
Repairing Data through Regular Expressions

Zeyu Li Hongzhi Wang Wei Shao Jianzhong Li Hong Gao
Harbin Institute of Technology

lizeyu cs@foxmail.com wangzh@hit.edu.cn shaowei acm@163.com
{lijzh, honggao}@hit.edu.cn

ABSTRACT
Since regular expressions are often used to detect errors in
sequences such as strings or date, it is natural to use them
for data repair. Motivated by this, we propose a data re-
pair method based on regular expression to make the input
sequence data obey the given regular expression with mini-
mal revision cost. The proposed method contains two steps,
sequence repair and token value repair.

For sequence repair, we propose the Regular-expression-
based Structural Repair (RSR in short) algorithm. RSR
algorithm is a dynamic programming algorithm that uti-
lizes Nondeterministic Finite Automata (NFA) to calculate
the edit distance between a prefix of the input string and
a partial pattern regular expression with time complexity
of O(nm2) and space complexity of O(mn) where m is the
edge number of NFA and n is the input string length. We
also develop an optimization strategy to achieve higher per-
formance for long strings. For token value repair, we com-
bine the edit-distance-based method and associate rules by
a unified argument for the selection of the proper method.
Experimental results on both real and synthetic data show
that the proposed method could repair the data effectively
and efficiently.

1. INTRODUCTION
Due to its importance, data quality draws great atten-

tion in both industry and academia. Data quality is the
measurement of validity and correctness of the data. Low-
quality data may cause disasters. It is reported that data
errors account for 6% of annual industrial economic loss in
America [11]. According to the statistic data of Institute
of Medicine, data errors are responsible for 98,000 people’s
death [17] per year. To improve data quality, data clean-
ing is a natural approach, which is to repair the data with
errors.

When data size is small, it is feasible to repair the er-
rors manually. However, for big data, automatic data repair

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 5
Copyright 2016 VLDB Endowment 2150-8097/16/01.

approaches are in demand. With such motivation, many au-
tomatic data repairing methods have been proposed. Three
categories constitute such methods. (1) Rule-based repair-
ing methods amend data to make them satisfy a given set
of rules [4, 14, 12]. (2) Repair methods based on truth dis-
covery attempt to discover truth from conflicting values [13,
9, 10]. (3) Learning-based repair employs machine learning
models such as decision tree, Bayes network or neural net-
work to predict values for imputation or value revision [15,
16, 19].

Constraints or semantics of data are usually represented
as rules. Rules for data repairing could be classified into two
kinds, semantic rules and syntactic rules. The former one is
often described by dependencies among data such as CFD
and CIND [6, 7]. Many researches have been conducted on
this topic. Syntactic rules are often represented by gram-
mars and used to describe the structure of data. A popular
type of grammars is regular expression (“regex”).

Regular expressions are more suitable for syntactic amend-
ments than dependencies and other semantic rules. Depen-
dencies are defined in semantic domains. It is incapable of
solving structure problems such as erroneous insertions and
deletions. For example, given A→ B as a dependency rule,
a miswriting of attribute B could be repaired according to
attribute A. However, if B is lost, the rule cannot offer in-
structions on positions to insert B back.

On the contrary, regular expressions can remember essen-
tial and optional tokens and their absolute or relative posi-
tions. For above example, regex r = A(xy)∗Bz can suggest
that the lost B should be added between the repetition of xy
and the single z. If A is lost, r can instruct that A’s absolute
position is at the beginning. Therefore, regex expressions are
appropriate choices for regular-grammar-structured data.

Error detection based on regexes has been well studied.
Such techniques could tell errors in data by checking whether
some components violate the regex. [18] illustrates a spread-
sheet like program called “Potter’s Wheel” which can detect
errors and infer structures by user specified regexes as well
as data domains. [21] explains an error detection by regu-
lar expressions via an example of ‘Company Name’ column
from registration entries.

Regex could be used not only to detect errors but also
to repair the data automatically. Consider the scenario of a
Intrusion Detection System (IDS). IDS generally scans input
data streams and matches the malicious code blocks that are
harmful to user devices. The properties of such attack are
described in the following structure: <Action><Protocol>

<Source IP><Source Port> <Direction Operator>

432

<Destination IP><Destination Port> (<Option1:

Value1>;...;<Optionn:Valuen>) which matches the regex
Act.P.Sip.Sport · Opdir · Dip · Dport · ([Opti : vi]

∗). In this
regex, each label represents a token with possible values.
For instance, “P” can be one of {tcp,udp,ip,icmp}.

If a stream with token sequence <Act><SIP><SP><DO>

<DIP><DP>(<Opt1:v1>;<Opt2:v2>;) is received, it is known
that <P> is lost by matching with the regex. We can repair
it by inserting <P> to the token sequence behind <Act> to
make it match the regex. Such insertion is a repair.

In addition to the Snort Rule, there exist numerous other
instances that are constrained by regular expressions. For
example, the MovieLens rating data set contains ratings of
approximately 3,900 movies made by MovieLens users [1]
and obey the following format:<Sequence Number>::<Movie

Name><Year>::<Type1>/<Type2>/...<Typen>/. That is,
each movie information is recorded under the constraint of
the regular expression Seq# :: Name.Y ear :: (Type/)∗.

Apart from those two examples, regular expressions have
a large number practical applications on constraining data
structures from smaller structures like postcode, email ad-
dress to larger structures like file name matching patterns
in Windows System. These examples demonstrate the regex
has been widely used. Thus, a regex-based data repairing
method is significant and in demand.

Data repairing approaches [12, 6] often make data obey
the given rules and minimize the differences between the
revised and the original data. Even though we could still
follow such idea for regex-based repairing, it is not straight-
forward to find a proper revision, since the regex-based er-
ror detection approaches fail to tell how to make the strings
obey the rule.

Edit distance is defined as the minimal number of steps
required to convert one string s1 to another one s2, denoted
by ed(s1, s2). It is often used to measure the differences
between strings. Since regex-based data repair is to convert
a string to the one satisfying some regex, it is natural to
adopt edit distance to measure the differences between the
repaired data and the original one. Thus, we model the
problem of regex-based data repairing via edit distance as
follows.

Given a string s and a regex r, find a string s′ ∈ L(r)
so that for any s′′ ∈ L(r), ed(s, s′) ≤ ed(s, s′′), where L(r)
is the language described by r, i.e. the set of all strings
matching r.

To solve this problem, we develop a dynamic program-
ming algorithm. Such algorithm is inspired by Levenshtein
distance algorithm but makes improvements for better adap-
tion to the problem of distance concerning a regex and a
string rather than two strings. To describe the subprob-
lems for dynamic programming, we use NFA to represent
the regex. In the core recursion equation of dynamic pro-
gramming, previous and next relations of edges in NFA are
used as the counterparts of prefixes, which can contribute
to the incremental computation of distances between prefix-
es of s and r. To accelerate the algorithm, we propose an
optimization strategy that prunes some redundant compu-
tational steps.

Another significant problem in regex-based repair is to
select the most suitable candidate of a token from multiple
legal choices for insertion or substitution. To address this
problem, we propose a decision method so that repaired re-
sults can be closer to real values. This method is based on

edit distance and association rules which are widely used
in data mining field. The final repairing solution is deter-
mined by a comparison between the estimated confidence of
the distance-based strategy and that of the association-rule-
based one.

The contributions of this paper are summarized as follows.

• We use regular expressions for not only error detection but
also data repair. We model the problem of data repair as
an optimization problem. As we know, this is the first
work studying regular-expression-based data repair.
• We develop a whole solution for regex-based data repair

with a dynamic programming algorithm as the basic algo-
rithm, a pruning strategy for acceleration, and a proper
value selection method to accomplish the repair.
• We conduct extensive experiments to verify the efficien-

cy and effectiveness of the proposed algorithms. Experi-
mental results demonstrate that the proposed algorithms
could efficiently repair sequences according to a regex and
the quality of the repaired data is high.

This paper is organized as follows. We give an overview of
this problem in Section 2 and separate this problem into two
subproblems, structural repair and value repair, whose solu-
tions are discussed in Section 3 and Section 4 respectively.
We experimentally verified the effectiveness and efficiency of
the proposed algorithms in Section 5. At last, we draw the
conclusions in Section 6.

2. OVERVIEW
Structural constraints are used to describe the structure

that a string should obey. Each structural constraint has
two components, token sequence and token value options.
The sequence describes the order of tokens in a string and
the value options describe the available options of each to-
ken. A structural constraint is expressed by a grammar with
variables. The grammar describes the token sequence and
variables describe token values. We focus on the structural
constraint with its grammar described by regexes.

