AMOEBA: A Shape changing Storage System for Big Data

Anil Shanbhag*!

*MIT CSAIL

{*anil, 3yilu, *“madden}@csail.mit.edu

ABSTRACT

Data partitioning significantly improves the query perfor-
mance in distributed database systems. A large number
of techniques have been proposed to efficiently partition a
dataset for a given query workload. However, many modern
analytic applications involve ad-hoc or exploratory analysis
where users do not have a representative query workload
upfront. Furthermore, workloads change over time as busi-
nesses evolve or as analysts gain better understanding of
their data. Static workload-based data partitioning tech-
niques are therefore not suitable for such settings.

In this paper, we describe the demonstration of AMOEBA,
a distributed storage system which uses adaptive multi-attri-
bute data partitioning to efficiently support ad-hoc as well
as recurring queries. AMOEBA applies a robust partition-
ing algorithm such that ad-hoc queries on all attributes
have similar performance gains. Thereafter, AMOEBA adap-
tively repartitions the data based on the observed query
sequence, i.e., the system improves over time. All along
AMOEBA offers both adaptivity (i.e., adjustments according
to workload changes) as well as robustness (i.e., avoiding
performance spikes due to workload changes). We propose
to demonstrate AMOEBA on scenarios from an internet-of-
things startup that tracks user driving patterns. We in-
vite the audience to interactively fire fast ad-hoc queries,
observe multi-dimensional adaptivity, and play with a ro-
bust/reactive knob in AMOEBA. The web front end displays
the layout changes, runtime costs, and compares it to Spark
with both default and workload-aware partitioning.

1. INTRODUCTION

Data partitioning is a well-known technique for improv-
ing the performance of database applications. For instance,
when selecting subsets of the data, having the data pre-
partitioned on the selection attribute allows skipping irrel-
evant pieces of the data, i.e., without scanning the entire
dataset. Joins and aggregations also benefit from data par-
titioning. Because of these performance gains, the database

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

Alekh Jindal*?

Yi Lu*®> Samuel Madden*4

*Microsoft

1569

2aljindal@microsoft.com

research community has proposed many techniques to find
good data partitioning for a query workload. Such workload-
based data partitioning techniques assume that the query
workload is provided upfront or collected over time [8, 6, 7].
Unfortunately, in many cases a static query workload may
not be known a priori.

One reason for this is that modern data analytics are data-
centric and tend to involve ad-hoc and exploratory analysis.
For example, an analyst may look for anomalies and trends
in a user activity log, such as from web servers, network
systems, transportation services, or any other sensors. Such
analyses are ad-hoc and a representative set of queries is not
available upfront. To illustrate, production workload traces
from a Boston-based analytics startup reveal that even af-
ter seeing 80% of the workload, the remaining 20% of the
workload still contains 57% new queries. These workload
patterns are hard to collect in advance. Furthermore, col-
lecting the query workload is tedious as analysts would typ-
ically like to start using the data as soon as possible, rather
than having to provide a workload before obtaining accept-
able performance. Providing a workload upfront has the
further complexity that it can overfit the database to that
workload, requiring all other queries to scan unnecessary
data partitions to compute answers.

Our solution AMOEBA, is designed with three key prop-
erties in mind: (1) it requires no upfront query workload,
while still providing good performance for a wide range of
ad-hoc queries; (2) as users pose more queries over certain
attributes, it adaptively repartitions the data, to gradually
perform better on queries over frequent attributes and at-
tribute ranges; and (3) it provides robust performance that
avoids overfitting to any particular workload.

