
Tempo: Robust and Self-Tuning Resource Management in
Multi-tenant Parallel Databases ∗

Zilong Tan
Duke University

ztan@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
Multi-tenant database systems have a component called the Re-
source Manager, or RM that is responsible for allocating resources
to tenants. RMs today do not provide direct support for perfor-
mance objectives such as: “Average job response time of tenant A
must be less than two minutes”, or “No more than 5% of tenant B’s
jobs can miss the deadline of 1 hour.” Thus, DBAs have to tinker
with the RM’s low-level configuration settings to meet such objec-
tives. We propose a framework called Tempo that brings simplicity,
self-tuning, and robustness to existing RMs. Tempo provides a sim-
ple interface for DBAs to specify performance objectives declara-
tively, and optimizes the RM configuration settings to meet these
objectives. Tempo has a solid theoretical foundation which gives
key robustness guarantees. We report experiments done on Tempo
using production traces of data-processing workloads from com-
panies such as Facebook and Cloudera. These experiments demon-
strate significant improvements in meeting desired performance ob-
jectives over RM configuration settings specified by human experts.

1. INTRODUCTION
Many enterprises today run multi-tenant database systems on

large shared-nothing clusters. Examples of such systems include
parallel SQL database systems like RedShift [1], Teradata [5], and
Vertica [6], Hadoop/YARN running SQL and MapReduce work-
loads, Spark running on Mesos [25] or YARN [46], and many oth-
ers. Meeting the performance goals of business-critical workloads
(popularly called service-level objectives, or SLOs) while achiev-
ing high resource utilization in multi-tenant database systems has
become more important and challenging than ever.

The problem of handling many (often in 1000s) small and inde-
pendent databases on a multi-tenant database Platform-as-a-Service
(usually called PaaS or DBaaS) has received considerable attention
in recent years [50, 37, 32, 36, 15]. That is not the problem we fo-
cus on in this paper. Our focus is on handling fewer, but much “big-
ger”, tenants who process very large amounts of data on a shared-

∗This work was supported by grants CNS1423128, IIS1423124,
CNS1218981, and IIS0964560.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

nothing cluster that is usually run within an enterprise. Hadoop,
Spark, Teradata, Vertica, etc., are typically run in such settings.

These multi-tenant database systems each have a component—
commonly referred to as the Resource Manager (RM)—that is re-
sponsible for allocating resources to tenants. Most widely deployed
RMs like YARN and Mesos focus on resource isolation and do
not support SLOs. Instead, they rely on the Database Adminis-
trator (DBA) to “guesstimate” answers to questions such as: “How
much resources are needed to complete this job before its dead-
line?” Then, DBAs have to translate their answers into low-level
configuration settings in the RM. This process is brittle and increas-
ingly hard as workloads evolve, data and cluster sizes change, and
new workloads are added. Thus, techniques have been proposed in
the literature to support specific SLOs such as deadlines [14, 33,
18, 47], fast job response times [11, 14, 21, 39], high resource uti-
lization [2, 11, 14], scalability [2, 43, 51], and transparent failure
recovery [51].

In this paper, we present a framework called Tempo that brings
three properties to existing RMs: simplicity, self-tuning, and ro-
bustness. First, Tempo provides a simple interface for DBAs to
specify SLOs declaratively. Thus, Tempo enables the RM to be
made aware of SLOs such as: “Average job response time of ten-
ant A must be less than two minutes”, and “No more than 5% of
tenant B’s jobs can miss the deadline of 1 hour.” Second, Tempo
constantly monitors the SLO compliance in the database, and adap-
tively optimizes the RM configuration settings to maximize SLO
compliance. Third, Tempo has a solid theoretical foundation which
gives five critical robustness guarantees:
1) Tempo makes high-quality resource scheduling decisions in

presence of noise, e.g., job failures, commonly observed in
production database systems.

2) Tempo delivers provably end-to-end tenant performance isola-
tion with Pareto-optimal SLOs. This is often more desirable
than traditional resource isolation.

3) When all SLOs cannot be satisfied—which is common in busy
database systems—Tempo guarantees max-min fairness over
SLO satisfactions [34].

4) Tempo adapts to workload patterns and variations.
5) Tempo reduces the risk of major performance regression while

being applied to production database systems.
We have implemented Tempo as a drop-in component in the RMs
used by multi-tenant databases running on Hadoop and Spark. We
report experiments done using production traces of data-processing
workloads from companies such as Facebook and Cloudera. The
experiments show that Tempo can reduce the average job response
time by 50% for best-effort workloads and increase resource uti-
lization by 15%, without hurting the deadline-driven workloads.

720

Table 1: Tenant characteristics at Company ABC.
Tenant Characteristics
BI I/O-intensive SQL queries
DEV Mixture of different types of jobs
APP Small, lightweight jobs
STR Hadoop streaming jobs
MV Long-running, CPU-intensive
ETL I/O-intensive, periodic but bursty

This paper makes the following contributions:
• We propose several robustness properties of RMs, and investi-

gate ways to achieve robustness provably.
• We provide a solid theoretical foundation for multi-objective

SLO optimization under uncertainty, and present a novel solu-
tion algorithm.

• We design time-warp based mechanisms to estimate the impact
of different RM configurations on tenants’ SLOs.

• We evaluate Tempo for various real-life use cases based on pro-
duction traces.

2. BACKGROUND
Tempo’s design was motivated by our observations from several

large production database systems. While designing Tempo, we an-
alyzed workload traces from three companies each of which runs
multi-tenant database systems on large clusters. Two of these sys-
tems run on 600+ nodes while the other runs on about 150 nodes.
(While all three are well-known companies, we cannot share their
names due to legal restrictions.) We talked to business analysts,
application developers, team managers, and DBAs in these teams
to understand the SLOs that they need to meet and the challenges
they face in resource management. From all our interviews, the
following emerged as the top concerns:
• Concern A: Deadline-based workloads and best-effort work-

loads have to be supported on the same database system.
• Concern B: Repeatedly-run jobs often have unpredictable com-

pletion times.
• Concern C: Resource utilization was lower than expected.
• Concern D: Resource allocation does not adapt automatically

to the patterns and variations in the workloads.
To elaborate on these four concerns, we will use one of the three
companies—henceforth, referred to as Company ABC—which is
a real-life company that runs a multi-tenant database system on a
700-node Hadoop cluster with over 30 Petabytes of data.

2.1 Concern A
Company ABC has three types of users who generate database

workloads. Business Intelligence (BI) analysts and Data Scientists
predominantly do exploratory analysis on the data. Engineers de-
velop and maintain recurring jobs that run on the database. One
such category of jobs is Extract-Transform-Load (ETL) which brings
new data into the system. Each job goes through many runs in a
development phase on the cluster before being certified to run as a
production job. Thus, the system supports both development and
production runs of jobs.

Distinct workloads from these users form the tenants in the multi-
tenant system. Table 1 shows the six tenants at Company ABC and
their distinct workload characteristics. (The experimental evalua-
tion section gives more fine-grained details of these workloads.)

The BI and ETL users correspond directly to similarly-named
tenants. Among the other tenants, MV corresponds to the creation
of Materialized Views such as joined results of multiple tables as
well as statistical models created from the incoming data brought
through ETL. The BI users and Data Scientists usually write their
queries and analysis programs on these materialized views. The
APP tenant runs jobs from a specific high-priority production ap-
plication. The DEV and STR tenants mostly comprise queries and
analysis programs being run as part of application development by
engineers and Data Scientists. At Company ABC:
• Jobs from the ETL and MV tenants have deadlines because any

delay in these jobs will affect the entire daily operations of the
company. We have seen multi-day delays caused by deadline
misses for the ETL and MV tenants that had significant business
impact.
• About 30% of high-priority jobs in APP miss deadlines.
• While all tenants want as low job response time as possible for

completion of their jobs, BI, DEV, and STR are treated as “best-
effort” tenants in that the goal is to provide their jobs as low
response time as possible subject to meeting the requirements
of the ETL, MV, and APP tenants.

2.2 Concern B
Predictability of completion time for recurring jobs is a key need

in most companies. This demand stems from ease of resource plan-
ning and scheduling for dependent jobs. At Company ABC:
• The completion of one of the recurring jobs of the ETL tenant

varies between 5 and 60 minutes.
• The completion of one of the recurring jobs of the MV tenant

varies between 2 and 6 hours.
While we observed that this variance is caused partly by variation
in the input sizes of the jobs across runs, these sizes exhibit strong
temporal patterns. For example, the input sizes of the recurring jobs
in ETL vary across days within a week, but remain stable across
multiple weeks.

