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ABSTRACT
In-memory databases require careful tuning and many engi-
neering tricks to achieve good performance. Such database
performance engineering is hard: a plethora of data and
hardware-dependent optimization techniques form a design
space that is difficult to navigate for a skilled engineer – even
more so for a query compiler. To facilitate performance-
oriented design exploration and query plan compilation, we
present Voodoo, a declarative intermediate algebra that ab-
stracts the detailed architectural properties of the hard-
ware, such as multi- or many-core architectures, caches and
SIMD registers, without losing the ability to generate highly
tuned code. Because it consists of a collection of declarative,
vector-oriented operations, Voodoo is easier to reason about
and tune than low-level C and related hardware-focused ex-
tensions (Intrinsics, OpenCL, CUDA, etc.). This enables
our Voodoo compiler to produce (OpenCL) code that rivals
and even outperforms the fastest state-of-the-art in memory
databases for both GPUs and CPUs. In addition, Voodoo
makes it possible to express techniques as diverse as cache-
conscious processing, predication and vectorization (again
on both GPUs and CPUs) with just a few lines of code.
Central to our approach is a novel idea we termed control
vectors, which allows a code generating frontend to expose
parallelism to the Voodoo compiler in a abstract manner,
enabling portable performance across hardware platforms.

We used Voodoo to build an alternative backend for Mon-
etDB, a popular open-source in-memory database. Our back-
end allows MonetDB to perform at the same level as highly
tuned in-memory databases, including HyPeR and Ocelot.
We also demonstrate Voodoo’s usefulness when investigat-
ing hardware conscious tuning techniques, assessing their
performance on different queries, devices and data.

1. INTRODUCTION
Increasing RAM capacities on modern hardware mean

that many OLAP and database analytics applications can
store their data entirely in memory. As a result, a new gen-
eration of main-memory-optimized databases, such as Hy-
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Figure 1: Performance of branch-free selections based on
cursor arithmetics [28] (a.k.a. predication) over a branching
implementation (using if statements)

PeR [18], Legobase [14] and TupleWare [9], have arisen.
These systems are designed to operate close to memory
bandwidth speed by ad-hoc generating CPU-executable code.

However, code generation is complex, and as a result most
systems were designed to generate code for a specific hard-
ware platform (and sometimes a specific dataset or work-
load), and require substantial changes to target an addi-
tional platform. This is because different architectures em-
ploy very different techniques to achieve performance, rang-
ing from SIMD instructions to massively parallel co-process-
ors such as GPUs or Intel’s Xeon Phi to asymmetric chip
designs such as ARM’s big.LITTLE. Exploiting such hard-
ware properly is tricky because the benefit of most machine
code optimizations is data as well as hardware dependent.

To illustrate the complexity of these tradeoffs, Figure 1
shows the impact of predicate selectivity and architecture
on in-memory selections (over one billion single-precision
floats). Here, we filter a list of values with a predicate of
variable selectivity, using one of two methods: conventional
if-statements that evaluate the predicate on every item,
and a branch-free approach where every input is copied to
the output, but the address for the next output is com-
puted by adding the outcome of the predicate (1 or 0) for
the current value (so values that don’t satisfy the predicate
are overwritten by the next value). The branch-free imple-
mentation executes more instructions but avoids potentially
expensive branch mispredictions. On GPUs, the branch-
ing implementation is often better and never significantly
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Figure 2: The Voodoo Query Processing System

worse; on CPUs the branch-free implementation can some-
times be up to 4x better in the single-threaded case (where
costs are strongly branch-dominated) and 2.5x better in the
multi-threaded case (which is less branch-dominated). This
example shows why generating high-performance code for
modern hardware is hard: even straight-forward optimiza-
tions such as the elimination of branch mispredictions must
be applied with knowledge of both hardware and data!

Unfortunately, implementing transformations like this in
existing code generation engines is hard because it requires
encoding knowledge about the hardware (GPU/CPU) and
data (selectivities) into the code generator. Furthermore,
many such optimizations require cross-cutting changes across
operators and code components. As a result of this, none of
the aforementioned engines implement hardware-specific or
data-driven optimizations such as the one shown in Figure 1.

To address this complexity, we developed a new interme-
diate algebra, called Voodoo as the compilation target for
query plans. Voodoo is both portable to a range of modern
hardware architectures, including GPUs and CPUs and ex-
pressive enough to easily capture most of the optimizations
proposed for main-memory query processors in the litera-
ture – a property we will call tunability in the rest of this
paper. For example, it can express different layouts (col-
umn vs row) [26, 34], materialization strategies [1], sharing
of common subexpressions [6, 14], vectorization [25], par-
allelization, predication (the above example) [28] as well as
loop fusion and fission [32]. While supporting all of these op-
timizations, Voodoo maintains the efficiency of hand-written
C-code by just-in-time generating executable code.

Of course, Voodoo is not the first system to generate effi-
cient executable code for modern hardware. However, exist-
ing systems occupy particular design points in the space, im-
plementing architecture-specific techniques to achieve band-
width and CPU efficiency. Table 1 displays the design choices
of several well-known systems (we benchmark against some
in our experiments). Porting any of these to a new hardware
architecture (with a new set of data-specific bottlenecks)
would involve a nearly complete rewrite of the system. We
aim to develop an abstraction layer that makes it easy to
obtain performance from new hardware architectures.

We termed the key innovation that enables such “tun-
ability” declarative partitioning, which allows a code gen-
erating frontend to provide information about the desired
parallelism of operations in a hardware-independent fash-

System Bandwidth
Efficiency
Technique

CPU
Efficiency
Technique

Hardware
Target

HyPeR [18] Pipelining Compilation CPU-only
MonetDB [7] – Bulk-

Processing
CPU-only

Vectorwise [33] Cache-friendly Partitioning CPU-only
Tupleware [9] Pipelining Compilation CPU-only
Ocelot [13] – Bulk-

Processing
GPU-

Optimized

Voodoo Tunable

Table 1: Techniques Used in Existing In-Memory DBMSs

ion. This is specifically embodied in Voodoo by a novel
technique, called controlled folding, where virtual attributes
(which we term control vectors) are attached to data vectors.
By tuning the value of these virtual attributes, frontends can
create more or fewer partitions (yielding more or less par-
allelism) to adapt to hardware with different lane-widths,
cache sizes, and numbers of execution units.

