
Maximizing Bichromatic Reverse Spatial and Textual k
Nearest Neighbor Queries

Farhana M. Choudhury J. Shane Culpepper Timos Sellis
School of CSIT, RMIT University, Melbourne, Australia

{farhana.choudhury, shane.culpepper, timos.sellis}@rmit.edu.au

Xin Cao
School of EEE and CS, Queen’s University, Belfast, UK

x.cao@qub.ac.uk

ABSTRACT
The problem of maximizing bichromatic reverse k nearest neighbor
queries (BRkNN) has been extensively studied in spatial databases.
In this work, we present a related query for spatial-textual databases
that finds an optimal location, and a set of keywords that maximizes
the size of bichromatic reverse spatial textual k nearest neighbors
(MaxBRSTkNN). Such a query has many practical applications in-
cluding social media advertisements where a limited number of rel-
evant advertisements are displayed to each user. The problem is to
find the location and the text contents to include in an advertise-
ment so that it will be displayed to the maximum number of users.
The increasing availability of spatial-textual collections allows us
to answer these queries for both spatial proximity and textual sim-
ilarity. This paper is the first to consider the MaxBRSTkNN query.
We show that the problem is NP-hard and present both approximate
and exact solutions.

1. INTRODUCTION
Bichromatic reverse k nearest neighbor (BRkNN) [10, 17] and

maximizing BRkNN (MaxBRkNN) queries [21, 20, 26, 12, 11] have
received considerable attention in the spatial database community.
Given two sets of spatial objects O and P over a shared dataspace,
a BRkNN query issued by an object p ∈ P returns all the objects
o ∈ O that have p as a kNN in P. A MaxBRkNN query finds the
optimal region to place an object p such that the cardinality of the
results of the BRkNN query issued by p in O is maximized.

A practical application of BRkNN queries is to find potential cus-
tomers who would visit a restaurant based on their locations. Given
the same context, a MaxBRkNN query would find a region to estab-
lish a new restaurant p such that p is a kNN of the maximum num-
ber of customers. In the literature, spatial distance is usually the
sole relevance factor. However, customers are generally interested
in the products and services as well as the location. Therefore,
spatial-textual queries are of interest in these settings.

Top-k spatial-textual queries [3, 25, 16] return the k most similar
objects to the query object, where the similarity measure consid-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 6
Copyright 2016 VLDB Endowment 2150-8097/16/02.

u1

u2

u4

o1

o2u3

(a)

u1

u2

u4

o1

o2u3

l1
l2

l3

(b)

ID Keywords
u1 sushi, seafood
u2 sushi
u3 sushi, noodles
u4 noodles
o1 sushi
o2 noodles

Figure 1: Example of a MaxBRSTkNN query.

ers both spatial proximity and textual similarity. Reverse Spatial-
Textual kNN (RSTkNN) queries have also been studied previously [13,
14] . An RSTkNN finds objects that have the query objects q as
one of the k most spatial-textual relevant objects. An example ap-
plication of reverse queries is to identify potential customers who
consider a product as highly relevant for a service provider. This
allows a service provider to satisfy customer preferences, and find
locations close to potential customers. Now consider the following
two example applications for spatial-textual queries:

EXAMPLE 1. In social media advertising, a user is shown a
limited number of advertisements that are highly relevant to her lo-
cation and preferences (i.e., top-k relevant advertisements). In this
case, the application is to find the location and the keywords to in-
clude in an advertisement such that it is displayed to the maximum
number of users. For space and cost reasons, we assume that there
is a limitation on the number of keywords per advertisement.

EXAMPLE 2. Consider an application that finds the optimal lo-
cation to open a restaurant, and the items to include in the menu
such that it will be a top-k restaurant for the maximum number of
customers. In Figure 1a, the users u1, . . . ,u4 are shown with cir-
cles; o1 and o2 are existing restaurants. The table shows the corre-
sponding text descriptions. Here, the top-1 spatial-textual relevant
restaurant for each user is shown with a connecting dotted line.
Suppose a service provider wants to open a new restaurant, ox in
one of the locations l1, l2, l3 shown with triangles in Figure 1b, and
for cost reasons, the number of menu items that can be displayed
is ‘1’. The choices of the menu items are {‘sushi’, ‘seafood’,
and ‘noodles’}. If ox is placed in l1, and the menu is ‘sushi’, ox
becomes a top-1 relevant restaurant for u1, u2, and u3, as shown in
Figure 1b. For the given choices of locations and keywords, and the
other competitor restaurants, ox can be the top-1 relevant restau-
rant of a maximum of ‘3’ users here. So in this example, the optimal
location and menu item are l1 and ‘sushi’, respectively.

In these examples, the underlying problem is to find the loca-
tion and text description for a specific product or service such that

456

the product is one of the top-k most relevant objects of the maxi-
mum number of users, i.e., maximizing the size of the bichromatic
RSTkNN (BRSTkNN) of the product. Here, the top-k ranking is
based on both spatial proximity and textual relevance. In this paper,
we study this new query and refer to it as a Maximized Bichromatic
Reverse Spatial Textual k Nearest Neighbor (MaxBRSTkNN) query.
To the best of our knowledge, we are the first to explore this query
in the spatial-textual database domain.

DEFINITION 1. Let D be a bichromatic dataset, where U is a
set of users and O is a set of objects. Each u ∈U and each o ∈O is
associated with a location and a set of keywords. A MaxBRSTkNN
query q(ox,L,W,ws,k) over D, where ox is a spatial-textual object,
L is a set of candidate locations, W is a set of candidate keywords,
ws is a positive integer where ws ≤ |W |, and the number of relevant
objects to be considered k, finds a location ` ∈ L and a set of key-
words W ′ ⊆W, |W ′| ≤ ws such that if ox is located in ` and W ′ is
the text description of ox, the cardinality of the results of BRSTkNN
of ox is maximized. If ox has an existing text description then W ′∪
(existing text of ox) and ` combine to maximize |BRSTkNN| of ox.
Otherwise, W ′ becomes the text description of ox.

Existing work for the MaxBRkNN problem focuses on spatial
proximity only, and rely on different spatial properties such as in-
tersecting geometric shapes [21, 20], space partitioning [26], or
sweep-line techniques [12, 11] (more details in Section 2.1). There-
fore, these approaches cannot be directly applied to the textual sim-
ilarity part of our problem. Moreover, the existing index and solu-
tions for answering RSTkNN queries [13, 14] are for the monochro-
matic case only – both the data objects and the query objects belong
to the same type. In contrast, the MaxBRSTkNN query is bichro-
matic since there are two types of objects in the dataset, namely the
users U and the objects O. Therefore, the techniques to answer the
RSTkNN queries are not applicable to the MaxBRSTkNN problem.
See Section 2.2 for further details.

Contributions. The key contributions of this research are:
1. We introduce a new type of query, MaxBRSTkNN, which finds a

location and a set of keywords for an object so that the BRSTkNN
of the object is maximized.

2. We prove that the MaxBRSTkNN query is NP-hard.
3. We develop approximate and exact algorithms to answer the

query using effective dynamic pruning strategies, based on new
spatial-textual indexes.

4. We present an efficient method to compute the top-k objects
jointly, which is essential to improve the overall performance
and of independent interest.

5. We conduct an extensive experimental study to show the effi-
ciency of our approach using two datasets.

2. RELATED WORK
In this section we review previous work in the areas spatial databases,

spatial-textual queries, and top-k query processing.

2.1 Spatial databases
Relevant work from the spatial database domain can be catego-

rized mainly as Maximizing Bichromatic Reverse k Nearest Neigh-
bor (MaxBRkNN) queries and location selection queries.

MaxBRkNN queries. Wong et al. [21] introduced the MAXOVER-
LAP algorithm to solve the MaxBRkNN problem. The algorithm
iteratively finds the intersection point of the Nearest Location Cir-
cles (NLCs) that are covered by the largest number of NLCs. The
optimal region is the overlap of these NLCs. This work also sup-
ports `-MaxBRkNN queries to find the ` best regions. In a later

work, Wong et al. [20] extended the MAXOVERLAP algorithm to
support the Lp-norm and three-dimensional space. However, the
scalability of MAXOVERLAP is an issue, as the computation of the
intersection points for the NLCs is expensive.

Other works exist that overcome the limitations of MAXOVER-
LAP. Zhou et al. [26] introduced the MAXFIRST algorithm which
iteratively partitions the space into quadrants and use the NLCs
to prune the quadrants that cannot be a part of the result. Liu et
al. [12] present MAXSEGMENT algorithm that transforms the opti-
mal region search problem to the optimal interval search problem.
They use a variant of plane sweep to find the optimal interval.

Approximate solutions have also been proposed to improve the
efficiency. Lin et al. [11] propose OPTREGION where each NLC
is approximated by the minimum bounding rectangle (MBR) and a
sweep-line technique is used to find the overlapping NLCs. An es-
timation of the number of overlapping NLCs is computed using the
MBRs to prune the intersection points. Alternately, Yan et al. [22]
propose a grid-based approximation algorithm called FILM. Since
the algorithm is approximate, the solution requires an order of mag-
nitude less computation time than MAXOVERLAP. The authors
extended FILM to answer the related problem of locating k new
services that collectively maximize the total number of users.