2.3 Concern C
Resources can be wasted in multi-tenant systems due to reasons

such as: (i) task preemption; (ii) suboptimal configuration of re-
source limits; and (iii) jobs in poorly-written queries being killed
by DBAs. At Company ABC, 17.5% of map tasks and 27.7% of re-
duce tasks were preempted for the jobs run by the MV tenant over
a week interval. This caused considerable amount of wasted re-
sources, especially because the reduce tasks of the MV tenant have
long execution times.

2.4 Concern D
A resource allocation which meets the SLOs perfectly at one mo-

ment may be sub-optimal at another moment due to various factors.
First, input data sizes for a tenant may vary considerably across
shorter time intervals while showing distinct patterns across longer
intervals. At Company ABC, ETL jobs process Web activity logs
which come in much smaller quantities on weekends. Second, the
resource demands of different tenants can be correlated over time.
For example, Figure 1 shows the memory consumption of two ten-
ants at Company ABC over the course of a day. The horizontal
lines in the figure show the respective resource limits that have been
configured by the DBA to protect against resource hoarding by ten-
ants. Notice that while there are periods where both tenants use up
all available resources, there are other periods where the configured
resource limit prevents one tenant from using the resources unused
by the other.

721

0 5 10 15 20 25

Time [hr]

0

2

4

6

8

10

12

A
llo

c
a
te

d
 m

e
m

o
ry

 [
T

e
rr

a
b
y
te

]

Tenant A Tenant B B Limit A Limit

Figure 1: Memory consumption of two tenants during a day.

3. OVERVIEW OF PROBLEM
From our interviews, two salient points emerged that summarize

the crux of what Tempo attempts to solve:
• Workloads in multi-tenant parallel databases have SLOs. Cur-

rent RMs do not provide easy ways to ensure that these SLOs
are satisfied.

• Current RMs require the DBA to estimate resources to meet the
per-tenant SLOs, and then specify low-level RM configuration
like resource shares, resource limits, and preemption timeouts
in order to meet these SLOs. This process is brittle and increas-
ingly hard as workloads evolve, data and cluster sizes change,
and new workloads are added.

3.1 Multi-tenant Workloads
Parallel databases decompose queries and analysis programs to

Directed Acyclic Graphs (DAGs) of jobs that each consist of one
or more tasks. We will use the following representation for multi-
tenant workloads throughout this paper:
Task: A task is the smallest unit of work for the purpose of resource
allocation. A task has a start time when the task acquires resources
to start running; and a finish time when the task completes. We
consider workloads where the task duration, which is the interval
from start time to finish time, is given.
Job: A job consists of a set of parallel and/or dependent tasks, e.g.,
map and reduce tasks in a MapReduce job or the tasks in a Spark
stage. The job response time is the interval from the job submission
time to the finish time of the last task. Job response times vary
based on when resources are allocated to the tasks of the job.
Workload: A workload is a fixed sequence of jobs over a period of
time where the submission time of each job and the tenant submit-
ting the job are given.
Throughout this paper, we use w to denote a multi-tenant workload.
In Tempo, w can be obtained in one of two ways. First, w can be
an actual job trace submitted to a parallel database system. We use
this approach in our experiments. Second, w can be generated from
a statistical workload model as we will discuss later.

3.2 SLOs
From our interviews with users and DBAs, we identified five

major classes of SLOs. Rather than aiming for any particular job,
these SLOs reflect the performance of the workload as a whole over
a period of time. Thus, Tempo deals with these workload-level
SLOs that are defined over a given time window.

The first class specifies the fraction of jobs that violated the dead-
line. For recurring jobs, the deadline is either the start of the next
run or an absolute time point like 5:00 AM. The second class spec-
ifies that the average job response time must be less than a given
threshold. Such SLOs are often associated with ad-hoc jobs. The
third class is about ensuring that each tenant gets a fair allocation

of resources. In particular, when the database is under contention,
the proportion of resources allocated to each tenant must adhere
to predetermined values. This SLO class prevents individual ten-
ants from monopolizing the resources intentionally or otherwise.
Fourth, the resource utilization or job throughput must be above a
threshold. This SLO class generally serves the interest of DBAs
to maximize the return on investment (ROI) in the cluster. A fifth
type of SLO orders the other SLOs in terms of priority. This special
SLO mandates that SLOs with higher priorities be considered first
when not all SLOs can be met with the resources available.

3.3 Global RM Configuration Space
In this section, we will describe the typical set of per-tenant con-

figuration parameters supported by modern RMs. The global con-
figuration, represented throughout this paper as the vector xxx, used
by the RM at any point is the collection of these per-tenant config-
urations across all tenants. xxx characterizes how the resource are al-
located in order to process w. As we will describe in later sections,
Tempo constant goal is to maximize SLO compliance adaptively
for a given w by computing the optimal xxx.

CPU, Memory, and other resources are allocated to execute the
tasks in w. The resources allocated to any tenant can be captured in
a fine-grained manner based on the start time, finish time, and the
resource allocation vector d for each of the tasks run on behalf of
the tenant.

In this paper, for ease of exposition, we will consider a uni-
dimensional representation of d as an integer number of containers
(or slots) as done in RMs like Mesos and YARN. Namely, a task is
run in a container that is allocated on behalf of a tenant who submits
the task. No two tasks can share the same container. The RM of a
multi-tenant database system has a fixed total number of containers
that it can allocate across all tenants at any point of time. This allo-
cation is governed by a set of per-tenant configuration parameters
falling into three categories, described next.
Resource Shares: The resource share for a tenant specifies the
proportion of total resources that this tenant should get with respect
to other tenants. For example, suppose there are three tenants A,
B, and C with shares in the ratio 1:2:3 respectively. Suppose the
database system has 12 containers that it can allocate at any point
of time. Then, if all tenants have tasks to run, then tenants A, B,
and C will get 2, 4, and 6 containers respectively.

Suppose a tenant does not have tasks to run in its full quota of
resources. Then, the unused quota of resources will be allocated to
other tenants who have tasks to run. This allocation will be pro-
portional to the resource shares of the other tenants. In the example
above, suppose tenant C has no tasks to run, but A and B have many
tasks to run. Then, tenants A and B will get 4 and 8 containers re-
spectively.
Resource Limits: For any tenant, minimum and maximum limits
can be specified for the resources that this tenant can get at any
point of time. In the example above where tenants A, B, and C
have shares in the ratio 1:2:3 respectively, suppose all tenants have
many tasks to run, but the maximum resource limit for tenant C is
set to 3. Then, tenants A, B, and C will get 3, 6, and 3 containers
respectively. Limits are specified to ensure two things: (i) no tenant
can monopolize all resources, and (ii) critical workloads from a
tenant can start running as quickly as possible.
Resource Preemption: For any tenant, a configuration can be set
to preempt — after a certain time interval called a preemption time-
out — tasks from other tenants that using resources that are rightly
owed to this tenant. Such preemption will free up resources for
this tenant. There are two levels of preemption timeouts. One level
of preemption is when the tenant’s current resource allocation is

722

RM (e.g., YARN, Mesos)

RM Configuration (8)Job Traces (2)

Optimizer
(PALD)

Tempo
Schedule
Predictor

What-if
Model

Workload
Generator

(7) (3)(5)

(4)

(6)

Task Schedule (1)

SLOs (QS Templates)

MapReduce Spark SQL Others Applications

Tenant
Queues

BI STRAPP MVDEV ETL

Figure 2: Tempo architecture.

below its configured resource share. The other, and more critical
level, is when the tenant’s current resource allocation is below its
configured minimum resource limit.

Preemption is important in multi-tenant systems. Without pre-
emption, a low-priority tenant who submitted tasks earlier than a
high-priority tenant can cause the high-priority tenant to miss dead-
lines. Preemption can be implemented by suspending tasks or by
killing tasks running in the container. While task suspension is the
preferred mechanism, it is not supported in most multi-tenant sys-
tems that are commonly used today. As indicated in Section 2.3, if
the two levels of preemption timeouts are not configured carefully,
then preemption by killing tasks can cause a lot of wasted work and
low resource utilization.

3.4 Role of Tempo
Our interviews revealed that DBAs manually tune the per-tenant

RM configuration parameters in order to meet tenant SLOs. For ex-
ample, at Company ABC, the RM configuration is tuned whenever
tenants complain about deadline or job response time SLOs not be-
ing met. This process is brittle because it is hard for the DBAs
to take into account the workload patterns and evolution, constant
addition of new workloads, and the multiple objectives and trade-
offs involved. The goal of Tempo is to make this process easy and
principled.