Specifically, we make the following contributions:
• We present the Voodoo algebra and describe our im-

plementation of it. Our implementation compiles into
OpenCL, and serves as an alternative physical plan al-
gebra and backend for MonetDB [7], an existing high-
performance query processing engine that did not pre-
viously generate machine code.
• We present a set of principles that guide the design

of Voodoo that allow it to efficiently adapt to a range
of hardware. These include the use of a minimal col-
lection of declarative operators that can be efficiently
executed on different hardware platforms.
• We describe the design and implementation of con-

trolled folding as well as a compiler that generates ef-
ficient OpenCL code from Voodoo programs.
• We show that our implementation is performance-com-

petitive with existing database engines designed for
specific hardware platforms and hand-optimized code,
using simpler and more portable code, and that it can
capture several existing and new architecture-specific
optimizations.

Note that we do not address the problem of programat-
ically generating optimal Voodoo code. Instead, we show
that Voodoo can be used to express a variety of sophisticated
hardware-conscious optimizations, some novel and some pre-
viously proposed, and argue that these could eventually be
chosen via an optimizer that generates Voodoo code.

We structure the rest of this paper around the architec-
ture of Voodoo (shown in Figure 2): after a brief discussion
of our design goals in the rest of this section we present
the Voodoo algebra that is used to encode query plans in
Section 2. Section 3 provides an in-depth discussion of the
Voodoo OpenCL backend. In Section 4 we describe how we
integrated the Voodoo kernel with MonetDB to accelerate
the query processing engine. We evaluate the complete sys-
tem in Section 5, discuss relevant related (Section 6) and
future (Section 6) work and conclude in Section 8.

2. THE VOODOO ALGEBRA
To introduce the Voodoo algebra, we start with an exam-

ple that illustrates its key features and our design principles.
After that, we go on to present Voodoo’s data model and
operators in more detail.
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1 input := Load("input") // Single Column: val
2 ids := Range(input)
3 partitionSize := Constant(1024)
4 partitionIDs := Divide(ids, partitionSize)
5 positions := Partition(partitionIDs)
6 inputWPart := Zip(input, partitionIDs)
7 partInput := Scatter(inputWPart, positions)
8 pSum := FoldSum(partInput.val, partInput.partition)
9 totalSum := FoldSum(pSum)

Figure 3: Multithreaded Hierarchical Aggregation in Voodoo

1 3,4c3,4
2 < partitionSize := Constant(1024)
3 < partitionIDs := Divide(ids, partitionSize)
4 ---
5 > laneCount := Constant(2)
6 > partitionIDs := Modulo(ids, laneCount)

Figure 4: Multithreading to SIMD in Voodoo (textual diff)

Figure 3 shows a Voodoo program (in Static single as-
signment form) to perform a hierarchical summation: data
is first partially summed on N processors, and then the N
partial aggregates are themselves summed. Line 1 loads an
input vector with a single column “val”. Line 2 creates a
vector of ids, ranging from 1 . . . |input|. Line 3 and 4 cre-
ate a vector that maps each tuple to a partition by integer-
dividing it by the partitionSize (1024 tuples in the example).
Line 5 computes the output position for each tuple, based
on its partition. Line 6 attaches the generated partition ids
to the input tuples. Line 7 partitions the input according
to the positions computed in line 5 (note that this parti-
tioning is purely logical – meaning it just causes the gener-
ated code to loop over the specified number of partitions –
unless explicitly materialized). Finally, line 8 performs the
per-partition aggregation, and line 9 performs the global ag-
gregation. This example illustrates several key properties of
Voodoo and how they enable portability and performance.

Vector Oriented: The algebra consists of a small set
of vector operations like Scatter and FoldSum, which can
be parallelized on modern architectures. Vector instructions
enable both portability and performance, as they can be par-
allelized on many hardware platforms while also yielding to
straightforward implementations on any hardware platform.
The specific operators in the algebra were chosen to be fa-
miliar to compiler-designers reflecting the design of vector
machines, SIMD instruction sets, and functional languages,
and expressive enough to capture a wide variety of new and
previously proposed techniques for optimizing main-memory
analytics. For example, in addition to the example in Fig-
ure 4, Voodoo is expressive enough to capture the different
implementations shown in Figure 1, and compact enough
that each implementation is just a few lines of code.

Declarative: Voodoo describes dataflow rather than ex-
plicit behavior. In particular, the operators only define how
the output depends on the inputs – not how the outputs
are produced. This allows Voodoo to, e.g., implement lane-
wise parallelism (as in FoldSum) using SIMD-instructions
on CPUs and work-groups/warps on GPUs (which are con-
ceptually very similar). This declarative property is also
important for portability in Voodoo, as operators don’t de-
scribe specific properties of hardware that they rely on.

In addition, it makes the program shorter and simpler
than the equivalent C++ program using, e.g., Intel’s Thread-

1 auto input = load("input");
2 auto totalssum =
3 parallel_deterministic_reduce(
4 blocked_range<size_t>(0, input.size,
5 input.size / 1024),
6 0, [&input](auto& range, auto partsum) {
7 for(size_t i = range.begin();
8 i < range.end(); i++) {
9 partsum += input.elements[i].constant;

10 }
11 return partsum;
12 },
13 [](auto s1, auto s2) { return s1 + s2; });

Figure 5: Multithreaded Hierarchical Aggregation in TBB

1 auto input = load("input");
2 typedef int v4i __attribute__((vector_size(16)));
3 auto vSize = (sizeof(v4i) / sizeof(int));
4 v4i sums = {};
5 for(size_t i = 0; i < input.size / vSize; i++)
6 sums += ((v4i*)input.elements)[i];
7 int* scalarSums = (int*)&sums;
8 auto totalsum = 0l;
9 for(size_t i = 0; i < 4; i++)

10 totalsum += scalarSums[i];

Figure 6: Hierarchical Aggregation using SIMD Intrinsics

ing Building Blocks (see Figure 5) while providing equivalent
expressive power. Simplicity arises because it employs a sin-
gle concept: vector operations. In contrast, TBB involves
blocked ranges (line 4), functional lambdas (lines 6 and
13) using lexical scoping and a reducer (line 13).

Finally, declarative operators allow us to avoid materializ-
ing many of the intermediate vectors in a Voodoo program.
For example, in the program in Figure 3, most of the vectors
(except input, parts, and total) are never stored. These
vectors are simply used to control the degree of parallelism
in the generated code, as described in Section 3.1 below.

