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Abstract
Memory management is one of the most boring topics in database
research. It plays a minor role in tasks like free-space management
or efficient space usage. Here and there we also realize its im-
pact on database performance when worrying about NUMA-aware
memory allocation, data compacting, snapshotting, and defragmen-
tation. But, overall, let’s face it: the entire topic sounds as exciting
as ‘garbage collection’ or ‘debugging a program for memory leaks’.

What if there were a technique that would promote memory man-
agement from a third class helper thingie to a first class citizen in
algorithm and systems design? What if that technique turned the
role of memory management in a database system (and any other
data processing system) upside-down? What if that technique could
be identified as a key for re-designing various core algorithms with
the effect of outperforming existing state-of-the-art methods con-
siderably? Then we would write this paper.

We introduce RUMA: Rewired User-space Memory Access. It
allows for physiological data management, i.e. we allow developers
to freely rewire the mappings from virtual to physical memory (in
user space) while at the same time exploiting the virtual memory
support offered by hardware and operating system. We show that
fundamental database building blocks such as array operations, par-
titioning, sorting, and snapshotting benefit strongly from RUMA.

1. INTRODUCTION
Database management systems handle memory at multiple lay-

ers in various forms. The allocations differ heavily in size, fre-
quency, and lifetime. Many programmers treat memory manage-
ment as a necessary evil that is completely decoupled from their
algorithm and data structure design. They claim and release mem-
ory using standard malloc and free in a careless fashion, without
considering the effects of their allocation patterns on the system.

This careless attitude can strike back heavily. A general example
to counter this behavior is manual pooling. With classical allo-
cators (like malloc) it is unclear whether an allocation is served
from pooled memory or via the allocation of fresh pages, requested
from the kernel. The difference, however, is significant. Request-
ing fresh pages from the system is extremely expensive as the pro-
gram must be interrupted and the kernel has to initialize the new
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pages with zeroes, before the program can continue the execution.
Thus, careful engineers implement their own pooling system in or-
der to gain control over the memory allocation and to reuse por-
tions of it as effectively as possible. However, manual pooling also
complicates things. To write efficient programs, engineers rely on
consecutive memory regions. Fast algorithms process data that is
stored in large continuous arrays. Data structures store that data as
compact as possible to maximize memory locality. This need is an-
chored deeply in state-of-the-art systems. For instance, the authors
of [13] argue against storing the input to a relational operator at sev-
eral memory locations for MonetDB: “It does not allow to exploit
tight for-loops without intermediate if-statements to detect when we
should skip from one chunk to the next during an operator.”
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Figure 1: Structural Flexibility vs Lookup Performance —
While static structures like the array provide fast and convenient ac-
cess performance, their structure is hard to modify (extend, shrink).
While dynamic structures like the linked list are easy to modify, the
lookup of entries is indirect and slow. Rewired structures offer di-
rect access and high structural flexibility at the same time.

Unfortunately, it is not always possible to gather large consec-
utive memory regions from the pool due to fragmentation. To
work around this problem, memory can be claimed as chunks
from the pool, using a simple software-based indirection. Alloca-
tions of memory are served by glueing together individual mem-
ory chunks via a directory. Thus, instead of accessing the en-
try at offset i by a[i], the access is performed indirectly via
dir[i / chunkSize][i % chunkSize]. Of course, this re-
laxes the definition of continuous memory, as every access has to
go through the indirection now. As we will see, depending on the
usage of the memory, this can incur significant overhead.

Obviously, demonstrated at the example of pooling, we face a
general trade-off in memory management: flexibility vs access per-
formance. Apparently, these properties seem to be contradictory to
each other. On the one hand, a static fixed-size array is extremely
efficient to process in tight loops, but hard to extend, shrink, or
modify structurally. On the other hand, a chunk-based structure as
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the linked-list is highly flexible, but suffers from an access indi-
rection. Figure 1 visualizes this problem. The goal of RUMA is
precisely to end this duality as rewired structures offer both the ac-
cess performance of a consecutive memory region while providing
the flexibility of a chunk-based structure.

