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ABSTRACT
With the increased generation and availability of big data
in different domains, there is an imminent requirement for
data analysis tools that are able to ‘explain’ the trends
and anomalies obtained from this data to a range of users
with different backgrounds. Wu-Madden (PVLDB 2013)
and Roy-Suciu (SIGMOD 2014) recently proposed solutions
that can explain interesting or unexpected answers to sim-
ple aggregate queries in terms of predicates on attributes.
In this paper, we propose a generic framework that can sup-
port much richer, insightful explanations by preparing the
database offline, so that top explanations can be found inter-
actively at query time. The main idea in such explanation-
ready databases is to pre-compute the effects of potential ex-
planations (called interventions), and efficiently re-evaluate
the original query taking into account these effects. We
formalize this notion and define an explanation-query that
can evaluate all possible explanations simultaneously with-
out having to run an iterative process, develop algorithms
and optimizations, and evaluate our approach with experi-
ments on real data.

1. INTRODUCTION
With the increased generation and availability of large

amounts of data in different domains, a range of users, e.g.,
data analysts, domain scientists, marketing specialists, de-
cision makers in industry, and policy makers in the public
sector intend to analyze such data on a regular basis. They
explore these datasets using modern tools and interfaces for
data visualization, then try to understand the trends and
anomalies they observed in their exploration so that appro-
priate actions can be taken. However, there are currently
no tools available that can automatically ‘explain’ trends
and anomalies in data. As more users interact with more
datasets, the need for such tools will only increase.
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A couple of recent research projects by Wu and Madden
[34] and Roy and Suciu [32] have proposed techniques for
explaining interesting or unexpected answers (e.g., outliers)
to a query Q on a database D. For instance: why is the
average temperature reported by a number of sensors be-
tween 12PM and 1PM unexpectedly high [34]?, or, why does
the number of SIGMOD publications from industry have a
peak during the early years of the 21st century [32]? Both
[34] and [32] consider an explanation to be a conjunctive
predicate on the input attributes, e.g., [sensorid = 18], or
[author.institution = ’Oxford’ and paper.year = ’2002’].
An explanation predicate is considered good for a particu-
lar trend or outlier if, by removing from the database all
tuples that ‘depend on’ the predicate, the trend changes or
the outlier is eliminated. In the sensor data example, the
explanation [sensorid = 18] means that, if we removed all
readings from this sensor, then the average temperature be-
tween 12PM and 1PM is no longer high. We give a new
example in this paper from the NSF awards dataset1.

Example 1.1. The three main tables in the NSF awards
dataset are as follows (the keys are underlined):

Award(aid, amount, title, year, startdate, enddate, dir, div);

Institution(aid, instName, address);

Investigator(aid, PIName, emailID)

Here dir denotes the directorate, i.e., the area like Computer
Science (CS), and div is the division within an area, e.g.,
CCF, CNS, IIS, ACI for CS. Now consider the query below:

SELECT TOP 5 B.instName, SUM(A.amount) AS totalAward

FROM Award A, Institution B

WHERE A.aid = B.aid AND dir = ’CS’ AND year >= 1990

GROUP BY B.instName

ORDER BY totalAward DESC

The above query seeks the top-5 institutions with the
highest total award amount in CS from 1990, and produces
the following answer:

instName totalAward
University of Illinois at Urbana-Champaign 1,169,673,252
University of California-San Diego 723,335,212
Carnegie-Mellon University 472,915,775
University of Texas at Austin 319,437,217
Massachusetts Institute of Technology 292,662,491

1This publicly available dataset [1] contains awards from
1960 to 2014 in XML that we converted into relations. We
omit some tables and attributes, and use abbreviations for
simplicity, e.g., the directorate of CS will appear as ‘Direc-
torate for Computer & Information Science & Engineering’.
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If someone is interested in analyzing the NSF funding
awarded to different schools, looking at the above answers,
she might try to understand ‘why there is a huge differ-
ence in award amounts between UIUC and CMU’, espe-
cially given that CMU holds rank-1 as a CS graduate school
and UIUC holds rank-5 (according to US News [2]).

Indeed, the algorithms in both [34] and [32] can be used to
explain the difference in award amounts between UIUC and
CMU; since [34] operates on a single relation, it will first ma-
terialize the join between the Award and Institution tables.
Both the approaches return predicates on the attributes of
these two tables as explanations, e.g., [div = ’ACI’] (Ad-
vanced Cyberinfrastructure). Intuitively, if the awards from
this division are removed (which amounts to about $893M
for UIUC and only $26M for CMU), then the difference between
the award amounts for UIUC and CMU will drastically change.

Following the causality literature [29], the act of remov-
ing tuples from a database D and then studying its effect
on the answer to a query Q (not physically, only to evaluate
an explanation) is called an intervention. An explanation
e has a high score if Q[D − ∆De] differs significantly from
Q[D], where ∆De ⊆ D refers to the tuples in the interven-
tion of e. An explanation system considers many candidate
explanations e, computes some score based on the amount
of change in the query after the intervention, and returns to
the user a ranked list of explanations.

However, for performance reasons, current explanation
systems severely limit the types of explanations that they
search, and fail to find deep and insightful explanations. For
instance, an interesting explanation is the PI ‘Robert Pen-
nington’, who received more than $580M for UIUC in CS.
His absence from the database will hugely affect the differ-
ence between the award amounts of UIUC and CMU (assuming
an award depends on all PIs). Although this explanation is
expressible as a predicate [PIName = ’Robert Pennington’],
both [34, 32] fail to return this explanation simply because
the PI information belongs to the third table Investigator,
which does not appear in the query in Example 1.1.

In particular, Wu and Madden [34] limit explanations to
predicates on a single table (base relation or a material-
ized result), thereby possibly missing explanations that de-
pend on mutual dependency of multiple tables in a database.
Even if all three tables are joined and materialized a pri-
ori, the intervention of predicates like [PIName = ’Robert
Pennington’] (removal of all awards for this PI) cannot be
computed by removing tuples satisfying the predicate, since
there will be other rows for awards with multiple PIs that
do not satisfy this predicate. On the other hand, Roy and
Suciu [32] can support predicates spanning multiple tables
and dependency between tables through foreign keys and
reverse foreign keys as causal dependencies — if a tuple
with a primary key is deleted, the corresponding tuple with
the foreign key is deleted (and vice versa for reverse foreign
keys). But computing the effect of an intervention, in the
worst case, requires running a non-trivial recursive query.
Therefore, they restrict the predicates to conjunctive equal-
ity predicates on the tables used in the query so that the
efficient OLAP data cube operation in SQL can be used to
increase performance. Moreover, both [34] and [32] restrict
the class of input queries to single-block aggregate queries
(of the form select-from-where-group by as in Example 1.1)
without any nested sub-queries, which cannot express some
important statistical methods frequently used in data anal-

ysis (e.g., linear regression or correlation coefficient on in-
termediate aggregates, an example is given in Section 5).

In this paper we propose a new approach for finding deep,
semantically meaningful explanations with interactive per-
formance, which we call Explanation-Ready Databases
(ERD). Our proposal is based on two ideas. First, we pre-
compute the interventions associated with a large number
of potential explanations and store them in the database.
Note that the intervention is defined independently of a
query, and therefore it can be precomputed. We use ar-
bitrary causal dependencies induced by the semantic of the
application to associate interventions to candidate explana-
tions (ref. Section 3.1). Second, at query time, we compute
the scores of all candidate explanations simultaneously, by
a single SQL query called the explanation-query, which is
evaluated on both the original data and the interventions
associated to all explanations. We present a suite of in-
cremental query computation techniques that allow us to
compute the explanation query at an interactive speed.

Example 1.2. For the explanation e ∶ [PIName =
’Robert Pennington’], ∆De = (∆Award,e, ∆Institution,e,
∆Investigator,e) consists of interventions on all three tables.
PIs do not affect the presence of their institutions in the
database, therefore ∆Institution,e = ∅. ∆Investigator,e contains
all tuples from Investigator such that PIName = ’Robert
Pennington’ and ∆Award,e contains all awards with ‘Robert
Pennington’ as a PI. ∆Award can be populated with interven-
tions of all such explanations e (indexed by e) by a nested
SQL query that joins the Award and Investigator tables.