Structural constraints could be used to detect and repair
errors in strings. A string s may violate a structural con-
straint in structural level or token value level. The repair
for structural level violation (structural repair in brief) is
the holistic repair, while that for token value level violation
(value repair in brief) is the local repair. If value repair is
conducted before structural repair, a value revised in value
repair may possibly be revised again or even deleted during
structural repair. Therefore, structural repair is superior to
value repair as the following framework.

1. Repair structural errors by regular expression pattern
and construct the repair.

2. Repair value errors inside individual tokens.

As for step 1, the algorithm for structural repair will be
discussed in Section 3.

Step 2 aims to choose a proper value for a token from avail-
able options. We perform the selection with two approaches
based on edit distance and associate rules respectively. The
former one finds the value from available options with the
minimal edit distance to current value. Such option may be
legal since it is the most similar to original value. However,
it may miss the best choice, since it neglects the context.

433

To generate more accurate repair, we apply associate-rule-
based method. It discovers association rules between a token
candidate and its context and determines the repair value
by such rules. Those methods will be elucidated and exem-
plified in Section 4.

3. REGEX-BASED STRUCTURAL REPAIR
(RSR) ALGORITHM

For structural repair, we propose Regex-based Structural
Repair Algorithm.

3.1 A Sketch of RSR algorithm
In this subsection, we give a formal definition of the struc-

tural repair problem and an overview of RSR algorithm. The
target of structural repair is to convert the input string s to
string s′ which matches the given regex r and has the min-
imum edit distance to s. We define s′ formally as follows.

Definition 1. Given a regex r and a string s, for a s′ ∈
L(r), if ∀s′′ ∈ L(r), ed(s, s′′)≥ed(s, s′), then s′ is defined as
the best repair to r of s, where L(r) is the language of r
and ed(s1, s2) computes the edit distance between s1 and s2.

The definition of best repair is suitable for describing the
repair of s according to regex r. On one hand, s′ matches
r, so when s is transformed to s′, it also matches r. Such
transformation “repairs” s. On the other hand, since s′ has
the minimum distance to s, it represents a repairing method
with the least cost. Therefore, the algorithm is to find the
best repair of s to r.

We study the classical dynamic programming algorithm
of computing edit distance between strings, which proves to
be optimal [5], since the required algorithm involves it. In
this algorithm, the prefixes of two input strings are used to
form the subproblem [20]. Inspired by this, we attempt to
track the distances of prefixes. However, ‘|’ and closure in
r make it impossible to directly use the prefix of r to form
the subproblem.

Fortunately, since an NFA is used for matching strings to
a regex, and a connected part of its states could match a sub-
string, we could design a dynamic programming algorithm
with a subproblem corresponding to a part of r’s NFA and
a prefix of s. We define the prefix of NFA.

Definition 2. L(A) denotes the set of all strings that
could be accepted by an NFA A. sp denotes a prefix of a
string s which is one-character shorter than s. A Prefix of
A, denoted by Ap, is an NFA that satisfies the following two
conditions:

1. ∀s ∈ L(A), ∃Ap ∈ PS(A), s.t. sp ∈ L(Ap), where
PS(A) is the set of all prefixes of A.

2. The state transition diagram of Ap is a subgraph of
that of A.

We use Figure 1 illustrate NFA and its prefixes. From Def-
inition 2, ∀sp ∈ L(Ap), ∃s ∈ L(A), length(s)= length(sp)+1.

When a string s is accepted by an NFA A, the last char-
acter of s exactly matches some edges whose end states are
A’s accepting states. We call these edges final edges. The
set of final edges of A is denoted by TAIL(A).

Final edges can describe the relation between A and its
prefixes. Given a string s ∈ L(A), its prefix sp ∈ L(Ap), e
and ef denoting edges, and the function tr(e) returns the

start

(a) An NFA A.

start start

(b) Prefixes of NFA A.

Figure 1: An Example of Prefixes of NFA.

transition symbol of e, ∃ef ∈ TAIL(A) that satisfies sp +
tr(ef) = s.

Structural repair with a string s and a regex in form of
NFA N as input is defined as follows. Its subproblems are
to find the edit distance between the prefixes of s and N .

Definition 3. Given a string s and an NFA N , the edit
distance from s to N (denoted by ed∗(s,N)) is defined as
the minimal edit distance between s and a string s′ in L(N).
That is, ed∗(s,N) = min{ed(s, s′)}, s′ ∈ L(N).

Thus, given si as a prefix of s and an NFA A, the relation-
ship between ed∗(si, A) and its subproblems has four cases,
where si denotes the prefix of s with length i. (1) si has
been revised to match Ap and si is revised to match A by
appending a token; (2) if si−1 is revised to match Ap and the
last token of si (denoted by s[i]) equals to tr(ef) for some
ef ∈ TAIL(A), then si matches A; (3) if si−1 is revised to
match Ap and s[i] equals to none of tr(ef), then si is revised
to match A by substituting some tr(ef) for s[i]; (4) si−1 has
been revised to match A and si is revised to match A by
deleting s[i]. In summary, this recursion function describes
such relationship as follows.

ed∗(si, A) = min

ed∗(si, Ap) + 1 (a)

ed∗(si−1, Ap) + f(s[i], ef) (b)

ed∗(si−1, A) + 1 (c)

(1)

f(s[i], ef) is defined as follows.

f(s[i], ef) =

{
1 s[i] 6= tr(ef)

0 s[i] = tr(ef)

The options marked (a), (b) and (c) correspond to differ-
ent edit distance operations. If c(A) denotes any character
in {tr(e)|e ∈ TAIL(A)}, then (a) inserts c(A) to the end
of si; (b) substitutes s[i] by a c(A) when f = 1 or does
nothing when f = 0 which means that s[i] ∈ {tr(e)|e ∈
TAIL(A)}; (c) deletes s[i]. These options are proposed to
search the optimal solution of subproblems for the compu-
tation of ed∗(si, A).

3.2 RSR algorithm
We discuss the details of RSR algorithm.

3.2.1 Data Structure
To store the intermediate results of the subproblems in

Equation (1), we use a Matrix C with the minimum C(i, e)
representing ed∗(si, A) for e ∈ TAIL(A) and s[i] matches
e. That is, given Se as the set of strings that pass e as the
last edge, C(i, e) is the minimum edit distance of ed(s, s′)
for all s′ ∈ Se. Besides, for e ∈ TAIL(A),

⋃
Se = L(A)(e ∈

TAIL(A)).

434

Then, according to Equation (1), we have following re-
cursion equation for C, where PRE(e)={e′|e′.endstate =
e.startstate} and ep ∈ PRE(e).

C(i, e) = min

C(i, ep) + 1 (a)

C(i− 1, ep) + f(s[i], tr(e)) (b)

C(i− 1, e) + 1 (c)

(2)

Since strings matching A must pass one of e ∈ TAIL(A)
and C(i, e) records the minimum edit distance of strings
through e, ed∗(si, A) is computed from the collection of all
possible C(i, e). Likewise, with TAIL(Ap) =

⋃
PRE(e)(e ∈

TAIL(A)), ed∗(si, Ap) is computed from the collection of
C(i, ep) with ep ∈ PRE(e). As a result, Equation (2) is
equivalent to Equation (1).

Besides C, we use another Matrix H to track the edit
operators with items as triples (r,c,op), where r and c restore
the repair sequence, and op records the operation. For each
entry t in H, t.r and t.c is the row and column of the entry
in C prior to t in the repair sequence, and t.op is the repair
operator with four choices, N , D, I and S. They are listed
in Table 1. Column Arg shows the arguments of them. Note
that only operator I and S have arguments.

Table 1: Arguments and Function of Operators

op Arg Function

I token c Insert c after sr
S token c Substitute s[r] by c
D - Delete the token at s[r]
N - Non-operation

3.2.2 Operator Selection Order
According to Equation (2), an operator is selected from

four choices. Note that these operators are considered in
different priorities in RSR Algorithm—for each row, D and
S are considered in the first round and I is considered in the
second round.

Such priority is caused by circles in NFA. Unlike the pre-
fix relation of strings, the “previous” relation of edges in
NFA characterized by PRE(e) is not a strict partial order
relation. For example, given edges a and b, if a.startstate =
b.endstate and a.endstate = b.startstate, a ∈ PRE(b) and
b ∈ PRE(a), which violates the asymmetry of partial order.
This unordered property results in uncertainty of C(i, a) and
C(i, b) illustrated in Example 1.

To avoid uncertainty, deletions and substitutions are first
considered, since these two operations involve only values
in the (i − 1)th row of C. However, insertions require the
correctness of all C(i, ep)(ep ∈ PRE(e)) when calculating
C(i, e). After the first round, all C(i, e)’s in the ith row
are temporally filled by deletions or substitutions. Then
insertions are considered. If the cost of insertion is smaller
for some C(i, e)’s, their op’s are changed to I. Their r and
c are also changed correspondingly.