To do so, we exploit a mechanism that is already present in to-
days operating systems: the virtual to physical page mapping, real-
ized by a page table maintained by every process. Thus, instead of
replicating this concept on the user level via a software-indirection,
we make the existing virtual memory facility work for us. To do
so, we introduce the concept of rewiring memory, which consists
of two parts: (1) we reintegrate the concept of physical memory
into user space without modifying the kernel in any way; (2) we
actively manipulate the mapping from virtual to physical pages
during runtime. This allows us to both reclaim individual pages
from a pool and still form actual continuous memory regions that
can be accessed with little to no overhead. Apart from the bene-
fits in memory allocation, flexible rewiring of individual pages can
come very handy in numerous situations. We believe that the de-
sign of efficient data management algorithms is only possible with
the knowledge of how the internals of the memory system work —
and consequently exploit them as much as possible. This is exactly
what we cover in this paper, by making the following contributions:
(1) RUMA. We introduce Rewired User-space Memory Access
(RUMA or ‘rewiring’ for short) allowing us to rewire the mapping
of virtual to physical memory addresses at runtime. This remapping
happens at the granularity of pages (both small or huge pages). The
technique does not need any modifications of the operating system
and also does not interfere with process isolation or user security.
In particular, we do not disable any virtual memory mechanisms,
i.e. all of the benefits of virtual memory management are still avail-
able. The trick is to piggyback on the memory mappings that are
maintained by the operating system anyways and exploit and ma-
nipulate the existing mappings for higher-level tasks. We can real-
ize the entire technique in user space and purely in software, with-
out modifying the linux kernel. We will investigate the toolset pro-
vided by the kernel to separate virtual and physical memory in the
user space and we will show how to freely manipulate the mapping
from virtual to physical pages at runtime (see Section 2 and 3).
(2) Micro-Benchmarking. We benchmark the costs of rewiring
in depth. First, we perform a set of micro-benchmarks to analyze
both behavior and performance for memory allocation and access
of rewiring in comparison to their traditional counterparts. Then,
we inspect the costs and types of individual page faults to see their
impact on the techniques and look at the expenses of shuffling items
using rewiring respectively copying. Finally, we measure the im-
pact of different access patterns on the techniques to understand
the need for rewiring. We will learn that a major effect of rewiring
is that it allows us to push down one storage indirection down to
the operating system. At the same time, rewiring drastically in-
creases the flexibility of storage management without introducing
considerable overhead. This has a dramatic runtime effect for all
mass-operations reading or writing memory (see Section 4).
(3) Applications. Rewiring can be applied in many places in data
management. It applies whenever data is copied or moved around,
e.g. for resizable data structures, partitioning, merging, hiding of
data fragmentation, and realizing multiple views on the same phys-
ical memory. Rewiring also applies in situations where data is read-
only or very hard to update in place, e.g. when applying a set of
changes collected in a differential file or when adaptively refining
a part of an index. Investigating all of the possible applications of
RUMA is beyond the scope of a 12-page paper. From the long list
of possible applications of rewiring we will focus on three applica-