A major advantage of an explanation-ready database is
that it can consider much richer explanations of different
forms, because the high cost of computing their intervention
is paid offline (e.g., by running multi-block SQL queries with
nested aggregates and joins). Examples include:

● Explanations involving combination of attributes
and tables: e.g., awards with duration ≥ x years or
awards with the number of PIs ≥ y. The first one re-
quires taking the difference between startdate and enddate
whereas the latter requires a join with the Investigator ta-
ble that does not participate in the original query.

● Explanations with aggregates: e.g., PIs with ≥ X
awards, ≥ Y co-PIs, or ≥ Z total award amount. This
requires joining the Investigator table with itself or with
the Award table and computation of aggregate values.

● Explanations having top-k form: If one or more from
the top-k PI-s (according to total award amount, average
award amount, etc.) across all institutions belong to UIUC,
they can explain the high award amounts of UIUC.

To improve the performance of the explanation query
we adapt techniques from Incremental View Maintenance
(IVM). In Section 2, we discuss the similarities and differ-
ences between IVM and an ERD. Specifically, our task is to
compute Q[D−∆De] incrementally, from Q[D] for all e. In
IVM, the goal is to re-compute a given query when a single
tuple is deleted from the database, or a subset of tuples for
batch deletion. In our case, (i) the query is only known at
runtime, and (ii) not only the intervention ∆De contains
many tuples from many relations, there can be thousands
of such ∆De-s; in fact, the union of all ∆De-s for all candi-
date explanations e can be much larger than the database D,
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which we account for in our incremental techniques. We also
observed that iteratively running IVM for all explanations e
(even using a state-of-the-art IVM tool like DBToaster [9])
takes time that increases rapidly with the number of ex-
planations, while our incremental approach of running the
single explanation-query reduces the running time by an or-
der of magnitude. For the question in Example 1.1, the
explanation-query considered more than 188k explanations
and returned the top explanations in < 2 seconds. An ERD
incurs an additional space cost in order to store the inter-
ventions for a set of explanations. Although the actual cost
depends on the number of explanations considered and size
of their interventions depending on the application, our ex-
periments suggest that this cost is manageable and is a small
price to pay for deep understanding of data. Moreover, we
only need to store interventions of complex explanations for
single-block queries as our technique can be used in con-
junction with the techniques in [34, 32] that return simple
explanation predicates on the fly. Here is a summary of our
contributions in this paper:

● We propose the notion of explanation-ready databases
(ERD), which store the intervention associated with all
candidate explanations (Section 3).

● We describe a suite of techniques inspired by IVM for com-
puting the explanation-query incrementally (Section 4).

● We experimentally evaluate our approach using real
datasets (Section 5).

2. RELATED WORK
Explanations in databases. Several research projects

in databases and data mining aimed to provide explanations
in interesting applications, e.g., mapreduce [21], user ratings
on sites like Yelp and IMDB [15], access log and security per-
missions [17, 11], etc.; a survey can be found in a recent tu-
torial[27]. For aggregate database queries, Wu-Madden [34]
and Roy-Suciu [32] proposed frameworks for finding pred-
icates as explanations as discussed in the introduction. In
contrast, our goal in this paper is to support broader classes
of queries and explanations. The annotated relations de-
scribed in this paper are similar to the ones in provenance
semirings for aggregates studied by Amsterdamer et al.[10].
They describe how the provenance of an aggregate query can
be formally recorded, whereas our focus is on recomputing
the answer Q[D] of a query for all possible explanations.
Related topics for non-aggregate queries that target to un-
derstand the query and the data are causality [25, 26] (rank
individual input tuples according to their responsibility to-
ward the existence of given output tuples), deletion propaga-
tion (delete given output tuples with minimum effect on the
source or the view, e.g., [22]), query by output [33] (given a
query and instance, find an equivalent query for the given in-
stance), data extraction by examples [24], synthesizing view
definitions [16], etc.

Incremental View Maintenance (IVM). IVM, and
view management in databases in general, have been ex-
tensively studied in the literature (see, e.g., the surveys in
[13, 9, 20]). The goal of IVM is to compute the new value
of a query from Q[D] for insertion/update Q(D ∪ ∆D) or
deletion Q[D −∆D] avoiding re-evaluation of the query Q.
IVM has been studied for set and bag semantics (e.g.,[12,
18]) primarily for single-block queries with or without ag-
gregates, selective materialization of views (e.g., [31]), lazy

vs. eager evaluation (e.g., [14]), utilizing primary key con-
straints in IVM (e.g., [20]), concurrent executions of read-
only queries and maintenance transactions on materialized
views [30], and for distributed programs in a network [28].
The standard approach for IVM is delta processing, where
the updates are maintained and propagated to the view
when needed [18, 19, 12]. The recent DBToaster project
[9, 23, 3] supports complex multi-block queries, and main-
tains multiple levels of delta relations (higher order deltas)
to allow for incremental changes to all the levels of delta re-
lations for each single tuple update in order to be able to up-
date a view for large rapidly evolving datasets. DBToaster
compiles the SQL code for a given query into C++ or Scala
code, which can be embedded in an application to moni-
tor the query answer when a tuple is inserted and deleted
from the database. We have compared our algorithms with
DBToaster experimentally in Section 5.

Comparisons of ERD with IVM
At a high level, the technical goals of ERDs and IVM are
similar: reduce the complexity of re-computing the same
query on slightly different databases. An ERD aims to eval-
uate Q[D−∆De] for all possible E = e, where each ∆De ⊆D
is a set of tuples, which intuitively generalizes the objec-
tive of IVM. However, there are several differences between
ERDs and IVM:

1. Deletions in an ERD are hypothetical. We intend
to evaluate the new value of the query assuming the tu-
ples in the intervention ∆De have been deleted from D.
At the end, the database D should be left unchanged in
contrast to IVM where the updates affect the database.

2. IVM focuses on fixed query with dynamic up-
dates, whereas ERD focuses on fixed updates and
dynamic queries. Given an SQL query, DBToaster
compiles it into a C++ or a Scala program, which pro-
vides methods to update the value of the query for each
database update. For a new query, the program has to be
regenerated again. In contrast, in an ERD, the possible
changes ∆De-s to the database are pre-determined and
fixed, but the query is not known upfront. It will only
be known in the runtime, and is likely to change more
frequently as the user tries to understand the answers.

3. There is no need for low-level optimizations in an
ERD. Our algorithms work on standard DBMS as the
updates are hypothetical (unlike DBToaster). Therefore,
we are able to use the in-built optimizations provided by
a DBMS, and need not consider low-level implementa-
tion details (e.g., new query languages/compilers, selec-
tive materialization of intermediate views, caching, and
synchronization [9]).

4. Complexity. By aggressively pre-processing the query,
and maintaining a larger number of intermediate views,
IVM in DBToaster has been developed to an extreme
such that every update to a materialized view can be com-
puted in NC0 (Koch [23]). In the explanation framework,
the query is only known at runtime, and as a consequence
we cannot perform a similar aggressive preprocessing. In-
stead, we reduce the complexity from re-computing the
same query once for each intervention, to computing a
single query over a larger database. In general, our algo-
rithms have polynomial data complexity.
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The main focus of an ERD is to compute Q[D−∆De] for all
E = e without having to run an iterative ‘for loop’ on such
e-s, which is orthogonal to the goal of the IVM approaches.
Our experiments in Section 5 show that iteratively running
IVM (e.g., DBToaster) for all E = e does not give good per-
formance. Nevertheless, due to the simililarity with the high
level goal of IVM, our techniques are motivated by the IVM
literature. For instance, the update rules in Section 4.3 can
be considered as extensions to the update rules in IVM [12,
18], although these rules take into account multiple updates
to the views for all explanations E = e simultaneously, and
therefore incur additional complexity (e.g., the union of the
∆De relations can be much larger than the original database
D in an ERD, which is never the case for IVM).

3. EXPLANATION-READY DATABASES
We describe here the framework for an explanation-ready

database (ERD). The offline part is discussed in Section 3.1,
and the interactive part in Section 3.2.

3.1 Preparing the Database
An explanation-ready database ERD(D,P,T ,E) (ERD in

short) has four components:

● A standard relational database D with k relations
D = (S1,⋯, Sk) for some constant k ≥ 1. The relation Si

has attributes Āi for2 i ∈ [1, k].

● A set of explanation types T ; each type has an identi-
fier, a short English description, and k SQL queries (one
for each relation Si, discussed below).