The priority also solves the problem of the selection from
multiple “best repair”. The insertions are conducted sec-
ondly determining that given the equality of repair cost of a
substitution or a deletion to an insertion, the insertion may
not be considered. Hence, the string produced with the least
edit distance is unique.

As the cost, the adjustment of the priority will decline the
accuracy of the structural repair especially for regexes with

a lot of small closures. The harm has two aspects, wrong
deletion and hidden error.

Wrong deletion. Since Losses (repaired by insertions) are
handled after Redundancies (repaired by deletions) and Dis-
placements (repaired by substitutions), if a mistake deletion
or substitution cost identically as the correct insertion, the
accurate repair is missed. On the other hand, short token
sequences such as bc in a(bc)∗d lead to insufficiency of con-
text information making the cost of the incorrect deletion
no larger than that of the correct one.

Hidden error. It is caused by small closures in the regex-
es. Since the closure operator cannot count the number of
tokens, the loss of a substring matching a single closure will
not be discovered.

In conclusion, such inaccuracy comes from multi-repair-
strategy problem. Note that similar cases in real occasions
may hardly happen since few practical regexes have short
token closures or disregard the number of tokens. More con-
crete and specific regexes can be used to solve this problem.
For example, if strings that match ab∗c have more than 3 to-
ken b, then regex abbbb∗c would be better than ab∗c. It can
guarantee the number of b in repaired string is no less than
3. In addition, assigning a priority to tokens in the regex
for multi-repair-strategy selection would contribute to the
effectiveness of RSR algorithm. The design for this priority
is left for future work.

3.2.3 Algorithm Description
The pseudo code of RSR algorithm is Algorithm 1. The

inputs are a string s and an NFA A representing a regex
r(A) with E as the edge set and F as the set of accepting
states. The outputs are the smallest edit distance between
r(A) and s and the edit operator sequence that converts s to
match r(A). We denote the number of edges in the shortest
path from start to the end vertex of e as dis(e).

Algorithm 1: RSR algorithm

Input: string s, NFA A = (P,Σ, E, q0, F).
Output: Minimal edit distance from s to A, generating Matrix H.
1: C(0, e)← dis(e)e∈E
2: C(i, φ)← ii∈(0,len(s))

3: for i← 1 to len(s) do
4: for all e ∈ E do
5: if s[i] = tr(e) then
6: C(i, e)← min{C(i− 1, ep)ep∈PRE(e)}
7: H(i, e)← (i− 1, emp , [N])

8: else
9: C(i− 1, em)← min{C(i− 1, ep), C(i− 1, e)}
10: C(i, e)← C(i− 1, em) + 1
11: if em ∈ PRE(e) then
12: H(i, e)← (i− 1, em, [S, tr(e)])
13: else
14: H(i, e)← (i− 1, em, [D])
15: Q← E {Q is priority queue}
16: while Q 6= ∅ do
17: e←ExtractMin(Q)
18: for all en ∈ NEXT (e) do
19: if C(i, e) + 1 < C(i, en) then
20: C(i, en)← C(i, e) + 1
21: H(i, en)← (i, e, [I, tr(en)])
22: C(len(s), emt)← min{C(len(s), et)et∈TAIL(A)}
23: return C(len(s), emt) and H

Line 1 initializes each C(i, φ) by i since edit distances
between strings and an empty NFA are i (i deletions) and
each C(0, e) by dis(e) which means generating a string that
reaches e with the least length.

435

0 1
2

3

Start b a
b a

Figure 2: NFA of b(ab)∗ Figure 3: Position in
Classical Algorithm

Table 2: Start
φ 0/b 1/a 2/b 3/a

ε 0 1 2 3 4
b1 1 0 2/1 2 4/3
b2 2
a 3

Table 3: Final
φ 0/b 1/a 2/b 3/a

ε 0 1 2 3 4
b1 1 0 1 2 3
b2 2 1 1 1 2
a 3 2 1 2 1

Table 4: Edges
Seq.# s→e tr PRE NEXT

0 q0 → q1 b φ 1
1 q1 → q2 a 0 2
2 q2 → q3 b 1,3 3
3 q3 → q2 a 2 2

Line 3-21 compute C(i, e) and H(i, e). Due to different
priorities, D and S operators are first considered in Line 4-
14. Line 6 corresponds to Equation (2)-(b) with f = 0, while
Line 9 corresponds to (a) or (b) with f = 1. Insertions are
considered in Line 16-21, in which Line 19 judges whether
insertion is better according to Equation (2)-(c).

Then Matrix C and H are derived. To obtain repaired
string sr and log slog, Algorithm 2 shows a top-down traver-
sal with H for input as sr and slog as output. Line 1 initial-
izes variables for repair sequence generation in Line 3-6.

We clarify the distinction between RSR algorithm and ed-
it distance computation as follows. Although experimental
results state that edit distance calculation dominates the
time cost (> 99.5%), it is certain that merely edit distance
computing cannot solve the entire problem. A procedure
to generate the repaired string is needed. Furthermore,
the generated token string on structure level is not enough.
Hence, we propose “value repair” in Section 4. In summary,
the distinction is computing edit distance is not the entire
methodology for repair from structure level to value level.

We use a detailed example (Example 1) to elucidate the
calculating process and a holistic one (composed by Exam-
ple 2 and Example 4) to illustrate the overall repair.

Algorithm 2: String Restoring Method.

Input: String generating Matrix H, len(s) and edge emt derived in
Algorithm 1.

Output: Repaired string sr and logging slog .
1: sr, slog ← empty string
2: α← len(s), β ← emt
3: while H(α, β).r 6= 0 do
4: sr ← tr(H(α, β).c) + sr
5: slog ← H(α, β).op+ slog
6: α← H(α, β).r, β ← H(α, β).c
7: return sr and slog

Example 1. The inputs are r = b(ab)∗ and s = bba.
The NFA of r is in Figure 2. The PRE and NEXT set
(if ep ∈ PRE(e), e ∈ NEXT (ep)) and tr() for edges are in
Table 4, where a uniform number is assigned to each edge.

The initialized entries are highlighted in bold in Table 2.
We use subscripts to distinguish two b’s in “bba”. For the
row of b1, C(b1, ei) is filled with only deletion or substitution
in the first round as follows.

With b1 = tr(e0) and C(ε, φ) = 0, C(b1, e0) = 0; with
b1 6= tr(e1) and C(ε, e0) + 1 < C(ε, e1) + 1, C(b1, e1) =
C(ε, e0) + 1 = 2; with b1 = tr(e2), C(b1, e2) = C(ε, e1) = 2;

with b1 6= tr(e3) and C(ε, e2) + 1 < C(ε, e3) + 1, C(b1, e3) =
C(ε, e2) + 1 = 4.

Note that C(b1, e1) and C(b1, e3) are incorrect without
insertion operations, which accounts for the “uncertainty”
mentioned in Subsection 3.2. Thus we consider insertions
in the follow steps.

With a higher priority of ei implied by smaller C(b1, ei),
the priority queue Q(b1) is initialized as {e0, e1, e2, e3}. The
following computation steps are as follows.

For e0, with e1 ∈ NEXT (e0) and C(b1, e1) < C(b1, e0) +
1, C(b1, e1) = 1; for e1, since e2 ∈ NEXT (e1) and C(b1, e2)
= C(b1, e1) + 1, C(b1, e2) is not modified; for e2, C(b1, e3)
is changed to 3 for the same reason as C(b1, e1); for e3,
NEXT (e3) = ∅. Since Q is empty, the modification termi-
nates.

The modified values in the row corresponding to b1 are
under the slash in Table 2. Executions for b2 and a are
similar to above procedure. Table 3 shows the final C. Since
TAIL(A) = {e0, e2}, the minimal edit distance is min{C(a,
e0), C(a, e2)} = 2.

We give an example about IDS rules about holistic repair.

Example 2. Suppose a rule can be transformed to
<Op><E1><SIP><SP><Opdir><DIP><DP>[Opti:E2;Optj:vj;]

through lexical analyses. E1,E2 are undiscernible tokens.
The RSR algorithm runs as follows.