These works focus solely on spatial properties such as the in-
tersection of geometric shapes [21, 20], space partitioning [26], or
sweep-line techniques [12, 11] in the query processing methods.
Therefore, it is not straightforward to extend these solutions to sup-
port the textual component of the MaxBRSTkNN query.

Location selection queries. The works [8, 24] present the opti-
mal location queries, which find a location for a new facility that
minimizes the average distance from each customer to the clos-
est facility. Zhang et al. [24] propose the MDOL prog algorithm
that partitions the space to find the optimal location. The work [8]
maintain the influence set of a potential location p that includes the
customers for whom the nearest facility distance is reduced if a new
facility is established at p. A similar problem is presented in [7] to
find a location for a new server such that the maximum distance
between the server and any client is minimized. Huang et al. [6]
explore the maximal influence query, where the influence of a loca-
tion p represents the cardinality of customers whose corresponding
nearest facility will be p if a new facility is established in p. A
maximal influence query finds the optimal location to place a new
facility such that the influence of that facility is maximized.

These queries focus on an aggregation over distances from the
query location, e.g., the average or the minimum distance. These
works do not directly address maximizing the BRkNNs problem.

2.2 Spatial-textual databases
In the literature of spatial-textual queries, the reverse spatial-

textual kNN (RSTkNN) [13, 14] is the most relevant to our problem.

RSTkNN. Given a dataset D of spatial-textual objects, a target
query object q, the RSTkNN query finds all the objects in D that
have q in their list of top-k relevant objects. The ranking of the ob-
jects use an objective function which combines both spatial prox-
imity and text relevancy. Lu et al. [13] propose the Intersection-
Union R-tree (IUR-tree) index, and later present a cost analysis
in [14] for RSTkNN queries. Each node of an IUR-tree consists of
an MBR and two textual vectors: an intersection vector and a union
vector. The weight of each term in the intersection (union) tex-
tual vector is the minimum (maximum) weight of the terms in the
documents that are contained in the corresponding subtree. Each
non-leaf node is also associated with the number of objects in the
subtree rooted at that node.

457

In their proposed solution, an upper and a lower bound estima-
tion of similarity is computed between each node of the IUR-tree
and the k·th most similar object. A branch-and-bound algorithm is
then used to answer the RSTkNN query. In this work, the computa-
tion of the bounds and the algorithm are designed for the monochro-
matic case only since both the data objects and the query objects
belong to the same type, and the nodes of the tree store only one
type of object.

2.3 Other top-k maximizing queries
Chen-Yi et al. [2] select k products from a set of candidates

such that the expected number of customers is maximized. Each
customer is associated with a requirement vector, and a customer
chooses any product that satisfies the requirement with equal prob-
ability. This work does not consider the ranking of the product.
Vlachou et al. [18] determine the k most influential objects, where
influence of an object is the cardinality of the reverse top-k. The
ranking is based on a query weight vector. Koh et al. [9] select at
most k products from a set of candidates such that the total num-
ber of customers considering them as their top-t relevant products
is maximized. They assume a product is composed of n different
types of query independent components. Wan et al. [19] explore a
similar problem where given a set of existing products, a set of new
products is generated such that the products are not dominated by
the existing ones. In contrast, the candidates of the MaxBRSTkNN
problem are query parameters that are processed in query time.

3. PRELIMINARIES
Let D be a bichromatic dataset, where U is a set of users and O

is a set of objects. Each object o ∈ D is a pair (o.l,o.d), where o.l
is the spatial location (point, rectangle, etc.) and o.d is a set of key-
words. Each user u ∈U is also defined as a similar pair (u.l,u.d).
Recall from Definition 1 that a MaxBRSTkNN query returns a loca-
tion ` ∈ L and a set W ′ ⊆W , |W ′| ≤ ws such that, if ox.l = ` and
ox.d =W ′∪ox.d, the size of BRSTkNN of ox from U is maximized.
An object o is ranked based on a combined score of spatial proxim-
ity and textual relevance with respect to a user u, specifically, using
the following equation:

STS(o,u) = α ·SS(o.l,u.l)+(1−α) ·TS(o.d,u.d) , (1)

where SS(o.l,u.l) is the spatial proximity between locations, the
textual relevance is TS(o.d,u.d), and the preference parameter α ∈
[0,1] defines the importance of one relevance measure relative to
the other. The value of both measures are normalized within [0,1].
Here, a higher score denotes higher relevance.

Spatial proximity. The spatial proximity of an object o with re-

spect to a user u is: SS(o.l,u.l) = 1− dist(o.l,u.l)
dmax

, (2) where

dist(o.l,u.l) is the minimum Euclidean distance, and dmax is the
maximum Euclidean distance between any two points in D.

Text relevance. In this problem, an object o is considered relevant
to a user u iff o.d contains at least one term t ∈ u.d. Several mea-
sures can be used to compute the relevance between any two text
descriptions [15]. We present two commonly used text relevance
metrics and a non-metric measure in the following.

The TF-IDF metric weighs a term in a document based on term
frequency (TF) and inverse document frequency (IDF). The TF,
tf (t,d), is the number of times term t appears in document d, and
idf (t,O) = log |O|

|d∈O,tf (t,d)>0| measures the importance of t in the
set O. Here, the text relevance of an object o with respect to a user
u is TS(o.d,u.d) = ∑t∈u.d tf (t,o.d)× idf (t,O).

In Language Model (LM), the weight of a term t in the text
description of an object, o.d is defined as:

p̂(t|θo.d) = (1−λ)
tf (t,o.d)
|o.d|

+λ
tf (t,C)

|C|
, (3)

where C is the concatenation of all documents in the collection,
tf (t,C)
|C| is the maximum likelihood estimate of t in C, and λ is a

smoothing parameter for Jelinek-Mercer smoothing. [23] discuss
the appropriate settings of λ , which is used to adjust the maximum
likelihood estimator due to the data sparseness. In LM, the text
relevance of an object o with respect to a user u is:

TS(o.d,u.d) =
∑t∈u.d p̂(t|θo.d)

Pmax
, (4)

where Pmax is used to normalize the score into the range from 0 to
1 and is computed as, Pmax = ∑t∈u.d maxo′∈D p̂(t|θo′.d).

A non-metric text similarity measure is the Keyword Overlap
(KO), which is the intersection of the user and object keywords.

Formally, the Keyword Overlap is TS(o.d,u.d)= |u.d∩o.d|
|u.d| , where

|u.d| is used to normalized the score in [0,1].
In this paper, we describe our algorithm using the Language

Model. However, our approaches are applicable for any text-based
relevance measure. In Section 8, we compare the performances of
our approaches for different text similarity measures.

NP-Hardness. We now show that the MaxBRSTkNN problem is
NP-hard by reduction from the Maximum Coverage problem.

LEMMA 1. The MaxBRSTkNN problem is NP-hard.

PROOF. Given a collection of sets S = {S1,S2, . . . ,Sm} over a
set of objects O, where Si ⊆ O, and a positive integer p, the Max-
imum Coverage (MC) problem is to find a subset S′ ⊆ S such that
|S′| ≤ p and the number of covered elements by S′, i.e., | ∪Si∈S′ Si|
is maximized. The MC problem is NP-hard [5].

Consider a special case of the MaxBRSTkNN problem where α =
1. Here, the similarity score of the objects that contain at least one
of the user keywords are measured by the spatial proximity using
Equation 1. Also assume that the number of candidate locations,
|L| = 1 in this special case. So the location of ox.l = `, where ` is
the only candidate location in L.

For each candidate keyword wi ∈W , let BRSTkNN (`,wi) be the
set of users that have ox as a top-k object when wi is included in
ox.d. So we get a collection of the set of BRSTkNN users, one for
each wi ∈W . The goal of the MaxBRSTkNN query is to select at
most ws number of keywords from W , such that the total number of
BRSTkNN users is maximum. That is, solving the maximum cover-
age problem is equal to finding a subset of the candidate keywords,
W ′ ⊆W , where |W ′| ≤ ws maximizes |∪wi∈W ′ BRSTkNN(`,wi)|.

Again, BRSTkNN (`,wi) for each wi ∈W corresponds to each
set Si of the MC problem, where each user u j ∈U corresponds to
the object o j ∈ O. Therefore, finding a subset W ′ of the candidate
keywords where |W ′| ≤ ws maximizing | ∪wi∈W ′ BRSTkNN(`,wi)|
is equivalent to solving the maximum coverage problem.

4. BASELINE APPROACH
As MaxBRSTkNN is a new type of query, a first attempt at a so-

lution is to issue a BRSTkNN query for all possible tuples 〈`,c〉,
where ` is a candidate location from L, and c is a combination of
ws number of keywords from W . Then we return the tuple with the
maximum BRSTkNNs. However, prior work on RSTkNN addressed
only the monochromatic case. So, there is no obvious way to ex-
tend these approaches to MaxBRSTkNN queries. Another possible
approach is to solve the spatial component using one of the solution

458

o1

o5

o3

o4

o2

o6

o7

R1

R2
R4

R6
R5

R7

R3

(a) Objects and MBRs

o1

o5

o3

o4

o2

o6

o7

u5

u6

u1

u2

u3
u4

u7

(b) Objects and users

Figure 2: The placement of the objects and the users

for the MaxBRkNN problem, and solve the textual component sep-
arately. Then, the results can be combined to get the final answer.
But from the proof of Lemma 1, we know that the textual part of
the MaxBRSTkNN problem alone is NP-hard, even when there is
only one candidate location. So this extension cannot provide an
efficient solution for the MaxBRSTkNN problem.