● A class of potential explanations (henceforth, explana-
tions) E , where each explanation (e,∆De,typee) ∈ E has
three components:

1. ID: A unique integer identifier e.

2. Intervention: A subset of tuples ∆De =

(∆1,e,⋯,∆k,e); each ∆i,e ⊆ Si, i ∈ [1, k]. By in-
tervening the explanation e, we mean removing all
tuples ∆De from the database D.

3. Type: A typee ∈ T .

● A set of causal dependencies P among tuples using
datalog rules (described below).

The ERD is prepared offline, independently of any query,
and stored in the databases as follows. There is a separate
table storing the types in T . All explanations are stored
together in k tables, denoted ∆D = (∆1,⋯,∆k), where ∆i

has the same attributes as the relation Si plus an extra at-
tribute E, storing the explanation identifier e; thus, for each
identifier value e, one can recover the intervention associ-
ated to e, ∆i,e, through a selection followed by a projection:
∆i,e = πĀi

σE=e∆i. We also create a primary index (non-
unique) on the attribute E. Finally, we store separately the
many-one relationship associating each explanation identi-
fier e with its type. Here is a toy example:

Example 3.1. Consider a database instance D in Fig-
ure 1 with relations S1, S2, Ā1 = {A,B}, Ā2 = {B,C}. Con-
sider three explanations with IDs E = 1,2,3, where ∆D1

2 We use an overline to denote a vector of attributes, annota-
tions, or values; For simplicity, we will interpret the vectors
as sets (with components of the vectors as elements of the
sets) and use the standard notations ∈,⊆,∪,∩,∖ etc. For two
integers a, b where a ≤ b, [a, b] denotes a, a + 1,⋯, b − 1, b.

S1

A B
a1 b1
a1 b2
a2 b1

S2

B C
b1 9
b2 10
b2 5
b3 8

∆1

E A B
1 a1 b2
2 a1 b1
2 a2 b1

∆2

E B C
1 b1 9
1 b3 8
2 b1 9
3 b2 5
3 b3 8

Figure 1: A toy instance of a database D and ∆D.

= {S1(a1, b2), S2(b1,9), S2(b3,8)}, ∆D2 = {S1(a1, b1),
S1(a2, b1), S2(b1,9)}, and ∆D3 = {S2(b2,5), S2(b3,8)}.
∆D = (∆1,∆2) is shown in the figure.

We now describe how the interventions ∆De are computed
(offline). Recall that each type typee is associated with k
SQL queries, one for each relation Si. Query i returns a set
of tuples (e, t), where t ∈ Si and e is some value, interpreted
as the identifier of an explanation. Taking the union of all
types in T , we have some initial tuples in relations ∆i-s.

Next, the system runs the datalog rules in P, adding
to this intervention all tuples reachable by a causal depen-
dency:

∆i(e, x̄) ∶ −Y1(x̄1), Y2(x̄2),⋯, Yp(x̄p) (1)

where i ∈ [1, k], Yj ∈ {S1,⋯, Sk} ∪ {∆1,⋯,∆k}, for each
j ∈ [1, p], and as standard, each variable in the head of the
rule appears in the body. These rules define when a tuple
will indirectly cease to exist in the database, due to removal
of other tuples.

Thus, the role of the types is two-fold, to provide a brief
English description of an explanation e of that type, and to
define how to compute the interventions ∆De for explana-
tion e of that type. The ERD is managed by a domain ex-
pert, knowledgeable about the domain of the database, who
defines the types of explanations, their associated queries,
and the causal dependencies: this is done offline, indepen-
dently of what queries will be explained. Notice that one
advantage of an ERD is that it allows us to consider het-
erogeneous explanations of different types in contrast to the
previous work [32, 34]. We illustrate the concepts below:

Example 3.2. For the NSF awards example, the
database D contains three relations Award, Investigator,
Institution as shown in Example 1.1. The dependencies
in this database are given by the two rules that hold for all
e as shown below (if an investigator is deleted, delete all of
his/her awards, and if an institution is deleted, delete all
awards received by this institution):

∆A(e,aid,x1,⋯,xp) ∶ − ∆Inv(e,aid,y1,⋯,y`),A(aid,x1,⋯,xp)

∆A(e,aid,x1,⋯,xp) ∶ − ∆Ins(e,aid,z1,⋯,zm),A(aid,x1,⋯,xp)

Here x, y, z variables correspond to the attributes of
A = Award,Inv = Investigator and Ins = Institution re-
spectively.

We considered eight types in T as shown in Table 1;
these explanation provide individual or aggregate informa-
tion (top-k, ranges) about the three entities in the domain
(award, investigator, institution); several other explanation
types are possible. The numbers of individual explanations
e belonging to each of these types are shown in the third col-
umn in the table. For each type, we run queries (1) to find
out the individual explanations in that type, (2) to compute
the initial set of tuples in the interventions ∆De depending
on the type, (3) to complete the interventions ∆De using the
datalog rules in P.
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Type Description #Expl. e Avg. ∣∆De∣ ∑e ∣∆De∣

1 Individual PI from the Investigator table 170,619 3 620,656
2 Top-K PIs with highest average award amounts K = 10,20,⋯,100 10 148 1,481
3 Top-K PIs with highest total award amounts K = 10,20,⋯,100 10 145 1,453
4 Awards with duration (in years) [0,1); [1,2); [2,3);⋯; [9,10); [10,−) 11 36,391 400,303
5 Awards with no. of PIs 1,2,⋯,5,≥ 6 6 7,830 46,981
6 PIs with no. of awards [1,2]; [3,4]⋯, [9,10]; [11,−) 6 21,858 131,152
7 PIs with total award amounts (in million dollars) 6 21,149 126,896

[0,1); [1,5); [5,10); [10,50); [50,100); [100,−)
8 Individual institutions from the Institution table 17,696 23 418,962

Table 1: Details of eight explanation types and their ∆De relations.

For example, the first type contains all the names of all
the PIs from the Investigator table (across all schools, not
only from UIUC and CMU), which can be easily selected and
stored with unique IDs into a table ExplType 1. The En-
glish description for this type of explanations is of the form
“The PI <PIName>”. For any PI, say ‘Robert Pennington’,
suppose the unique ID is 10. Here type10 = 1 and its descrip-
tion is “ The PI ‘Robert Pennington’”; ∆Investigator includes
a single tuple for this PI (indexed with E = 10); ∆Institution

is unaffected; and ∆Award includes all the award tuples for
which he is a PI/co-PI (by the first rule in Example 3.2).
For all explanations e of this type, ∆Award (initialized as an
empty table) can be augmented by a single SQL query that
combines Award, Investigator, and ExplType 1 tables. In
general, the description of an explanation e can be obtained
from the description of its type typee = `, from the informa-
tion stored in the ExplType` tables. Some of the other ex-
planation types ` are more complex, and will require nested
subqueries with aggregates to compute the ExplType ` tables
and the initial tuples in the interventions.

3.2 Explaining a Query
Once the explanation-ready database ERD(D,P,T ,E) is

computed and stored in the relations (∆1,⋯,∆k), the ERD
is ready for explaining user questions.

User, Query, User Question:

A user issues a query Q to the database D and gets a set
of tuples Q[D] as the answer (see Example 1.1; we define
in Section 4.1 the class of SQL queries supported. If the
user finds the value of some of the tuples in Q[D] high or
low, she can ask a user question (or simply a question), e.g.,
‘why is the total award amounts of UIUC high’. Formally,
such questions are of the form ‘why is Q1[D] high’ (or low)’.
Here Q1 is a simpler aggregate query with a single numeric
output (no group by) and an additional selection condition,
e.g.,

SELECT SUM(A.amount) AS totalAward

FROM Award A, Institution B

WHERE A.aid = B.aid AND dir = ’CS’ AND year >= 1990

AND B.instName = ’UIUC’

This simpler query Q1 can be easily generated from the
original query Q (see Example 1.1). A good explana-
tion e will explain such ‘why is Q1[D] high’ (respectively,
low)’ questions by decreasing (respectively, increasing) the
value of Q1[D − ∆De] by its intervention ∆De. The user
question can also involve multiple tuples in Q[D], e.g.,
‘why is Q1[D] − Q2[D] high’, like in Example 1.1 where

the award amounts of UIUC and CMU are compared. In
this case, a good explanation e will have a low value of
Q1[D −∆De] −Q2[D −∆De].

The same ERD for multiple queries and questions:

The user can ask multiple questions for the same query or
can ask different queries (and questions thereafter) to the
ERD. For instance, the same set of potential explanations
outlined in Table 1 can be used to explain a different ques-
tion on the query answers in Example 1.1:

“Why does UCSD have larger amount of awards than MIT?”