Distributed storage systems like HDF'S store large files as
a collection of blocks of fixed size (for HDF'S the blocks size is
usually 64/128MB). A block acts as the smallest unit of stor-
age and gets replicated across multiple machines. AMOEBA
exploits this block structure to build and maintain a par-
titioning tree on top of the table. A partitioning tree is a
binary tree which partitions the data into a number of small
partitions of roughly the size of a block. Each such partition
contain a hypercube of the data. Figure 1 shows an example
partitioning tree for a 1GB dataset over 4 attributes with
block size 128MB. The data is split into 8 blocks, the same
as what would be created by a block-based system, however
each block now has additional metadata. For example, block
1’s tuple satisfy A < 4 & B <5 & D < 4. This results in
it being possible to answer any query by reading a subset
of partitions. The partitioning tree is improved over time

Figure 1: Example partitioning tree with 8 blocks

based on queries submitted by the user.

AMOEBA exposes a relational storage manager which can
be used to do predicate-based storage access. AMOEBA seam-
lessly integrates into the Spark/HDFS [1] stack as a custom
data source [2].

In this demo, we will show AMOEBA running on a 10 node
cluster and using it to answer queries over a 705 GB dataset
containing measurement data from user trips. We will show
the benefits of using AMOEBA in terms of time to get started,
the performance of the first few queries and total runtime
reduction under different scenarios that an analyst using
this data would encounter. We compare against unmodified
Spark and using Spark with the table range partitioned on
the most popular attribute.

2. SYSTEM OVERVIEW

The goal of AMOEBA is to provide good query performance
at all instants of time without assuming an upfront work-
load being given. The system exposes a relational storage
manager, consisting of a collection of tables, with support
for predicate-based data access i.e. scan a table with a set
of predicates to filter over returns a subset of the data to
access. For example, scan table employee with filter: age >
30 and 1000 < salary < 2000. The data stored is partitioned
and as a result we end up accessing a subset of the data. The
system is self-tuning and as users start submitting queries
to the system, it specializes the partitioning to the observed
patterns over time.

Query optimizers tend to push predicates down to scan
operator and big data systems like Spark SQL [1] allow cus-
tom predicate-based scan operators. AMOEBA integrates as
a predicate-based scan operator and the layout changes due
to data repartitionings are invisible to the user.

The system consists of three major components: the up-
front data partitioner, the optimizer, and the adaptive repar-
titioner.

2.1 Upfront Data Partitioner

The upfront data partitioner runs when the data is up-
loaded into a block-based storage system like HDFS. Since
there is no workload information, the goal is to partition
the data such that queries on any attribute see improved
performance. We do this by creating a robust partition-
ing tree, which tries to make the number of ways the data
is partitioned on all the attributes the same. Figure 1 is
an example of a robust partitioning tree for a 1GB dataset
over 4 attributes with block size 128 MB. Real world datasets
tend to be skewed or have correlation among attributes. In
order to generate almost equally sized blocks, we collect a
sample from the data and use it to choose the appropriate
cut points.

1570

At the end of upload process, each dataset resides in its
own directory. The data is split into blocks as decided by
the partitioning tree. In addition, we create three additional
files. The index file stores the partitioning tree used to par-
tition the data. The sample file contains a sample of the
dataset. The queries file stores all the queries that touched
this dataset. The upfront partitioning is useful for improved
query performance but more importantly it serves as a good
start point for later adaptivity.

2.2 Optimizer

As users begin to query the dataset, it is beneficial to
improve the partitioning based on the observed queries. As
in most online algorithms, we assume that past queries are
indicative of the queries to come. When a query is submitted
to the system, the optimizer needs to 1) explore alternative
partitioning trees for the dataset to find the best one and 2)
decide if re-partitioning is worthwhile.

We maintain a history of the past queries called the query
window. The window maintains a history of queries for the
past X hours (we use X = 4). The cost of a query ¢ over a
partitioning tree T is:

)

belookup(T,q)

Cost(T, q) = np

where lookup(T,q) returns the set of relevant buckets for
query ¢q in T and ny is the number of tuples in bucket b.