Based on lessons learned in prior related work, we can however
propose a reasonable baseline for MaxBRSTkNN queries. In this
baseline, the important components are as follows.

Computing top-k objects. We assume all objects o∈O are stored
on disk and indexed using a spatial-textual index. We use the IR-tree
[3] to index O. The top-k objects for each user u ∈U are computed
using an IR-tree as originally described in [3]. Thus, the relevance
score RSk(u) of the k·th ranked object of each user u is obtained.

Selecting the best candidate. The set of keyword combinations C
of ws keywords from W are generated. For each candidate location
` ∈ L, and each keyword combination c ∈ C, the total relevance
score of ` and ox.d ∪ c are computed for the users u ∈ U , where
(ox.d ∪ c)∩ u.d 6= /0. If this score is greater than RSk(u), u is a
BRSTkNN for the tuple 〈`,c〉. In each iteration, the tuple that has
the maximum number of BRSTkNNs so far is tracked. Finally, the
best tuple is returned as the result. Note that this method returns
exactly ws number of keywords in the result.

Limitations. The above method is computationally expensive for
several reasons: (i) computing the top-k results for all the users; (ii)
iterating the process for all the candidate locations; (iii) generating
all the combinations, C of ws number of candidate keywords; and
(iv) computing the relevance scores of all the tuples of the candidate
locations, and c ∈ C for each user u ∈U . In addition, we need to
read all the users into memory to compute the top-k objects.

Moreover, the number of combinations of size ws from the can-
didate keywords is Nk =

(|W |
ws

)
, and the total number of tuples of

the candidate locations and keywords is |L|×Nk. As this number
is combinatorially large, scanning all combinations is not practical
for a large number of candidates. To overcome the limitations in
the baseline approach, we seek techniques that:
• Efficiently compute the top-k objects for the users;
• Avoids computing the top-k objects for the users that cannot af-

fect the result; and
• Prune the candidate locations and keywords that cannot be part

of the result.

5. JOINT TOP-K PROCESSING
To answer a MaxBRSTkNN query in the baseline approach, the

score of the k·th ranked object for each user must be determined.
Computing the top-k objects for each user requires retrieving the
objects from disk, which is not I/O efficient. Moreover, the same
objects might be retrieved multiple times for different users. To
overcome this drawback, we compute the top-k objects of the users
jointly using different pruning strategies, and ensure that an object

Table 1: Notation

Symbol Description

L The set of candidate locations
W The set of candidate keywords
ox The input object, for which a location and a set of

keywords are selected from candidates
W ′ The subset of W to return
ws The at most number of candidate keywords to return
RSk(u) Relevance score of the k·th ranked object of user u
us Super-user
LU` List of users that can be BRSTkNN for location `
max` The location with the maximum LU`

o1 o2 o3 o4 o5 o6 o7

R1 R2

R5 R6

R3 R4

R1 R2 R3 R4

R5 R6

InvFile1

InvFile5

InvFile7

InvFile6

InvFile2 InvFile3 InvFile4

R7

Figure 3: Min-max IR-tree (MIR tree)
is retrieved only once. Thus, we can reduce the overall compu-
tational costs by sharing processing and I/Os. We first present the
indexing method that we use to index the disk resident object set O,
and then we describe the algorithm. The frequently used symbols
are summarized in Table 1.

5.1 Index Structure
We first give an brief overview of the IR-tree [3]. Next, we de-

scribe how we have extended the IR-tree, denoted as the MIR-tree,
to index the set of objects O for the joint top-k processing.

IR-tree. The IR-tree is an R-tree where each node has a refer-
ence to an inverted file. Each node R contains entries of the form
(cp,rect,cp.di). If R is a leaf node, cp refers to an object o∈O, rect
is the bounding rectangle of o, and cp.di is an identifier of the text
description. Otherwise, cp refers to a child node of R, rect is the
MBR of all entries of that child node, and cp.di is the identifier of
a pseudo-document. The pseudo-document is the union of all text
descriptions in the entries of the child node, where the weight of a
term t is the maximum weight of the documents contained in the
subtree. Each node has a reference to an inverted file for the entries
stored in the node. A posting list of a term t in the inverted file is a
sequence of pairs 〈d,wd,t〉, where d is the document id containing
t, and wd,t is the weight of t in d.

Min-max IR-tree (MIR-tree). We propose the Min-max IR-tree
(MIR-tree) to index the objects. The objects are inserted in the same
manner as in IR-tree. However, unlike an IR-tree, each term is as-
sociated with both the maximum maxwd,t and minimum minwd,t
weights in each document. The posting list of a term t is a sequence
of tuples 〈d,maxwd,t ,minwd,t〉, where d is the document id contain-
ing t, maxwd,t is the maximum, and minwd,t is the minimum weight
of term t in d, respectively. If R is a leaf node, both weights are the
same as the weight of term t, wd,t in the IR-tree. If R is a non-leaf
node, the pseudo-document of R is the union of all text descriptions
in the entries of the child node. The maximum (minimum) weight
of a term t in the pseudo-document is the maximum (minimum)
weight in the union (intersection) of the documents contained in
the subtree. If a term is not in the intersection, minwd,t is set to 0.

Figure 2a shows the objects O= {o1,o2, . . . ,o7}where the MBRs
are constructed according to the IR-tree. Figure 3 illustrates the
MIR-tree for O. Table 2 presents the inverted files of the leaf nodes
(InvFile 1, InvFile 2, InvFile 3, and InvFile 4) and the non-leaf
nodes (InvFile 5, InvFile 6, and InvFile 7). As a specific example,

459

Table 2: Posting lists of the example MIR-tree
Term InvFile 1 InvFile 2 InvFile 3 InvFile 4 InvFile 5 InvFile 6 InvFile 7
t1 (o1,1,1) (o3,5,5) (o5,4,4) (o6,1,1),(o7,2,2) (R1,1,0), (R2,5,0) (R3,4,4), (R4,2,1) (R5,5,0),(R6,4,1)
t2 (o1,4,4) - (o5,1,1) - (R1,4,0) (R3,1,1) (R5,4,0),(R6,1,0)
t3 - (o3,5,5) - (o6,1,1) (R2,5,0) (R4,1,0) (R5,5,0),(R6,1,0)
t4 (o2,1,1) (o4,2,2) - (o7,3,3) (R1,1,0),(R2,2,0) (R4,3,0) (R5,2,0),(R6,3,0)

the maximum (minimum) weight of term t1 in entry R4 of InvFile
6 is 2 (1), which is the maximum (minimum) weight of the term in
the union (intersection) of documents (o6,o7) of the node R4.

Cost analysis. In contrast to the original IR-tree [3], the space re-
quirement of the MIR-tree includes an additional weight stored for
the minimum text relevance for each term in each node. Specif-
ically, for a node N, if the number of terms is M, the additional
required space is ∑

M
i=1 di, where di is the number of objects in the

posting list of term ti in node N. The construction time of the
MIR-tree is very similar to the original IR-tree. During tree con-
struction, when determining the maximum weight of each term in
a node, the minimum weight of that term can be determined con-
currently. As the splitting and merging of the nodes are executed in
the same manner as the IR-tree, the update costs of the MIR-tree are
also same as the IR-tree.

In this paper, the proposed MIR-tree is an extension of the orig-
inal IR-tree presented in [3]. Cong et al. [3] also proposed other
variants of the IR-tree, such as the DIR-tree and the CIR-tree, where
both spatial and textual criteria are considered to construct the nodes
of the tree. The same structures can be used to construct our pro-
posed extension. For example, the nodes of the MIR-tree can be
constructed in the same manner as the DIR-tree, and the posting
lists of each node will contain both the minimum and maximum
weights of the terms. Due to the page limitations, we do not in-
clude the details of the other variants of the IR-tree here.

5.2 Grouping of Users
Our goal is to access the necessary objects from disk, and avoid

duplicate retrieval of objects for different users. We form a group
of the users for this purpose, denoted as a “super-user” (us), and the
objects are accessed using this group instead of individual users.

Construction of super-user. The “super-user” (us) is constructed
such that us.l is the MBR enclosing the locations of all users, us.dUni
is the union, and us.dInt is the intersection of the keywords of all
users, respectively. As an example, Figure 2b shows the locations
of the users U = u1,u2, . . . ,u7 and the corresponding text descrip-
tions are presented in Table 3. The location of the “super-user”,
us.l is the MBR enclosing the locations of all the users, shown with
a dotted rectangle. Here, the intersection of the keywords of all the
users, us.dInt is ‘1000’ and the union, us.dUni is ‘1111’.

Table 3: Text description of the users
PPPPPPTerm

User u1 u2 u3 u4 u5 u6 u7

t1 1 1 1 1 1 1 1
t2 0 0 0 1 1 0 0
t3 1 1 0 1 0 0 0
t4 1 1 0 0 0 1 1

We now present the notion for upper and lower bound estima-
tions for spatial-textual relevance scores between any user u, and
any object node of the MIR-tree using this super-user.