tions that are central to many data managing tasks (see Sections 5.1
to 5.3) and leave other promising work to the future (see Section 6).
(4) Rewired Vector. We demonstrate the concept of rewiring at
one of the most fundamental structures in data management: the
array. It serves as a building block for fundamental main-memory
structures like columns, hash tables, and indexes. One array op-
eration that is particularly painful is resizing. We cannot enlarge
an array without triggering costly physical copy operations, fresh
page allocations, or wrapping the array in software into a list of
arrays (leading to an additional storage indirection that is painful
to handle). This resizing problem is also at the heart of several
read-optimized structures like column layouts and read-optimized
indexes including differential indexes. Using STL’s resizing array
implementation (vector) as a pivot for this problem we will intro-
duce a rewired vector. This data structure grows and shrinks page-
wise without any copying of old entries, thus significantly improv-
ing over STL vector. Further, we are still able to use pooled pages
underneath, in contrast to our second baseline using the system call
mremap for the resizing. Finally, we compare the rewired vector
with our third baseline using a software-indirection. We show that
only our structure manages to integrate comfortable flexibility into
an array-based data structure (see Section 5.1).
(5) Rewired Partitioning & Sorting. We now pick an important
building block in database systems: radix-based partitioning. It is
a fundamental technique for indexing, join processing, and sort-
ing. We investigate two state-of-the-art out-of-place partitioning
algorithms [18], which either perform a histogram generation pass
beforehand or maintain a linked list of chunks inside the partitions
to handle the key distribution. We also test a version enlarging the
partitions adaptively using mremap. We propose a rewired parti-
tioning algorithm that manages to avoid the histogram generation
altogether while still producing a contiguous output array by em-
bedding our rewired vector. We show that partitioning and access-
ing the partitions in a separate sorting phase is significantly faster
for rewired partitioning than for all the baselines (see Section 5.2).
(6) Rewired Snapshotting. Executing short running OLTP queries
and long running read-only OLAP queries is a major challenge
in database management. A way to efficiently pack them in one
system is to provide different isolated copies of the transactional
data to long running read only queries so that short running queries
can perform fast updates without blocking. One way to snapshot
data is to make a copy using functions such as memcpy, but as the
size of data grows, duplicating data can have significantly higher
costs. Systems like Hyper [8] use standard Linux features like
copy-on-write to lazily snapshot transactional data only when it is
needed. Although they improve the cost of snapshotting to a great
extent, they usually pay a significant cost of allocating fresh mem-
ory pages while performing actual copy-on-write. We use rewiring
for reusing physical pages to overcome this overhead. We show that
reducing this overhead can improve throughput of query processing
systems by 15% to 95% depending upon snapshotting frequencies
and workload compared to the approach used in HyPer [8] (see
Section 5.3).

2. VIRTUAL MEMORY MANAGEMENT
Let us first briefly recap virtual memory management as sup-

ported by the Linux kernel. We focus on Linux as we believe this
is by far the most common platform for data management applica-
tions and particularly servers.

Virtual memory has many advantages: processes may allocate
more memory than physically available, the memory belonging to
different processes may easily be protected, and all binaries may
be compiled using static virtual addresses. Traditionally, the pro-
grammer works solely on the level of virtual memory. Physical
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memory is simply not accessible to him. In most situations, the
view solely on virtual memory is convenient and handy for the user.
However, in recent years, programmers repeatedly identified situ-
ations in which an awareness of the underlying physical memory
can be beneficial. For instance, the KISS-tree [10], a radix trie,
implements an extremely wide root-level node of 256MB as only
a portion of it is actually physically allocated. Another example
is the previously mentioned HyPer [8], that exploits implicit copy-
on-write performed between processes related using fork. The
authors of [19] engineer a virtual-memory aware counting sort,
that avoids the initial counting pass by exploiting massive over-
allocation of the output array. Finally, in [4] the need for a user
mode page allocation system is claimed, that intends to separate
virtual and physical memory in user space. The author requests the
OS developers to rewrite the system calls such that physical pages
can be allocated manually by the programmer and mapped freely.

In the following, we will demonstrate that such a deep change of
the system is not necessary at all: we show how existing features
in Linux can be exploited to achieve exactly that: separate physical
and virtual memory in user space and freely manipulate the map-
pings between them. How could we get access to those mappings?

2.1 Physical Memory: Main-Memory Files
There is a way to work around this limitation in form of main

memory files. Linux provides main memory filesystems that
are mounted and used like traditional disk-based filesystems, but
backed by volatile main memory. Widely used representatives are
tmpfs and hugetlbfs which are typically used for shared mem-
ory objects that can be backed both by small and huge pages. To
evaluate the impact of the page size, we perform the micro bench-
marks in Section 4 both with small and huge pages backed files
where appropriate. We can now create a fresh file using a simple
call to the standard open system call as follows:
int fd = open("/mnt/mmfs/f", FILE_FLAGS, MODE);