On the other hand, the same set of potential explanations
can be used for a different database query altogether:

Example 3.3. We executed an SQL query on the Award

table to compute the the total award amounts and average
amount per award (in USD) from the year 1990 in different
divisions of the directorate of CS. The answers are:

Division Total amount Average amount
IIS 2893.3M 365K
CCF 2833.9M 305K
CNS 3637.8M 405K
ACI 3028.4M 1407K
OTHER 352.1M 332K

Given that the main four divisions (IIS, CCF, CNS, ACI)
have comparable amounts of total awards, the user can ask

“Why is the average award amount of ACI high?”

After exploring the query/questions in Example 1.1, the
ERD can use the same potential explanations in Table 1
to answer questions on this query. Indeed, neither all the
explanation types nor all the explanations in a type will be
relevant to a query/question combination. For instance, the
explanation type#8 (different institutions) is not relevant
for Example 1.1 where the institution is a fixed parameter
in the question. Similarly, explanations who are PIs from
different institutions other than UIUC or CMU in the explana-
tion type#1 (different PIs) are not relevant.

4. BUILDING EXPLANATION-QUERY
In this section, first we formalize the concept of subtract-

ing a relation from another by defining annotated relations
and an algebra (Section 4.1), then define the intervention
mapping ∆Q and its incremental construction along a query
plan (Sections 4.2 and 4.3), and then describe the construc-
tion of the final explanation-query (Section 4.4). We will
use Q to denote the query as well as its output Q[D] when
the underlying database D is clear from the context.
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4.1 Annotated Relations and Algebra
In order to formalize and compute the difference in the

answers ∆Q[D,∆D], we view the base relations as well as all
intermediate and final relations as annotated relations that
consider aggregate and non-aggregate attributes separately.
Let D be the domain of all attributes in the database D; we
assume that the set of reals R ⊆ D.

Definition 4.1. An annotated relation S of type [Ā; K̄]
is a function S ∶ Dm

→ R`, where ∣Ā∣ =m and ∣K̄∣ = `. Here Ā

and K̄ are called the standard attributes and the annotation
attributes of S respectively. Further, the support of S, i.e.,
the number of tuples in {t̄ ∈ Dm

∶ S(t̄) ≠ 0̄`
}, is finite.

Intuitively, Ā corresponds to the non-aggregate attributes,
and the annotation K̄ corresponds to one or more aggre-
gates when the relation has been generated by an aggregate
query). Then S(t̄) denotes the values of these aggregates
for a tuple t̄ comprising only standard attributes. Since S
is a function, Ā can be considered as the key of S; so, we
follow the set semantics and do not allow duplicates in any
intermediate relation3. The base relations Si, i ∈ [1, k], are
annotated relations of type [Āi;K], where for all tuples t̄ ∈ Si,
Si(t̄) = 1. The annotation K simply corresponds to the finite
support of the relations and is not physically stored; this
also holds for any non-aggregate query. Here K is called the
trivial annotation and the 1/0 annotations are treated as
Boolean true/false. Otherwise, when K̄ denotes non-trivial
annotations (as the result of an aggregate query), we store
S in a standard DBMS with attributes Ā ∪ K̄.

Algebra on Annotated Relations
Class of SQL queries: We support a subclass of
SQL queries Q that extends the class of single-block
“select-from-where-group by” aggregate queries consid-
ered in previous work [34, 32]. In particular, we allow (i)
union operations in non-aggregate queries, and (ii) multiple
levels of aggregates, but do not allow selection σ, join &, and
union ∪ operations on an aggregate sub-query. This frag-
ment of SQL queries can be expressed by a query plan tree
where all σ,&,∪ operators appear below all aggregate (γ)
operators in the plan4. Examples include the single-block
queries in Examples 1.1 and 3.3, and the nested query in
Section 5.2. We do not support queries with bag semantics
or non-monotone queries. The grammar for the intended
aggregate query class Qa can be defined as follows (Qa,Qna

respectively denote aggregate and non-aggregate queries):

Qna = S1 ∣ ⋯ ∣Sk ∣ σc(Qna) ∣ Qna &c Qna ∣ Qna ∪Qna (2)

Qa = γĀ,aggr1(g1(B̄1)),⋯,aggrs(gs(B̄s))
(Qna ∣ Qa) (3)

However, the queries Qna,Qa in the above grammar corre-
spond to annotated relations both as the inputs and outputs.
In particular, S1,⋯, Sk are the annotated base relations in
D. For this class of queries, the inputs to the non-aggregate
operators are annotated relation(s) with trivial annotation
K. Therefore, the predicate c for σ and & is a predicate on
the standard attributes. Due to space constraints, we only
give the semantic of the aggregate operator γ (the rest can
be found in the full version [4]).

Semantic of the γ operator: Let Q =

γĀ,aggr1(g1(B̄1)),⋯,aggrs(gs(B̄s))
Q′, where Q′ is of type

3If base relations have duplicates, the tuples can be made
unique by considering an additional id column.
4This particular subclass is considered for technical reasons
as mentioned later in the paper (e.g., see Section 4.3.1).

[Ā′; K̄′], ∣Ā′∣ = m, ∣K̄′∣ = `, and each B̄i ⊆ Ā′ ∪ K̄′. Then
Q is of type [Ā; K̄], where ∣K̄∣ = s and K̄ stores the aggre-
gates: aggr1(g1(B̄1)),⋯, aggrs(gs(B̄s)). ∀t̄ ∈ Dm, the j-th
component of Q(t̄), j ∈ [1, s], is:

aggrj t̄′∈Dm ∶t̄′.Ā′=t̄ (gj(t̄′.B̄j) × I[Q
′
(t̄′) ≠ 0̄`

])

where I[Q′
(t̄′) ≠ 0̄`

] is the indicator function denot-
ing whether the tuple t̄′ has a non-zero annotation and
therefore can possibly contribute to the aggregate. Here,
aggri ∈ {sum, count, avg,min,max, count distinct} and gi
is a scalar function which can be a constant, an attribute,
or a numeric function involving +,−,×, min,max, or any
other function supported by SQL.

Example 4.2. (1) In Q = γĀ,count(∗) = γĀ,sum(1), the
aggregate function is aggr = sum; the scalar function is
g(x) = 1. (2) In Q = γĀ,sum(B1×B2)

, aggr = sum
and g(x, y) = x × y, which operates on the attributes B̄ =

⟨B̄1, B̄2⟩. (3) In Q = γĀ,sum(min(B1,B2))
, aggr = sum,

and g(x, y) = min(x, y). (4) In Q = γĀ,min(min(B1,B2))
,

aggr =min, g(x, y) = min(x, y).

The semantics of the aggregate function and the scalar func-
tion are different even if they use the same function like min;
the scalar function applies to different attributes of the same
tuple, whereas the aggregate function applies to all the tu-
ples in a group with the same value of the attributes Ā.

From this point on, we assume that the aggregate func-
tion is sum; the other operators count, avg,min /max and
count distinct can be simulated using sum (see [4]). How-
ever, if min /max /count distinct/avg operators appear in an
intermediate step in the query plan (which is less common in
practice), Q[D−∆D] needs to be computed from Q[D] and
∆Q[D,∆D] before proceeding further; see Section 6. Since
annotated relations require set semantic, we do not include
the projection operator π in the grammar. A projection on
to a set (e.g., select distinct A, B, C from ...) can be cap-
tured using the aggregate operation Q = γA,B,CQ

′, where
no aggregate value is computed for each group. The projec-
tion with duplicates, which is allowed in standard database
systems, is not allowed in our framework.

4.2 Intervention Mapping
In this section we formalize the concepts described in

Example 3.1 and define the desired ∆Q query for a given
query Q. Similar to the inputs and outputs of query Q,
∆Q = ∆Q[D,∆D] will also be interpreted as an annotated
relation, called the intervention mapping of Q.

4.2.1 Addition/Subtraction on Annotated Relations
Two annotated relations S and S′ must have the same

type to be compatible for addition or subtraction.