5.3 Upper and Lower Bound Estimation
The maximum spatial-textual similarity between any node E of

the MIR-tree and the super-user us is computed as:

MaxSTS(E,us) = α ·MinSS(E.l,us.l)+(1−α) ·MaxTS(E.d,us.dUni) ,

Algorithm 1: JOINT TOPK(MIR-tree,U,k)
1.1 Output: The top-k objects of all users
1.2 us.l←∀u∈U MBR(u.l); us.dUni←∀u∈U ∪(u.d); us.dInt←∀u∈U ∩(u.d)
1.3 Initialize max-priority queue PQ,RO, min-priority queue LO
1.4 E←MIR-tree(root)
1.5 ENQUEUE(PQ,E,LB(E,us))
1.6 while PQ 6=∅ do
1.7 E← DEQUEUE(PQ)
1.8 if E is leaf then
1.9 if |LO|< k then

1.10 ENQUEUE(LO,E,LB(E,us))
1.11 if |LO|= k then
1.12 RSk(us)← LB(TOP(LO),us)
1.13 else if UB(E,us)≥ RSk(us) then
1.14 ENQUEUE(LO,E,LB(E,us))
1.15 Obj← DEQUEUE(LO)
1.16 RSk(us)← LB(Obj,us)
1.17 if UB(Obj,us)≥ RSk(us) then
1.18 ENQUEUE(RO,Obj,UB(Obj,us))

1.19 else
1.20 if |LO|< k or UB(E,us)≥ RSk(us) then
1.21 for each element e of E do
1.22 ENQUEUE(PQ,e,LB(e,us))

1.23 return INDIVIDUAL TOPK(U,us,LO,RO)

where MinSS is computed from the minimum Euclidean distance
between the two MBRs using Equation 2, and MaxTS is the maxi-
mum textual similarity between E.d and the union of the keywords
of the users, us.dUni computed as:

MaxTS(E.d,us.dUni) =
∑t∈us.dUni(maxwE.d,t)

Pmax
.

where maxwE.d,t is the maximum weight of the term t in the asso-
ciated document of node E. As described in Section 5.1, if E is a
non-leaf node, maxwE.d,t is the maximum weight in the union of
the documents contained in the subtree of E. Otherwise, maxwE.d,t
is the weight of term t in document E.d computed using Equation 3
in language model.

We now present a lemma that enables us to estimate an upper
bound on the relevance between any user u ∈ U , and any object
node E using the super-user us, where E is a node of the MIR-tree.

LEMMA 2. ∀u ∈U, MaxSTS(E,us) is an upper bound estima-
tion of STS(E,u). For any object node E, STS(E,u)≤MaxSTS(E,us).

PROOF. Recall that the us.l of the super user is the MBR of the
locations for all of the users in U . For an object node E of the
MIR-tree, the MinSS(E,us) is the minimum Euclidean distance be-
tween the two MBRs of E and us using Equation 2. As the location
u.l of any user u ∈U is inside the rectangle us.l, the value SS(E,u)
must be less than or equal to MinSS(E,us). For textual similarity,
as us.dUni = ∪u∈U u.d, the maximum textual similarity score be-
tween any user u ∈U , and any object node E that can be achieved
is MaxTS(E,us) from Equation 4. Since the spatial-textual score
STS(E,u) is the weighted sum of the corresponding spatial and tex-
tual scores, ∀u ∈U , the score STS(E,u) must also be less than or
equal to MaxSTS(E,us).

Lemma 2 presents that MaxSTS(E,us) is a correct upper bound
estimation of relevance between a node E of the MIR-tree and any

460

u∈U , as the relevance STS(E,u) is always less than MaxSTS(E,us).
Similarly, a lower bound relevance can be computed as: LB(E,us)=
α ·MaxSS(E.l,us.l)+(1−α) ·MinTS(E.d,us.dInt), where MaxSS
is computed from the maximum Euclidean distance between the
two MBRs, MinTS is the minimum textual relevance between E
and us.dInt computed using the minimum weights of the terms in
E. Similar to the upper bound estimation, we can prove that the
property ∀u ∈U,STS(E,u)≥ LB(E,us) always holds.

5.4 Algorithm
We assume the set of objects O resides on disk and is indexed us-

ing an MIR-tree. The main idea joint top-k processing is to reduce
the number of I/O operations by sharing the I/Os among users and
accessing the necessary objects and tree nodes only once. This is
achieved by: a) a careful tree traversal; and b) an efficient top-k ob-
ject computation of the individual users. We utilize the super-user
to access the MIR-tree and share I/Os, and the bounds of relevance
to prune the nodes that do not contain any top-k object of any user.
The pseudocode of the tree traversal step in the joint top-k process-
ing is shown in Algorithm 1. Finally, the top-k results of the indi-
vidual users are computed by applying several pruning strategies as
presented in Algorithm 2.

Tree traversal. The pseudocode is presented in Algorithm 1. Here,
the MIR-tree is traversed for the super-user us instead of the individ-
ual users. Line 1.2 shows the construction of us from U . Initially,
a max-priority queue PQ is created (Line 1.3) to keep track of the
nodes that are yet to be visited, where the key is the lower bound
w.r.t. us. We also maintain a min-priority queue LO (Line 1.3) to
keep k number of objects with the best lower bounds found so far.
Lines 1.9-1.12 show how LO is initially filled up with k objects
according to their lower bounds. We use actual objects instead of
object nodes in LO for better estimation of relevance. We also store
the k·th best lower bound relevance score, RSk(us) found so far.

Since the score RSk(us) is the k·th best lower bound score for any
user u ∈U , and any unseen object o, the similarity score must be
greater than or equal to RSk(us) for o to be one of the top-k objects
of u. Therefore, we need to consider only those nodes E, where
UB(E,us) ≥ RSk(us). If E is an object satisfying this condition,
then LO is adjusted such that it contains k objects with the best
lower bounds. The score RSk(us) is also updated accordingly. If
the object Obj dequeued from LO in this adjustment process, has
better upper bound than the updated RSk(us), Obj is stored in a
priority queue RO (shown is Lines 1.13-1.18). Here, RO is a max-
priority queue where the key is the upper bound similarity score
w.r.t. us. If a non-leaf node E cannot be pruned, the entries of E are
retrieved from disk and enqueued in PQ as shown in Lines 1.20-
1.22. Finally, the objects in LO and RO are used to compute the
top-k objects of individual users in a later step (Line 1.23).

We traverse the MIR-tree according to the lower bound in de-
scending order so that the objects with the best lower bounds will be
retrieved early, thereby enabling better pruning. Next, we present
an example to explain the procedure of the tree traversal step.

EXAMPLE 3. The object O = o1,o2, . . . ,o7 in Figure 2a are
indexed with an MIR-tree as shown in Figure 3. The users U =
u1,u2, . . . ,u7 are shown in Figure 2b, where the dotted box is the
MBR of the users, i.e., us.l. Table 2 and Table 3 present the text
descriptions. Let k = 1, the tree traversal step starts by enqueuing
the root node R7 in PQ, and then performing the following steps:
1. Dequeue R7, PQ : (R6,0.6),(R5,0.3)
2. Dequeue R6, PQ : (R4,0.6),(R3,0.5),(R5,0.3)
3. Dequeue R4, PQ : (o7,0.7),(R3,0.5),(o6,0.5),(R5,0.3)
4. Dequeue o7, as |LO|< k, LO : o7, RSk(us) = 0.7

5. Dequeue R3, as UB(R3,us) = 0.8, enqueue o5 in PQ
PQ : (o5,0.7),(o6,0.5),(R5,0.3)

6. Dequeue o5, as UB(o5,us) = 0.8, enqueue o5 in RO
LO : o7, RO : o5, RSk(us) = 0.7; PQ : (o6,0.5),(R5,0.3)

7. Dequeue o6, as UB(o6,us) = 0.9, enqueue o5 in RO
LO : o7, RO : o6,o5, RSk(us) = 0.7; PQ : (R5,0.3)

8. Dequeue R5, as UB(R5,us) = 0.6 < RSk(us), discard.

Top-k object of individual users. In the tree traversal step, the
priority queues LO and RO store all the objects that can be a top-k
object of at least one user in U . Therefore, considering only the
objects in LO and RO is sufficient to obtain the top-k objects for all
u ∈U . Algorithm 2 summarizes this process. For each u ∈ U , a
min-priority queue Hu of objects is initialized (Line 2.1) where the
key is the total relevance score of the object w.r.t. the user u. For
each u, the relevance score between each element o ∈ LO and u is
computed and inserted in Hu. The score of the k·th ranked object
of a user u, RSk(u) computed so far is also stored (Line 2.2-2.5).

The objects of RO can be pruned in two steps. First, if the upper
bound score of an object o ∈ RO w.r.t. us is less than RSk(u), then
o cannot be a top-k object of u. The subsequent objects of such o
in RO can also be pruned from consideration (Lines 2.7) as RO is
maintained in ascending order of the upper bound scores w.r.t. us.
Otherwise, if STS(o,u)≥RSk(u), o is inserted in Hu. Hu is adjusted
such that it contains k number of objects with the best relevance
scores, and RSk(u) is updated accordingly as shown in Lines 2.9-
2.11. Finally, the priority queue Hu of each user u ∈ U contains
its top-k objects in reverse order and RSk(u) is the spatial-textual
similarity score of the k·th ranked object of the corresponding user.