This call tries to open1 the file that is named f and creates it, if it
does not exist. It returns the file descriptor in form of an integer,
which will serve as a handle to identify the file later on. As a newly
created file has a length of zero bytes by definition, we also have
to set its size in the next step to s bytes. This can be done using a
system call to the function ftruncate(fd, s).
From this point on, we have a programmatic representation of phys-
ical memory. Although we do not directly handle physical memory
pages, we know that file f is backed by physical memory. Specif-
ically, for a page size of p, this means that in file f, the memory
at offsets [0; p − 1] is backed by some physical page, say physical
page ppage42 and the memory at offsets [p; 2 · p− 1] is backed by
another physical page, say ppage7 and so on. Figure 2 visualizes
the concept. Notice, that the mapping from offsets to physical files
is handled by the file system and no reimplementation is necessary.

...

p-1][0         ; [p         ; 2·p-1] [(n-1)·p   ; n·p-1]
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Figure 2: Backing of a main memory file by physical pages
when using a main-memory file system. The file offsets in in-
terval [i · p, (i+ 1) · p− 1] are mapped to some physical page by
the file system. This mapping is not accessible for the user.

Using a main-memory files system, we could now reimplement
our own virtual memory mechanism. However, like that we would

1An alternative is memfd create, introduced in kernel 3.17.

lose the existing hardware and operating system support for virtual
memory management including all their benefits. For instance, we
would neither be able to exploit the translation lookaside buffer of
the CPU that caches translations from virtual to physical addresses
nor could we use the hardware page walker in case of a TLB miss.
Hence, we need to perform one additional step.

2.2 Virtual Memory: mmap
We need to bring virtual memory into the game. To do so, we

create a region of virtual memory and map it to the file. It is impor-
tant to note that in the following all accesses will still be performed
entirely through virtual memory — there will not be any direct data
accesses to physical memory. On linux, the way to create a virtual
memory mapping onto a main memory file is performed by a sys-
tem call to mmap as follows:
void* vmem = mmap(b=NULL, s,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

In this example, the mmap call creates a virtual memory area of
size s and maps it to the main memory file fd (as created in Sec-
tion 2.1). Passing b=NULL as the first argument indicates, that the
kernel should decide on the start address b of the new virtual mem-
ory area, which is guaranteed to be at a page boundary. Later on,
we will pass an existing address b to remap existing mappings (see
Section 3). MAP SHARED states that changes through the mapping
will be propagated to the underlying file. The alternative option
would be MAP PRIVATE, that does not propagate the changes but
instead creates a private copy of the page to modify. The last argu-
ment, which is 0 in this example, specifies the start offset for the
mapping into the file. By mapping a virtual memory area of size
s into file fd at offset 0, we basically map s/p many virtual pages
to the physical pages backing the main-memory file (we consider s
to be a multiple of the page size). Thus, we have created a hand-
made virtual memory to file offset mapping, which is then again
indirected by the file system to physical pages. Figure 3 visualizes
this mapping. In total, we have created a two-level mapping of vir-
tual memory to physical pages. Sounds expensive? Don’t worry. In
the following, the filesystem will only be called very rarely. Only
when accessing a virtual page for the first time, the file system is
involved. The second access to that virtual page does not differ
from accessing normal virtual memory. Hence, all calls except the
first one have to resolve a one-level mapping only.
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Figure 3: Mapping of virtual memory to main memory file.
A single call to mmap maps multiple virtual memory pages to the
main-memory file. The start address of the area is denoted as b.
The virtual page vpagei starting at address b + i · p is mapped to
the file at offset i ·p which in turn is backed by some physical page.

2.3 Virtual Memory: Reserving vs COW
Let us go back to the normal memory allocation using mmap on

anonymous memory, e.g. as used my malloc for large allocations:

char* data = mmap(NULL, 42 * p,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE,
-1, 0);
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The incautious programmer might think that this call allocates
42 physical main-memory pages of size p. What actually happens
is the following: the operating system simply reserves a virtual ad-
dress space of size 42 · p. This is done by creating a conceptual
memory mapping in form of a vm area struct. By maintaining
these structures, the kernel keeps track, for each process indepen-
dently, which virtual address ranges have been reserved for that
process. Notice that the operating system makes only one entry for
all 42 pages at this point; no entry is inserted into the page table.
The process’ page table will only be populated on demand when-
ever the data is accessed. This works as follows.