4. TEMPO
As discussed in Section 1, Tempo is designed to bring three prop-

erties to existing RMs: simplicity, self-tuning, and robustness. As
part of simplicity, Tempo introduces the concept of QS (Quantita-
tive SLO). A QS is a quantitative metric defined per SLO to measure
the satisfaction of the SLO at any point of time. In Section 5, we
will show how the QS concept supports several tenant SLOs that
arise in real-life use cases.

Operationally, the QS for an SLO can be thought of in two ways
(recall Section 3.3):
1. As a function f (xxx,w), where xxx and w are described in Section 3.
2. As a function of the actual task resource allocation schedule

(henceforth called task schedule) that is produced when w runs
under xxx.

As we will show in Section 5, it is conceptually easier for humans
to understand and use the QS concept when defined in terms of the

task schedule. At the same time, Tempo needs the f (xxx,w) notion in
order to create a modular architecture that provides self-tuning and
robustness. Figure 2 shows how this modular architecture drives
the repeated execution of Tempo’s control loop.

The Tempo control loop consists of the eight steps denoted (1)-
(8) in Figure 2. The inputs to the Tempo control loop are the SLOs
defined for each tenant (which can be specified conveniently via
predefined templates as discussed in Section 5). Step (1) of the con-
trol loop extracts the recent task schedule for evaluating QS metrics
for the input SLOs under the current RM configuration xxx. Through
Steps (2)-(8), Tempo replaces the current RM configuration xxx with
a new one xxx′; concluding one iteration of the control loop. Once
the QS metrics for the input SLOs under xxx′ are observed at Step
(1) of the next iteration, the Tempo control loop will revert the RM
configuration xxx′ back to xxx if the currently observed QS metrics do
not dominate the previously observed ones. This mechanism adds
robustness in Tempo by guarding against performance degradation
during the self-tuning approach.

Steps (2)-(8) are orchestrated by Tempo’s Optimizer which ap-
plies a self-tuning algorithm called PALD. PALD is a novel multi-
objective optimization algorithm that we developed for the noisy
environments seen in production multi-tenant parallel database sys-
tems. As we will show in Section 6, PALD provably converges to
a RM configuration that provides a Pareto-optimal setting for the
QS metrics of the input SLOs. In addition, whenever available re-
sources are insufficient to fully satisfy all SLOs, PALD handles the
SLO tradeoffs gracefully by minimizing the largest regret across all
SLO satisfactions as measured by the QS metrics.

In Steps (2)-(8), the Optimizer explores a set of RM configura-
tions by proposing the RM configurations (3)-(4), getting the simu-
lated task schedule (6) of the workloads (5) based on the job traces
(2). The predicted QS metrics under these RM configurations are
passed back to the Optimizer (7) to compute a Pareto-improving
RM configuration (8). To implement these steps, the Optimizer
uses three other components as shown in Figure 2: Workload Gen-
erator, Schedule Predictor, and What-if Model.

The Workload Generator replays historical job traces or synthe-
sizes workloads with given characteristics. The Schedule Predictor
produces the simulated task schedule of the generated workloads
under given RM configurations. The What-if Model estimates the
QS metrics for the input SLOs using the simulated task schedule.
Together, the three components enable the Optimizer to explore the
impact of different RM configurations on the input SLOs and use
the PALD algorithm (described in Section 6) to produce Pareto-
optimal RM configurations for these SLOs.

While proposing RM configurations in Step (3), the Optimizer
meticulously generates configurations only within a given maxi-
mum distance to the currently used RM configuration. Tempo uses
normalized l2-norm as the distance metric, and allows the DBA
to specify the maximum distance based on her risk tolerance. This
technique further reduces the risk of causing dramatic impact on the
running workloads when applying a new RM configuration; which
is particularly desirable in production environments.

5. QS: QUANTIFIABLE METRICS TO MEA-
SURE SLO SATISFACTION

A key design goal in Tempo was to provide a quantitative under-
standing of how the workload and RM configuration impact each
SLO. We developed the QS metric which can be used to com-
pare the relative SLO satisfactions under different workloads and
RM configurations. Minimizing the QS metric improves the corre-
sponding SLO.

723

The QS metric for an SLO is defined as a function of the result-
ing task schedule for a workload under a given RM configuration.
Recall from Section 3.3 that a task schedule consists of start time,
finish time, and the resource allocation d for each of the tasks run
on behalf of a tenant. For ease of exposition, d can be considered
as an integer number of containers as done in RMs like Mesos and
YARN.

5.1 QS Metrics for Popular SLOs
We will now describe QS metrics for the common classes of

SLOs that we came across in our interview (recall Section 3.2).
Note that SLOs and corresponding QS metrics can be defined at
different levels such as at the level of a recurring job, at the level
of the entire workload of a tenant, at the level of the entire cluster,
etc. In this section, we will define QS metrics at the job level, but
the ideas generalize. Consider a certain interval of time L. Let Ji
denote the set of jobs from tenant i which was submitted and com-
pleted during this interval. Let Ti be the set of tasks associated with
Ji. Based on this notation, we can define the following QS metrics
for the common SLOs.
Low average job response time: The QS metric for job response
time SLO takes the average across all jobs executed by the tenant,
as given by (1) where ts

j and t f
j are the submission and finish time

of job j, respectively. |Ji| represents the cardinality of the job set
Ji.

QSAJR (Ji) =
1
|Ji| ∑

j∈Ji

(
t f

j − ts
j

)
. (1)

Deadlines: The QS metric for deadline SLO can be defined as the
fraction of jobs of a tenant that missed their deadline. Let td

j be the
deadline of the job j, the deadline QS metric can be defined as

QSDL (Ji) =
1
|Ji| ∑

j∈Ji

I
(

t f
j > γ

(
t f

j − t l
j

)
+ td

j

)
, (2)

where I(·) is the indicator function, and γ is a slack (tolerance)
when identifying the deadline violation. That is, a job j is consid-
ered violating the deadline td

j only if its completion is later than the

deadline by a factor γ in terms of the job duration t f
j − t l

j. The slack
makes the QS metric less sensitive to system variability.
High resource utilization: The resource utilization can be calcu-
lated as the integral of the fraction of overall resources allocated
to the tenant over the time interval. We can use the dominant re-
source usage when multiple resource types are considered [20, 19,
44]. Note that the dominant resource usage is represented by a ratio
between zero and one. When there is only a single resource type,
we normalize the resource usage. we can define the QS metric for
achieving high resource utilization as

QSUTIL (Ji) =−
1
L ∑

j∈Ti

d j

(
t f
t − t l

t

)
, (3)

where L be the length of the interval, and d j is the amount of re-
sources allocated to task j. This QS metric can also be applied
to evaluate the impact of preemption by comparing the QS values
computed using all tasks versus using only tasks that were not pre-
empted.
High job throughput: The job throughput is defined as the number
of jobs submitted and completed within the interval. The QS metric
for achieving high job throughput is thus given by

QSTHR (Ji) =−|Ji| . (4)

Resource fairness: The fairness can be defined by comparing the
relative ratio of resource utilization used by the tenants versus the
desired ratio. This definition is also known as the long-term fairness
[45]. Let ci denote the desired share of resources, the fairness QS
metric follows

QSFAIR (Ji) =−|ci +QSUTIL (Ji)| .

Furthermore, other cost models can also be used as QS metrics.
For example, Personalized Service Level Agreements (PLSAs) [38]
can be used as the QS metric for SQL queries.

5.2 QS Templates
To simplify the use of Tempo, we have implemented QS tem-

plates to enable tenants to specify SLOs declaratively. A QS tem-
plate specifies: (a) a unique queue to which the tenant submits its
workload, (b) a predefined QS metric for the SLO to be optimized
(we currently support the QS metrics given above, but Tempo is
extensible) , (c) optional constraints on one or more predefined QS
metrics (e.g., a threshold on average job response time for the ten-
ant’s workload), and (d) an optional priority value (priorities are
incorporated by multiplying the QS metric with the priority value).
As an example, the ETL tenant may specify the following SLOs:

OPTIMIZE QST HR;
CONSTRAINT QSDL < 10% AND QSUT IL <−25%;

In this example, the ETL tenant desires less than 10% deadline
violations as well as more than 25% average resource utilization.
When both constraints are satisfied, the ETL tenant favors high job
throughput. To enable tenants to pick the numbers to specify in the
QS templates, Tempo’s control loop constantly shows the current
values achieved for all QS metrics.