For the interest of space, the detail of calculation is omit-
ted. The edge list and transition symbols are in Table 6 and
the derived Matrix C is given in Table 5, in which the path
of the traversal is marked by underlines. Algorithm 2 gen-
erates sr and slog. E1 and E2 are substituted respectively by
P and Vj.

sr =Op.P.SIP.SP.Opdir.DIP.DP.[Opti:Vi;Optj:Vj;]

slog =[N][S, <P>] [N][N] . . . [N]︸ ︷︷ ︸
12[N]

[S, <V>][N][N]

Table 5: Matrix C of Example 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 9 10 11 12 13 13
1 1 0 1 2 3 4 5 6 7 8 8 9 10 11 12 12
2 2 1 1 2 3 4 5 6 7 8 8 9 10 11 12 12
3 3 2 2 1 2 3 4 5 6 7 7 8 9 10 11 11
4 4 3 3 2 1 2 3 4 5 6 6 7 8 9 10 10
5 5 4 4 3 2 1 2 3 4 5 5 6 7 8 9 9
6 6 5 5 4 3 2 1 2 3 4 4 5 6 7 8 8
7 7 6 6 5 4 3 2 1 2 3 3 4 5 6 7 7
8 8 7 7 6 5 4 3 2 1 2 2 3 4 5 6 6
9 9 8 8 7 6 5 4 3 2 1 2 2 3 4 5 5
10 10 9 9 8 7 6 5 4 3 2 3 1 2 3 4 4
11 11 10 10 9 8 7 6 5 4 3 4 2 1 2 3 3
12 12 11 11 10 9 8 7 6 5 4 5 3 2 1 2 2
13 13 12 12 11 10 9 8 7 6 5 6 2 3 2 1 2
14 14 13 13 12 11 10 9 8 7 6 7 1 2 3 2 3
15 15 14 14 13 12 11 10 9 8 7 8 2 2 3 3 4
16 16 15 15 14 13 12 11 10 9 8 9 3 3 2 3 3
17 17 16 16 15 14 13 12 11 10 9 9 4 4 3 3 2

Table 6: Edges
e tr(e)

1 0-1 Op
2 1-2 P
3 2-3 SIP
4 3-4 SP
5 4-5 Opdir
6 5-6 DIP
7 6-7 DP
8 7-8 [
9 8-9 Opt
10 8-10]
11 9-11 :
12 11-12 V
13 12-13 ;
14 13-9 Opt
15 13-10]

We could learn the difference between RSR algorithm and
classical Levenshtein distance algorithm. In the classical ap-
proach, elements of the Matrix are ordered in the horizontal
direction from left to right. When filling a cell, its left, above
and left-above neighbors are involved, which constitutes a
physical relation shown in Figure 3. The calculation of the
grey cell needs the three cells pointed by arrows. As a com-
parison, in RSR algorithm, edges listed in neighbor columns
may not be directly connected. The interconnections are
maintained by PRE and NEXT . For example, in Row 13

436

and 14 of Table 5, the path is not connected physically but
edge14 is in PRE(edge11).

3.3 Properties of RSR algorithm
This subsection shows the properties of RSR algorithm.

3.3.1 Correctness

Theorem 1. In Algorithm 1, minet∈TAIL(A){C(len(s),
et)} is the minimum edit distance between the string s and
the regex r with NFA A.

In order to prove Theorem 1, we first substantiate four
lemmas.

Lemma 1. If e∗ is the first edge extracted from priori-
ty queue Q in Line 17 of Algorithm 1 and s′ ∈ Se∗ , then
C(i, e∗) = ed(si, s

′).

Proof : Suppose that there exists e∗p ∈ PRE(e∗) with C(i, e∗)
> C(i, e∗p) + 1 satisfying the condition to modify C(i, e∗p) in
Line 19. There must be C(i, e∗p) < min{C(i, e)} = C(i, e∗),
which contradicts to the assumption that e∗ is the minimum
in Q. Thus, this lemma holds. �

Lemma 2. After substitutions and deletions, for any C(i,
e) + 1 < C(i, en)en∈NEXT (e), C(i, en) = C(i, e) +2.

Proof : Given edge a, b and e′ where b ∈ NEXT (a), e′ ∈
PRE(b) and

C(i, b) > C(i, a) + 1. (3)

And according to Line 6 and Line 9, we have

C(i, b) = min{C(i− 1, e′), C(i− 1, b)}+ 1 (4)

or C(i, b) = min{C(i− 1, e′)}. (5)

If (5) holds, then

C(i, b) ≤ C(i− 1, a) (6)

Considering the comparison between C(i−1, a) and C(i, a).
It is possible that

C(i− 1, a) = C(i, a)− 1

C(i− 1, a) = C(i, a)

C(i− 1, a) = C(i, a) + 1

If C(i − 1, a) = C(i, a) + 2 holds, then only 1 step, cutting
s[i], is required to make C(i− 1, a) = C(i, a) + 1. Hence,

C(i− 1, a) ≤ C(i, a) + 1. (7)

Combining with (6), we get C(i, b) ≤ C(i, a) + 1, which
contradicts to (3). Hence, C(i, b) = min{C(i− 1, e′), C(i−
1, b)}+ 1.

On the other hand, min{C(i− 1, e′)} ≥ min{C(i− 1, e′),
C(i − 1, e)}. Therefore, C(i, b) ≤ min{C(i − 1, e′)} + 1 ≤
C(i− 1, a) + 1

Combining with (7), it holds that

C(i, b) ≤ C(i−1, a)+1 ≤ (C(i, a)+1)+1 = C(i, a)+2 (8)

Due to (3) and (8): C(i, b) = C(i, a) + 2. �

Lemma 3. For each e extracted from Q, C(i, e) is stable
and optimal, that is, for s′ ∈ Se, C(i, e) = ed(s, s′).

Proof : The only possible case invalidates this lemma is
that when an edge e is pop from the Q, C(i, e) is minimal.
In such case, consider edges e and ek, which is inferior to
e in Q, with e ∈ NEXT (ek). When an edge in PRE(e)
is extracted and modifies C(i, ek), C(i, e) could possibly be
lessen as well for e ∈ NEXT (ek). Since e is extracted before
ek, C(i, ek) will not “correct” C(i, e), as will result in the
incorrectness of C(i, e).

We now prove that above case would never happen. Sup-
posing that C(i, ek) is modified from x to x−1, with C(i, e) ≤
x, the new C(i, ek) has only two possibilities, C(i, ek) =
C(i, e) − 1 or C(i, ek) ≥ C(i, e). Above case happens on-
ly under the former condition where C(i, ek) = C(i, e) − 1.
However, according to Lemma 2, if C(i, e) is about to modi-
fy C(i, ek), C(i, e) = C(i, ek)+2. Therefore, we have proved
that for any e in E, C(i, e) will not be modified by edges
with smaller key in Q. That is, for all e extracted from Q,
C(i, e) is stable and optimal.�

Lemma 4. Given an NFA A, A’s prefix Ap and edge e ∈
TAIL(Ap), if for any Ap, C(i− 1, e)’s cover ed∗(si−1, Ap),
then C(i, e) cover any ed∗(si, Ap) after Algorithm 1.

Proof : In Subsection 3.1 and Subsection 3.2, we proposed
the recursion function (1) and its equivalent form (2) ex-
pressed by C. Given this equation, if we substantiate that
C(i, e) in Algorithm 1 is filled strictly according to (2), then
the correctness of Lemma 4 is proven. On the other hand, we
reform the execution order of the recursion function by the
priority of operations mentioned in Subsection 3.2. Its cor-
rectness can be proven by the combination of Lemma 1 and
Lemma 3. Since for the first and the following edges e ex-
tracted from Q, C(i, e) is the optimal. Therefore, Lemma 4
is validated by the correctness of (2) and the reformation
above. �

Then, we give the proof of Theorem 1.
Proof(Theorem 1): Since this algorithm is based on dynamic
programming, its correctness is proven by inductive method.
We apply inductions on i, the length of prefixes of s. When
i = 0, all C(ε, e) with e ∈ E are initialized as dis(e). Because
any edit distance from an empty string ε to a string passes
e ∈ TAIL(A) in L(A) is exactly dis(e), C(ε, e)’s contain
ed(ε,A).

The inductive hypothesis is that all C(i−1, e) are correct
for each e and they contain optimal distance values of any
ed∗(si−1, A) given e ∈ TAIL(A). We attempt to prove that
C(i, e)’s can then provide valid ed∗(si, A) under above hy-
pothesis. Lemma 4 proves the inductive hypothesis. There-
fore, C(len(s), e) records ed∗(s,Ap) with e ∈ TAIL(Ap).
Particularly when et ∈ TAIL(A), C(len(s), et) gives ed-
it distances from s to strings in L(A). ed∗(s,A) = min{
C(len(s), et)}, since it has the minimum repairing cost. The-
orem 1 is proven. �

3.3.2 Complexity
The complexity of Algorithm 1, shown in Theorem 2, is

determined by the length of string s (denoted by n) and the
number of edges in NFA A (denoted by m).

Theorem 2. The time complexity of RSR algorithm is
O(nm2) and the space complexity is O(nm).

Proof : RSR algorithm’s time complexity is comprised of
three parts: the cost of initialization (denoted by T1), the

437

cost of computation of C and H (T2) and the cost of repair
sequence generation (T3). Clearly, T = T1 + T2 + T3.

The time complexity of the initialization (Line 1 in Algo-
rithm 1) is T1 = O(m) +O(n).