EXAMPLE 4. Continuing the example of the previous step, con-
sider u6. Initially, LO : (o7,0.7,0.9), RO : (o6,0.5,0.9), (o5,0.7,0.8),
where the entries are presented as (ID, LB, UB) w.r.t. us. First, ob-
ject o7 from LO is considered. As STS(o7,u6) = 0.75, so, RSk(u6)
becomes 0.75 and Hu6 : o7. Then the objects in RO are considered.
Here, STS(o6,u6) = 0.85, so RSk(u6) becomes 0.85 and Hu6 : o6.
As the upper bound of the next object of RO, UB(o5,us)< RSk(u6),
we stop processing for u6. The top-1 object of u6 is o6, where
RSk(u6) = 0.85. The process is repeated for all u ∈U.

Here, we have presented an efficient process to compute the top-
k objects of all the users. Now the selection of the best tuple of
candidate location and keywords is described.

Algorithm 2: INDIVIDUAL TOPK(U,us,LO,RO)
2.1 Initialize an array H of |U | min-priority queues for each u ∈U .
2.2 for each u ∈U do
2.3 for each o ∈ LO do
2.4 ENQUEUE(Hu,o,STS(o,u))
2.5 RSk(u)← STS(TOP(Hu),u)
2.6 for each o ∈ RO do
2.7 if UB(o,us)< RSk(us) then break
2.8 else if STS(o,u)≥ RSk(u) then
2.9 ENQUEUE(Hu,o,STS(o,u))

2.10 DEQUEUE(Hu)
2.11 RSk(u)← STS(TOP(Hu),u)
2.12 return H

6. CANDIDATE SELECTION
As shown in Lemma 1, even when the number of candidate lo-

cation is one, the candidate keyword selection process alone is NP-
hard. Therefore, we propose a spatial-first pruning technique here.

461

6.1 Candidate location selection
Algorithm 3 shows the pseudocode of the steps to select the can-

didate location and keywords for the MaxBRSTkNN problem. Sev-
eral pruning strategies are used in this process that utilize an upper
and a lower bound estimation of relevance of the candidates. We
present these bounds for the candidate locations in the following.

Upper bound estimation. For each ` ∈ L, the upper bound rele-
vance is computed in two steps, (i) w.r.t super-user us and (ii) w.r.t.
each u ∈ U . The value UBL(`,us) is computed such that for all
u ∈U , the relevance between ox and u is at most UBL(`,us), when
ox.l = `. The spatial upper bound is the minimum Euclidean dis-
tance between ` and us, as us.l is the MBR for all of the users. For
text relevance, a straightforward way is to consider the relevance as
1 (maximum), when the score is normalized within [0,1]. But we
can achieve a tighter bound using the following lemma:

LEMMA 3. Let Wh be the set of ws number of keywords of the
highest weights from (us.dUni∩W). The text relevance between ox
and a u ∈U after adding at most ws number of candidate keywords
is always less than or equal to the score TS((ox.d∪Wh),us.dUni).

PROOF. The text relevance between a user u and ox can change
by adding only the keywords that are present in u.d. As us.dUni
is the union of all u.d, the text relevance w.r.t any user u can be
increased only by adding the candidate keywords that are present
in us.dUni. Let w1 and w2 be two keywords in Wh where the weight
of w1 is greater than the weight of w2 and ws = 1. If a user u has
both w1 and w2 in the text description, then from Equation 4, the
text relevance of ox w.r.t u found by adding w1 must be equal or
greater than that obtained by adding w2. Even if a user u does not
have all the keywords of Wh in u.d, the lemma still provides an
upper bound estimation of text relevance that can be achieved by
adding ws number of candidate keywords.

So, the upper bound estimation of relevance of a candidate loca-
tion w.r.t. the super-user us is

UBL(`,us)=α ·MinSS(`,us.l)+(1−α)·TS((ox.d∪Wh),us.dUni) .

Similarly, an upper bound estimation of a candidate location `
w.r.t. any particular user u can be computed as UBL(`,u) = α ·
MinSS(`,u.l)+(1−α) ·TS(ox.d∪Wu,u.d), where Wu is the set of
ws number of keywords of the highest weights from (u.d∩W).

Lower bound estimation. The spatial lower bound is computed
using the maximum Euclidean distance in a similar manner. For
text relevance, the minimum score is computed from the original
text description of ox, i.e., ox.d and the intersection of all the user
keywords, us.dInt. So, the lower bound estimation of ` ∈ L w.r.t.
the super-user us is:

LBL(`,us) = α ·MaxSS(`,us.l)+(1−α) ·TS(ox.d,us.dInt) .

Now we explain the steps and the pruning strategies employed
in Algorithm 3 in the following.
• If UBL(`,us) < RSk(us), then no user can be a BRSTkNN for

ox.l = `, so ` is discarded (Lines 3.3-3.4). Otherwise, UBL(`,u)
is computed for each user. If UBL(`,u)≥RSk(u), then u can be a
BRSTkNN when ox.l = `. A list of such users, LU` is maintained
for each `, (Lines 3.5-3.7).

• Here, we exploit a best-first traversal technique. A max-priority
queue QL of candidate locations is maintained according to the
cardinality of LU`. In each iteration the location, max`, with the
maximum LU` is selected (Line 3.9).

• The location and keyword set combination 〈`,W ′〉best with the
maximum number of BRSTkNNs is tracked. As LUmax` is con-
structed based on an upper bound, so when the cardinality of

LUmax` is less than |BRSTkNN(〈`,W ′〉best)|, we cannot get a bet-
ter tuple from the subsequent entries of QL. Thus, the computa-
tion can be early terminated (Lines 3.10).
• If LBL(max`,us) ≥ RSk(us), then all the users in LU` are the

BRSTkNN for ox.l = max`, irrespective of the keyword selec-
tion. Thus we avoid computing the candidate keywords for such
condition (Lines 3.12-3.13).
• Otherwise, the best candidate keyword set, W ′ is determined for

max`. An approximate or an exact method presented in the fol-
lowing section is used to select W ′ (Line 3.15). 〈`,W ′〉best is
updated accordingly (Lines 3.16-3.17).

Algorithm 3: SELECT CANDIDATE(U,L,W,k)
3.1 Initialize a max-priority queue QL.
3.2 〈`,W ′〉best ←∅.
3.3 for each ` ∈ L do
3.4 if UBL(`,us)≤ RSk(us) then
3.5 for each u ∈U do
3.6 if UBL(`,u)≤ RSk(u) then LU`← u
3.7 ENQUEUE(QL, `, |LU`|)
3.8 while QL 6=∅ do
3.9 max`← DEQUEUE(QL)

3.10 if |LUmax`|< |BRSTkNN(〈`,W ′〉best)| then break
3.11 else if LBL(max`,us)≥ RSk(us) then
3.12 if |LUmax`|> |BRSTkNN(〈`,W ′〉best)| then
3.13 〈`,W ′〉best ← 〈max`,∅〉
3.14 else
3.15 W ′← Find best candidate keyword set for max` using

approximate or exact method.
3.16 if |BRSTkNN(max`,W ′)|> |BRSTkNN(〈`,W ′〉best)| then
3.17 〈`,W ′〉best ← 〈max`,W ′〉
3.18 return 〈`,W ′〉best

6.2 Candidate keyword selection
Recall that the best candidate keyword set that provides the max-

imum number of BRSTkNN has to be determined for ox.l = max`
(Line 3.17) in Algorithm 3. As this is an NP-hard problem, we
first develop an approximation algorithm. We also present an exact
method that uses several pruning strategies.

6.2.1 Approximate algorithm
The candidate keyword selection problem is shown to be NP-

hard in Lemma 1 using a reduction from the Maximum Coverage
(MC) problem. For the MC problem, a greedy algorithm exists
which is a (1−1/e)' 0.632 approximation algorithm. In the MC
problem, the input is a collection of sets S = {S1,S2, . . . ,Sm} and a
number p. The greedy algorithm chooses a set in each step which
contains the largest number of uncovered elements until exactly
p sets are selected. This greedy algorithm is shown in [4] is the
best-possible polynomial time approximation algorithm for the MC
problem. Inspired by this algorithm, we propose an approximate
algorithm to select the candidate keywords in each iteration of our
algorithm when ox.l = max`. However, some preprocessing must
be done before applying the greedy algorithm.

Preprocessing. For each w ∈W , a list of users, LUWw is main-
tained based on an upper bound estimation, such that if w is in-
cluded in the best keyword set W ′, these users can be the BRSTkNN
of the tuple 〈max`,W ′〉. As the LUmax` is already computed based
on such upper bound, we need to consider only the users in LUmax`.