6. THEORETICAL FOUNDATIONS

6.1 Multi-objective QS Optimization Problem
Tempo’s Optimizer solves the following vector optimization prob-

lem:

arg min
xxx∈X

(E [f1 (xxx,w,ξ)] , · · · ,E [fk (xxx,w,ξ)]) (SP1)

s.t. E [fi (xxx,w,ξ)]≤ ri ∀i = 1,2, · · · ,k.

• fi (xxx,w,ξ) denotes the noisy QS for the i-th tenant. ξ represents
the noise and is an unknown random variable. Recall from Sec-
tion 3.3 that xxx is the single global configuration vector used by
the RM at any point of time, and X is the RM configuration
space. Tempo has to account for the fact that the components
in xxx corresponding to one particular tenant can affect other ten-
ants’ SLOs. For example, the priority, relative resource shares,
and preemption timeout settings.

• In practice, the actual SLOs fi (xxx,w) cannot be computed di-
rectly, but only estimated via noisy observations or via models
trained from noisy observations. For this reason, we introduce
ξ , and use the What-if Model in Tempo to estimate fi (xxx,w,ξ).
We make the standard assumption from Stochastic Approxima-
tion[30] that minx∈X fi (xxx,w) = minx∈X E [fi (xxx,w,ξ)]for each
SLO fi (xxx,w).

• w is a fixed workload given to Tempo, and a constant in (SP1).
• The expectation in (SP1) is with respect to ξ which is impacted

by factors such as killed tasks, failed jobs, node restarts, etc.
• The ri are the QS values corresponding to the desired SLOs.

For example, the ri for the ETL tenant in Section 5.2 are 0.1
and −0.25, respectively.

724

• The vector minimization in (SP1) is in a Pareto-optimal sense:
an RM configuration xxx dominates another xxx′ if E [fi (xxx,w,ξ)]≤
E [fi (xxx′,w,ξ)] for i = 1,2, · · · ,k and with at least one inequality.
A solution xxx? cannot be dominated by any other configurations
that satisfy the constraints.

• One can also prioritize certain SLOs over others in (SP1) by
weighting the corresponding QS functions. For instance, to
promote the priority of an SLO whose QS is fi (xxx,w,ξ), we can
replace the QS with α fi (xxx,w,ξ), where α > 1 is the magnitude
of the promotion.

6.2 Goals and Notation
We now present a novel PAreto Local Descent (PALD) algorithm

for solving the multi-objective QS optimization problem (SP1). A
comparison of PALD to state-of-the-art is illustrated in Table 2,
in which the efficiency is based on both sample and computational
complexity. In the following sections, we describe PALD and prove
its properties.

Table 2: Multi-objective optimization algorithms.
Efficient Noisy QSs Constraints Pareto-

optimal
SCALAR[8],
MGDA[16],
PESMO[23]

X X

PAL[52],
SMSego[41]

X X X

ParEGO[31],
EHI[17],
SUR[40]

X

MSPD[35] X X X
PALD X X X X

We denote vectors and matrices by boldface symbols. The sim-
plified notations fi and fi (xxx) are used interchangeably to refer to
the QS metric function fi (xxx,w,ξ), and we use fff (xxx) to refer to the
vector of QS functions. For each QS metric, we denote the average
of N measures by fi (xxx).

The goal of PALD is to find a weak Pareto-optimal solution to
(SP1). If a feasible solution exists, then the resulting RM config-
uration satisfies the “hard” SLOs represented by the constraints in
(SP1), while improving the “best-effort” SLOs. If there is no fea-
sible solution, then the resulting RM configuration balances the
SLOs represented by the constraints based on max-min fairness.
This feature supports prioritizing the SLOs by weighting the corre-
sponding constraints.

6.3 Proxy Model
The key technique used in PALD is a proxy model, which trans-

forms the original problem (SP1) to a proxy problem (SP2) such
that all solutions to the proxy problem are solutions to the original
one, but not the other way around. We show that the proxy problem
can be solved efficiently.

First, it should be noted that the well-known weighted sum scalar-
ization ([8])—which converts the multi-dimensional QS vector to
a scalar by taking a weighted sum of the QS functions—does not
apply in this case; for it does not ensure the first set of constraints
in the problem (SP1). For example, consider two RM configura-
tions and two QS functions. Suppose that the QS vectors corre-
sponding to the two solutions are (5,5)> and (0,7)>, respectively.
Let rrr = (6,6)>. When the weights are equal, the optimization us-
ing weighted sum scalarization yields the QS vector (0,7)>, which
does not dominate rrr = (6,6)>.

Our solution PALD solves the following proxy problem:

arg min
xxx∈X

ccc> [fff (xxx)−ρ max(fff (xxx) ,rrr)] (SP2)

s.t. E [fi (xxx)]≤ ri ∀i = 1,2, · · · ,k.

Here, ccc, which is a positive vector, and ρ < 1 are two parameters
whose values will be described in Section 6.3.1. The parameter ρ

penalizes those QS functions fi (xxx) > ri, and is independent of the
vector ccc. This is an advantage over conic scalarization [28]. One
special case is that when ρ = 0, the problem (SP2) becomes the
weighted sum scalarization.

THEOREM 1. For any arbitrary positive vector ccc and parame-
ter ρ < 1, every solution of (SP2) is a solution for (SP1).

PROOF. Let si (xxx) = ci [fi (xxx)−ρ max(fi (xxx) ,ri)], the objective
of problem (SP2) can be written as

∑
i

si (xxx) = ∑
i: fi(xxx)≤ri

si (xxx)+ ∑
j: f j(xxx)>r j

s j (xxx)

= ∑
i: fi(xxx)≤ri

ci [fi (xxx)−ρri]+ (5)

∑
j: f j(xxx)>r j

c j (1−ρ) f j (xxx) . (6)

Both (5) and (6) are strictly monotonically increasing with respect
to fi (xxx), so is the objective (SP2). Consider a solution xxx for (SP2).
Suppose that xxx is not a weak Pareto-optimal solution for (SP1),
then there exists another weak Pareto-optimal solution x′x′x′ for the
problem (SP1) that dominates xxx. However, this contradicts the hy-
pothesis that xxx is a solution for the problem (SP2), due to the mono-
tonicity.

6.3.1 Parameters
We now derive the parameters ccc and ρ in the proxy model (SP2).

PALD uses Stochastic Approximation [30] for solving the proxy
problem, in which the gradients are estimated using the well-known
LOESS [13]. Let s(xxx) denote the objective of the proxy problem
(SP2), the update for each iteration is given by

xxxnew = xxxold −α∇x∇x∇xs(xxx) , (SGD)

where α is the step size. The parameters ccc and ρ are chosen such
that the above update does not increase those QS functions fi (xxx)≥
ri. We thereby obtain ∀i : fi (xxx) ≥ ri, −α∇x∇x∇x

> fi (xxx)∇x∇x∇xs(xxx) ≤ 0, or
equivalently ∇x∇x∇x

> fi (xxx)∇x∇x∇xs(xxx)≥ 0. The parameters are also chosen
to best improve those violated constraints fi (xxx)≥ ri. Fixing ccc, ρ is
obtained by solving

argmax
ρ

min
i: fi(xxx)≥ri

∇x∇x∇x
> fi (xxx)∇x∇x∇xs(xxx) (RHO)

s.t. ∇x∇x∇x
> fi∇x∇x∇xs(xxx)≥ 0, ∀i : fi (xxx)≥ ri

ccc≥ 0, ρ < 1.

Note that the objective of the proxy model (SP2) is not differen-
tiable at points {xxx ∈X : fff (xxx) = rrr}, and we need to condition on
the subgradients. Let us first assume that ∂ s(xxx)/∂ f j (xxx)

∣∣
x=r =

c j (1−ρ). The objective of the problem (RHO) can be rewritten
as

∑
j

c j∇x∇x∇x
> fi∇x∇x∇x f j−ρ ∑

j: f j(xxx)≥r j

c j∇x∇x∇x
> fi∇x∇x∇x f j. (7)

Based on the range of the subgradient of s(xxx), we can bound ρ .
To satisfy the first set of constraints in the problem (RHO) at an

725

indifferentiable point, we have that

min
i, ∂ s

∂ f j
: fi(xxx)≥ri

∑
j

∇x∇x∇x
> fi∇x∇x∇x f j

∂ s
∂ f j
≥ 0. (8)

Now consider separately two cases ρ ≥ 0 and ρ < 0. When ρ ≥ 0
the inequality (8) is equivalent to ∀i : ∇x∇x∇x fi 6= 000∧ fi (xxx)≥ ri that

(1−ρ)ci∇x∇x∇x
> fi∇x∇x∇x fi ≥− ∑

j: j 6=i
min

∂ s/∂ f j

∇x∇x∇x
> fi∇x∇x∇x f j

∂ s
∂ f j

=−(1−ρ) ∑
j: j 6=i,

∇x∇x∇x
> fi∇x∇x∇x f j≥0

c j∇x∇x∇x
> fi∇x∇x∇x f j

− ∑
j: j 6=i,

∇x∇x∇x
> fi∇x∇x∇x f j<0

c j∇x∇x∇x
> fi∇x∇x∇x f j,

which simplifies to

0≤ ρ ≤ min
i:∇x∇x∇x fi 6=000,
fi(xxx)≥ri

∑ j c j∇x∇x∇x
> fi∇x∇x∇x f j

∑ j:∇x∇x∇x
> fi∇x∇x∇x f j≥0 c j∇x∇x∇x

> fi∇x∇x∇x f j
.