Definition 4.3. Let S and S′ be two annotated relations
with type [Ā; K̄]; ∣Ā∣ =m, ∣K̄∣ = `. Then S ⊕ S′ and S ⊖ S′ are
annotated relations of type [Ā; K̄] such that ∀t̄ ∈ Dm,

(S ⊕ S′)(t̄) = S(t̄) + S′(t̄) if K̄ is non-trivial annotation

= S(t̄) ∨ S′(t̄) if K̄ = K is trivial annotation

(S ⊖ S′)(t̄) = S(t̄) − S′(t̄) if K̄ is non-trivial annotation

= S(t̄) ∧ S′(t̄) if K̄ = K is trivial annotation

If S,S′ have trivial annotation, we use the following short-
hand for the intersection of S,S′: S ⊙ S′ = S ⊖ (S ⊖ S′).
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For relations with trivial annotations, ⊕,⊖,⊙ can be im-
plemented by SQL union, minus/except, intersect respec-
tively. For non-trivial annotations, a tuple present in ei-
ther of S,S′ should be present in the output (even if it does
not appear in one of the relations). Therefore, to implement
⊕,⊖, we run an SQL query that performs a full outer join on
the tables S, S′ on S.Ā = S′.Ā, and computes the aggregate
isnull(S.α,0) ± isnull(S′.α,0) as α for each α ∈ K̄. Here
the function isnull(A,0) returns 0 if A = null (when it is
not present in one of the tables), otherwise returns A.

Remark. We are referring to two join operators. The
algebra on annotated relations includes a join operation as
defined in equation (2) to capture the standard join opera-
tion supported in relational algebra or SQL. However, the ⊕
and ⊖ operators described above will also require the stan-
dard join (outer-join) operation in SQL when they are im-
plemented. In other words, we first interpret extended rela-
tional algebra operators as operators on annotated relations
in equations (2) and (3). Then to implement these operators
in a DBMS, we translate them back to SQL queries.

4.2.2 Intervention Mapping on Base Relations
Recall that the type of annotated base relation Si is [Āi;K],

and E denotes the integer index of possible explanations.
Suppose ∣Āi∣ =mi; ∣K∣ = ∣E∣ = 1.

Definition 4.4. The intervention mappings of base rela-
tions, ∆i ∶ D1+mi → R for i ∈ [1, k], are annotated relations
of type [{E} ∪ Āi;K] such that K is the trivial annotation,
and ∀E = e, ∀t̄ ∈ Dmi , ∆i(⟨e, t̄⟩) ⇒ Si(t̄), i.e., if the LHS is
1, the RHS must also be 1.

The above condition ensures that if a tuple t̄ ∈ Dm is deleted
from Si for an explanation E = e, then t̄ must exist in Si.
Note that ∆i ∶ D1+mi → R is equivalent to ∆i ∶ D → [Dmi →

R]. By selecting tuples from ∆i where E = e, and discarding
the attributes E, we get another annotated relation (all the
values of Āi are unique), which we denote by ∆i,e. Hence
for an explanation E = e, the intervention of e is given by
∆De = (∆1,e,⋯,∆k,e). Further, for each explanation E = e,

the intervened relation Ŝi due to e is precisely captured by
the annotated relation of type [Āi;K]: Ŝi = Si ⊖ ∆i,e (see
Figure 1).

4.2.3 Intervention Mapping of a Query
Next, we generalize Definition 4.4 and define ∆Q for any

query Q that is defined through the algebra in (2) and (3).

Definition 4.5. Let D be a database comprising anno-
tated relations Si of type [Āi;K], i ∈ [1, k]. Let Q be a query
that takes D as input and produces an annotated relation
Q[D] of type [ĀQ; K̄Q] as output; ∣ĀQ∣ = m and ∣K̄Q∣ = `.
Let E be the index of explanations and ∆i be the intervention
mapping of Si, i ∈ [1, k]. Let D ⊖∆De denote the database
comprising annotated relations S1 ⊖∆1,e,⋯, Sk ⊖∆k,e.

Then, the intervention-mapping of Q, denoted by ∆Q ∶

D1+m
→ R`, equivalently ∆Q ∶ D → [Dm

→ R`
], is an anno-

tated relation of type [{E}∪ĀQ; K̄Q] such that for all E = e,

Q[D] ⊖ ∆Q,e[D,∆D] = Q[D ⊖∆De] (4)

where ∆Q,e is the restriction of ∆Q to E = e that selects
tuples with E = e from ∆Q and discards E.

4.3 Computing Intervention Mapping
Now we describe how ∆Q can be computed incrementally

along any given logical query plan tree assuming ∆i for i ∈
[1, k] have been precomputed and stored. For a tuple t̄,
an attribute a, and a vector of attributes b̄, t̄.a denotes the
value of attribute a in t̄ and t̄.b̄ denotes the vector of the
values of the attributes b̄ in t̄.

4.3.1 For Non-Aggregate Operators
The rules for each non-aggregate operator in the grammar

(2) are given below (here all the input and output annotated
relations have trivial annotations). These rules are similar
to the update rules in the IVM literature [12, 18], although
they take into account updates for all explanations e simul-
taneously. The correctness of these rules follows by induc-
tion (proofs and illustrating examples appear in [4]). Here
ER is a relation with attribute E that contains all possible
values of explanation index E = e.

Base case: If Q = Si, i ∈ [1, k], return ∆Q = ∆i.
Selection: If Q = σc(Q

′
), return ∆Q = σc(∆Q′).

Join: If Q = Q1 &c Q2, return ∆Q = [(Q1 &c

∆Q2) ⊕ (∆Q1 &c Q2)].
Union: If Q = Q1 ∪ Q2, return ∆Q = [(∆Q1 ⊖ (ER ×

Q2)) ⊕ (∆Q2 ⊖ (ER ×Q1))] ⊕ (∆Q1 ⊙∆Q2)

Remark. The proof of the rule for σc depends on the
equality that σc(S ⊖ S

′
) = σcS ⊖ σcS

′. However, this equal-
ity does not hold if the predicate c includes annotation at-
tributes K̄. For instance, suppose S and S′ have a single tu-
ple each: ⟨t̄,5⟩ and ⟨t̄,4⟩ and the condition c checks whether
the annotation is ≥ 2. Then, in σc(S ⊖ S

′
), tuple t̄ does not

exist, whereas the tuple t̄ has annotation 1 in σcS ⊖ σcS
′.

Therefore, we needed the restriction that c is only defined
on Ā, which can be relaxed as discussed in Section 6.

4.3.2 For Scalar Functions
We define intervention mapping ∆g of a scalar function g

which measures the change in the value of g when its inputs
are changed, and allows us to do further optimizations in
the incremental process of constructing ∆Q:

(∆g)(x̄,∆x̄) = g(x̄) − g(x̄ −∆x̄) (5)

If ∆x̄ = 0, x is unchanged, and ∆g = 0. For example,
if g(x) = a constant, then ∆g = 0; if g(x) = x, ∆g = x,
etc. For some functions, no simplifications are possible, e.g.,
∆g = min(x, y)−min(x−∆x, y−∆y) if g(x, y) = min(x, y).

Remark. The scalar functions are applied on standard
or annotation attributes. However, ∆x can be non-zero only
if x is an annotation attribute, e.g., if a tuple r̄ appears with
annotation 7 in Q and as 3 in ∆Q,e for some E = e, then
its annotation in Q ⊖∆Q,e will be 7 - 3 = 4. On the other
hand, the standard attributes are treated as constants in the
scalar functions g, as they either entirely exist in Q⊖∆Q,e

or are entirely omitted. We will see examples illustrating
this distinction in the next subsection.

4.3.3 For Aggregate Operators
Now we consider computation of the intervention mapping

∆P for an aggregate query P = γĀ0,sum(g(B̄0))→xQ. Only for
an aggregate operator γ, the inputQ can have either a trivial
annotation (when Q does not have an aggregate), or a non-
trivial annotation (when Q itself has been generated by an
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aggregate query). In this section we give a simple algorithm
to compute ∆P that takes care of both these cases.

The input Q of P is of type [Ā, K̄], Ā0 ⊆ Ā, g is a scalar
function, and B̄0 = B̄0A ∪ B̄0K where B̄0A ⊆ Ā and B̄0K ⊆ K̄.
Clearly, P is of type [Ā0, x]. Without loss of generality, we
consider only one aggregate output g. By definition of ∆P
in equation (4), for any E = e,

P [D] ⊖∆P,e[D,∆D] = P [D ⊖∆De]

Fix an e and consider a tuple t̄ ∈ D` where ∣A0∣ = `. Next we
compute ∆P,e(t̄), i.e., the change in the annotation for t̄.