Minimal: Voodoo consists of non-redundant, stateless
operators. (an example of - hidden - state would be an inter-
nal hash table when computing an aggregate). By keeping
the API simple, frontends are able to effectively influence
the generation and usage of intermediate data structures
which may or may not be beneficial for performance. Hid-
den data structures are also problematic with respect to
portability because they can be unbounded in size (again,
hash-tables come to mind). Since most co-processors do not
efficiently support the (re-)allocation of memory at runtime,
unbounded data structures impede portability. Simple, fine-
grained operators also lend themselves to fine-grained cost
models such as the one we defined in earlier work [21]. Ef-
fective reasoning about cost is an integral part of tunability.

Non-redundancy in the operator set has three distinct ad-
vantages: a) improvements in one operator can improve
many queries b) it increases the number opportunities for
common subexpression elimination c) it simplifies backend
implementation and maintenance.

Deterministic: Voodoo programs do not contain run-
time control statements such as if or for that decide if
an operator is executed. Such determinism enables efficient
execution on architectures with no, or only expensive ex-
ecution control, such as GPUs and SIMD units, and also
improves CPU performance by allowing the CPU to effec-
tively speculate during program execution. It also simplifies
cost-modeling.
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Determinism does come at a price: the lack of dynamic
decisions prevent the frontend from influencing dynamic ex-
ecution strategies such as load-balancing, garbage collection,
memory re-allocation or running loops of which the number
of iterations is unknown at compile time. However, this does
not imply that generated code cannot make decisions about
what data to load (e.g., which is the next node in a tree
index), as long as the operations on the data are known at
compile time1. Operations on trees, e.g., are expressible as
long as the depth of the tree is (reasonably) bounded/bal-
anced. To remove the need for such a bound, we plan to
(re-)integrate dynamic decisions into Voodoo and will ex-
plore the impact of control-statements in future work.

Explicit: As much as possible, every Voodoo program
has exactly one implementation on each underlying hard-
ware platform. Explicitness is important for tunability, be-
cause it means a code generating frontend (or the developer
thereof) can reason clearly about what a particular program
will do on a particular hardware platform.

Tunable/Transformable: The final key property of Voo-
doo, as noted in the introduction, is that it is easy to tune to
various hardware platforms using a single abstraction. Since
Voodoo already follows a declarative operator model, it is
natural to extend this model to create a declarative approach
to tuning. In addition to compatiblity with the algebra, this
approach has an appealing property: it encodes conceptually
similar techniques into structurally similar programs. To il-
lustrate this, consider the example of parallelization using
either multiple cores or multiple SIMD-lanes of a modern
multicore CPU. This is a non-trivial difference in C: Fig-
ure 6 shows code that is equivalent to Figure 5 but uses
SIMD intrinsics instead of TBB multithreading. These are
almost entirely different programs: the only lines that are
shared are the loading of the input (line 1) and most of the
output declaration (lines 2 and 9, respectively). In contrast,
the changes to the Voodoo program are minimal (see Fig-
ure 4 for a textual diff): the constant in line 3 now encodes
the number of lanes rather than the size of a partition and
the generation of successive runs has been replaced with the
generation of circular lane-ids in line 4. This change causes
the records to be scattered in a round-robin pattern in lines
5–7, which naturally maps to SIMD instructions. This ex-
ample shows how an laborious code change is made simple
by Voodoo. This simplicity is what we mean by tunable.
The previous example also introduces the concept of con-
trolled folding, which we describe in more detail later on.

In summary, the design of Voodoo is driven by two pri-
mary goals: portability and tunability. These goals are often
contradictory as exemplified by the case of platform-specific
extensions of C such as SIMD intrinsics: they can improve
performance if the hardware efficiently supports them but
hurt portability and sometimes even performance if they are
not or only badly implemented [24]. Voodoo alleviates these
problems by providing a layer of abstraction that a) can
be translated into efficient code for a variety of hardware
platforms, b) allows easy and fine-grained control over the
generated code while keeping the abstraction simple in or-
der to c) allow reasoning about a program, both in terms of
semantics as well as cost (given a hardware platform).

In the rest of this section we describe the data model and
operators that allow Voodoo to achieve these properties.

1Note that, since we generate code, we have information
about factors such as datasizes at compile time

2.1 Data: Structured Vectors
The Voodoo data model is based on integer-addressable

vectors. We chose this because virtually all hardware plat-
forms implement some kind of integer-addressable memory.
Consequently, Voodoo stores data using a thin layer of ab-
straction over such integer-addressable memory: a model we
term Structured Vectors. A Structured Vector is an ordered
collection of fixed size data items, all of which conform to
the same schema. For convenience, we allow data items to
contain (nest) other structured data items. Structured Vec-
tors are equivalent to one-dimensional arrays of structs in
ANSI C and can, thus, be mapped naturally to native code
in a C-derived language such as OpenCL C. We currently
only allow scalar types and nested structs as fields (but may,
in the future, add fixed size arrays as a convenience feature).
To illustrate this, Figure 7 shows two vectors: an input (on
top) and an output vector (bottom). The input vector has
two attributes (.fold and .value) and 8 elements.

To address an attribute of a vector in Voodoo code, we use
Keypaths to “navigate” the nested structures. In notation,
keypaths are marked with a preceding dot: for example, the
path .value designates the value component of every tuple
in Figure 7. Since structures can be nested, keypaths can
have more than one component (e.g., .input.value).
Pointers and NULL values. Voodoo has no notion of
pointers. References to tuples of vectors can be represented
similar to foreign-keys: integer values encoding a position
in another vector. We provide primitives to resolve these
references (the gather operation). Regarding NULL values,
we decided to not impose a specific way but enable common
design patterns to deal with NULLs such as bitmaps (im-
plemented in, e.g., HyPeR), reserved values (MonetDB) or
sparse attributes (Postgres) in Voodoo. In the rest of this
paper, we implement NULL values using MonetDB’s scheme.

Voodoo does have the notion of an “empty” field value
which we denote as ε (e.g., in Figure 7). Empty slots occur
if, e.g., values are not set in a scatter or not selected in
a foldSelect. We illustrate the usefulness of this concept
for efficient code generation in Section 3.