During the computation of C and H, ‘for’ loop begin-
ning at Line 3 will be executed for n times. Therefore,
T2 = n× (T2.1 + T2.2 + T2.3), where T2.1, T2.2 and T2.3 cor-
respond to the time complexities of ‘for’ loop (Line 4-14),
creating priority queue (Line 15) and ‘while’ loop (Line 16-
21), respectively. In the worst case, as for Line 6 and Line 9,
|PRE(e)| = m. Thus the cost of traversing PRE(e) to get
the minimum C(i, ep) is m and T2.1 = O(m×m) = O(m2).

Time complexity of initializing the priority queue Q is
T2.2 = O(m lgm). In the ‘while’ loop at Line 16, the number
of edge extraction is m and in the worst case, |NEXT (e)| =
m. Thus, T2.3 = O(m × m) = O(m2). Therefore, T2 =
n× (O(m2) +O(m lgm) +O(m2)) = O(nm2).

The cost of finding min{C(len(s), et]} is |TAIL(A)|, whi-
ch equals tom in the worst case. It takes at mostmax{len(s)
+min(dis (TAIL(A)))} steps to restore the string in H.
Thus, the maximum min(dis(TAIL(A))) = m. It implies
that T3 = O(m) +O(max{n+m}) = O(max{m+ n}).

In summary, the entire time complexity: T = T1 + T2 +
T3 = O(m) +O(n) +O(nm2) +O(max{m+ n}) = O(nm2)

For space complexity, both Matrix C and H have n + 1
rows and m+ 1 columns, thus the space complexity is S =
O(2× (m+ 1)× (n+ 1)) = O(mn). �

Note that regexes are not very long in practice. Thus, m
is usually far less than n and the time and space complexity
are approximately linear with n.

3.4 Optimization for RSR algorithm
Since time complexity of computing C dominates the time

cost, we attempt to reduce the time for this step.
In Algorithm 1, all e ∈ E are traversed to get C(i, e) in

the ith iteration. However, when dis(e) is far larger than i,
the computation of C(i, e) may be redundant because many
insertions are involved to generate for repair. Since such
insertions are meaningless, we attempt to reduce the com-
putation cost by avoiding them. Thus, we compute C(i, e)
just for i large enough. That is, C(i, e) is computed only
when dis(e) ≤ i + 1. It means in the ith iteration, only
edges e with dis(e) ∈ {1, 2, . . . , i, i+ 1} are calculated.

To ensure that such optimization does not cause illegal
computation, it could be applied when len(s) ≥ max{dis(e),
e ∈ TAIL(A)}. It is because an et ∈ TAIL(A) with len(s) <
dis(et) implies C(i, et) = ∞ when the optimization is ap-
plied and then this will clearly lead to an illegal computation
in the following steps.

According to above discussion, the optimized algorithm is
in Algorithm 3. Since the optimization focuses on C, Algo-
rithm 3 shows only the computation of C. The computation
of H and repair generation are unchanged.

Compared with Algorithm 1, Algorithm 3 conducts the
optimization in two positions. One is Line 6 ensures that
C(i, e) is computed only when dis(e) ≤ i + 1. The other is
Line 11, which avoids C(i, e) =∞ to be inserted into Q. We
use an example to illustrate it.

Example 3. The input is r = ab(c|d)e∗fg and s = bxelg.
length(s) = 5, max{dis(e)} = 5 which are very close. The
result Matrix C is in Table 7. The computation cost of blank
cells is saved. In this problem, 19/55 time cost of Line 5-16
is saved according to Table 8.

Algorithm 3: Optimized Algorithm

Input: String s, NFA A = (P,Σ, E, q0, F)
Output: Optimized edit distance s to A
1: for all e ∈ E do
2: C(0, e)← dis(e)
3: for i← 0 to len(s) do
4: C(i, φ)← i
5: for i← 1 to len(s) do
6: for all e ∈ E with dis(e) ≤ i+ 1 do
7: if s[i] = tr(e) then
8: C(i, e)← min{C(i− 1, ep)}ep∈PRE(e)

9: else
10: C(i, e)← min{C(i− 1, ep), C(i− 1, e)}+ 1
11: Q← E′ {E′ ← {e|dis(e) ≤ i+ 1, e ∈ E}}
12: while Q 6= ∅ do
13: e←ExtractMin(Q)
14: for all en ∈ NEXT (e) do
15: if C(i, e) + 1 < C(i, en) then
16: C(i, en)← C(i, e) + 1
17: return min{C(len(s), et)}, (et ∈ TAIL(A))

Table 7: Optimized Matrix C

Seq.# φ 0 1 2 3 4 5 6 7 8 9 10
φ 0 1 2 3 3 4 4 4 4 5 5 5
b 1 1 1
x 2 2 2 2 2
e 3 3 3 3 3 2 3 2 3
l 4 4 4 4 4 3 4 3 4 3 3 4
g 5 5 5 5 5 4 5 4 5 4 4 3

Table 8: Cost

i s[i] dismax Saved
0 b 1 9
1 x 2 7
2 e 3 3
3 l 4 0
4 g 5 0

Time complexity of the optimization is O(nm2) and space
complexity is O(nm) with m denoting the number of edges
in NFA A and n denoting the length of string s. Since this
strategy prunes some calculation steps, it speeds up RSR
algorithm although their time complexities are identical.

As a trade-off, the optimization sacrifices some accuracy—
the results of it are not always optimal because the “re-
dundant information” eliminated may contain clues of op-
timal solutions. Fortunately, such cases are rare because
the possibility of eliminating essential information would
decrease as length of the prefix of s grows. When i >
max{dis(e)e∈TAIL(A)} − 1, no essential information will be
lost since the number of pruned calculation steps gets 0.

4. VALUE REPAIR
The goal of value repair is to find a proper value from the

available option values for the variables of I and S operators
in the repair sequence. Given V (t) as the value set of to-
ken t, <P> as the protocol token of Snort Rules and V (P)=
{tcp,udp,ip,icmp}, the value repair answers the following
questions.

• What should be inserted with operator [I,<P>]?
Which option in V (P) is the most suitable one?
• If an erroneous token written as txp should be substi-

tuted by a <P> with operator [S,<P>], how to make
the choice? What if the wrong token is written as xxx?

We propose two approaches respectively based on edit dis-
tance and associate rules. These approaches are only con-
cerned about repairing tokens with finite and closed value
sets. For the instances that we have known, it is common
for the tokens to have finite and closed value sets. The
<Protocol> token has four options: {tcp, udp, ip, icmp}
and token <Operation Direction> has two: {<>,->}. In

438

the “MovieLens” sets, <Movie Type> token has 20 options
such as “Mystery”, “Sci-Fi”, . . . , etc., which is also finite.
As for the consecutive and continuous values cases, we dis-
cretize them into finite sets before utilizing those two ap-
proaches.

4.1 Edit-distance-based Method
Since edit distance is effective to measure the similarity of

strings, it is natural to select the value with the smallest edit
distance to the original string. For example, it is reasonable
to repair txp to tcp, since it has the minimal edit distance
to txp in V (P).

To implement such method efficiently, we use an efficient
top-1 string similarity search algorithm [8] on the option set.

The advantage is this method is easy to comprehend and
implement without requiring extra knowledge of data. It can
be pretty efficient. The disadvantage is when the operator
is insertion and the token is completely wrong-written, this
method can hardly make convincing choices without suffi-
cient clues. To make rational choices in these cases, we give
an association rules (AR) based method for supplement.

4.2 AR-based Method
Association rules mining aims to find the item sets that co-

occur frequently. For our problem, it is effective to find the
co-occurrence relationship between one value and its con-
text. Then, the true value could be implied.

We use this example to illustrate this method. For the
Snort Rules, in each entry with both <Source Port>= 80
and <Destination Port>= 80, the <Protocol> must be
<tcp>, because 80 is the port number of tcp services. Hence,
we can claim if string s mistakenly writes <P> as xxx with
80 as the values of source and destination port numbers,
then a correct repair is to modify xxx to tcp—{<Source
Port>= 80,<Destination Port>= 80} implies {<P>=tcp}.
This is regarded as an association rule. It describes the
extent of association or dependency between the two sets.

Formally, an AR is defined as an implication in form of
X ⇒ Y , where X and Y are item sets and X ∩ Y = ∅ [2].

The example of Port and Protocol can be explained by an
AR. In the Port-Protocol Rule Rpṗ:X ⇒ Y , X is {<S.Port>
=80, <D.Port>=80} and Y is {<P>=tcp}.

For an AR, confidence and support are often used to
evaluate its usability. Given count(X) as the number of
transactions containing X, count(X,Y) as the number of
transactions containing both X and Y , and count(T) as the

size of the entire transaction set, support(X) = count(X)
count(T)

,

support(X,Y) = count(X,Y)
count(T)

. confidence measures the confi-

dence level of a rule. Given a rule R : X ⇒ Y with X, Y as

item sets, confidence(R) is: confidence(R) = support(X,Y)
support(X)

.