For simplicity, we denote the annotation of t̄ in P [D],
P [D ⊖ ∆De], and ∆P,e[D,∆D] as PD(t̄), PD−∆D(t̄), and
∆PD,∆D(t̄) respectively (similarly for Q,∆Q etc.). Further,
we denote the indicator function to check if the annotation
of a tuple is non-zero, I[Q(t̄) ≠ 0̄] as bQ(t̄). Recall the
definition of ∆g (5). Since PD(t̄)−∆PD,∆D(t̄) = PD−∆D(t̄),

∆PD,∆D(t̄) = PD(t̄) − PD−∆D(t̄)

= ∑
r̄ ∶ r̄.Ā0=t̄

g(⟨r̄.B̄0A,QD(r̄).B̄0K⟩) × bQD(r̄)

− g(⟨r̄.B̄0A,QD−∆D(r̄).B̄0K⟩) × bQD−∆D(r̄)

= ∑
r̄∶r̄.Ā0=t̄

g(⟨r̄.B̄0A,QD(r̄).B̄0K⟩) × bQD(r̄)

− g(⟨r̄.B̄0A,QD(r̄).B̄0K⟩) × bQD−∆D(r̄) + bQD−∆D(r̄)×

∆g(⟨r̄.B̄0A,QD(r̄).B̄0K⟩, ⟨r̄.B̄0A,∆QD(r̄).B̄0K⟩)

Interestingly, this complex expression can be simplified and
efficiently implemented using the properties of a monotone
query. Due to space constraints, here we give the algorithm;
the analysis can be found in the full version [4].

Perform a semi-join ∆Q ⋉∆Q.Ā=Q.Ā Q, where Ā is the set
of all standard attributes of Q, and compute a new
attribute y as follows: if Q.K̄ = ∆Q.K̄ then

/* (Case 1): This includes the case when K̄ is the
trivial annotation */ ;

y = g(⟨Q.B̄0A,Q. ¯B0K⟩)

end
else

/* (Case 2) */ ;

y = ∆g(⟨Q.B̄0A,Q.B̄0K⟩, ⟨Q.B̄0A,∆Q.B̄0K⟩)

end

Perform Group By on B̄0A and store sum(y) as x.
Algorithm 1: Generic algorithm for computing ∆P from
∆Q, where P = γĀ0,sum(g(B̄0))→xQ

There is a subtle difference between how standard at-
tributes and annotation attributes are treated in the above
algorithm, which we illustrate with the examples below. In
the first example, there are no non-trivial annotation at-
tributes.

Example 4.6. (No non-trivial annotation in Q):
Consider the following intermediate relation Q and its ∆Q:

Q
A B C
a1 b1 9 → 1
a1 b2 10 → 1
a1 b3 5 → 1
a2 b1 9 → 1

∆Q

E A B C
1 a1 b1 9 → 1
1 a1 b3 5 → 1
1 a2 b1 9 → 1
2 a1 b1 9 → 1
2 a1 b2 10 → 1
3 a2 b1 9 → 1

Consider P = γA,sum(C)→xQ. There are no non-trivial
annotations in Q, therefore all tuples r̄ ∈ ∆Q fall under the
first case in Algorithm 1, i.e., all such tuples r̄ do not survive
in QD−∆D and contribute the original value of the scalar
function g(C) to the sum y. Hence, ∆P will be computed by
Case 1 in Algorithm 1. For E = 2, P ⊖∆P,2 is shown below,
which equals to result of the a query P on Q ⊖∆Q,2. Here
∆P is simply the aggregate query ∆P = γE,A,sum(C)→x.

∆P

E A x
1 a1 → 14
1 a2 → 9
2 a1 → 19
3 a2 → 9

P
A x
a1 → 24
a2 → 9

Q⊖∆Q,2

A B D
a1 b3 5 → 1
a2 b1 9 → 1

P [Q⊖∆Q,2]

= P ⊖∆P,2

A x
a1 → 5 (= 24-19)
a2 → 9 (=9-0)

Generalizing the above example, from Algorithm 1, we get
the following optimization (note that the semi-join is on
∆Q.Ā = Q.Ā, since Ā0 ⊆ Ā, ∆Q.Ā0 = Q.Ā0):

If the annotated relation has no non-trivial annota-
tion, then for P = γĀ0,sum(g(B̄0))→xQ:
∆P = γE,Ā0,sum(g(B̄0))→x∆Q

Next we will study a slight variation of Example 4.6.

Example 4.7. (Non-trivial annotation in Q): Con-
sider the following intermediate relation Q and its ∆Q:

Q
A B K
a1 b1 → 9
a1 b2 → 10
a1 b3 → 5
a2 b1 → 9

∆Q

E A B K
1 a1 b1 → 5
1 a1 b3 → 2
1 a2 b1 → 9
2 a1 b1 → 9
2 a1 b2 → 4
3 a2 b1 → 7

Consider the same query P = γA,sum(K)→xQ. The scalar
function is g(y) = y, and therefore g(y,∆y) = ∆y. Consider
E = 2. Here the first tuple ⟨2, a1, b1,9⟩ falls under the first
case in Algorithm 1 (the annotation of the tuple, i.e. 9, is
the same in ∆Q and Q), and the second tuple ⟨2, a1, b2,4⟩
falls under the second case (the annotation of the tuple is 4
is ∆Q and 10 in Q). Hence the first tuple contributes the
original value of the scalar function g(∆Q.K) = 9 to the sum
x, whereas the second tuple contributes ∆g(Q.K,∆Q.K) =

∆Q.K = 4 to the sum x. For E = 2, P ⊖∆P,2 is shown below.

∆P

E A x
1 a1 → 7
1 a2 → 9
2 a1 → 13
3 a2 → 7

Q⊖∆Q,2

A B K
a1 b2 → 6 (= 10-4)
a1 b3 → 5
a2 b1 → 9

P
A x
a1 → 24
a2 → 9

P [Q⊖∆Q,2]

= P ⊖∆P,2

A x
a1 → 11 (= 24-13)
a2 → 9 (=9-0)
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Interestingly, similar to Example 4.6, ∆P in Example 4.7
also can be computed as ∆P = γE,A,sum(K)→x∆Q. How-
ever, this follows due to a completely different argument.
The most common scalar function is g(x) = x, i.e., the
x = sum(C) for an attribute C. If C ∈ K is an annota-
tion attribute, then in case 1, g = Q.C = ∆Q.C, and in
case 2, ∆g = g(Q.C) − g(Q.C − ∆Q.C) = ∆Q.C. Note that
∆g(x,∆x) = ∆x (i.e., the additive nature of sum(C)) is
important here – for other scalar functions g such that ∆g
involves both x,∆x (e.g., g(x) = x2,min(x) etc.), the semi-
join of ∆Q with Q will be necessary. This gives the second
optimization rule:

For P = γĀ0,sum(C)→xQ, where C ∈ K is an annotation
attribute (or is a constant), ∆P = γE,Ā0,sum(C)→x∆Q

A special case of the above rule is when C = 1 or other
real constants, which can be treated as trivial annotations.
Therefore, the above optimization can be applied for count
queries like P = γĀ0,sum(1)→xQ.

Remark. The above optimization rule does not hold if
C ∈ A is a standard attribute. In case 1, similar to the above,
g = Q.C = ∆Q.C. However, to check if the tuple falls under
case 1, the semi-join is needed. This is due to the fact that
in case 2, ∆g = g(Q.C) − g(Q.C) = 0 and not ∆Q.C, i.e., if
a tuple r̄ survives in Q−∆Q, it contributes Q.C entirely to
the sum as C is a standard attribute and not an annotation
attribute.

4.4 Explanation-Query from
Intervention Mapping

To compute Q[D ⊖ ∆De], we do not need to compute
Q[D] ⊖ ∆Q,e[D,∆D] for each e. Instead, a left outer-join
is performed between the original query answer Q[D] and
∆Q[D,∆D] on equal values of standard attributes ĀQ, a
group by is performed on {E}∪ĀQ, and the updated annota-
tions are computed by subtraction or set difference of ∆Q.K̄
from Q.K̄ for each such group (that will have the same value
e of E) for non-trivial and trivial annotations respectively;
only the non-zero results are returned. However, sometimes
the difference of the original and the new query captured by
the ∆Q[D,∆D] relation will suffice to rank the explanations
(e.g., when the aggregate function is additive), and then this
join at the end can be avoided. The explanation-query (all
steps of ∆Q and the final outer-join with Q if needed) is sent
to the DBMS as a single query to utilize the optimizations
by the DBMS. If the user question involves multiples queries,
then explanation query is constructed for all of them, and
the answers are combined for the final ranking of explana-
tions by a top-k query (an example is in Section 5.2).