Similarly, we can obtain the bound for the case ρ < 0. It should be
noted that these bounds are useful only when the following condi-
tions are satisfied:

∑
j

c j∇x∇x∇x
> fi∇x∇x∇x f j ≥ 0, ∀i : ∇x∇x∇x f j 6= 000∧ fi (xxx)≥ ri. (9)

These conditions can be satisfied for convex QS functions, using
the vector ccc described in MGDA [16]. Combining the results ar-
rives at the optimal choice of ρ for the problem (RHO):

ρ∗ =


min

i:∇x∇x∇x f j 6=000,
fi(xxx)≥ri

∑ j c j∇x∇x∇x
>

fi∇x∇x∇x f j

∑
j:∇x∇x∇x

>
fi∇x∇x∇x f j≥0

c j∇x∇x∇x
>

fi∇x∇x∇x f j

, ρ ≥ 0

max
i:∇x∇x∇x f j 6=000,
fi(xxx)≥ri

∑ j c j∇x∇x∇x
>

fi∇x∇x∇x f j

∑
j:∇x∇x∇x

>
fi∇x∇x∇x f j<0

c j∇x∇x∇x
>

fi∇x∇x∇x f j

, ρ < 0.

The sign of the parameter ρ depends on the last term of the objec-
tive (7) as to maximize the objective. To deliver the above optimal
ρ∗, the vector ccc must also satisfy the conditions (9).

To achieve max-min fairness of SLOs, PALD chooses ccc that im-
proves the most violated constraint, through the following linear
program.

maximize z

subject to JJJi: fi(xxx)≥ri
JJJ>ccc≥ z111

ccc≥ 0, z≤ ε.

Here, JJJ is the Jacobian of the QS vector, and JJJi: fi(xxx)≥ri
denotes

the rows of the Jacobian JJJ indexed by i : fi (xxx) ≥ ri. ε is an ar-
bitrary positive constant, and the solution vector ccc is normalized
using any desirable metrics such as the l2-norm. The first set of
constraints correspond to the QS functions fi (xxx) ≥ ri, and these
are the only QS functions that need to be convex in PALD. Thus,
PALD provides better support for non-convex QS optimization as
compared to MGDA. Moreover, randomly choosing different ini-
tial points can also help deal with non-convex QS functions in this
sense.

7. WHAT-IF MODEL
Tempo’s Optimizer depends on the What-if Model to estimate

the values of noisy QS metrics fi (xxx,w,ξ). The What-if Model

breaks each prediction into two steps and leverages the Workload
Generator and Schedule Predictor respectively for these steps. Re-
call that the QS metric is expressed as a function of the task sched-
ule of w under xxx. The Workload Generator is responsible for gen-
erating the workload, and the Schedule Predictor is responsible for
generating the task schedule given the workload and the RM con-
figuration.

7.1 Workload Generation
As discussed in Section 3.1, there are two ways to generate w in

Tempo: sampling from historical traces or using a statistical model
of the workload. Tempo offer users both options in the Workload
Model(see Figure2). As a rule of thumb, using a job trace yields
more realistic w, and is thereby preferred whenever traces are avail-
able. In contrast, the statistical model, which is usually trained
from historical traces, has some key advantages. The model can
be used to generate multiple synthetic w’s with perturbed distribu-
tions in order to test the sensitivity of parameter settings. More
importantly, the model can be used to generate w with extended
characteristics such as a growth in data size by 30%. For example,
we developed a statistical model based on one month of historical
traces from Company ABC’s production database workload. The
workload distributions from Company ABC (reported further in the
evaluation section) are similar to the distributions described in [42].
In particular, the task duration approximately follows a lognormal
distribution, and the job arrival approximately follows a Poisson
process.

7.2 Fast Schedule Prediction
Given a workload generated as above, the Schedule Predictor

in Figure 2 estimates the task schedule of the workload under a
given RM configuration. Since the What-if Model needs to explore
the impact of many different RM configurations, fast prediction of
schedules can speed up Tempo’s optimization process significantly.

For very fast task schedule simulation, we implemented a Sched-
ule Predictor for the RMs used in Hadoop, Spark, and YARN us-
ing time warp mechanism [27]. Our implementation computes the
cluster resource usage at only the submission time, tentative finish
time, and possible preemption time of each task, based on the work-
load information and RM configuration parameter settings. This
technique helps the Predictor get rid of actually running the tasks
as well as synchronization within the RM.

To extend to other RMs, Tempo can leverage existing RM simu-
lators that have already been developed for several popular systems,
such as Borg [49], Apollo [11], Omega [43], MapReduce [48, 24,
22], and YARN [7]. Most of these existing simulators are designed
to reproduce the real-time behavior of the RM, which is a superset
of our goal of computing the task schedule efficiently.

8. EVALUATION
We now report an end-to-end evaluation of Tempo using produc-

tion workload traces from Facebook, multiple customers of Cloud-
era [12], as well as Company ABC. We apply Tempo to four real-
life scenarios and show, respectively, the improvements in job re-
sponse time, resource utilization, adaptivity to workload variations,
and predictive resource provisioning. In the experiments where a
baseline performance is needed for comparison, we used resource
allocations as determined by expert DBAs and cluster operators in
Company ABC. The following insights emerge from the evalua-
tion:
• Tempo can tailor the resource allocation to SLO-driven business-

critical workloads, and offers tenants the freedom to specify
SLOs.

726

• Tempo improves the resource utilization by 15%, and job re-
sponse time for best-effort tenants by 50% under 25% slack
without breaking the deadlines for production workloads.

• Tempo effectively adapts to workload variations by periodically
updating the RM configuration using a recent workload win-
dow.

• Tempo can help DBAs and cluster operators determine the ap-
propriate cluster size for their multi-tenant parallel database for
the given SLOs and workloads, minimizing the overall resource
costs.

These results are due to: 1) informed resource allocation which
takes into account the workload characteristics revealed from his-
torical job traces; and 2) optimized RM configurations aiming for
the SLOs because Tempo makes the connection between the RM
configuration and SLOs more transparent and predictable.

8.1 Validating the schedule prediction
We begin by validating the task schedule prediction on a 700-

node production cluster at Company ABC. In particular, we mea-
sure the accuracy of the prediction using one week’s production
workload from six independent tenants, as described in Table 1.
The workload consist of approximately 60,000 jobs and 35 mil-
lion production tasks collected in a noisy environment where there
were job and task failures, jobs killed by users and DBAs, and node
blacklisting, failures, and restarts. Figure 3 shows the key statistics
of the workload.

The schedule prediction for the 35 million tasks from six tenants
takes just 4 minutes, or approximately 150,000 tasks per second.
We compare the predicted task schedule and the observed schedule
based on the traces, and compute the prediction error. Both the
relative absolute error (RAE) and the relative squared error (RSE)
are used as the error metrics. The RAE and RSE of tenant i are
defined respectively as

RAEi =
∑ j |pi j−li j |

∑ j |li j−E j [li j]| , RSEi =

√
∑ j(pi j−li j)

2

∑ j(li j−E j [li j])
2 .

Here pi j and li j represent the predicted and observed finish time of
job j for tenant i, respectively. Table 8.1 gives the RAE and RSE
for the estimated job finish time. As can be seen, the highest error
(24.4%) was incurred for the MV tenant in Company ABC. Most
jobs from MV were long-running jobs, especially with large dura-
tion of reduce tasks. We observed a considerable amount of killed
reduce tasks for MV due to preemptions. For killed and failed tasks,
the task start time and finish time are not recorded accurately in
workload traces; which explains why MV has a higher prediction
error than others.