2.2 Controlled Folding
A key challenge in Voodoo is providing declarative oper-

ators that still give control over tuning parameters (such as
parallelism). To address this challenge, we developed a con-
cept we term Controlled Folding, which is used to express
aggregation (producing a single value) as well as partition-
wise selections (producing a sequence of tuple ids). The
basic idea of Controlled Folding (illustrated for the case of
aggregation in Figure 7, as well as in the use of Divide and
Modulo, respectively in Figures 3 and 4) is similar to fold
operations in functional languages (e.g., Haskell): reduce a
sequence of values into a single value using a binary function.
Controlled fold operators in Voodoo are a generalization of
functional folds: In addition to the vector of values to fold

1 1 1 1

2 0 4 1 3 1 5 0

0 0 0 0

7  ε  ε 9  ε

.fold

.value

.sum  ε  ε ε
Figure 7: Voodoo Fold operations are controlled

1710



Operator Explanation
M

a
in

t. Load(.keypath) Load a vector identified by keypath from persistent storage
Persist(.keypath, V) Persist vector V, making it available from persistent storage under .keypath
BitShift(.out, V1, .kp1, V2, .kp2) Shift the value of each item in V1.kp1 by V2.kp2
LogicalAnd/Or(.o, V1, .p1, V2, .p2) Logical Operations
Add, Subtract, Multiply, Divide, Modulo Arithmetic Operations
Greater, Equals Comparison Operations

D
a
ta

P
a
ra

ll
el Zip(.out1, V1, .kp1, .out2, V2, .kp2) Create new vector with substructure V1.kp1 as .out1 and V2.kp2 as .out2

Project(.out, V, .kp) Create new vector with substructure V.kp as .out
Upsert(V1, .out, V2, .kp) Copy V1 and replace or insert attribute .out with value V2.kp
Scatter(V1, V2, .kp2, V3, .pos) Create a new vector of size V2. Fill the slots of the new vector by placing

each value of V1 into position V3.pos. Values are overwritten on conflict.
Scatters are performed in order within a value-run in V2.kp2 — runs have
no order guarantees with respect to each other.

Gather(V1, V2, .pos) Create a vector of size V2 filling it by resolving position V2.pos in V1. Out
of bounds positions result in empty slots.

Materialize(V1, V2, .kp2) Materialize vector V1 in memory. Materialize chunks of sizes according to
runs in V2.kp2 (X100-style [33] processing)

Break(V1, V2, .kp) Break up V1 into segments according to the runs in V2.kp (pure tuning
hint)

Partition(.out, V1, .v, V2, .pv) Generate a scatter position vector to partition V1.v according to the list of
pivots V2.pv

F
o
ld

FoldSelect(.out, V1, .fold, .s) Generate a vector of positions of slots in V1 that have .s set to non-zero.
Align the output to value runs in .fold (see Figure 7)

FoldMax/Min/Sum(.out, V1, .fold, .agg) Calculated Max/Min/Sum for every run in .fold. Align output value with
start of run.

FoldScan(.out, V1, .fold, .s) Prefix-Sum the values of V1 .s (start of new run in .fold starts new sum)

S
h

a
p

e Range(.kp, fromI, [vInt|v], stepI) Generate a vector with the same size as v with values starting from from
increasing by step

Cross(.kp1, v1, .kp2, v2) Generate the cross product of the positions of v1 and v2
Table 2: Voodoo Operators

they accept a second vector that we term the control vector
of the operation. The control vector effectively provides the
partition ids for values being folded.

The effect of the control vector on the output of an op-
erator is that, when sequentially traversing the values, the
operator also traverses the aligned control-sequence. As it
does this, it folds all adjacent tuples that have the same par-
tition id into a single output value – the beginning of a new
run of partition ids causes the fold to start a new result. The
result of each sub-fold is written to the output cell at the
start of the partition. The slots between one fold result and
the next are padded with empty values. The padding avoids
the need for synchronization when processing runs in par-
allel (we describe how to eliminate the storage overhead of
this in Section 3.1.) Controlled folding is a key abstractions
in Voodoo that allows us obtain parallel performance from
multiple hardware platforms. As we show in the following, it
is a very powerful abstraction because it allows declaratively
specification of the output of partition-wise operations.

2.3 Operators
In this section, we briefly describe the core operators of

Voodoo. The goal is to provide an intuition for the kinds of
operators we support. A detailed description is provided in
Table 2. Voodoo’s operators fall into four categories:

1. Maintenance Operations manipulate the persistent
state of the database. They import data, persist
data to the database and load it back.

2. Data-parallel Operations operate on aligned tuples
in two input vectors. They include standard oper-
ations such as arithmetic or logical expressions and
Zips. Gather and Materialize also fall into this
category because they are trivial to parallelize. The
size of the output of these operators is the size of the

smaller input. Scatter takes a third parameter that
specifies the size of the output and technically involves
a consistent write to memory. However, as virtually all
hardware platforms implement such a primitive, we
consider Scatter data parallel.

3. Fold Operations are operations that require some
level of synchronization. In general, this includes all
operations where the value at a position in the output
depends on more than one value of the input vector.
Naturally, this holds for aggregations. However, it also
holds for foldSelect because it is order preserving:
consequently, the position of a tuple in the output de-
pends on the number of qualifying tuples that precede
it. Partition also takes a vector of pivots as a sec-
ond input. The size of the output is the size of the
input vector (not the pivot vector for partitioning).

4. Shape Operations are operations that create vectors
with values that are not based on the data values of
other vectors but only on their size. Shaped operations
do not take any input keypaths because they do not
process any attribute values. While we use these oper-
ators to generate constants, their most important use
is instead to create run-control vectors for fold opera-
tions. By generating appropriate fold attribute values
and maintaining metadata that describes the runs, we
can declaratively control the degree of parallelism in
the Voodoo program. Consequently, we call such gen-
erated attributes Control Attributes. We describe the
functioning of these attributes in more detail in the
next section.

3. VOODOO BACKENDS
The declarative nature of the Voodoo operators makes it

easy to provide different backend implementations. While
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Figure 8: Select & Hierarchically Aggregate in Voodoo

we foresee implementations in different contexts such as
distributed processing, we focus our efforts on single-node
(multi-core) backends in this paper. We have implemented
two backends: an interpreter on top of C++ standard li-
brary containers classes as well as a backend that compiles
Voodoo code to highly efficient OpenCL kernels. We will
start this section with an in-depth discussion of the design
of the OpenCL backend and finish with a brief discussion of
the interpreter.

3.1 The OpenCL Compiler
The purpose of the OpenCL compiler is to generate highly

efficient, parallel code that avoids unnecessary data mate-
rialization. It does so by generating fully inlined, function-
call-free OpenCL kernels from sequences of multiple Voodoo
operators. The generation of the kernels is strongly inspired
by the code generation process in HyPeR [18], and, following
their nomenclature, we will refer to a generated piece of code
as a fragment. Result materialization to memory only occurs
at the seams between fragments. As in HyPeR’s query com-
piler, the Voodoo to OpenCL compiler traverses the plan in
a dependency order and appends statements to a fragment.
However, the code generation process in Voodoo is more in-
volved than in HyPeR for two reasons: First, we generate
data parallel code whenever possible and only generate code
with reduced parallelism when necessary and second Voodoo
query plans are DAGs rather than trees (see Figure 8) to en-
able sharing of intermediate results.