Example 4.8. The results of the final explanation query
for the query P in Examples 4.6 and 4.7 are shown below
(computed from P,∆P -s in Examples 4.6 and 4.7).

E A x
1 a1 → 10
2 a1 → 5
2 a2 → 9
3 a1 → 24

P [D −∆D] in Ex.4.6

E A x
1 a1 → 17
2 a1 → 11
2 a2 → 9
3 a1 → 24
3 a2 → 2

P [D −∆D] in Ex.4.7

5. EXPERIMENTS
We present experiments to evaluate our framework in this

section. The prototype of our system is built in Java with
JDK 6.0 over Microsoft SQLServer 2008. The input query is
parsed with JSqlParser [8] and a basic query plan is gener-
ated. The explanation query is constructed along this plan
and is sent to the database system. All experiments were
run locally on a 64-bit Windows Server 2008 R2 Datacen-
ter with Intel(R) Xeon(R) 4-core X5355 processor (16 GB
RAM, 2.66 GHz).

5.1 Running Time Evaluation
The input consists of relations Ri with attributes Āi,

i ∈ [1, k], corresponding ∆i with attributes {E} ∪ Āi, and a
query Q. The goal is to compute the new value of the query
for each explanation e ∈ E when ∆i,e = πĀi

σE=e∆i is re-
moved from Ri. Our algorithm is referred to as SingleQ-IVM
in the figures, and is compared with the runtime of the orig-
inal query Q (called OrigQ) that computes Q[D]. In ad-
dition, we compare SingleQ-IVM against the following al-
ternative approaches in Section 5.1.1. Comparisons with
DBToaster[9, 3] is provided in Section 5.1.2.

1. (Naive-Iter) Iterate over all e ∈ E. For each e, evaluate
the query on relations Ri − πĀi

σE=e∆i.

2. (Naive-SingleQ) Let Expl(E) store all explanations E =

e. Then evaluate the query on relations (Expl×Ri)−∆i,
i ∈ [k]. Here only one query is issued (the iteration over
E = e is not needed), but expensive cross products of the
given relations with Expl are performed.

3. (Iter-IVM) For each E = e, implement IVM using rules
similar to those in Section 4.3.1 after computing ∆i,e =

πĀi
σE=e∆i. The original query Q is evaluated once and

then the new values Q[D − ∆De]-s are computed incre-
mentally by IVM for all e. This helps us compare against
IVM approaches that go over all e sequentially, and il-
lustrates the advantage of running a single incremental
query for all e.

5.1.1 Dependency of on Different Parameters
A number of parameters affect the running time of the

algorithms: (i) the total number of tuples in the database;
(ii) the number of explanations ∣E∣; (iii) the number of tuples
in each ∆De (referred to as group size); this can be different
for different explanations, and we consider two methods: (a)
when each explanation e has the same number of tuples, and
(b) Rand-x: when the number of tuples for an explanation e
is a random integer from 1 to x; (iv) whether the new values
of the query answers, Q[D−∆De], are sought as the output,
or whether only the changes in the query answers in ∆Q[D]

suffice (see Section 4.4); we will refer to our algorithm for the
latter as SingleQ-IVM-Diff and the corresponding version
for Iter-IVM as Iter-IVM-Diff; (v) how complex the input
query is; and (vi) optimizations described in the previous
sections.

We evaluate dependencies of the running time of our algo-
rithms SingleQ-IVM and SingleQ-IVM-Diff using synthetic
∆D relations generated from NCHS’ Vital Statistics Natal-
ity Birth Data, 2010 [5]; real ∆D-s are considered in the next
section for more complex queries. This dataset comprises a
single table (Natality) with more than 4M anonymized tu-
ples, each having 233 attributes. As the tuples are inde-
pendent, the ∆D relations can be generated by randomly
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choosing a subset for different values of the above param-
eters. We consider two queries. (A) The first query is a
multi-output group-by query QGB that counts the number
of births at different APGAR scores (AP ), a measure for
the health of the baby five minutes after birth:

SELECT AP, COUNT(*) FROM Natality GROUP BY AP

(B) The second query QM targets a user question men-
tioned in [32]: ‘why the number of babies with high APGAR
score ∈ [7,10] is high if the mother is married’ (the attribute
MaritalStatus is 1), and returns a single number as output:

SELECT COUNT(*) FROM Natality
WHERE MaritalStatus = 1 and AP >= 7 and AP <= 10

For both queries, ∆Q is constructed and evaluated us-
ing the optimization in Section 4.3.3 which is returned for
SingleQ-IVM-Diff. For SingleQ-IVM, the final answers
Q[D −∆D] requires computation of Q[D] and a left outer
join between Q[D] and ∆Q[D,∆D]. QGB computes a
group-by and operates on the entire table, whereas QM se-
lects a subset of tuples by its selection condition and com-
putes a single number. Therefore, although ∆QM has an
additional step for selection in the query plan for QM , in all
the graphs, QM takes less time than QGB .
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Figure 2: Data size vs. time (logscale), ∣E∣ = 100, grp. size = 1k

(i) Data size with time. First, we vary the number
of tuples in the base relations in multiples of 10: 4k, 40k,
400k, and 4M. For each of these four base relations, ∆ rela-
tions are created by randomly choosing 1000 tuples (group
size) 100 times (= ∣E∣). In Figures 2a and 2b, our algorithm
SingleQ-IVM is compared with the original query OrigQ, and
the other alternative approaches for QGB and QM respec-
tively. In this figure, and also for most of the data points
in the subsequent Figures 3 and 4, the difference in running
times of SingleQ-IVM and OrigQ is < 3 sec. Moreover, it out-
performs Iter-IVM that also runs IVM but iterates over all
100 explanations; Figure 3 shows that the benefit is much
higher for larger ∣E∣-s. The other approaches Naive-Iter

and Naive-SingleQ are clearly not useful (for 4M tuples
they take > 3 hours and are not shown in the graphs). Us-
ing the optimization described in Section 4.3.3 for relations
with trivial annotation, the ∆Q queries are evaluated on
∆D, therefore the explanation query is mostly unaffected
by D (apart from the final join where Q[D] has to be com-
puted); so, the running time is not much dependent on the
input data size.

(ii) ∣E∣ vs. time. In Figures 3a and 3b, our algorithms
SingleQ-IVM and SingleQ-IVM-Diff substantially outper-
form Iter-IVM and Iter-IVM-Diff whose running times
rapidly increase with ∣E∣ (the dependency is not exactly lin-
ear as Iter-IVM has a fixed cost for evaluating Q, and the
sizes of ∆De are chosen at random and therefore are not
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Figure 3: No. of explanations ∣E∣ vs. time (logscale), ∣D∣ = 4M

uniform). The increase in running times of SingleQ-IVM

and SingleQ-IVM-Diff with ∣E∣ is much slower, although
SingleQ-IVM does not give an interactive performance when
both ∣E∣ and all ∣∆De∣-s are large (e.g., the running time
is 50 sec when ∣E∣ = 4k, group size = Rand-10k, and
∣∆D∣ ≈ 20M). However, in practice, not all groups are
likely to have a large number of tuples as suggested by
the real ∆De-s constructed in the following section, lead-
ing to a running time of a few seconds in most of our ac-
tual queries. The difference in time for SingleQ-IVM and
SingleQ-IVM-Diff is small, implying that the final join of
∆Q[D] with Q[D] is not the main source of complexity.
Moreover, SingleQ-IVM-Diff can even outperform the orig-
inal query Q, when ∆D, even considering all E = e, still has
fewer tuples than D.
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Figure 4: Group size vs. time (logscale), ∣E∣ = 1k

(iii) Group size vs. time. In Figures 4a and 4b, ∣E∣ =

1k, ∣D∣ = 4M , and the group size is varied at a multiple
of 10, starting from Rand-100 up to Rand-100k for QGB

and QM respectively. The total sizes of ∆D relations at
these four points are respectively about 50k, 514k, 5.1M,
and 50M (whereas the size of D is 4M). The algorithm does
not have an interactive speed at Rand-100k (166 sec), but
such high values of ∆De for all e are less likely in practice. If
the optimizations in Section 4.3.3 are not used, the running
time for Rand-10k and Rand-100k in Figure 4a increases by
about 20 sec, which is predominantly due to the equi-join of
D with ∆D on 233 attributes.