Table 3: Job finish time estimation errors for each tenant.
Tenant RAE RSE Tenant RAE RSE

BI 0.1585 0.2210 STR 0.1610 0.1463
DEV 0.2195 0.2267 MV 0.2318 0.2437
APP 0.1812 0.1599 ETL 0.1210 0.1908

8.2 End-to-end evaluation
The end-to-end experiments involve four real-life scenarios, and

were performed on a 20-node Amazon EC2 cluster with m3.xlarge
instances. The production workload traces from Company ABC,
Facebook, and Cloudera customers were scaled and replayed on the
EC2 cluster using SWIM [12]. In addition, the initial RM config-
uration was derived directly from the expert one created by DBAs

for Company ABC’s production database. Each end-to-end exper-
iment involves approximately 30,000 tasks from two tenants, and
each Tempo control loop explores 5 RM configuration candidates.
Thus, one Tempo control loop requires prediction for 150,000 tasks,
which takes one second.

8.2.1 Mix of deadline-driven and best-effort work-
loads

The first scenario involves two tenants running workloads which
come with the deadline SLO specified with QSDL, and the low av-
erage job response (AJR) time SLO specified with QSAJR, respec-
tively. The experiment aimed to obtain an RM configuration which
is better than the expert one used in production. In particular, un-
der the new RM configuration, every job from the deadline-driven
workload must complete no later than the completion of the same
job under the expert RM configuration. This is a strict constraint,
where the deadlines in QSDL are given by the completion times of
deadline-driven jobs under the expert RM configuration, and the
corresponding ri = 0 (for 0% deadline violations). Another con-
straint involving QSAJR enforces that the average job response time
of the best-effort workloads under the new RM configuration can-
not be greater than the average job response time (ri) under the
expert configuration.

When counting the number of deadline violations, a 25% slack,
i.e., γ = 0.25, is used in QSDL to reduce the sensitivity to noise,
since even the workloads under the same RM configuration with a
slack 0 (γ = 0 in QSDL) can yield a large deadline violation fraction
(up to 83%).

Figure 4 shows the SLOs (QS values) at each iteration in the
Tempo control loop. At the iteration 0, the initial expert RM con-
figuration was used. The RM configuration was then iteratively
optimized by the Tempo control loop. It can be seen that, at con-
vergence, the improvements in average job response time of the
best-effort tenant are 50% and 58% for 25% and 50% slack, re-
spectively. The gap between the improvements is relatively small,
i.e., 8%. One reason is that both improvements benefited from the
reduced contention for resources, which is confirmed in the next
experiment. In addition, the fraction of deadline violations first
drops and then breaks even at convergence. This trend is due to the
fact that once the Pareto frontier is reached, we cannot improve one
SLO without sacrificing another.

8.2.2 Improving resource utilization
In addition to the previous scenario, this experiment considered a

third SLO, high resource utilization, which is specified with QSUTIL.
We focused exclusively on MapReduce workloads due to the ob-
servation of significant task preemptions in production. The exper-
iment added two constraints corresponding to the map container
utilization and reduce container utilization, respectively. The ri’s
were set according to the measured map and reduce container uti-
lization under the expert RM configuration. The results show fewer
preemptions under the Tempo optimized RM configuration as well
as improvements in job response time subject to the deadline SLOs.

As we discussed, preemption happens when a tenant has been
starved for a certain period of time (the configured preemption
timeout), killing a certain number of most recently launched tasks
from other tenants. Thus, preemption results in lost work and de-
creased resource utilization. Each tenant can specify a per-tenant
preemption timeout in the RM configuration, and these settings are
difficult to get right manually (even for experts) due to their com-
plex connections to workloads and SLOs.

We observed a significant number of preempted MapReduce tasks
on the production cluster at Company ABC. Figure 5 shows the

727

100 102 104
0.6

0.7

0.8

0.9

1

Reduces

BI DEV APP STR MV ETL

100 102 104 106
0

0.2

0.4

0.6

0.8

1

Maps

101 103 105
0

0.2

0.4

0.6

0.8

1

Response time [sec]

Jo
bs

C
D

F

103 106
0

0.2

0.4

0.6

0.8

1

Wait time [sec]

Figure 3: Key statistics of Company ABC’s workloads.

0 5 10 15 20

Iterations

0

0.5

1

Q
S

A
J
R

 (
n

o
rm

a
liz

e
d

)

25% slack

50% slack

0 5 10 15 20

Iterations

0

5

10

Q
S

D
L
 (

%
)

25% slack

50% slack

Figure 4: Average job response time for the best-effort tenant
(left) and fraction of deadline violations for the deadline-driven
tenant (right) at each iteration.

Day of week

Tue Wed Thu Fri Sat Sun Mon

F
ra

c
ti
o

n
 o

f
p

re
e

m
p

ti
o

n
s

0

0.2

0.4

0.6

0.8

1

Best−effort

Deadline−driven

Day of week

Tue Wed Thu Fri Sat Sun Mon

F
ra

c
ti
o

n
 o

f
p

re
e

m
p

ti
o

n
s

0

0.2

0.4

0.6

0.8

1

Best−effort

Deadline−driven

Figure 5: Task preemptions for MapReduce workloads at
Company ABC. On the left shows the preempted map tasks,
and the preempted reduce tasks are given on the right.

map and reduce preemptions over the period of one week. Dur-
ing this period, 6% map tasks and 23% reduce tasks had been pre-
empted, and the reduce preemptions were mostly from the best-
effort tenant. The main reason was that the workloads of the best-
effort tenant contain mostly long-running reduce tasks, as shown in
Figure 6.

Task duration [sec]

10
0

10
1

10
2

10
3

10
4

10
5

T
a

s
k
s
 C

D
F

0

0.2

0.4

0.6

0.8

1
Map

Deadline−driven

Best−effort

Task duration [sec]

10
0

10
1

10
2

10
3

10
4

10
5

T
a

s
k
s
 C

D
F

0

0.2

0.4

0.6

0.8

1
Reduce

Deadline−driven

Best−effort

Figure 6: Task duration distributions for MapReduce work-
loads at Company ABC.

Figure 7 shows the SLOs under the original expert RM config-
uration and the Tempo optimized RM configuration. As can be
seen, the optimized resource allocation delivers 22% improvement
in the average job response time of the best-effort tenant workloads
and 10% in the deadline QSs. Another improvement is in the uti-
lization of reduce containers, while the utilization of map contain-
ers remains at the same level. The results are consistent with our
observations of preemption statistics, and the improvements in re-
duce container utilization is due to the alleviated preemptions. In
particular, the preemption timeout settings in the Tempo-optimized
RM configuration had been self-tuned appropriately to the work-
load distribution.

AJR DL UTIL
MAP

UTIL
RED

0

0.2

0.4

0.6

0.8

1
Original

Optimized

Figure 7: SLOs under the original and optimized (slack = 0)
RM configuration: AJR, DL, UTILMAP, and UTILRED are the
average job response time of the best-effort tenant, fraction of
deadline violations for the deadline-driven tenant, map con-
tainer utilization, and reduce container utilization, respectively.

8.2.3 Performance of PALD Vs. State-of-the-art
In this experiment, we compare the proposed PALD algorithm

to state-of-the-art for multi-objective QS optimization (see Table
2). Specifically, we consider six tenants A to F with average job
response time, deadline, and throughput SLOs, and evaluate the
configurations produced by the algorithms in comparison. These
tenants run SWIM-generated workloads based on production traces
from Cloudera clients and Facebook.

Since measuring QSs and making QS estimations are the most
time-consuming phases in Tempo, we naturally rule out algorithms
with large sample complexity, e.g., evolutionary algorithms. The
QS optimization (SP1) also requires the solution to support con-
straints.

This condition removes PAL, PESMO, and SUR from considera-
tion. MSPD is the state-of-art which supports constraints; however,
MSPD does not seek a Pareto-optimal solution. The goal of MSPD
is instead to optimize one selected objective while satisfying all the
other objectives with respect to the specified thresholds.

728

Mon Tue Wed Thu Fri Sat

Day of week

10
2

10
3

10
4

10
5

Q
S

A
J
R

 [
s
e
c
]

Best−effort

Deadline−driven

0 60 120

Two−hour window

0

1000

2000

3000

Q
S

A
J
R

 [
s
e
c
]

Best−effort

Deadline−driven

Figure 9: Instant job response time distributions. On the left
shows the production workloads of Company ABC over the pe-
riod of a week. On the right gives the two-hour experiment
workloads on EC2 using Facebook and Cloudera traces.