Let, HWw,u is the set of ws number of highest weighed keywords
including w from W ∩ u.d. A user u can be a BRSTkNN of the tu-
ple 〈max`,HWw,u〉 when STS(ox,u) ≥ RSk(u), where ox.l = max`
and ox.d = ox.d ∪HWw,u. So, ∀u ∈ LUmax`, ∀w ∈ (W ∩ u.d), we

462

generate the list of users as, LUWw ← {δ × u}, where, δ = 1 if
STS(ox,u)≥RSk(u) for ox.l =max` and ox.d = ox.d∪HWw,u. Oth-
erwise, δ = 0, i.e., u is not included in LUWw.

Approximating the best candidate keyword set. Recall that in
the MC problem, given a collection of sets S = S1,S2, . . . ,Sm and a
number p, the objective is to find a subset S′ ⊆ S such that |S′| ≤ p
and the number of covered elements by S′, i.e., | ∪Si∈S′ Si| is max-
imized. In our case, the collection of the sets are the collection of
LUWw for each w and p is ws. The greedy approach of MC is ap-
plied in our problem to find the best set of candidate keywords W ′

of size ws such that | ∪w∈W ′ LUWw| is maximized. This set W ′ is
returned as the best candidate keyword set for the location max`.
As the users are included in the LUWw based on an upper bound
estimation, so the number of actual BRSTkNNs for the combination
of max` and W ′ is computed and used for comparison in Line 3.18.

6.2.2 Exact algorithm

Algorithm 4: EXACT(max`,LUmax`,W,ws,k)
4.1 Wu←∀u∈LUmax` ∪(u.d); W ′←∅; best← 0
4.2 if |W ∩Wu| ≤ ws then W ′← (W ∩Wu) else
4.3 C← combinations of ws number of keywords from W ∩Wu.
4.4 for each c ∈C do
4.5 for each u ∈ LUmax` do
4.6 if LBL(max`,u)≥ RSk(u) then
4.7 BRSTkNN(max`,c)← u
4.8 else if c∩u.d 6= /0 then
4.9 Obj.l← max`

4.10 Obj.d← (ox.d∪ c)
4.11 if STS(Obj,u)≥ RSk(u) then
4.12 BRSTkNN(max`,c)← u
4.13 if |BRSTkNN(max`,c)|> best then
4.14 W ′← c
4.15 best← |BRSTkNN(max`,c)|
4.16 return W ′

The number of candidates can be small in some applications.
Moreover, the search space can be pruned using several strategies
when selecting the candidate keyword set. This motivates us to
develop an exact algorithm for selecting the best keyword set W ′

of the MaxBRSTkNN query. The pseudocode is presented in Algo-
rithm 4 and the pruning techniques are explained in the following.
• Pruning users: According to the definition of UBL(`,u), only

the users in LUmax` can be the BRSTkNN of the tuple 〈max`,W ′〉.
So we need to consider only the users in LUmax`.

• Pruning candidate keywords: Let the union of the text descrip-
tion of the users in LUmax` is Wu (Line 4.1). We need to consider
only the candidate keywords that are contained in at least on of
the users, i.e., W ∩Wu.

• Early termination: If |W ∩Wu| ≤ ws, this is the only possible
candidate keyword set. So the process terminates and W ∩Wu is
returned as the best candidate keyword set for max` as shown in
Line 4.3-4.4.

• Here, the lower bound relevance, LBL(`,u)=α ·SS(`,u.l)+(1−
α) ·TS(ox.d,u.d), where ox.d is the original text description. If
LBL(max`,u)≥ RSk(u), then u is a BRSTkNN for max`, regard-
less of the choice of keyword (Line 4.9-4.10).

• Let C is the set of combinations of ws number of keywords from
W ∩Wu. For a keyword combination c ∈ C, we process only
those users where c∩u.d 6=∅.

7. INDEXING USERS

u1 u2 u3 u4 u7u5 u6

R1 R2

R5 R6

R3 R4

R1 R2 R3 R4

R5 R6

IntUni7 R7

122 2

4 3

IntUni1 IntUni2 IntUni3 IntUni4

IntUni5 IntUni6

ID Int. Union
(t1t2t3t4) (t1t2t3t4)

IntUni1 1 0 1 1 1 0 1 1
IntUni2 1 0 0 0 1 1 1 0
IntUni3 1 0 0 0 1 1 0 1
IntUni4 1 0 0 1 1 0 0 1
IntUni5 1 0 0 0 1 1 1 1
IntUni6 1 0 0 0 1 1 0 1
IntUni7 1 0 0 0 1 1 1 1

Figure 4: Example of Modified IUR-tree (MIUR tree)

In the previous sections we assume that the users reside in main-
memory. If the number of users is large, we may want the user
information to reside on disk. We also computed the top-k objects
for every user in the previous configurations, which is computation-
ally expensive. In this section we present an approach where the
users are stored on disk and indexed using MIUR-tree, an extension
of the IR-tree. The aim is to avoid computing the top-k objects of
the users that do not have any affect on the result of MaxBRSTkNN
query. The approach is also useful when the locations of the users
are very sparse, therefore a hierarchy of users have a higher pruning
capacity than a single super-user.

Modified IUR-tree (MIUR-tree). An MIUR-tree is essentially an
R-tree where each node is augmented with the union and the in-
tersection vector of the keywords appearing in the subtree. Each
node is also associated with the number of actual objects stored in
the subtree. Each leaf node R contains entries of the form (cp,rect,
cp.IntUnidi), where cp.IntUnidi refers to the vector of the text de-
scription of o. If R is a non-leaf node then it contains entries of the
form (cp,rect,cp.IntUnidi,cp.num), where cp.num is the total num-
ber of objects stored in the subtree rooted at R. Here, cp.IntUnidi is
the identifier for the union and intersection of all text descriptions in
the entries of the child node. Figure 4 illustrates the MIUR-tree for
U = {u1,u2, . . . ,u7} of Figure 2b, where the MBRs are constructed
according to the IR-tree (not shown in figure), and the table shows
the text vectors of the nodes for the users presented in Table 3.

Detailed steps. The root of the MIUR-tree is essentially the same
as the super-user us. Lines 1.4-1.25 of Algorithm 1 is executed for
the root in the same manner as us, and we obtain the priority queues
of objects, LO and RO. The k·th best lower bound score RSk(us) is
also obtained for the root. For each ` ∈ L, a list LU` is maintained,
but unlike Algorithm 3, LU` may now contain user nodes. In each
iteration, the location max` is selected with the maximum |LU`|. If
there is a user node in a LU`, the number of actual users stored in
that subtree is used to compute the number of users in LU`. The
following steps are executed to access the MIUR-tree-
1. If there is any non-leaf node in LUmax`, we dequeue the non-leaf

node EU ∈ LUmax` with the maximum number of users stored
in the subtree.

(i) The MIUR-tree is accessed to retrieve the elements of EU. For
EU, the INDIVIDUAL TOPK(EU,parent(EU), LO,RO) of Al-
gorithm 2 is executed. Thus, the score RSk(eu) of each user
eu ∈ EU is updated. Each eu also inherits the priority queues
LO and RO with updated scores. The upper bound scores of
max` are computed for each eu ∈ EU, and inserted in LUmax`
if eu can be a BRSTkNN. The max` is enqueued in QL with
the updated LUmax`.

(ii) For each ` ∈ L, if EU ∈ LU`, the list is updated with the users
eu∈ EU based on the corresponding upper bound scores. The
priority queue QL is also updated. In this way, we need to
access a node of the MIUR-tree at most once.

463

 0

 100

 200

 300

 400

 500

 600

1 5 10 20 50

M
R
P
U

(
m
s
)

k

B(LM)
J(LM)

B(TF)
J(TF)

B(KO)
J(KO)

(a) Runtime

 0

 50

 100

 150

 200

1 5 10 20 50

M
I
O
C
P
U

k

B(LM)
J(LM)

B(TF)
J(TF)

B(KO)
J(KO)

(b) I/O cost

100
101
102
103
104
105

1 5 10 20 50

R
u
n
t
i
m
e

(
m
s
)

k

B(LM)
E(LM)
A(LM)

E(TF)
A(TF)
E(KO)

A(KO)

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

1 5 10 20 50

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

k

LM
TF
KO

(d) Approximation ratio
Figure 5: Effect of varying k

 0

 50

 100

 150

0.1 0.3 0.5 0.7 0.9

M
R
P
U

(
m
s
)

α

Baseline
Joint top-k

(a) Runtime

 0

 50

 100

 150

 200

0.1 0.3 0.5 0.7 0.9

M
I
O
C
P
U

α

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105

 0.1 0.3 0.5 0.7 0.9

R
u
n
t
i
m
e

(
m
s
)

α

Baseline
Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.3 0.5 0.7 0.9

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

α

(d) Approximation ratio
Figure 6: Effect of varying α

2. Otherwise, the rest of the algorithm to find the best tuple of can-
didate location and keyword set 〈`,W ′〉best with the maximum
number of BRSTkNNs is same as Algorithm 3.
In this best-first method, the users that are in the BRSTkNN of

the most promising candidate, are accessed first. In addition, the
top-k objects are not computed for the users that are not necessary
to determine the best candidates.

8. EXPERIMENTAL EVALUATION
In this section, we report the experimental evaluation of the algo-

rithms for processing the query with two real datasets, and compare
them with the baseline approach.