In the following, we illustrate the code generation process
taking these complicating factors into account. As a running
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Figure 9: Select & Hierarchically Aggregate in OpenCL

example, we use a simplified version of TPC-H Query 1 (See
Figure 8). The query is:

SELECT SUM(l_quantity) FROM lineitem
GROUP BY l_returnflag

3.1.1 Code Generation
As in earlier in-memory data management systems such as

Vectorwise/MonetDB X100 [33] and HyPeR [18], we aim to
avoid the materialization of intermediate results. Similar to
HyPeR, we generate code by traversing the execution-DAG
in a linearized order (top to bottom in Figure 8).
Controlling Parallelism. Most Voodoo programs con-
tain fully parallel as well as controlled fold operations. The
OpenCL backend needs to efficiently map both to kernels
with the appropriate degree of parallelism. To this end,
Voodoo assigns an Extent and an Intent to each generated
code fragment. The Extent is the degree of (data) paral-
lelism (roughly equivalent to the global work size in OpenCL
or the number of parallel threads working on a vector) while
the Intent is the number of sequential iterations per parallel
work-unit. A fragment of Extent 1 is fully sequential while
a fragment of Intent 1 is fully parallel. Before describing
how we derive these parameters from the Control Vectors,
we first discuss how they affect a generated program.

The DAG property of our query plans forces us to main-
tain multiple active fragments at the same time. To illus-
trate this, consider the case of compiling a program in which
a number of fully parallel statements are interrupted by a
run-controlled sequential one. In this case, Voodoo creates a
sequential fragment in addition to the already active parallel
fragment — neither is executed until needed.

When processing an instruction, the compiler chooses a
code fragment that has the same extent as the current state-
ment. This process is applied in a straightforward manner
for data-parallel, maintenance, and shape operators in Ta-
ble 2. For fold operators, we distinguish three cases: a) if
the runs are of length 1 (the extent is n and the intent 1),
the fold-operation is fully data-parallel and can be appended
to a code fragment of the right extent b) if there is only a
single run of length n (the intent is n and the extent 1), the
fold-operation is fully sequential and can only be appended
to a sequential fragment of the right intent c) if the length of
the runs is less than or equal to the supported partition size,
values are written to the beginning of the partition. In that
case, we do not need to introduce a global synchronization
point, i.e., create a new fragment. This means the fold can
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apply to any fragment that has the same extent. Specifi-
cally this can be achieved by synchronizing and sequentially
processing the input using a subset of the active data items
by disabling some of the cores in OpenCL.

If no fragment can be found that has the same extent as
the current operator, a new fragment is created.
Example. To illustrate this process, consider the Frag-
ment 1 in Figure 8. It is easiest to understand this dia-
gram in terms of the red operators, which either partially
or completely interrupt the pipelining of the plan. Start-
ing from the top, the break operator causes the greater
than expression to be computed in a full-data parallel man-
ner, and the result of this expression to be materialized in
memory (or cache). Then, the first fold (.position =
foldSelect) computes the positions in the lineitem ta-
ble where the predicate on l shipdate is satisfied. The
parallelism of this operator is controlled by the .fold con-
trol vector. In computing .fold, the $intent variable en-
codes the length of the runs allowing to transition from fully
parallel ($intent = 1) to fully sequential ($intent = n). This
foldSelect operator results in one loop per fold (the ex-
tent is ‖input‖/$intent); each loop in this case just loops
over the boolean values materialized at the break operator
and emits the non-zero positions. Finally, the third red op-
erator (foldSum) computes the partial summation of each
fold. It uses the same parallelism as the foldSelect, so
no additional materialization is necessary, and they can be
pipelined into the same loop instance.

There are a few additional things to note about this di-
agram. First, the parallelism of each operator is deter-
mined by the parallelism of its first red ancestor, as the
Voodoo compiler aggressively inlines operators between the
red pipeline-breaking operations. Second, the purple opera-
tors (and associated vectors) are “virtual” in the sense that
they simply control the parallelism of the generated program
but are not computed (or generated) at runtime.

Figure 9 illustrates the resulting OpenCL program assum-
ing $grainsize is set to 4. The figure illustrates that the
predicate is evaluated fully data-parallel. The select as
well as the first sum are evaluated using locally reduced par-
allelism but without the need for a global barrier. The final
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sum (Fragment 2 in Figure 8) is entirely sequential and re-
quires a global barrier (in the form of a new OpenCL kernel).

Note that, to keep the example concise, the foldSelect
and the first foldSum share the fold attribute (stemming
from the same Control Vector). This is not necessary in
practice, as they are independently tunable. Naturally, se-
lecting the optimal parallelization strategy is hard and not
the focus of this paper. The example does, however, show
how a complex optimization decision can be encoded into a
(set of) integer constant(s). However, it hinges on an effec-
tive way to keep control vector metadata.
Maintaining Run Metadata. While control vectors
allow us to specify the degree of parallelism in an abstract
manner, we still have to generate appropriate code from
that specification in the backend. For that purpose, the
Voodoo compiler maintains descriptive metadata about each
generated vector attribute: the start, a step factor and a
modulo cap. Attributes values generated by range operators
can, thus, be calculated using the following equation:

v[i] = from+ bi ∗ stepc mod cap

Dividing a vector by a constant x is equivalent to dividing
step by x. A modulo by x is setting the cap to x. When
combining (e.g., through addition) a control vector with a
data vector (to encode parallel grouped aggregation), we
keep the values of the control vector in addition to the data
values. We expect the frontend to ensure that the bits of the
control vector do not conflict with the data bits and throw
an exception when this assumption is violated.

3.1.2 Empty Slot Suppression
As described in Section 2.2, the outputs of all operations

are of statically known size and are padded with empty slots.
While this seems wasteful at first, it makes it possible to
efficiently execute Voodoo on massively parallel hardware
without the need for expensive write conflict handling. How-
ever, by applying control vector metadata knowledge, we can
drastically reduce the memory consumption. To illustrate
this, consider the foldSum steps in Figure 9. The folding
creates a predictable number of empty cells in the vector.
To reduce the memory footprint, slots that can be guaran-
teed to never be filled with values (e.g., when folding all
values of a work group into a local sum) can simply not be
allocated. We suppress empty slots by allocating a smaller
buffer, appropriately modifying the generated write cursor
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and annotating the vector with a metadata field to keep
track of the empty slots.