Let us assume we try to read from some virtual address, e.g. by
accessing data[7 · p+ 16]. In that case, the operating system will
try to retrieve the mapping of that virtual page to its physical page
at the virtual address data + 7 · p. If that mapping is neither in the
TLB cache, nor in the page table, this will trigger a page fault. The
operating system will now inspect the vm area struct instances
to determine how this page fault can be resolved. It finds the pre-
viously created vm area struct instance which determines that
data + 7 · p is a valid virtual address as it was reserved by this
process. Hence, the operating system will insert a new mapping
into the page table from the virtual page starting at data + 7 · p to
the so called zero-page. The zero-page is a read-only page where
all bytes are set to zero. Now, we have a valid entry for this virtual
page, hence we can serve the read request to data[7 · p + 16]. It
will return 0. Any read request touching a virtual page that does
not have an entry in the page table will be mapped like this. Now
let’s assume we write to the same page data + 7 ·p for the first time
say at address data[7 · p+20]. What happens? In this case the op-
erating system will apply copy-on-write (COW). It will get a new
physical page, copy the contents of the zero-page over that physi-
cal page, write the new value to that page, and update the entry in
the page table: the virtual page starting at data + 7 · p now maps
to the new physical page. This happens only for the first write to
any virtual memory page. In summary, a call to mmap does neither
allocate physical memory nor does it modify the page table.

2.4 Main-Memory File: Reserving vs COW
As we have discussed the behavior in the two-layered case in

the previous Section 2.2, let us now inspect the differences in the
three-layered memory-mapping, which we have in the case of a
file-backing, as displayed in Figure 3.

Just like in the two-layered mapping the call to mmap simply cre-
ates a vm area struct without modifying the page table in any
sense. What happens now if we access a virtual page for the first
time, i.e. we trigger a page fault? In that case, the operating system
will inspect the vm area struct and notice that this address space
is backed by a file at a certain offset, not by anonymous memory.
The operating system will then request the file system to return the
address of the physical page it uses to back that offset. As the phys-
ical page does not yet exist, the file system allocates it (equivalent
to the page-fault handling for anonymous memory), and returns the
physical address of it. With this address, the page table entry can be
created. Of course, the page fault handling mechanism employed
by the file system adds some overhead compared to a page fault
on anonymous memory. But as the page fault through the file sys-
tem happens only for the first access to that virtual page, the three-
layered mapping is basically turned into a two-layered mapping af-
ter this. Subsequent access costs are equal to those of anonymous
memory. We will micro-benchmark this in detail in Section 4.3.

3. REWIRING MEMORY
Up to this point, we have discussed virtual memory that is backed

by main memory files instead of anonymous memory. We did this

in order to reintroduce the concept of physical memory into the
user-space, to get separate handles for virtual and physical pages.
However, so far, we did not exploit the power of this new freedom
and what we believe to be the strongest aspect of this approach: the
ability to actively modify, i.e. to rewire the mappings from virtual to
physical pages. Doing so will allow us to use rewiring as a building
block for designing algorithms and data structures.

To get started, let us discuss the following example. Assume we
have an array occupying two pages of size p each. Now, we want to
swap the contents of the two pages backing the array. Traditionally,
this is done with a three-way-swap with one additional page as a
helper. These operations trigger actual physical copy operations
of three pages. Using rewiring, we can perform this swap using
neither physical data copying nor any allocation of helper memory.
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(a) Before: vpage0 shows the
contents of ppage42, vpage1
shows the contents of ppage7.
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(b) After: vpage0 shows the
contents of ppage7, vpage1
shows the contents of ppage42.

Figure 4: Rewiring two pages. Notice that no data is physically
copied across physical pages.