AJR DL
0

0.2

0.4

0.6

0.8

1

Original

15min

30min

45min

Figure 10: SLOs for different interval lengths in Tempo control
loop. AJR denotes the normalized average job response time
of the best-effort workloads, and DL represents the fraction of
deadline violations (computed via QSDL with slack γ = 25%).

For the above reasons, we compare three algorithms: SCALAR,
MSPD, and PALD. SCALAR is the widely-used scalarization which
serves as a naive approach. The experiment starts with the same ar-
bitrary configuration, and performs the optimization using different
algorithms. The same number of iterations are performed until ev-
ery algorithm has converged. Each iteration takes 1 min for every
algorithm and uses two hours of job history for computing SLOs.
Figure 8 shows the normalized results, as compared to the expert
configuration, for the initial arbitrary configuration and configura-
tions optimized by different algorithms. In particular, the SLOs
achieved under the expert configuration are specified as constraints
for these algorithms to try to force the optimized configuration to
dominate the existing one.

A (AJR) B (AJR) C (DL) D (THR) E (DL) F (AJR)
0

0.5

1

1.5

N
o
rm

a
liz

e
d
 S

L
O

Expert Arbitrary SCALAR MSPD PALD

Figure 8: Comparison of algorithms for QS optimization. Ex-
pert is the baseline configuration and others are normalized
accordingly. AJR, DL, THR are respectively the average job
response time, deadline, and throughput(#jobs/hr) SLOs.

As can be seen, the arbitrary configuration resulted in decreased
performance for all tenants except D. Unsurprisingly, SCALAR
leads to increased deadline violations for C and E while achiev-
ing decent improvements in AJR SLOs due to the ignorance of

SLO constraints. Since MSPD does not seek Pareto-improving so-
lutions, the resulting configuration does not dominate the expert
one. We also noted that MSPD assumes a convex configuration
space, which generally does not hold for RMs. For example, the
preemption parameters are in binary and integer domains. The con-
figuration optimized by the proposed PALD is Pareto-improving as
desired.

8.2.4 Adaptivity to workload variations
In this experiment, we applied Tempo to meet SLOs under slowly

changing workload distributions. Figure 9 depicts the instant job
response time distribution for deadline-driven and best-effort ten-
ants. The instant job response time is computed using the mov-
ing average of a 30-minute window. As can be seen, the instant
job response time of deadline-driven workloads exhibits a periodic
pattern while the job response time of the best-effort workloads
changes dramatically over time.

Recall that each iteration of the Tempo control loop uses a fixed-
length interval of most recent job traces as input. The next ex-
periment evaluates how different interval lengths impact Tempo’s
performance.

Figure 10 shows the SLOs under the original expert RM configu-
ration and Tempo-optimized RM configurations for interval length
15min, 30min, and 45min. Similarly, the experiment uses SLOs
specified with QSAJR, and QSDL (25% slack). As can be seen, a
small window size favors the average job response time of the best-
effort workloads while leading to a higher percent of deadline vio-
lations. According to the results, the 45min interval length yields a
similar fraction of deadline violations as the original RM configu-
ration, but a 22% improvement in the average job response time of
the best-effort workloads. The results show that Tempo can adapt
to workload variations using a small interval length.

8.2.5 Resource provisioning and cutting costs
The last experiment demonstrates the application of Tempo to re-

source provisioning, estimating the minimum amount of resources
needed to meet the given SLOs. This application can help users
do better resource planning and cut overprovisioning costs. In ad-
dition, this application can bridge the gap in resource allocation
between the development cluster and the production cluster, that is,
converting the resource allocation on the development cluster for
use in the production cluster.

The experiment involves running the same given deadline-driven
workloads and best-effort workloads on three EC2 clusters with 20
nodes (100%), 10 nodes (50%), and 5 nodes (25%), respectively.
Tempo was used to estimate the SLOs of the workloads when exe-
cuted on the 100% cluster, using traces respectively from the 100%
cluster, 50% cluster, and 25% cluster. This experiment mimics the
scenario in which users collect traces of the workload on the current
cluster, and would like to know how a new cluster size will impact
the SLOs. (From our experience, this use case is common at com-
panies like LinkedIn and Yahoo.) In this case, Tempo can serve as
a key component in the decision-making for resource provisioning.

Figure 11 gives the SLO estimation errors using traces from
equal and smaller clusters. As can be seen, Tempo can predict—
with the error no more than 20%—the SLOs of the current work-
loads run on a double-size cluster; using traces collected from the
current cluster. Predicting the SLOs of the current workloads run
on a quadruple-size cluster results in a maximum error of 35%.

9. RELATED WORK
General-purpose RMs. Most Resource Managers (RMs) that are
deployed on multi-tenant “big data” database systems today like

729

100% nodes 50% nodes 25% nodes
−40

−20

0

20

40

E
s
ti
m

a
ti
o
n
 e

rr
o
r

(%
)

Best−effort QS
AJR

Deadline−driven QS
AJR

Map utilization

Reduce utilization

Figure 11: Errors in SLO estimation using traces based on
equal and smaller cluster sizes.

RedShift, Teradata, Vertica, Hadoop, and Spark are based on re-
source allocation principles such as static resource partitioning [1],
max-min fairness [4, 3], dominant resource fairness [20, 19, 44],
or reservations [14]. Variants also consider data locality [26], job
placement constraints [20], and multi-resource packing of tasks to
machines [21]. Moreover, RMs (usually called Workload Man-
agers) in parallel database systems like IBM DB2 PE, RedShift,
Teradata, and Vertica allow DBAs to specify rules to dynamically
adjust the resource allocation of tenants, as well as define user-
defined events relevant to workload management and actions to
be taken based on them. RedShift and Vertica use resource pools
where each pool has parameters such as resource limits, priorities,
and maximum concurrency like the RM configuration described in
Section 3.3.

A large body of recent research focuses on developing general-
purpose RMs like YARN[46] and Mesos[25]. The main efforts
lie in scalability, responsiveness, and fault-tolerance of the RMs.
Omega [43] proposes parallelism, shared state, and lock-free opti-
mistic concurrency control for increased scalability. Sparrow [39]
leverages load-balancing techniques to make the scheduler more
responsive for scheduling low-latency tasks. Fuxi [51] enhances
the fault tolerance and scalability of RMs by introducing trans-
parent failure recovery features and a failure detection mechanism.
Apollo [11] takes into account the data locality and server load to
achieve high-quality scheduling decisions. Apollo also introduces
correction mechanisms to cope with unexpected cluster dynamics,
sub-optimal estimations, and other abnormal runtime behaviors.

The above RMs generally provide effective control and isolation
over resources. However, they have limited support for application-
level and tenant-oriented SLOs, and often rely on DBAs to guess
the right capacities.
Single SLO-driven RMs. Many existing RMs aim to achieve a
single type of SLO. In [29], the authors develop a deadline estima-
tion model and apply real-time scheduling to meet job deadlines.
ARIA [47] provides support for job deadlines by profiling jobs and
modeling resource requirements in order to complete before the
deadline. WOHA [33] improves workflow deadline satisfactions
in Hadoop. Amoeba [9] brings lightweight elasticity to compute
clusters by splitting original tasks into smaller ones, and allowing
safe exit of a running task and later resuming the task by spawning
a new task for its remaining work. Pisces [44] delivers datacenter-
wide per-tenant performance isolation and fairness for multi-tenant
cloud storage.
Tenant-oriented RMs. A handful of RMs have been proposed
to provide tenant performance isolation. Unlike resource isola-
tion, these RMs typically incorporate capacity estimation to meet

tenant-oriented SLOs. Pulsar [10] uses virtual datacenter abstrac-
tion (VDC), which is similar to the QS abstraction in Tempo, to
describe the SLOs for a tenant. Unlike Tempo, Pulsar focuses on
scenarios where resources are sufficient, and does not guarantee
Pareto optimality of SLOs. The effectiveness of Pulsar also relies
on the accuracy of user-specified cost functions in VDCs as well as
resource demand estimation. Thus, Pulsar can be sensitive to noise
in both cost and demand estimation. Retro [34] supports resource-
limited scenarios and delivers max-min fairness across SLOs by
balancing the progress of applications (referred to as workflows).
Retro does not guarantee the Pareto-optimality of tenant SLOs. For
example, one may use techniques like multi-resource packing [21]
to obtain Pareto-improving configurations with similar relative fair-
ness ratios among tenants.