In our problem, the association rules have two extra con-
straints compared with the general ones. One is that tokens
with infinite or continuous values should be discretized into
finite and closed sets before using these methods. The oth-
er is that only rules whose size of consequent set (Y) are 1
are included in association rule set, for structural repair is
applied on single token. Thus only the rules with a single
token as right side are required. With these constraints, the
associate rules used in our approach could be mined with
Apriori algorithm [3] directly.

After rule mining of the set, an AR set Γ is derived. Each
rule in Γ is in form of R : X ⇒ y. Given the value set of

token t as V (t) and Γt = {R|R ∈ Γ, y ∈ V (t)}, Γt contains
all association rules related to t. Therefore, for strings con-
taining tokens with values in the X of R, we can use R for
the repair and y is selected to repair t.

Such method takes advantage of the context or the asso-
ciation relations to determine the values. As a tradeoff, it
requires extra efforts for association-rule discovery.

4.3 Value Repair Method Selection
As discussed before, these two methods are complemen-

tary. In this subsection, we discuss how to choose a proper
value repair method.

We first define comparable measures for the approaches
and select by comparing these measures. As we know, for
an association rule R : X ⇒ y, confidence(R) describes the
possibility of correctness and the reliability of amendment
of token t using X. For methods comparison, we propose
“confidence” of edit-distance-based method denoted by γ as

γ = 1−min{ed(s,V (t))}
len(s)

, where s is the wrongly-written string.

Since γ is the largest proportion of correct characters in s,
the closer s is to some string in V (t), the more possible this
repair is correct. Therefore, γ could perfectly describe the
confidence of the edit-distance-based repair.

With the definitions of confidences, we propose the selec-
tion strategy. For substitution operator, the strategy with
maximum confidence is selected. Since insertion operator
has no original value as reference, the value repair depends
on the association rules. The strategy is as follows.

Given a token t, its original value s, confidence(Rt) and
γt, for a substitution operator [S,t], judge whether Rt ex-
ists such that confidence(Rt) > γt. If so, t is repaired
according to the Rt with maximal confidence(Rt). Other-
wise, t is set to s′ in V (t) with minimal ed(s, s′). For an
insertion operation [I,t], find the rule R : X ⇒ y with
maximum confidence(Rt) and t is set to y. The following
example continues Example 2 to explain the value repair.

Example 4. Suppose E1 is written as “itcmp” while the
value set of P is {tcp,ip,icmp,udp}, <SIP> <DIP> are both
80, and R : {SIP = 80, DIP = 80} ⇒ {P = tcp} is an AR
mined from data set, confidence(R) = 0.9, the comparison
of the two methods is as follows.

According to the edit-distance based method, the confi-
dences of values of V (P) are as follows, γip = 0.4, γtcp =
0.6, γicmp = 0.8, γudp = 0.2. Transforming E1 to “icmp” is
a wise choice. But according to the AR-based method, rule R
suggest that E1 be modified to “tcp”. Since confidence(R) >
γ(icmp), we select “tcp” for repair.

5. EXPERIMENTS
In this section, we show the results and analyses of the

effectiveness and efficiency.

5.1 Experimental Settings
Environment. We implement the algorithms by C++

compiled by GCC on a PC with an Intel Core i7 2.1GHz
CPU, 8GB memory, and 64bit Windows 8.1.

Data Sets. To test our algorithm comprehensively, we
use both real and synthetic data. For real data, we choose
the intrusion detection rules of Snort1 and MovieLens user

1Available at https://www.snort.org/downloads/community
/community-rules.tar.gz. It contains rules that were created
by Sourcefire, Inc.

439

rating data2. As is mentioned, IDS uses “rules” to record
the properties of malicious Internet packets. These rules are
written in an language that can match a regex. MovieLens
rating data is collected by GroupLens Research from the
MovieLens web site [1]. Its regex pattern is in Section 1.

For synthetic data, the verification of shortcomings about
shorter and more closures and options mentioned in Subsec-
tion 3.2 should be considered. To achieve this, we artificially
create 4 regexes by character a-z with different traits. Par-
ticularly, Regex2 and Regex4 have more and shorter closures
than Regex1 and Regex3, which are

Regex 1 a*b((cd)|(de)|(ec))*f((gh)|(ij)|(klm))*n((o(pqz)*)|((r|s)t*))((uv)|(wxy))*

Regex 2 (ab)*cde*(fgh)*((ij)*kl)*m(n*op)*((qrs)*(tu)*)*(vwxy)*z

Regex 3 ((ab)|c)*((def)|(gh))*(ijk)*((lmn)*|(opq)*)*((rst)|(uvw)|(xyz))*

Regex 4 ((ab)|(cd))*ef((ghi)*|(jk)*)((lm)*|(nop)*)*((qr)*s|t(uv)*)*w(x|y)*z

To control the error ratio, we inject errors to the strings.
For each string in the data set, we choose µ proportion of
positions and randomly revise, delete the token or insert a
token in such position. Meanwhile, we keep a copy of the
uncontaminated data and exploit it as the ground truth.

We consider 4 parameters that may affect the perfor-
mance: the number of strings in data set, denoted by M ;
the average proportion of error characters in the strings, de-
noted by µ; the average length of data strings, denoted by
L̄s; the error type, denoted by T . The default settings are
M = 2, 000, µ = 5%, L̄s = 45, and T = {L,R,D} (repre-
senting Loss, Redundance and Displacement).

Measures. We considered to use Precision and Recall
with following definitions to measure the performance.

Precision =
|incorrect entries|

⋂
|actual repairs|

|actual repairs|

Recall =
|incorrect entries|

⋂
|actual repairs|

|incorrect entries| .

Incorrect entries is the set of erroneous items in data sets
artificially injected and actual repairs is the set of amend-
ments actually conducted. In the experimental results, we
find Precision and Recall are always equal to 1. The rea-
son is all error tokens can be discovered due to disobe-
dience to the regex and then repaired, which means that
incorrect entries = actual repairs. To test the effective-
ness of the algorithms more deeply, we use Accuracy and
Improve Rate as the measures.

Before explaining the parameters, we define set AC and
W . AC is the set of RSR algorithm repaired strings (each
one is uniquely produced) that are equal to the ground truth.
W is the set of strings with injected errors. The Accuracy,

denoted by λ, is defined as λ = |AC|
|W | . It represents the over-

all repair performance. That is, RSR algorithm’s capability
to restore the entire data set.

We also use Improve Rate ω to describe the performance
regarding individual data items and the extent to which a
single item is repaired. Given the original string so, error

string se, and the repaired string sr, ω = 1 − ed(so,sr)
ed(so,se)

. We

use ω̄ =
Σ
|W |
i=1 ωi
|W | to show the overall effectiveness. Notice

that ω̄ < 0 is means a repair with negative impact.
To measure efficiency, we use the time duration of execu-

tion of the algorithm, denoted by t. The unit of run time is
second (s).

2Available at http://grouplens.org/datasets/MovieLens

0 3 0 0 0 0 6 0 0 0 0 9 0 0 0 0 1 2 0 0 0 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9

Ac
cu

rac
y

D a t a S i z e

 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

(a) M vs. λ

0 3 0 0 0 0 6 0 0 0 0 9 0 0 0 0 1 2 0 0 0 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9

AV
G(

Im
pro

ve
 Ra

te)

D a t a S i z e

 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

(b) M vs. ω̄

Figure 4: The Impact of Data Size M for Synthetic Sets

0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0 3 6 0 00 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

AV
G(

Im
pro

ve
 Ra

te)

Ac
cu

rac
y

D a t a S i z e

 A c c u r a c y
 I m p r o v e R a t e

(a) Snort Rules

0 9 0 0 1 8 0 0 2 7 0 0 3 6 0 00 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

 AV
G(

Im
pro

ve
 Ra

te)

Ac
cu

rac
y

D a t a S i z e

 A c c u r a c y
 I m p r o v e R a t e

(b) MovieLens Rating

Figure 5: The Impact of Data Size M for Real Sets

5.2 Results and Analysis
In this subsection, we show experimental results and anal-

yses of λ and ω when varying M , µ, L̄s and T .

5.2.1 Experiments on Effectiveness
The Impact of Data Size (M). To test the RSR al-

gorithm’s scalability, we execute it on 40 synthesis sets of 4
regexes with M varying from 10,000 to 100,000, 22 real sets
of the Snort Rules and the MovieLens ratings with M vary-
ing from 300 to 3,300. Experimental results are shown in
Figure 4 and Figure 5. These figures manifest that M does
not affect the accuracy and the improve rate. The reason is
that sequence repair only concerns about individual items
rather than the overall data set.