Datasets and user generation. All experiments are conducted on
two real datasets, namely, (i)Yahoo I3 Flickr dataset 1, and (ii) Yelp

1http://webscope.sandbox.yahoo.com/catalog.php?
datatype=i&did=67

 0

 50

 100

 150

 200

1 2 3 4 5 6

M
R
P
U

(
m
s
)

UL

Baseline
Joint top-k

(a) Runtime

 0

 50

 100

 150

 200

1 2 3 4 5 6

M
I
O
C
P
U

UL

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105

 1 2 3 4 5 6

R
u
n
t
i
m
e

(
m
s
)

UL

Baseline
Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

UL

(d) Approximation ratio
Figure 7: Effect of varying UL

 0

 50

 100

 150

5 10 20 30 40

M
R
P
U

(
m
s
)

UW

Baseline
Joint top-k

(a) Runtime

 0

 50

 100

 150

 200

5 10 20 30 40

M
I
O
C
P
U

UW

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105
106

5 10 20 30 40

R
u
n
t
i
m
e

(
m
s
)

UW

Baseline
Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

5 10 20 30 40

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

UW

(d) Approximation ratio
Figure 8: Effect of varying UW

dataset 2. For the Flickr dataset, a total of 1 million images that
are geo-tagged and contain at least one user specified tag were ex-
tracted from the collection. The locations and tags are used as the
location and keywords of the objects. Three additional datasets of
2 million, 4 million, and 8 million were extracted from the collec-
tion to evaluate scalability by varying the size of the set of objects,
O. The Yelp dataset contains locations of the businesses, business
attributes, and users’ reviews. The attributes and reviews of each
business are combined as the text description of that business. Ta-
ble 4 lists the properties of the datasets.

For the Flickr dataset, we generate the set of the users using the
dataset as follows. First, an area of a fixed size (here, 5 latitude
×5 longitude) is chosen and a pre-defined number (|U |) of objects
Ou in that area are taken randomly. The locations of the objects
are used as the locations of the users. Then, UW keywords are
randomly selected from Ou as the set of the user keywords. These
keywords are distributed among the users such that each user has

2http://www.yelp.com.au/dataset_challenge

464

 0

 50

 100

 150

1 2 5 10 20

M
R
P
U

(
m
s
)

Area

Baseline
Joint top-k

(a) Runtime

 0

 20

 40

 60

 80

 100

1 2 5 10 20

M
I
O
C
P
U

Area

Baseline
Joint top-k

(b) I/O cost
Figure 9: Effect of varying Area

100
101
102
103
104
105

1 20 50 100 300

R
u
n
t
i
m
e

(
m
s
)

|L|

Baseline
Exact
Approx

(a) Runtime

 0.6

 0.7

 0.8

 0.9

 1

1 20 50 100 300

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|L|

(b) Approximation ratio
Figure 10: Effect of varying |L|

|UL| number of keywords following the same distribution of key-
words of Ou. In this work, we generate 100 such sets of users and
report the average performance. The set of keywords UW is used
as the set of candidate keywords.

For the Yelp dataset, the location of a user is taken as the centroid
of the locations of the businesses she reviewed. The text description
of a user is the collection of the reviews posted by that user. We
pick |U | number of such users. The keywords |UW | are chosen
from the combined text descriptions of the users, and the keywords
are distributed is the same manner as mentioned above.

Setup. All indexes and algorithms are implemented in Java. The
experiments were ran on a 24 core Intel Xeon E5−2630 running at
2.3 GHz using 256 GB of RAM, and 1TB 6G SAS 7.2K rpm SFF
(2.5-inch) SC Midline disk drives. The Java Virtual Machine Heap
size was set to 4 GB. All index structures are disk resident, and the
page size was fixed at 4 kB.

As multiple layers of cache exist between a Java application and
the physical disk, we report simulated I/O costs in the experiments
instead of physical disk I/Os. The number of simulated I/Os is in-
creased by 1 when a node of a tree is visited. When an inverted file
is loaded, the number of simulated I/Os is increased by the number
of blocks (4 kB per block) for storing the list. In the experiments,
the performance is evaluated using cold queries. Unless stated oth-
erwise, Flickr dataset is used.

8.1 Performance evaluation
The performance evaluation of our proposed approaches consists

of two components:
• The top-k objects of the users are computed. We compare the

joint top-k processing with the baseline, which computes the top-
k objects of the users individually.

• Then, the best combination of the location and the keywords is
selected from the given set of candidates. We compare the per-
formances of an exact and an approximate method.
In this section, we evaluate the performances by varying several

parameters. The parameter ranges are listed in Table 5 where the
values in bold represent the default values. We also compare the
performances for three different text relevance measures, namely,
the TF-IDF, Language Model (LM), and the Keyword Overlap (KO).

100
101
102
103
104
105
106

 1 2 3 4 5 6 7 8

R
u
n
t
i
m
e

(
m
s
)

ws

Baseline
Exact
Approx

(a) Runtime

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

ws

(b) Approximation ratio
Figure 11: Effect of varying ws

0

100K

200K

300K

400K

100 500 1K 2K 4K

T
o
t
a
l

R
u
n
t
i
m
e

(
m
s
)

|U|

Baseline
Joint top-k

(a) Runtime

0

100K

200K

300K

100 500 1K 2K 4K

T
o
t
a
l

I
/
O

c
o
s
t

|U|

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105
106

100 500 1K 2K 4K

R
u
n
t
i
m
e

(
m
s
)

|U|

Baseline
Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

100 500 1K 2K 4K

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|U|

(d) Approximation ratio
Figure 12: Effect of varying |U |

In all experiments, we use the default settings and vary a single pa-
rameter to study the impact on: (i) the mean runtime per user (
MRPU) to compute the top-k objects; (ii) the mean I/O cost per
users (MIOCPU) to compute the top-k objects; (iii) the total run-
time of selecting the best candidate; and (iv) the approximation ra-
tio of the approximate and the exact method of MaxBRSTkNN. This
value is the ratio between the number of BRSTkNNs for the best
candidate returned by the approximate method, and the number of
BRSTkNNs for the best candidate returned by the exact method.

Varying k. Figure 5 shows the experiments for varying k. Since
the joint top-k processing (J) employs several pruning strategies,
and avoids visiting any page multiple times, the costs are signifi-
cantly lower than the baseline (B). For keyword overlap (KO), sev-
eral objects may have the same number of keyword as the user.
Therefore, more objects must to be considered when computing
the top-k objects, resulting into a higher cost than the other text
similarity measures considered here.

Note that we tested all three of the similarity metrics with several
different parameter settings, and the overall trends were similar to
those shown in Figure 5. Since the costs in the baseline are the
lowest when using the language model, we use only this similarity
metric for the remainder of the experiments.

The runtime of the baseline for selecting the best candidate does
not change for k as it exhaustively computes all candidate combi-
nations. The approximate method (A) selects the candidate com-
bination of keywords greedily, and therefore requires 3 orders of
magnitude less computational time than the exact method. The ac-
curacy of the approximation algorithm increases with k as more
candidates become eligible to be included in the answer. As the

465

 0

 2000

 4000

 6000

 8000

 10000

1M 2M 4M 8M

M
R
P
U

(
m
s
)

|O|

Baseline
Joint top-k

(a) Runtime

 0

 50

 100

 150

 200

 250

 300

1M 2M 4M 8M

M
I
O
C
P
U

|O|

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105

1M 2M 4M 8M

R
u
n
t
i
m
e

(
m
s
)

|O|

Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

1M 2M 4M 8M

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

|O|

(d) Approximation ratio
Figure 13: Effect of varying |O|

 0

 100

 200

 300

 400

1 5 10 20 50

M
R
P
U

(
m
s
)

k

Baseline
Joint top-k

(a) Runtime

 0

 50

 100

 150

 200

1 5 10 20 50

M
I
O
C
P
U

k

Baseline
Joint top-k

(b) I/O cost

100
101
102
103
104
105

1 5 10 20 50

R
u
n
t
i
m
e

(
m
s
)

k

Exact
Approx

(c) Runtime

 0.6

 0.7

 0.8

 0.9

 1

1 5 10 20 50

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

k

(d) Approximation ratio
Figure 14: Effect of varying k on Yelp dataset

weights for each candidate keyword are the same in the keyword
overlap measure, the approximate algorithm is able to track the ex-
act method closely in terms of accuracy.

Varying α. Figure 6 shows the results when varying α . A higher
value indicates more preference to spatial similarity. As the IR-tree
groups the objects based on spatial similarity, a higher α leads to
lower cost in the baseline method. In the joint top-k approach, as
the MBR of the users’ locations, and the union of the users’ key-
words remain the same, the cost remains almost constant. The ac-
curacy of the approximate method increases with the increase of α

as more candidate locations become eligible to become an answer.

Varying UL. We now vary the number of keywords per user, and
present the effect on performance in Figure 7. The cost of the base-
line increases proportionally with the increase of UL, as more ob-
jects become relevant to these users. In contrast, the I/O cost of our
proposed joint top-k algorithm remains almost constant as a node is
retrieved at most once, and processed for all the users concurrently.

