’05, 2005.

[14] J. Ramon and T. Gärtner, “Expressivity versus efficiency of graph
kernels,” in International Workshop on Mining Graphs, Trees and
Sequences, 2003.

[15] N. Pržulj, “Biological network comparison using graphlet degree
distribution,” Bioinformatics, vol. 23, no. 2, 2007.

[16] X. Wang, A. M. Smalter, J. Huan, and G. H. Lushington, “G-hash:
towards fast kernel-based similarity search in large graph databases,”
in Proc. of EDBT’09, 2009.

[17] M. Tan, F. Polat, and R. Alhajj, “Feature selection for graph kernels,”
in IEEE International Conference on Bioinformatics and
Biomedicine, 2010.

[18] L. Schietgat, F. Costa, J. Ramon, and L. De Raedt, “Effective feature
construction by maximum common subgraph sampling,” Machine
Learning, vol. 83, no. 2, 2011.

[19] L. Yu and H. Liu, “Efficiently handling feature redundancy in
high-dimensional data,” in Proc. of KDD’03, 2003.

[20] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1, 1997.

[21] R. Fukunaga, Statistical Pattern Recognition. Academic Press.,
1990.

[22] L. Talavera, “Feature selection as a preprocessing step for
hierarchical clustering,” in Proc. of ICML’99, 1999.

[23] M. Dash, K. Choi, P. Scheuermann, and H. Liu, “Feature selection
for clustering - a filter solution,” in Proc. of ICDM’02, 2002.

[24] P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 3, 2002.

[25] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
in Advances in Neural Information Processing Systems, 2005.

[26] Z. Zhao and H. Liu, “Spectral feature selection for supervised and
unsupervised learning,” in Proc. of ICML’07, 2007.

[27] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for
multi-cluster data,” in Proc. of KDD’10, 2010.

[28] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “l 2, 1-norm
regularized discriminative feature selection for unsupervised
learning,” in Proc. of IJCAI’11, 2011.

[29] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature
selection using nonnegative spectral analysis,” in Proc. of AAAI’12,
2012.

[30] C. C. Aggarwal and H. Wang, Managing and Mining Graph Data.
Springer, 2010, vol. 40.

[31] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent
structure-based approach,” in Proc. of SIGMOD’04, 2004.

[32] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: towards
verification-free query processing on graph databases,” in Proc. of
SIGMOD’07, 2007.

[33] X. Yan, P. Yu, and J. Han, “Substructure similarity search in graph
databases,” in Proc. of SIGMOD’05, 2005.

[34] C. Chen, X. Yan, P. S. Yu, J. Han, D.-Q. Zhang, and X. Gu, “Towards
graph containment search and indexing,” in Proc. of VLDB’07, 2007.

[35] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative frequent
pattern analysis for effective classification,” in Proc. of ICDE’07,
2007.

[36] J. De Leeuw, “Applications of convex analysis to multidimensional
scaling,” Recent Developments in Statistics, 1977.

[37] J. De Leeuw and H. W. J., “Multidimensional scaling with
restrictions on the configuration,” Multivariate Analysis, vol. V, 1980.

[38] X. Yan and J. Han, “gspan: Graph-based substructure pattern
mining,” in Proc. of ICDM’02, 2002.

[39] J. Cheng, Y. Ke, and W. Ng, “Graphgen: A graph synthetic
generator,” 2006, http://www.cse.ust.hk/graphgen.

[40] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,”
SIAM Journal on Discrete Mathematics, vol. 17, no. 1, 2003.

[41] M. Theobald, G. Weikum, and R. Schenkel, “Top-k query evaluation
with probabilistic guarantees,” in Proc. of VLDB’04, 2004.

[42] M. Kendall, “A new measure of rank correlation,” Biometrika,
vol. 30, no. 1/2, 1938.

[43] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph
isomorphism algorithm for matching large graphs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 10, 2004.

96