Besides, the performances vary significantly among regex-
es. In Figure 4, the accuracy and the average improve rate
of Regex 3 are larger than those of Regex 2 and Regex 4 due
to the disadvantage of the priority of RSR algorithm. As a
comparison, the regexes of the Snort Rules and MovieLens
ratings with longer closure sequences achieve better λ and
ω̄ than those on synthetic sets, as shown in Figure 5.

The Impact of Error Rate (µ). To evaluate the impact
of µ, we assign µ in {1%-10%} and {10%-50%}. Since data
for Regex 1 with average length 50 is not enough due to the
shortage of closures, we abandon such data sets.

The experimental results on synthetic and real data are
shown in Figure 6 and Figure 7 respectively. From the re-
sults, we observe that the accuracy decreases along with the
growth of µ. Such phenomenon is explained as follows. Sup-
pose the probability that an error is correctly repaired is pa
and the string s has q = µ · len(s) errors, then λ of this set

is λ = pqa = p
µ·len(a)
a , which means that λ is exponential

to µ and would decrease while µ increases. Accuracies of
Figure 7(c) and Figure 7(d) decrease slowly with fluctua-
tions since the structural context information of the regex
of MovieLens data set is sufficient, which contribute to ac-
curacy and enlarges pa to make it close to 1.

440

1 2 3 4 5 6 7 8 9 1 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 1
Ac

cu
rac

y

E r r o r R a t e (%)

 R e g e x 2
 R e g e x 3
 R e g e x 4

(a) µ vs. λ

1 2 3 4 5 6 7 8 9 1 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 2

AV
G(

Im
pro

ve
 Ra

te)

E r r o r R a t e (%)

 R e g e x 2
 R e g e x 3
 R e g e x 4

(b) µ vs. ω̄

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 50 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

Ac
cu

rac
y

E r r o r R a t e (%)

 R e g e x 2
 R e g e x 3
 R e g e x 4

(c) µ vs. λ

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 50 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

AV
G(

Im
pro

ve
 Ra

te)

E r r o r R a t e (%)

 R e g e x 2
 R e g e x 3
 R e g e x 4

(d) µ vs. ω̄

Figure 6: The Impact of Error Rate µ for Synthetic Sets

1 2 3 4 5 6 7 8 9 1 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 2

AV
G(

Im
pro

ve
 Ra

te)

Ac
cu

rac
y

E r r o r R a t e (%)

 A c c u r a c y
 I m p r o v e R a t e

(a) µ ∈ {1%− 10%}(S)

0 1 0 2 0 3 0 4 0 5 0 6 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 2
 AV

G(
Im

pro
ve

 Ra
te)

Ac
cu

rac
y

E r r o r R a t e (%)

 A c c u r a c y
 I m p r o v e R a t e

(b) µ ∈ {10%− 50%}(S)

0 1 2 3 4 5 6 7 8 9 1 0 1 10 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

 AV
G(

Im
pro

ve
 Ra

te)

Ac
cu

rac
y

E r r o r R a t e (%)

 A c c u r a c y
 I m p r o v e R a t e

(c) µ ∈ {1%− 10%}(M)

0 1 0 2 0 3 0 4 0 5 00 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5
1 . 0 0

 AV
G(

Im
pro

ve
 Ra

te)

Ac
cu

rac
y

E r r o r R a t e (%)

 A c c u r a c y
 I m p r o v e R a t e

(d) µ ∈ {10%− 50%}(M)

Figure 7: The Impact of Error Rate µ for Real Data Set

According to Figure 6(b), Figure 6(d) and Figure 7, ω̄
keep around unchanged on both sets showing an stable re-
pairing effectiveness of RSR algorithm. We show two pie-
charts of the proportion of ω in data set of Regex 3 in Fig-
ure 8(a) with µ = 5% and Figure 8(b) with µ = 20% to ob-
serve its distribution. From these figures, most of individual
improve rates are in [0.8, 1] and the items with ω > 0.6 is
over 75%. It shows that our approach is effective.

The Impact of Average Length (L̄s). Since the length
of real data in uncontrollable, we only conduct experiments
on the synthetic data sets divided by string length. Group
1 has strings with length in [1, 5), Group 2 in [5, 10), Group
3 in [10, 15), and so on. Only groups with over 2,000 items
are considered in this experiments. The results are Figure 9.
The accuracy decreases when strings get longer, which is also

caused by λ = pqa = p
µ·len(a)
a . Additionally, ω̄ is still stable.

To illustrate the distribution of ω of Regex 3, we also draw
two pie-charts for L̄s = 15 and L̄s = 65 in Figure 10. Similar
to Figure 8, high improvement repairs dominate the cases

2 . 8 4 %
2 . 9 6 %

8 4 . 2 1 %

2 . 9 %
7 . 0 8 %

 0 - 0 . 2
 0 . 2 - 0 . 4
 0 . 4 - 0 . 6
 0 . 6 - 0 . 8
 0 . 8 - 1

(a) µ = 5%

4 7 . 9 5 %

2 8 . 5 5 %
1 5 . 6 % 5 . 8 %2 . 1 %

 0 - 0 . 2
 0 . 2 - 0 . 4
 0 . 4 - 0 . 6
 0 . 6 - 0 . 8
 0 . 8 - 1

(b) µ = 20%

Figure 8: Proportion of Improve Rate ω for Regex 3

0 1 0 2 0 3 0 4 0 5 0 6 0 7 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 0

Ac
cu

rac
y

S t r i n g L e n g t h

 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

(a) L̄s vs. λ

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 2 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

AV
G(

Im
pro

ve
 Ra

te)

S t r i n g L e n g t h
(b) L̄s vs. ω̄

Figure 9: The Impact of Average String Length L̄s for

Synthetic Data Sets

which also shows the effectiveness.
The Impact of Error Type (T). To test the impact of

error types, we inject only one error type T for each group
with the same µ. The results of synthetic and real data are
in Table 9. We observe that when T = L (Loss), the λ
and ω̄ of Regex 2 and Regex 4 are much lower than that of
Regex 3. This is another evidence of disadvantages of pri-
ority mechanism of RSR algorithm. Besides, λ and ω̄ about
Redundance and Displacement and the overall performance
on the real data are all higher than 0.7.

Table 9: The Impact of Error Type T on Performance

Error Type (T) R L D
Performance λ ω̄ λ ω̄ λ ω̄

Regex 2 0.82 0.91 0.23 0.13 0.88 0.94
Regex 3 0.98 0.98 0.57 0.58 0.94 0.97
Regex 4 0.74 0.86 0.22 0.05 0.82 0.90

Snort Rules 0.95 0.97 0.88 0.92 0.93 0.93
MovieLens Rating 1 1 0.85 0.84 0.91 0.91

5.2.2 Experiments on Efficiency
Since the efficiency is affected by the data size and string

length, we test the impact of these two parameters.
We vary the data size M from 10,000 to 100,000 in syn-

thetic sets and from 300 to 3,300 in the real sets. The results
are in Figure 11. From such results, it is observed that the
run time t is around linear with M . The differences of slopes
are caused by the difference of the average length of the four
sets and the difference of edge numbers of the four regexes’
NFA which dominate the size of Matrix C.

We varies the string length from 5 to 70. The relation
of L̄s and run time t is shown in Figure 12. t grows along
with Ls around linearly, which coincides the time complexity
O(nm2). µ does not affect the execution time. Table 10
shows the relationship between µ and t. From the results,

441

Table 10: The Impact of Error Rate µ on Run Time

µ 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 20% 30% 40% 50%
Regex 2 3.57 3.60 3.59 3.60 3.63 3.54 3.60 3.62 3.56 3.57 3.62 3.54 3.54 3.50
Regex 3 4.63 4.66 4.62 4.79 4.69 4.79 4.70 4.74 4.71 4.72 4.66 4.74 4.70 4.51
Regex 4 4.58 4.53 4.62 4.60 4.70 4.66 4.64 4.67 4.53 4.58 4.44 4.46 4.47 4.38

5 9 . 1 2 %

6 . 1 6 %
8 . 6 2 %

5 . 0 1 % 2 1 . 1 %

 0 - 0 . 2
 0 . 2 - 0 . 4
 0 . 4 - 0 . 6
 0 . 6 - 0 . 8
 0 . 8 - 1

(a) L̄s = 15

5 6 . 5 %

1 0 . 0 8 %
1 0 . 6 4 % 6 . 2 4 % 1 6 . 5 4 %

 0 - 0 . 2
 0 . 2 - 0 . 4
 0 . 4 - 0 . 6
 0 . 6 - 0 . 8
 0 . 8 - 1

(b) L̄s = 65

Figure 10: Proportion of Improve Rate ω for Regex 3

2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0

tim
e (

s)

D a t a S i z e

 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

(a) Synthetic Data Sets

0 9 0 0 1 8 0 0 2 7 0 0 3 6 0 005 01 0 01 5 02 0 02 5 03 0 03 5 04 0 04 5 05 0 0

tim
e(s

)

D a t a S i z e

 M o v i e l e n s
 S n o r t R u l e

(b) Real Data Sets

Figure 11: The Impact of Data Size M on Run Time

our algorithm repairs 2,000 strings with average length 45
within 5s, which shows the efficiency of it.