Here, the number of BRSTkNNs increase with the increase of
UL for both exact and approximate methods, but they do not in-

0

10K

20K

30K

40K

50K

500 1K 2K 4K 8K 16K

T
o
t
a
l

I
/
O

c
o
s
t

|U|

Un-indexed
Indexed

(a) Total I/O cost

 5

 7

 9

 11

 13

500 1K 2K 4K 8K 16K

U
s
e
r
s

p
r
u
n
e
d

(
%
)

|U|

(b) Users pruned (%)
Figure 15: Effect of varying |U |
Table 4: Description of dataset

Property Flickr Yelp

Total objects 1,000,000 61,185
Total unique terms 166,317 266,869
Avg unique terms per object 6.9 398.7
Total terms in dataset 6,936,385 77,838,026

crease in the same rate. As a result, a local minima appears in the
graph of the approximation ratio (UL = 5). When the rate of in-
crease in the number of BRSTkNNs decreases for the exact method,
the approximation starts to improve.

Varying UW. Figure 8 shows the effect on performance when
varying the total number UW of unique keywords of the users.
Here, a lower value indicates that the users share more keywords.
As the joint top-k method exploits the shared I/Os among users,
it outperforms the baseline where the benefit is higher for higher
overlap. As the set of keywords UW is also the set of candidate
keywords, the runtime of candidate selection increases for both the
exact and the approximate methods. As UW increases, the possible
combinations of the candidate keywords also increases. Therefore
the accuracy of the approximate method is very high for the lower
values of UW, and decreases gradually as UW increases.

Varying Area. Figure 9 shows the results when varying the MBR
of the users by latitude and longitude (Area). A higher value indi-
cates that the locations of the users are more sparse. In this setting,
as the union of the users’ keywords remain the same, the joint top-
k processing benefits from these shared I/Os even when the size
of the MBR increases. The approximate method follows the exact
method better when the users are sparse. The graphs of the candi-
date selection step is not shown due to page limitations.

Varying |L|. Figure 10 shows the results when varying the num-
ber of candidate locations |L|. As the top-k processing of the users
do not depend on |L|, we have only shown the performance of the
exact and the approximate methods. The methods differ in the man-
ner of selecting the candidate keywords, and the runtime increases
proportionally with the increase of |L| in both methods. The accu-
racy of the approximation increases slightly for a higher value of
|L|, as more candidate locations become potential results.

Varying ws. The performances when varying ws is shown in Fig-
ure 11. As the number of keyword combinations increases with
ws, the runtime of the baseline and the exact methods also increase.
The number of BRSTkNNs increases rapidly as |ws| increases, and
the accuracy of the approximate method drops as well. When the
rate of increase of the number of BRSTkNNs start to level off (here,
for ws > 3), the accuracy of the approximation gradually improves.

Varying |U|. In Figure 12, we vary the number of users and show
the performance. As the baseline computes the top-k objects of the
users individually, the cost increases rapidly with |U |. The joint
top-k approach considers the MBR, and the union-intersection of

466

Table 5: Parameters

Parameter Range

k 5,10,20,50,100
α 0.1,0.3,0.5,0.7,0.9
No. of keywords per user, UL 1,2,3,4,5,6
No. of total unique keywords of users, UW 5,10,20,30,40
Users’ MBR as latitude × longitude, Area 1,2,5,10,20
No. of candidate locations, |L| 1,20,50,100,300
ws 1,2,3,4,5,6,7,8
No. of users, |U | 100,500,1K,2K,4K
No. of objects, |O| 1M,2M,4M,8M

the users’ keywords, therefore the costs do not vary much. This
experiment shows that joint top-k processing is in fact scalable.

Varying |O|. We vary the number of objects and show the perfor-
mance in Figure 13. As |O| increases, we need to consider more
objects that can be a top-k object of at least one of the users. There-
fore, the cost increases in both methods. As |O| increases, the rele-
vance score of the k·th ranked object of a user is likely to improve.
Therefore, more candidates can be pruned for higher values of |O|.
Experiments on Yelp dataset. We have conducted the same ex-
periments as mentioned above on the Yelp dataset. Due to page
limitations, we report our results when varying k in the Yelp dataset
in Figure 14. All of our experimental results were consistent across
both datasets.

Performance with a user index. Here, we index the users with
the MIUR-tree and compare the performance with the non-indexed
case. When the users are indexed, we can avoid computing the
top-k objects for some users. This pruning capacity is shown using
the metric “Users pruned (%)”, i.e., the percentage of the users for
which we do not compute the top-k objects to answer MaxBRSTkNN
query. Figure 15 shows the performance when the number of the
users is varied. For the indexed users, the total I/O cost indicates
the combined I/O of the MIR-tree of the objects and the MIUR-tree
of the users. As shown, the performance of the indexed users ap-
proach is better as the top-k objects are not computed for the pruned
users. The percentage of the users pruned are between 5–12.5%,
where the pruning capacity increases with the increase of |U |.

9. CONCLUSION
The paper introduced and explored a novel query type, the Max-

imized Bichromatic Reverse Spatial Textual k Nearest Neighbor
(MaxBRSTkNN) query which finds an optimal location, and a set of
keywords that maximizes the size of the bichromatic reverse spatial
textual k nearest neighbors. The problem has several real-life ap-
plications. We proved that the MaxBRSTkNN problem is NP-hard,
and proposed an approximate and an exact method to answer the
query. We also provided an efficient method to compute the top-k
objects jointly, which is of independent interest and improves the
overall performance of the query processing. From the experiments
we have shown that the approximate algorithm is around 2-3 mag-
nitude faster than the exact method.

Acknowledgments. This work was supported by the ARC Dis-
covery Projects Scheme (DP140101587). Shane Culpepper is the
recipient of an ARC DECRA Research Fellowship (DE140100275).
Farhana Choudhury is the recipient of a NICTA scholarship. We
thank Chen et al. [1] for providing the IR-tree implementation.
We thank the anonymous reviewers for their comments. An ex-
tended version of the paper is available in the first author’s personal
website that includes additional graphs and explanations as recom-
mended by one of the reviewers.

10. REFERENCES
[1] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query

processing: an experimental evaluation. In VLDB, pages 217–228,
2013.

[2] L. Chen-Yi, K. Jia-Ling, and A. P. Chen. Determining k-most
demanding products with maximum expected number of total
customers. TKDE, 25(8):1732–1747, 2013.

[3] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

[4] U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

[5] D. Hochbaum. Approximation Algorithms for NP-hard Problems.
PWS Publishing Company, 1997.

[6] J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He. Top-k most
influential locations selection. In CIKM, pages 2377–2380, 2011.

[7] J. J. Cardinal and S. Langerman. Min-max-min geometric facility
location problems. In EWCG, pages 149–152, 2006.

[8] Q. Jianzhong, Z. Rui, L. Kulik, D. Lin, and X. Yuan. The min-dist
location selection query. In ICDE, pages 366–377, 2012.

[9] J.-L. Koh, C.-Y. Lin, and A. P. Chen. Finding k most favorite
products based on reverse top-t queries. PVLDB, 23(4):541–564,
2014.

[10] F. Korn and S. Muthukrishnan. Influence sets based on reverse
nearest neighbor queries. In SIGMOD, pages 201–212, 2000.

[11] H. Lin, F. Chen, Y. Gao, and D. Lu. OptRegion: Finding optimal
region for bichromatic reverse nearest neighbors. In DASFAA, pages
146–160, 2013.

[12] Y. Liu, R.-W. Wong, K. Wang, Z. Li, C. Chen, and Z. Chen. A new
approach for maximizing bichromatic reverse nearest neighbor
search. Knowledge and Information Systems, 36(1):23–58, 2013.

[13] J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pages 349–360, 2011.

[14] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor
search. ACM Trans. Database Syst., 39(2):1–46, 2014.

[15] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[16] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg.
Efficient processing of top-k spatial keyword queries. In SSTD, pages
205–222, 2011.

[17] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag.
Monochromatic and bichromatic reverse top-k queries. Knowledge
and Data Engineering, IEEE Transactions on, 23(8):1215–1229,
2011.

[18] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries. PVLDB,
3(1-2):364–372, 2010.

[19] Q. Wan, R. C.-W. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. Proc. VLDB Endow., 2(1):898–909,
2009.

[20] R. C.-W. Wong, M. T. Özsu, A. W.-C. Fu, P. S. Yu, L. Liu, and
Y. Liu. Maximizing bichromatic reverse nearest neighbor for lp-norm
in two and three-dimensional spaces. PVLDB, 20(6):893–919, 2011.

[21] R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu.
Efficient method for maximizing bichromatic reverse nearest
neighbor. PVLDB, 2(1):1126–1137, 2009.

[22] D. Yan, R. C.-W. Wong, and W. Ng. Efficient methods for finding
influential locations with adaptive grids. In CIKM, pages 1475–1484,
2011.

[23] C. Zhai and J. Lafferty. A study of smoothing methods for language
models applied to information retrieval. ACM Trans. Inf. Syst.,
22(2):179–214, 2004.

[24] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the
min-dist optimal-location query. In VLDB, pages 643–654, 2006.

[25] L. Zhisheng, K. C. K. Lee, Z. Baihua, L. Wang-Chien, L. Dik Lun,
and W. Xufa. IR-tree: An efficient index for geographic document
search. TKDE, 23(4):585–599, 2011.

[26] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu. MaxFirst for
MaxBRkNN. In ICDE, pages 828–839, 2011.

467