The alternative partitioning trees are generated by using a
set of transformation rules on the current partitioning tree.
The query predicates are used as hints to generate them.
Among the set of alternative trees generated, we select the
tree T’ that maximizes the total benefit:

Benefit(1T") = Z Cost(T, q) — Z Cost(T', q)
q€Q q€Q

For the best found tree, with B being the set of blocks
that need to be repartitioned to achieve it, we compute the
repartitioning cost as:

RepartitioningCost(T", q) = Z c-np
beB

The re-partitioning happens only when the difference in cost
of the queries before and after can pay for the repartition-
ing cost. The important parameter to note here is c. ¢
represents the write-multiplier i.e., how expensive writes are
compared to a read. Changing c alters the properties of the
system: on one end setting ¢ = co makes it imitate a system
with no re-partitioning, at the other end setting ¢ = 0 makes
it re-partition the data every time it sees benefit.

2.3 Adaptive Repartitioner

The optimizer returns a plan containing the set of blocks
to be accessed and a new partitioning tree if it is feasible.
From this, we can split the blocks into two sets: set one
contains all blocks that would be scanned and filter predi-
cates applied on them and set two contains all blocks that
would be scanned, re-partitioned based on the new tree and
filter predicate applied on them. Two things to note here,
first the set of blocks to re-partition is always a subset of
blocks accessed i.e. we never read extra data. Second, the
re-partitioning piggybacks off the query execution saving the
scan cost. The final tuples after all the predicates have been
applied are returned for further processing.

3. PERFORMANCE

We conducted extensive evaluation using TPC-H and a
real-world analytical workload. The experiments were run
on a 10 node cluster where each node has 16 2.07 GHz Xeon
cores, 256 GB RAM and 10 TB of storage. Here we present
a highlight from the real-world analytical workload.

3.1 o7 Dataset

We obtained data from a Boston-based company that cap-
tures analytics regarding a user’s driving trips. Each tuple
in the dataset represents a trip taken by the user, with the
start time, end time, and a number of statistics associated
with the journey regarding various attributes of the driver’s
speed and driving style. The data consists of a single large
fact table with 148 columns. To protect user’s privacy, we
used statistics provided by the company regarding data dis-
tributions to generate a synthetic version of the data ac-
cording to the actual schema. The total size of the data is
705GB. We also obtained a trace of ad-hoc analytics queries
from the company (these queries were generated by data an-
alysts performing one-off exploratory queries on the data).
This trace consists of 105 queries, run between 04/19/2015
and 04/21/2015, on the trip data. The queries sub-select
different portions of the data, e.g., based on trip time range,
distances, and customer ids, before producing aggregates
and other statistics.

3.2 Evaluation

We compared the performance of AMOEBA versus two
baselines: 1) using Spark without any modifications, 2) us-
ing Spark with the data already partitioned on upload_time,
which is most frequently accessed attribute (accessed in 78%
of the queries). The data was split equally across the ma-
chines and loaded in parallel using the upfront data parti-
tioner. The queries collected were then run in order.

Upfront Overhead: Time taken to upload the data di-
rectly into HDFS is 38 minutes. The time taken to upload
via the upfront data partitioner is 62 minutes. The upfront
data partitioner does two full scans, one full parse and writes
the data 3-way replicated into HDF'S compared to the direct
method which just does one full scan and writes it 3-way into
HDFS. As a result, we get a 1.6x overhead.

Total query runtime: Figure 2 shows the total query
runtime for running the 105 queries using the different ap-
proaches. To remind the reader, ¢ is the write multiplier
(described in Section 2.2). ¢ can be calibrated by measuring
the runtime increase due to re-partitioning. For our setup,
c is 4, i.e.: writing out data (while re-partitioning) is four
times more expensive than just scanning the data. We ob-
serve that by range partitioning on upload_-time, the total
query runtime drops by 1.9x. Amoeba initially does worse
off as it does not have knowledge of the workload, however
in the end it does 1.8x better than Spark with data parti-
tioned and 3.4x better than unmodified Spark. The ¢ = 2
setting is more reactive in the sense it adapts to the query
workload faster. It does slightly worse than ¢ = 4 setting as
it ends up doing introducing changes to the tree very soon,
as the workload is ad-hoc some patterns are one-off and re-
partitioning done to improve them ends up being wasted
effort. Finally, we observed that the total runtime of the
last 25 of the 105 queries on AMOEBA is 19z lower than full
scan and 11z lower than using the range-partitioned data.