3.1.3 Virtual Scatter
Another case in which we exploit compile-time knowledge

to avoid runtime materialization is the case of scatter.
A näıvely implemented scatter would write all input val-
ues to a slot in the output causing a break in the fragment
and substantial random memory traffic. This may, however,
be unnecessary if the scattered vector is only created to be
used, e.g., as an input to an aggregation. Figure 10 depicts
this very common case. To avoid the intermediate materi-
alization, we can drop the assumption that OpenCL work
items (i.e., positions in the input vector) and data items
(i.e., positions in the output vector) are aligned.

This is illustrated in Figure 11: we tag a vector with a
scatter position (denoted with an @ in the third vector).
That scatter position is a per work-item local variable (split
into partition start and tuple offset) that will be used to
determine the position of each output tuple if the vector
is ever materialized. Since most vectors are never material-
ized, scatter can become a very cheap operation, that is paid
for only when and if it is fully materialized. Figure 11 illus-
trates how we exploit this in the case of a (single-partition)
grouped aggregation: the partition generates a partition id
which is work-item local. The scatter creates a (virtual) vec-
tor that contains the input values annotated with the scatter
path. The vector is read by the foldCount (a macro on top
of foldSum) which generates the (partition aligned) counts.
Finally, these counts are compacted into a contiguous mem-
ory region for the result.

3.2 The Interpreter
The interpreter mainly serves as a reference implementa-

tion; it uses vectors of maps to represent data as well as
control vectors. The interpreter materializes all intermedi-
ate vectors and is, in that respect, a classic bulk-processor.
However, since it stores all data in vectors of maps, it
uses virtual function calls to retrieve values from tuples.
The combination of full materialization and virtual func-
tion calls means that this backend is not designed for high
performance. It is, rather, a small reference implementa-
tion that is useful for debugging and verification because all
intermediates are materialized and, thus, inspectable.

4. A RELATIONAL FRONTEND
To demonstrate Voodoo’s effectiveness as a database ker-

nel as well as to simplify experimentation, we implemented
a prototype of a relational query processing engine on top
of the Voodoo algebra. Due to its easy extensibility and
open source, we chose to integrate Voodoo as an alterna-
tive execution engine into MonetDB. However, by replacing
MonetDB’s execution engine and physical optimizer, we ef-
fectively reduced its role to data loading and query parsing.
To illustrate the effectiveness of the resulting system, let us
briefly walk through the aspects of storage, query processing
and optimization.
Loading. MonetDB exposes its internal catalog informa-
tion, including pointers towards the backing files, through
a queryable SQL interface. We exploit this to directly load
data from the filesystem bypassing the query processor. Upon
startup, Voodoo loads data from the internal catalog of

MonetDB. We directly copy data from disk into the process-
ing device, using the same storage format MonetDB uses:
binary column-wise using dictionary encoding for strings.
Queries. We use MonetDB’s SQL to relational algebra
compiler to parse SQL queries and remove logical concepts
such as nested subqueries. From the relational algebra rep-
resentation, we generate Voodoo plans, thus bypassing Mon-
etDB’s physical optimizer. Voodoo plans are similar in com-
plexity to those that MonetDB uses for physical optimiza-
tion and query evaluation.

Optimization. Since Voodoo compiles MonetDB’s logical
plans, it inherits the logical optimizations that MonetDB ap-
plied (join-order, query-unnesting, etc.). Beyond that, the
physical optimizer has a number of optimization flags that
enable hardware-specific optimizations: cache-conscious par-
titioning, predication, parallelization strategy (for selections
and aggregations) as well as the targeted device.

While we use these flags for the microbenchmarks in Sec-
tion 5.3, we disable them when comparing the macrobench-
mark results (Section 5.2). This allows a comparison of the
efficiency of the generated code to that of HyPeR (which also
does not apply such optimizations). However, we enable the
generation of parallel plans by specifying appropriate con-
trol vectors. Beyond that, we use identity hashing on open
hashtables and derive their size from the input domain (us-
ing only min and max). A detailed per-query discussion
of the query plans can be found in our upcoming technical
report [23].

5. EVALUATION
To evaluate our approach, we study the system with re-

spect to our two design goals: portability and tunability. The
portability experiments in Section 5.2 show that Voodoo not
only runs on different hardware platforms but matches (and
even outperforms) existing systems tailored to specific hard-
ware architectures. Specifically, we compare against Hy-
PeR [18] and MonetDB/Ocelot [13], which target CPU and
GPU architectures, respectively. We conduct the evaluation
using a subset of the TPC-H benchmark that was used to
evaluate these systems when they were presented.

The tunability experiments in Section 5.3 demonstrate
how Voodoo facilitates the implementation and examina-
tion of various hardware-conscious optimizations on differ-
ent platforms. We highlight a number of hardware and data
dependent trade-offs that Voodoo allows us to explore.

5.1 Setup
We ran our CPU, as well as all of our GPU-experiments,

on a Dell Server with single Intel Skylake Xeon E3-1270v5
running Ubuntu Linux 15.10 (Kernel 4.2.0-27) at 3.60GHz
with 64 GB of RAM. The GPU was a GeForce GTX TITAN
X with 12 GB of global memory using CUDA version 7.5.

All micro-experiments were compiled using Intel ICC 16.
For both CPUs and GPUs, we only counted the execution
time once the data was loaded into their respective memories
and ignore costs for result output. We do not address the
PCI bottleneck.

5.2 Baseline Portability: TPC-H
We ran a significant subset of the TPC-H queries on a

scale factor 10 dataset using Voodoo, HyPeR and, where
applicable, Ocelot (Ocelot does not actually support all of
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Figure 12: TPC-H Performance on GPU

the queries we evaluated). These queries cover most of the
relational operators (selections, aggregates, group-by and
joins) exposing standard problems in relational query pro-
cessing [6]. Note that our goal is to demonstrate the capa-
bility of the Voodoo system to generate efficient code — not
the quality of the relational query frontend and optimizer,
which are still quite basic. In terms of the optimizations of
the generated code, our implementation is roughly equiva-
lent to the code generation that is implemented in HyPeR
(no vectorization, no manual SIMD instructions). However,
we aggressively exploit available metadata (min, max, FK-
constraints) which, in many cases, allows us to bypass opera-
tions such as hashing or collision management which HyPeR
has to perform.