The relation of T and t is given in Table 11. Redundant
errors cost slightly less than Losses and Displacements, since
deletions are considered in the first round that lessen the
calculation pressure of the second one.

5.2.3 Experiments on Optimization
We evaluate the acceleration impact of the optimization

strategy on both synthetic and real data sets and all pa-
rameters are under default setting. We compare run time,
Accuracy λ and Improve Rate ω̄ of the unoptimized algo-
rithm (Algorithm 1) with the optimized one (Algorithm 3)
to observe the tradeoff of correctness and efficiency.

Table 12 shows the comparison between the run time of
the original and optimized algorithm for synthetic data. λ

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 01 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5

tim
e (

s)

S t r i n g L e n g t h

 R e g e x 1
 R e g e x 2
 R e g e x 3
 R e g e x 4

Figure 12: The Impact of Average String Length L̄s
on Run Time

Table 11: The Impact of Error Type T on Run Time

T L R D
Regex 2 3.80 3.46 3,62
Regex 3 4.89 4.42 5.10
Regex 4 4.65 4.37 4.53

Snort Rule 134 133.50 133.50
MovieLens Rating 31.19 31.07 31.08

Table 12: Optimization

for Synthetic Data Sets

Regex 1 2 3 4

Original 11.04 10.02 13.42 13.25
Optimized 10.18 9.12 13.05 12.08

Table 13: Optimization for

Real Data Sets

Data Set Algorithm t λ ω̄

Snort Original 495.80 0.872 0.945
Rules Optimized 411.03 0.854 0.920

MovieLens Original 18.205 0.876 0.891
Ratings Optimized 10.32 0.846 0.821

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 50 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 2

Ac
cu

rac
y

E r r o r R a t e (%)

 R S R A l g o r i t h m
 R u l e - b a s e d R e p a i r

(a) Comparison on λ

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5- 0 . 6
- 0 . 4
- 0 . 2
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

AV
G(

Im
pro

ve
 Ra

te)

E r r o r R a t e (%)

 R S R A l g o r i t h m
 R u l e - b a s e d R e p a i r

(b) Comparison on ω̄

Figure 13: Comparison on Different Repair Methods

and ω̄ of these methods are identical. Table 13 gives the
results for real data. The evaluation shows that the op-
timization strategy has considerable capability on cutting
down the time cost (an average of 7.1% for synthetic data
and 30.2% for real data), especially in long data strings and
pattern regex. On the other hand, it can still maintain the
effectiveness on a high level since the average loss of accu-
racy in real data is less than 3%.

5.2.4 Comparison with Dependency-Rule-Only Re-
pair

In order to compare difference of effectiveness of struc-
tural repair between RSR algorithm and Dependency-Rule-
Only repair strategy, we derive the dependencies from the
structure requirements and measure the λ and ω̄ on various
amount of errors by controlling µ. For example, if the regex
is xA|yB, then we derive that x→ A and y → B. Figure 13
shows the results.

For Accuracy (λ) in Figure 13(a), RSR algorithm is higher
than Dependency-Rule-Only method. For Improve Rate (ω̄)
in Figure 13(b), the Dependency-Rule-Only method shows
negative impact, indicating that it does not suit for struc-
tural repair.

5.2.5 Summary
In summary, we can draw following conclusions from the

experiments.

442

• Compared with dependencies, regex-based method is more
applicable to structural repairs, especially for regex con-
strained data. Dependencies, due to lack of structural
insight, performs poorly and even harmfully on this re-
pairing topic.
• Data size M has no effect on accuracy and improve rate.

The accuracy λ decreases along with the growth of µ and
Ls which can be explained by λ = pµ·Lsa . However, the
average improve rate ω̄ would remain stable regardless of
µ or Ls. As for error type T , losses are more difficult to
discover and repair due to the priority in RSR algorithm,
especially for errors in small closures. In all, the proposed
algorithm could repair the errors according to the regex.
• λ and ω̄ are also dominated by an unquantifiable prop-

erty of the structure of regex. To put it simple, regexes
with longer but less closures are more likely to avoid the
disadvantages and have higher accuracy and improve rate
in repair than those who do not.
• The efficiency is affected by data size, average length of

strings and error types. The run time is linear with M and
Ls, while T has little impact on that. Additionally, RSR
algorithm can repair 2,000 items within 5 seconds. That
is, given a string and a regular expression, our approach
only takes at most tens of ms, which shows that our ap-
proach is efficient and scalable. On the other hand, the
optimization strategy shows acceptable performance on
decreasing the run time, particularly in long data strings
and regexes, and on maintaining effectiveness.

6. CONCLUSION
To repair the strings violating the regex, we propose the

RSR algorithm in this paper. We also combine edit-distance-
based approach and associate rules to determine the insert-
ed or revised values. Experimental results demonstrate the
efficiency and effectiveness of the proposed algorithm.

Our algorithm is suitable for large-scale regex-based da-
ta cleaning, which is an comparatively new topic with few
efforts. The future work aims at better accuracy and ef-
ficiency. For accuracy, the optimization to overcome the
disadvantages of RSR algorithm will be conducted. More
flexible definitions about regexes can also help avoid such
disadvantages. For efficiency, parallel computing can be in-
troduced since the repairing process for individual strings
or tokens are independent given the NFA of the pattern and
string entries can be repaired via multiple processors.

7. ACKNOWLEDGEMENTS
This paper was supported by NGFR 973 grant

2012CB316200, NSFC grant 61472099, 61133002 and Na-
tional Sci-Tech Support Plan 2015BAH10F01. Hongzhi
Wang and Zeyu Li contributed to the work equllly and
should be regarded as co-first authors. Hongzhi Wang is
the corresponding author of this work.

8. REFERENCES
[1] Summary of movielens datasets.

http://files.grouplens.org/datasets/movielens/

ml-1m-README.txt.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, pages
487–499, 1994.

[4] M. Arenas, L. E. Bertossi, J. Chomicki, X. He,
V. Raghavan, and J. P. Spinrad. Scalar aggregation in
inconsistent databases. Theor. Comput. Sci.,
296(3):405–434, 2003.

[5] A. Backurs and P. Indyk. Edit distance cannot be
computed in strongly subquadratic time (unless SETH
is false). In STOC, pages 51–58, 2015.

[6] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional
dependencies for data cleaning. In ICDE, pages
746–755, 2007.

[7] F. Chiang and R. J. Miller. Discovering data quality
rules. PVLDB, 1(1):1166–1177, 2008.

[8] D. Deng, G. Li, J. Feng, and W. Li. Top-k string
similarity search with edit-distance constraints. In
ICDE, pages 925–936, 2013.

[9] X. L. Dong, L. Berti-Equille, and D. Srivastava.
Integrating conflicting data: The role of source
dependence. PVLDB, 2(1):550–561, 2009.

[10] X. L. Dong, L. Berti-Equille, and D. Srivastava. Truth
discovery and copying detection in a dynamic world.
PVLDB, 2(1):562–573, 2009.

[11] W. Eckerson. Data quality and the bottom line.
Journal of Radioanalytical & Nuclear Chemistry,
160(4):355–362, 1992.

[12] W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring
data currency and consistency for conflict resolution.
In ICDE, pages 470–481, 2013.

[13] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In
WSDM, pages 131–140, 2010.

[14] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The
LLUNATIC data-cleaning framework. PVLDB,
6(9):625–636, 2013.

[15] K. Lakshminarayan, S. A. Harp, R. P. Goldman, and
T. Samad. Imputation of missing data using machine
learning techniques. In KDD, pages 140–145, 1996.

[16] C. Mayfield, J. Neville, and S. Prabhakar. ERACER:
a database approach for statistical inference and data
cleaning. In SIGMOD, pages 75–86, 2010.

[17] I. O. Medicine, J. M. Corrigan, and M. S. Donaldson.
To err is human: Building a safer health system.
Institute of Medicine the National Academies,
7(4):245–246, 2000.

[18] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
interactive data cleaning system. In VLDB, pages
381–390, 2001.

[19] N. A. Setiawan, P. A. Venkatachalam, and A. F. M.
Hani. Missing attribute value prediction based on
artificial neural network and rough set theory. In
BMEI, pages 306–310, 2008.

[20] R. A. Wagner and M. J. Fischer. The string-to-string
correction problem. J. ACM, 21(1):168–173, 1974.

[21] T. Warren. Using regular expressions for data
cleansing and standardization.
http://www.kimballgroup.com/2009/01/using-regular-
expressions-for-data-cleansing-and
-standardization.

443