1571

Spark -| 9.4
Spark (with range partition) -| 4.94
Amoeba (¢ = 4) 2.79

Amoeba (c=2) []3.1 ‘
0 5 10

Total time taken (in hrs)

Figure 2: Total runtime of the different approaches

4. DEMONSTRATION

The goal of the demonstration is to help the attendees
understand the performance characteristics and the nature
of gains got by AMOEBA. We consider the following four
characteristics to evaluate our adaptive data system:

(1.) Upfront overhead, i.e., the initial partitioning overhead.
(2.) Time to first query, i.e., how do the initial query per-
formance(s) look like.

(3.) Break-even point i.e., how many queries it takes to re-
cover the cost of upfront partitioning.

(4.) Total gain, i.e., the ratio of the total runtime of all
queries with the total runtime of a baseline.

Below, we first describe our setup, and then describe the
demonstration scenarios for Amoeba.

4.1 Setup Details

Our demo setup consists of an open source implementa-
tion of AMOEBA built on top of Spark and HDFS using the
same setup as in Section 3. To demonstrate real world ad-
hoc analysis scenarios, we will pre-load the IoT dataset of
driving events (described in Section 3.1) as a denormalized
fact table.

In order to effectively demonstrate the system, we de-
veloped a ajax-based web front end that allows attendees
to run a set of queries on the system, analyze the changes
made to the partition tree over time and compare the per-
formance gain against two baselines: (i) using unmodified
Spark to read data and apply predicates on them (incurs full
scan), and (ii) Spark with data range-partitioned by upload
time which is the most popular attribute. Since the data
is preloaded for demonstration purposes, the web front end
also shows the upload time in different approaches. Figure
3 shows a screenshot of the console.

Behind the scenes, once the user submits the queries, the
system runs the queries one-by-one on the optimizer. Note
that the optimizer takes in a query, the past queries, a sam-
ple of the data and the current partitioning tree to produce
possibly a different partitioning tree. The optimizer also
produces estimated runtimes of the queries which is then
plotted on a line graph with similar lines drawn for the two
baselines. The actual execution time of the queries are much
larger than permitted by the time constraints of the demon-
stration. To show that the optimizer predicted runtimes are
close to actual runtimes, we also include the predicted and
actual runtimes for the workload executed in Section 3.

4.2 Demonstration Scenario

Our demonstrations places attendees in the shoes of an an-
alyst at an Internet of Things (IoT) startup that tracks user

driving patters. She would like to consider using AMOEBA as
the storage manager for her data. We describe the demon-
stration scenarios below that showcase the different aspects
of the system and invite the attendees to play with them.

4.2.1 Fast Ad-hoc Queries

The analyst gets a daily dump of data and wants to quickly
start her analysis. Furthermore, she wants to quickly try
subsets of the data along different dimensions, e.g. trip
length, start latitude/longitude, etc., before going into more
details. Essentially, the analyst wants to have improved
query performance right from the first query itself even when
the queries are ad-hoc in nature. Amoeba allows the ana-
lyst to load the data with a small overhead and then fire
ad-hoc queries over any attribute, with better performance
than the full scans.

The demonstration consists of two stages. First we in-
vite the audience to provide different data sizes and ad-hoc
queries and see the expected time it will take for the ana-
lyst to get started (i.e., the response times of these ad-hoc
queries). The audience can then fire these ad-hoc queries
on the pre-loaded data. Example queries include getting
average speed, time spent over 40mph, breaks applied per
kilometer, trip distance, etc. We show the improvements
compared to the baselines.