5.1.2 Comparisons with DBToaster
Next, we compare our algorithm SingleQ-IVM that com-

putes Q[D − ∆De] for all explanations e simultaneously
with DBToaster[9, 3], a state-of-the-art framework for IVM.
These results are presented separately since DBToaster ac-
tually performs database updates by inserting or deleting
tuples, in contrast to the alternative approaches discussed
above, none of which modify the database. We incor-
porated the compiled JAR file of the Scala code for the
query QM from a Java program that used Akka Actors
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[6, 3] to submit individual events to insert/delete tuples5 .
DBToaster ‘reads’ the database from a file, so we exported
the databases from SQLServer to csv files, which were read
by the Java program6 We considered two approaches to com-
pute Q[D −∆De] sequentially for all e using DBToaster:

● (DBT-Del-Ins) Read database D. For each e, (a) delete all
tuples in ∆e one by one, (b) take the snapshot of Q[D −

∆e], (c) Insert all tuples in ∆e back to D one by one
so that the database is ready for the next e. In Figure 5,
DBT-Del-Ins-1 takes into account the time to readD from
the csv file, and DBT-Del-Ins-2 ignores it.

● (DBT-Del-Copy) For each e, (a) read database D (i.e., get
a new copy of D), (b) delete all tuples in ∆e one by one.

The first approach does not require reading the database D
multiple times, but needs to insert back the tuples in ∆e.
We did not take into account the time to compile the SQL
code into a Scala program and a JAR (a few seconds).
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Figure 5: Comparisons with DBToaster, query = QM

Figure 5a varies the number of tuples in the database
and compares the above three DBToaster simulations with
our algorithm SingleQ-IVM and with OrigQ that com-
putes Q[D]. Our algorithm SingleQ-IVM outperforms both
DBToaster approaches, even when the time to read the
database D is not taken into account (DBT-Del-Ins-2).
DBT-Del-Copy is not scalable (it took more than 27 mins for
2.85M tuples in the first plot, and therefore is omitted in the
second plot). DBT-Del-Ins performs better, although does
not give interactive performances even for DBT-Del-Ins-2

when the number of explanations is large (it took 16.9 sec
for ∣E∣ = 6k in Figure 5b, whereas our SingleQ-IVM algo-
rithm took 1.2 sec).

5.2 Complex Queries
Now we consider queries involving joins and multi-level

aggregates with real ∆D datasets. The first experiment fo-
cuses on Example 1.1 in the introduction. The number of tu-
ples in Award, Institution, and Investigator are respectively
about 400k, 419k, and 621k (the first two tables are used in
the query). The total number of explanations is more than
188k, and the total number of tuples in the ∆Award table
is more than 1.74M. The ∆Award table is populated using
eight query templates that perform join/nested aggregates
on the Award, Investigator, and Institution tables. The ac-
tual explanations with their sub-ids are stored in seven sep-
arate tables (e.g., for Type-1, the sub-id and the PIName
5The latest released version of DBToaster does not sup-
port batch updates (from personal communication with the
DBToaster team).
6The numbers of tuples in Figures 5a and 2b are different
since DBToaster did not allow 233 attributes of the Natality
database and we projected the tables on 21 of the attributes.
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Figure 6: Query plans for incremental computation of ∆Q-s

are stored). These explanations and their interventions are
computed before any query is issued or any user question
is asked; therefore some of the explanations involve schools
other than UIUC or CMU, and may not affect the user question.

We consider the first seven types of the complex explana-
tions as shown in Table 1 for simplicity to explain the ques-
tion in Example 1.1. The interventions of these explanation
types only affect the Award table and not the Institution
table (if a PI did not exist, his/her institution still remains
unaffected), therefore ∆Institution = ∅. The Investigator ta-
ble does get affected for some explanations but we do not
discuss it here as it is not used in the query in Example 1.1.
The id of the explanation E comprises the type and a sub-id
within the type.

Given the answer to the group by query in Example 1.1,
the user question was why the difference of the amounts
for UIUC and CMU was high, i.e., why Qu[D] − Qc[D] is
high, where Qu, Qc are two single-output (no group-by)
aggregate queries that compute the total award amount for
UIUC and CMU respectively. A good explanation e will make
the difference low, i.e., Qu[D − ∆De] − Qc[D − ∆De] will
be low, where ∆De is the intervention of e. Since the
aggregate function sum is additive, it suffices to compute
the differences ∆Qu[D,∆D] and ∆Qc[D,∆D], which are
computed using rules in Section 4.3 along the query plan
in Figure 6a (the plan for Qc is similar). After the re-
sults of ∆Qu ,∆Qc are computed, these two relations are
combined using a full outer join (so that we do not lose
any explanation that only appears in one of the two), and
the top explanations e according to the highest values of
∆Qu,e[D,∆D] − ∆Qc,e[D,∆D] are returned. The compu-
tation of ∆Qu and ∆Qc takes about 0.8 sec each, and the
final answers are obtained within 1.8 sec.

We found the following as top explanations: (i) PIs with
more than 100M awards in total (there were none in CMU),
(ii) PIs with ≥ 11 and 7-8 awards, (iii, iv) particular PIs
from UIUC ‘Robert Pennington’ and ‘Thomas Dunning ’ (who
share some awards), (v) awards with 6 or more PIs. Each of
these explanations contributes to more than $400M differ-
ence of award amounts of UIUC and CMU going up to ≥ $850M.
The above explanations are diverse and give the insight that
a few PIs in UIUC got a number of big awards which con-
tribute the most toward the difference, which could not be
obtained if we were restricted to simple predicates from the
Award and Institution tables.

The second experiment is on the flights dataset [7], the
on-time arrival records for flights in the USA in the month
of December from 1987 to 2012 (a single table with about
12.63M tuples and 22 attributes). We give an overview of
this experiment due to space constraints (details in [4]). The
query we had considered asks why the slope of a linegraph
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(using linear regression) is high and is given below:

WITH R AS
(SELECT YEAR as x, AVG(CRS_TIME - ACTUAL_TIME) as y
FROM Flights
WHERE YEAR >= 2007 and YEAR <= 2011
GROUP BY YEAR )

SELECT ((COUNT(R.x)*SUM(R.x*R.y))-(SUM(R.x)*SUM(R.y)))/
((count(R.X)*(SUM(R.x*R.x))-(SUM(R.x))*(SUM(R.x))))

FROM R

Such nested queries are not supported by the on-the-fly
approaches in [34, 32]. A query plan for the above query
is shown in Figure 6b, where g(x,y) denotes the aggregate
function that computes the slope. The relation ∆Flights

contained 887 explanations (∣E∣ = 887) and 138M tuples in
total. The time taken is 82 sec for both SingleQ-IVM and
SingleQ-IVM-Diff; the time taken to compute the original
query is 10 sec. For another instance of ∆Flights with about
100M tuples, the time taken is about 61 sec. Improving the
space requirement and running time for such larger datasets
is an interesting direction for future work.

6. DISCUSSIONS AND FUTURE WORK
Our framework can be extended further to support larger

classes of inputs. In Section 3, we assumed that all σ,&,∪
operators appear below all aggregate operators γ in the
query plan. However, this condition was only to ensure that
∆Q can be computed incrementally along the query plan.
In particular, once the relation Q[D − ∆D] is computed
from D and ∆D (as described in Section 4.2.3), we can
perform selection (even on annotation attributes) and join
on the answer directly. If an aggregate is performed on
an aggregate sub-query like min /max /count distinct/avg,
then also Q[D−∆D] has to be computed before any further
operation. An interesting direction is to support unions
on aggregates: e.g., SQL allows union of aggregate and
non-aggregate attributes with the same name, but they
will behave very differently in ∆Q relations. Optimizations
are possible when the interventions of a set of explanations
e1,⋯, en follow ∆De1 ⊆ ⋯ ⊆ ∆Den (e.g., explanations of
top-k form where k varies); in this case we only need to
store and compute for the differences using rules similar
to those in Section 4.3.1. Other related questions are
supporting SQL queries with bag semantics, negation,
and nulls, and improving the space/time requirements for
larger datasets and for relatively simpler explanations like
predicates spanning multiple tables so that they can be
evaluated for complex nested aggregate queries. Finally,
finding rich, complex explanations from datasets with
minimal manual help remains an open-ended future work.
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