10. CONCLUSION
Providing end-to-end tenant performance isolation while achiev-

ing high resource utilization in multi-tenant “big data” database
systems is an important problem. The vast majority of resource
managers deployed on multi-tenant database systems today rely on
DBAs to continually configure low-level resource settings to sup-
port tenant performance isolation. This process is brittle and in-
creasingly hard as workloads evolve, data and cluster sizes change,
and new workloads are added. In this paper, we presented a frame-
work, Tempo, which enables DBAs to work with high-level SLOs
conveniently. In particular, we showed that Tempo has provable
robustness properties which enforce tenant performance isolation,
and more desirably Pareto-optimal SLOs. The evaluation reports
that Tempo is self-tuning and robust for achieving guaranteed SLOs
in production database systems.

11. REFERENCES
[1] Amazon redshift. http://goo.gl/nS8cQH.
[2] Facebook corona. https://goo.gl/MN9VpK.
[3] Hadoop capacity scheduler. https://goo.gl/hh6Ood.
[4] Hadoop fair scheduler. https://goo.gl/8Ov2nj.
[5] Teradata. http://goo.gl/TjU7qR.
[6] Vertica. http://tinyurl.com/ovgufev.
[7] Yarn scheduler load simulator. https://goo.gl/JNUPoj.
[8] F. B. Abdelaziz. Solution approaches for the multiobjective

stochastic programming. 216(1):1–16, 2012.
[9] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao,

and I. Stoica. True elasticity in multi-tenant data-intensive
compute clusters. In SOCC, pages 24:1–24:7, 2012.

[10] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and
E. Thereska. End-to-end performance isolation through
virtual datacenters. In OSDI, pages 233–248, 2014.

[11] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. In OSDI, pages
285–300, 10 2014.

[12] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical
processing in big data systems: A cross-industry study of
mapreduce workloads. 5(12):1802–1813, 08 2012.

[13] W. S. Cleveland and S. J. Devlin. Locally weighted
regression: An approach to regression analysis by local
fitting. 83:596–610, 1988.

[14] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan,
R. Ramakrishnan, and S. Rao. Reservation-based scheduling:
If you’re late don’t blame us! In SOCC, pages 2:1–2:14,
2014.

730

http://goo.gl/nS8cQH
https://goo.gl/MN9VpK
https://goo.gl/hh6Ood
https://goo.gl/8Ov2nj
http://goo.gl/TjU7qR
http://tinyurl.com/ovgufev
https://goo.gl/JNUPoj

[15] S. Das, V. Narasayya, F. Li, and M. Syamala. Cpu sharing
techniques for performance isolation in multi-tenant
relational database-as-a-service. In PVLDB, 2013.

[16] J.-A. Désidéri. Multiple-gradient descent algorithm (MGDA)
for multiobjective optimization. Tome 350(Fascicule
5-6):313–318, 03 2012.

[17] A. Emmerich. The computation of the expected
improvement in dominated hypervolume of Pareto front
approximations, 2008.

[18] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca. Jockey: Guaranteed job latency in data parallel
clusters. In EuroSys, pages 99–112, 2012.

[19] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: Fair
allocation of multiple resource types. In NSDI, pages
323–336, 2011.

[20] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy:
Max-min fair sharing for datacenter jobs with constraints. In
EuroSys, pages 365–378, 2013.

[21] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella. Multi-resource packing for cluster schedulers.
44(4):455–466, 08 2014.

[22] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu.
MRSim: A discrete event based MapReduce simulator.
6:2993–2997, 08 2010.

[23] D. Hernández-Lobato, J. M. Hernández-Lobato, A. Shah,
and R. P. Adams. Predictive entropy search for
multi-objective bayesian optimization. In NIPS Workshop on
Black-box Learning and Inference, 2015.

[24] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In CIDR, pages 261–272, 2011.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In NSDI, pages 295–308, 2011.

[26] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: Fair scheduling for distributed
computing clusters. In SOSP, pages 261–276, 2009.

[27] D. Jefferson, H. Sowizral, and R. Corporation. Fast
Concurrent Simulation Using the Time Warp Mechanism:
Part I, Local Control. Fast Concurrent Simulation Using the
Time Warp Mechanism: Part I, Local Control. Rand
Corporation, 1982.

[28] R. Kasimbeyli. A conic scalarization method in
multi-objective optimization. 56(2):279–297, 2013.

[29] K. Kc and K. Anyanwu. Scheduling hadoop jobs to meet
deadlines. In CLOUDCOM, pages 388–392, 2010.

[30] J. Kiefer and J. Wolfowitz. Stochastic estimation of the
maximum of a regression function. 23:462–466, 1952.

[31] J. Knowles. Parego: A hybrid algorithm with on-line
landscape approximation for expensive multiobjective
optimization problems. 10(1):50–66, 09 2006.

[32] W. Lang, S. Shankar, J. Patel, and A. Kalhan. Towards
multi-tenant performance slos. In ICDE, 2012.

[33] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and
R. Pace. Woha: Deadline-aware map-reduce workflow
scheduling framework over hadoop clusters. In ICDCS,
pages 93–103, 2014.

[34] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro:
Targeted resource management in multi-tenant distributed

systems. In NSDI, pages 589–603, 05 2015.
[35] M. Mahdavi, T. Yang, and R. Jin. Stochastic convex

optimization with multiple objectives. In NIPS, pages
1115–1123. 2013.

[36] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. Sqlvm: Performance isolation in multi-tenant
relational database-as-a-service. In CIDR, January 2013.

[37] V. Narasayya, S. Das, M. Syamala, S. Chaudhuri, F. Li, and
H. Park. A demonstration of sqlvm: Performance isolation in
multi-tenant relational database-as-a-service. In SIGMOD,
pages 1077–1080, 2013.

[38] J. Ortiz, V. T. de Almeida, and M. Balazinska. Changing the
face of database cloud services with personalized service
level agreements. In CIDR, 2015.

[39] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.
Sparrow: Distributed, low latency scheduling. In SOSP,
pages 69–84, 2013.

[40] V. Picheny. Multiobjective optimization using gaussian
process emulators via stepwise uncertainty reduction.
25(6):1265–1280, 2014.

[41] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze.
Multiobjective optimization on a limited budget of
evaluations using model-assisted S -metric selection. In
Proceedings of the 10th International Conference on Parallel
Problem Solving from Nature: PPSN X, pages 784–794,
2008.

[42] Z. Ren, X. Xu, J. Wan, W. Shi, and M. Zhou. Workload
characterization on a production hadoop cluster: A case
study on taobao. In IEEE International Symposium on
Workload Characterization, pages 3–13, 2012.

[43] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: Flexible, scalable schedulers for large
compute clusters. In EuroSys, pages 351–364, 2013.

[44] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
OSDI, pages 349–362, 2012.

[45] S. Tang, B.-s. Lee, B. He, and H. Liu. Long-term resource
fairness: Towards economic fairness on pay-as-you-use
computing systems. In ICS, pages 251–260, 2014.

[46] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache hadoop yarn: Yet another
resource negotiator. In SOCC, pages 5:1–5:16, 2013.

[47] A. Verma, L. Cherkasova, and R. H. Campbell. Aria:
Automatic resource inference and allocation for mapreduce
environments. In ICAC, pages 235–244, 2011.

[48] A. Verma, L. Cherkasova, and R. H. Campbell. Play it again,
simmr! In CLUSTER, pages 253–261, 2011.

[49] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
Google with Borg. In EuroSys, 2015.

[50] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigumus. Intelligent management of virtualized
resources for database systems in cloud environment. In
ICDE, pages 87–98, 2011.

[51] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. Fuxi:
A fault-tolerant resource management and job scheduling
system at internet scale. 7(13):1393–1404, 08 2014.

[52] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel. Active
learning for multi-criterion optimization. In ICML, 2013.

731

	Introduction
	Background
	Concern A
	Concern B
	Concern C
	Concern D

	Overview of Problem
	Multi-tenant Workloads
	SLOs
	Global RM Configuration Space
	Role of Tempo

	Tempo
	QS: Quantifiable Metrics to Measure SLO Satisfaction
	QS Metrics for Popular SLOs
	QS Templates

	Theoretical Foundations
	Multi-objective QS Optimization Problem
	Goals and Notation
	Proxy Model
	Parameters

	What-if Model
	Workload Generation
	Fast Schedule Prediction

	Evaluation
	Validating the schedule prediction
	End-to-end evaluation
	Mix of deadline-driven and best-effort workloads
	Improving resource utilization
	Performance of PALD Vs. State-of-the-art
	Adaptivity to workload variations
	Resource provisioning and cutting costs

	Related Work
	Conclusion
	References