4.2.2 Multi-dimensional Adaptivity

While the analyst typically starts with ad-hoc queries,
she often runs a long sequence of queries (on one or more
attributes/dimensions) in her analysis. While the improved
ad-hoc query performance is good to start with, she wants
the system to adapt to her query patterns, i.e., recognize the
fact that the queries are not ad-hoc anymore, and improve
even further. The analyst wants the system to get faster
and faster as she proceeds in her analysis. Amoeba mon-
itors the query workloads and automatically repartitions
the data as it gets used over time. Essentially, the system
refines the partitioning along more frequently used dimen-
sions/attributes, while coarsening the partitioning along less
frequently used ones.

This demonstration scenario starts with the audience pro-
viding a query sequence pattern to the system. We will
provide some pattern templates, such as random query se-
quences, cyclic query sequences, and drill down query se-
quences. Amoeba shows the expected costs of running a
given query sequence. The audience can observe the individ-
ual query time, the partitioning overhead, and convergence
towards the ideal runtime. The audience can play with the
system to change the query sequence pattern and observe
how each of the above metrics change. They can also see
the changes to the underlying partitioning tree.

4.2.3 The Robust/Reactive knob

Amoeba takes care of adaptively repartitioning the data,
however, the analyst still wants to control how robust or
reactive the system is to workload changes. She may, for
instance, know that it is going to be a short query session
and hence spending too much effort in adaptivity will not
pay-off. Or, she may already have a specific workload ac-
tivity in mind and want the system to adapt very quickly.
Amoeba allows users to control this by changing the reparti-
tioning cost factor ¢ (see Section 2.2) . On one extreme, the
system could repartition the data for every incoming query,

1572

amecba

Cost Calculator

Select Workioad
Cyclic

Drildown

Figure 3: Sample workload run via the web console

while on the other extreme it may never repartition. Thus,
Amoeba covers the entire spectrum.

We invite the audience to tune the robustness knob and
see how Amoeba reacts to workload changes. A more robust
setting will trigger less data repartitioning, while a more re-
active setting will trigger more repartitioning. The audience
can launch the query sequence with different settings.

S. RELATED WORK

The problem of generating partitioning layout given a
query workload has been studied extensively. [8, 6] suggests
a physical layout based on the workload. Recently, [7] pro-
posed to create data blocks based on the features extracted
from each input tuple. The features are selected based on
the workload and the goal is to cluster tuples with similar
features into the same data block. All these methods require
an upfront workload.

For in-memory column stores, cracking [4] has been used
to generate adaptive index on a column based on incoming
queries. Partial sideways cracking [5] extends it to generate
adaptive index on multiple columns. Cracking happens on
each query and maintains additional structures to create the
index. The reason cracking cannot be applied to distributed
data store is that the cost of re-partitioning is very high.
Each round of re-partitioning needs to be carefully planned
to amortize the cost associated with it.

AQWA [3] looks at adaptive data partitioning for spatial
data (2 dimensions). Their techniques do not scale to higher
dimensions.

6. REFERENCES

[1] Apache Spark. http://spark.apache.org/.

[2] Spark SQL Data Source APIL. http://bit.ly/1HWrGdZ.

[3] A. M. Aly et al. Aqwa: adaptive query workload aware
partitioning of big spatial data. VLDB, 2015.

[4] S. Idreos et al. Database cracking. In CIDR, 2007.

[5] S. Idreos et al. Self-organizing tuple reconstruction in
column-stores. In SIGMOD, 2009.

[6] R. Nehme and N. Bruno. Automated Partitioning
Design in Parallel Database Systems. SIGMOD, 2011.

[7] L. Sun et al. Fine-grained partitioning for aggressive
data skipping. In SIGMOD, 2014.

[8] D. C. Zilio et al. Db2 design advisor: Integrated
automatic physical database design. VLDB, 2004.