The results on the CPU (Figure 13) and GPU show that,
as an abstraction, Voodoo imposes little overhead. Gener-
ally, performance is comparable to HyPeR’s. Voodoo per-
forms better for compute and lookup-intensive queries (such
as 5, 6, 9 and 19) because of the aggressive exploitation of
metadata and the use of SIMD instructions by the OpenCL
compiler. HyPeR performs better for order-by/limit queries
since it evaluates these using priority queues which avoid
expensive materialization of the full result (in Voodoo, the
order-by/limit clauses were ommitted).

When comparing to Ocelot, the benefit of executable code
generation becomes clear: where HyPeR and Voodoo avoid
expensive materialization of intermediate results, Ocelot pays
a high price for doing so. In particular the low-selectivity
(high output cardinality) queries such as query 1 expose this
problem. This is an indication that Ocelot was developed
for an architecture with a high memory-bandwidth such as
GPUs. When evaluating on the GPU, with its 300GB/s
memory bandwidth, we see that Ocelot suffers significantly
less from that design decision (see Figure 12).

5.3 Tunability
We now turn our attention to the ability of Voodoo to

experiment with different hardware-aware optimizations, fo-
cusing on ease of implementation and the performance trade-
offs of these different techniques.
Just-in-time layout transformations. Most in-memory
databases store data using a fixed physical schema (usually
row-wise or column-wise). However, it has been shown that
performance can be increased by transforming the layout
before or even during query execution [34]. As an operation
that can benefit from such an optimization, we consider the
evaluation of an indexed foreign-key join (essentially a posi-
tional lookup) on multiple columns of the same table.

We consider three possible implementations of this opera-
tion in C and Voodoo: a single traversal of the index-column
with lookups into both columns (termed Single Loop), two
consecutive traversals of the positions, each resolving the

keys into one of the target columns (termed Separate Loops)
and the transformation of the target table from column- to
row-wise storage, followed by a single loop over the positions
and their resolution (termed Layout Transform).

As shown Figure 14a, the best implementation is depen-
dent on the lookup pattern into the target table: if the
lookups are sequential, locality is always good and the Sin-
gle Loop implementation performs best. If the lookups are
random and the target table small (4MB) the best imple-
mentation is to resolve the keys in two Separate Loops. If the
lookups are random and the target table large (128MB), a
Layout Transform pays off: because the values of both pro-
jected columns are co-located this optimization reduces the
number of random cache misses by two.

Expressing these optimizations in Voodoo involves a break
operator between the two gathers to switch from Single Loop
to Separate Loops and a zip and materialize to switch
to the Layout Transform implementation. As displayed in
Figure 14b, Voodoo accurately matched the performance of
the C implementation on the CPU.

Figure 14c shows that the performance on the GPU is
similar but the Separate Loops version is outperformed by
the Layout Transform implementation in all cases. This
experiment illustrates how the lack of large per-core caches
on the GPU penalize random accesses earlier than on a CPU.
Still, the optimization ports reasonably well.
Selective Aggregation. Since selections are one of the
most frequently used operators, an efficient implementation
is one of the cornerstones of good in-memory performance.
The main problem with the default (branching) implemen-
tation is the penalty for branch mispredictions. As shown in
Figure 1, avoiding these branch mispredictions via a branch-
free predication technique can be beneficial as it trades mem-
ory traffic for fewer mispredictions, although the benefit de-
pends on selectivity. To avoid the additional memory traffic
of predication, the processing can be vectorized: divided into
cache-sized chunks, where for each chunk, a position list is
generated using a branch-free implementation. This position
list is then traversed and processed in a second (cache-sized)
loop. We implemented these three design alternatives in C
and Voodoo and show the selectivity-dependent results in
Figure 15a: we see the characteristic behavior of speculative
execution with worst-case performance at 50% selectivity. In
contrast the branch-free implementation shows flat perfor-
mance that outperforms the branching implementation for
mid-range selectivities. The vectorized version performs sig-
nificantly better than the branch-free implementation and,
for selectivities above 1%, outperforms the branching ver-
sion. Note that the C-code of these versions looks very dif-
ferent: two loops and an additional buffer vs. a single loop
with no buffering. In Voodoo, we achieve virtually identical
performance (Figure 15b) but only need to insert a single
additional operator: a materialize with a control-vector to
encode the intermediate buffer size.

Running the Voodoo code on the GPU creates a different
picture (see Figure 15c): since the GPU does not specu-
latively execute code, the predicated version only adds ad-
ditional memory traffic without any benefit. Surprisingly,
the vectorized implementation hurts performance: the addi-
tional position buffer causes additional memory traffic and,
even worse, is filled sequentially, which limits the degree of
parallelism that can be used to hide latencies. We conclude
that this optimization does not port well to GPUs.
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Figure 13: TPC-H Performance on CPU
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(c) Voodoo on GPU
Figure 14: Just-in-time layout changes.

Branch-Free Foreign-Key Joins. In the last microbench-
mark, we present a novel tuning technique that illustrates
the interplay between data access and processing. We con-
sider a table-scan, the application of a selection and an in-
dexed foreign-key join into a single, large target table with
subsequent aggregation. The SQL-query is:

SELECT sum(target.v) FROM fact, target
WHERE facts.target_fk = target.pk
AND facts.v < $1

The straightforward approach is Branching: a sequential
scan of the selection column (facts.v), the evaluation of
the predicate and a lookup and aggregation of qualifying
tuples. A branch-free alternative is to unconditionally per-
form the lookups and multiply the resulting values with the
outcome of the predicate (0 or 1) before aggregation (la-
beled Predicated Aggregation in Figure 16). The selectivity-
dependent results are displayed in Figure 16a: the branching
version exhibits the typical bell-shaped curve that indicates
bad speculation. The branch-free variant is significantly
more expensive, due to the high number of random cache
misses that result from the unconditional lookups. To ad-
dress the bad cache behavior, we devised an optimization
we term Predicated Lookups: before performing the lookup,
we multiply the position with the outcome of the selection
predicate. This way, all non-qualifying lookups hit the same
address (position zero) which will be held in one “very hot”
cache line. This addresses the bad cache behavior but causes
an extra arithmetic operation (note that the looked-up val-
ues still need to be predicated to ensure correctness). The
result (Predicated Lookups in Figure 16a) is an implementa-
tion that performs significantly better than the branch-free
version and outperforms the branching version for much of
the parameter space. Voodoo matches this result very ac-
curately on the CPU (see Figure 16b).

On the GPU, Voodoo exposes different performance trade-
offs: the Branching implementation shows the best perfor-
mance over most of the parameter space and is only outper-
formed by the Predicated Lookups version for selectivities

above 80%. This result exhibits another GPU design de-
cision: the sacrifice of integer arithmetic for floating point
performance . Since the Predicated Lookups performs two
integer arithmetic operations, performance is dominated by
that – this optimization also does not port well.

6. RELATED WORK
The Voodoo project was inspired by the disparity of the

large number of optimization techniques in the literature
and the small number of such techniques that are actually
used systems. Before concluding, let us provide a overview
over some techniques and systems that try to use them.
Low level optimizations for modern hardware. Most
of the work in the literature addresses specific hardware
components in isolation. Among these are techniques ad-
dressing hierarchical caches [3], branch predictors [28] and
SIMD [25] registers . Much of this prior work shows that
each of these techniques can lead to orders of magnitude
performance improvements. However, these techniques were
not studied in the context of a full data management sys-
tem stack or generalized into a full operator model. red The
most recent of these, Polychroniou et al. [25] develop a set
of algorithms that employ advanced techniques for SIMD-
enabled processing. Most of these can be translated directly
into equivalent Voodoo code (see our upcoming technical
report [23] for details). The exception to this are the cases
in which data structures are not write-once: when filling
hash-table slots with unique marker values (to recognize
conflicts) and subsequently overwriting them with data val-
ues and when swapping values through a cuckoo-table until
an empty slot is found. The former can be implemented
by using a second (logical) buffer to hold the marker val-
ues. The later can only be approximated in Voodoo because
each cuckoo iteration needs to (logically) create a new data
structure. While the memory overhead can be removed at
compile-time, the program grows linearly with the number
of cuckoo-iterations. This bounds the number of possible
iterations to a (reasonably small) constant.
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(c) Voodoo on GPU
Figure 15: select sum(v2) from facts where v1 between $1 and $2
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(c) Voodoo (Run on GPU)
Figure 16: Selective Foreign-Key Join Performance

Another line of research targets the use of programmable
GPUs with its diverse tuning techniques [11, 12, 22]. GPU
programming textbooks (e.g., [20]) contain a number of plat-
form specific heuristics to choose the right set of techniques
given a problem. Unfortunately, the low-level programming
paradigm of frameworks such as OpenCL or CUDA makes
this kind of optimization hard, often requiring a substantial
rewrite of the program for each architecture or optimization.
High Performance Computing (HPC). The HPC com-
munity has aimed to create easy to use abstractions over
highly parallel hardware for more than three decades. The
most prominent artifact of this is the BLAS standard with
several implementations. Aimed at linear algebra, however,
BLAS implementations such as Intel’s MKL [31], cuBLAS [4],
MAGMA [2] or OpenBLAS solve a restricted and, most im-
portantly, data-independent tuning problem. Hence, tuning
is usually done by the developers of the library, rather than
generating data-dependent code when the application runs.
Compiler frameworks such as Delite [30] or Dandelion [29]
are designed to facilitate this process but it still remains
with the library developer and, thus, static.

General purpose compile-time abstractions such as Intel’s
Array Building Blocks (ABB) [19] inherited this problem.
ABB specifically was abandoned in favor of “tunable” ap-
proaches such as Cilk [5], Threading Building Blocks [27]
and OpenMP [10]. While these offer high tunability, they
are ill-suited to automatic code generation at runtime (see
Section 2). The approach closest to ours is ArrayFire [17]
which provides abstract vector operations backed by multi-
ple hardware specific backends (CUDA, OpenCL and C++).
ArrayFire even generates code at runtime but only for arith-
metic expressions applied using a map operator.
State of the art systems for in-memory analytics.
Some of the techniques used by this work involve bulk-
processing [7] vector processing and just-in-time compila-

tion. MonetDB/x100 [33] (a.k.a. JIT-compiling) [15]. Hy-
PeR [18], employs a simple direct translation of relational
algebra to LLVM assembler which is then executed. HyPeR
aims to run both analytic and transactional workloads in the
same system. Legobase [14], in addition to generating LLVM
or C code from SQL, lets database developers express inter-
nal database data structures and algorithms using a high
level language (Scala) and then have them compiled down
to low level with the rest of the query. TupleWare [9] aims
to handle a larger class of computations including iterative
computations and UDFs, and employs the code generation
technique to efficiently integrate framework code with the
UDFs. Ocelot aims to port MonetDB to exploit GPUs [13].
Voodoo is complimentary to HyPeR and Legobase in that
Voodoo can be used as a lower layer for such systems.

7. FUTURE WORK
We believe Voodoo to be useful as a foundation for much

future work in high- as well as low-level optimization of
database queries. The machine-friendly design of Voodoo
lends itself to automatic exploration of the database design
space. Specifically an automatic, incremental, runtime re-
optimization system is enabled by the design of Voodoo.
Such a system could employ current and future low-level
optimizations. However, it will still have to handle the large
design space and may require new abstractions. We believe
that declarative optimizers [8, 16] can be effectively com-
bined with Voodoo to handle this complexity.

The current Voodoo design deliberately omits control-
statements (for, if, while, ...). While these are not nec-
essary to implement relational algebra, they enable runtime
optimizations such as load balancing, dynamic resizing of
data structures (e.g., hash tables) or data structures that
have complex behavior (such as priority queues). However,
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these are exactly the kinds of optimizations that are difficult
to port to massively parallel architectures. A solution to this
problem is likely to be based on the co-operation of multiple
devices (CPUs for control, GPUs for data processing). We
plan to develop such a solution in the near future.

We also plan to expand the current algorithms to add
non-relational operations. An example of this is supporting
regular expression matching (which has efficient massively
parallel solutions) but also support for graphs or arrays.

8. CONCLUSION
Implementing efficient in-memory databases is challeng-

ing, and often requires being aware of both the characteris-
tics of the workload, data and the specific architectural prop-
erties of the hardware. In this work, we proposed Voodoo, a
novel unifying framework to explore, implement and eval-
uate a range of hardware-specific tuning techniques that
can capture all of these aspects of efficient database design.
Voodoo consists of an intermediate vector algebra that ab-
stracts away hardware specifics such as hierarchical caches,
many-core architectures or SIMD instruction sets while still
allowing frontend developers to optimize for them. Central
to our approach is a novel technique called control vectors
that expose parallelism in the program and data to the com-
piler, without the use of hardware-specific abstractions.

We showed that Voodoo can be used as an alternative
backend for an existing system (MonetDB), and that it can
match and even outperform previously proposed highly op-
timized in-memory databases. We also demonstrated that
Voodoo makes it easy to tune programs and explore design
alternatives for different hardware architectures.
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