Figure 4 shows the concept. Initially, in Figure 4(a), a linear
mapping of a two page sized virtual memory area starting at ad-
dress b into the file exists. We created it as follows:
// (0) create a linear mapping:
char* b = (char*) mmap(NULL, 2 * p,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

Precisely, we map the virtual page vpage0, starting at address b,
to the file at offset 0, which is backed by physical page ppage42.
Consequently, we map the virtual page vpage1, starting at address
b+p, to the file at offset p, that is backed by physical page ppage7.
We now perform the actual page swap solely by rewiring the map-
ping from virtual pages to the file respectively the physical pages.
Figure 4(b) shows the state after rewiring. No data was physically
copied across pages. All we did is update two links using the fol-
lowing two calls to mmap in combination with MAP FIXED:

// (1) Remap 1. vpage
// to file offset p
mmap(b, p,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED,
fd, p);

// (2) Remap 2. vpage
// to file offset 0
mmap(b + p, p,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED,
fd, 0);

The first mmap call (1) remaps the virtual page vpage0, starting at
address b, to the file at offset p, which is backed by the physical
page ppage7. The key component of this control is using mmap

in combination with the argument MAP FIXED. By providing this
option, we can remap a virtual page to a different physical one by
providing a new offset into the file. The second call (2) remaps
the virtual page vpage1, starting at address b + p, to the file at
offset 0, which is backed by the physical page ppage42. After this,
the content visible through the virtual pages is swapped without
copying any physical pages.

Obviously, we could have achieved a similar effect by imple-
menting a software-directory by ourselves. Like that we could have
swapped pointers to the two pages just like we swapped the two
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mappings through mmap. However, doing so we would have intro-
duced one additional indirection for every access to an array slot.
Traversing this indirection can be very costly under certain access
patterns. The beauty of rewiring is that virtual memory maintains
one indirection anyways. Instead of adding an auxiliary indirec-
tion level, we let the existing one work for us. Hence, the central
question in the following is: when can we piggy back on the ex-
isting virtual to physical page mappings in order to get rid of one
level of indirection in our algorithms? In other words, how could
we change state-of-the-art data processing techniques to delegate
some of their implementations to operating system and hardware?

Before approaching these questions, let us outline how rewiring
could be wrapped inside of a lightweight library, that simplifies the
integration of the technique into existing applications. At the heart
of rewiring is the separation of physical and virtual memory and the
mapping between these two memory types. Thus, the core of the
library consists of the following three components: (1) The alloca-
tion of physical memory that wraps the creation, maintenance, and
initialization of main memory files. (2) The allocation of virtual
memory that wraps the calls to mmap and keeps track of the state
of the current mappings. (3) The rewiring functionality, which in-
ternally calls mmap to establish and modify the mappings between
virtual and physical pages. The library can further increase the
usability by rewiring on page identifiers instead of raw memory
addresses, while still exposing them to the user if requested.

Overall, these components already suffice to form the core of a
rewiring library, that can be assembled into existing code. How-
ever, before we can actually integrate rewiring into applications,
we need to understand the possible overheads of rewiring in depth.

4. MICRO-BENCHMARKS
In this section, we will perform a set of micro-benchmarks to

understand the impact of virtual memory and rewiring. Firstly, we
inspect the costs of allocation and access. Secondly, we evaluate
the page fault mechanism in detail. Thirdly, we dynamically rewire
existing mappings and measure the cost. Finally, we look at the
impact of different access patterns on the memory.

4.1 Experimental Setup
We run all experiments on a two-socket server consisting of two

quad-core Intel Xeon E5-2407 with a clock speed of 2.2 GHz. The
CPU does neither support hyper-threading nor turbo mode. The
sizes of the L1 and L2 caches are 32KB, respectively 256KB; the
shared L3 cache has a size of 10MB. The processor offers 64 slots
in the fast first-level data-TLB to cache translations of virtual to
physical 4KB pages. In a slightly slower second-level TLB, 512
more translations can be stored. For 2MB huge pages, the TLB
cache can store 32 translations in L1 dTLB. In total, the system
is equipped with 48GB of main memory, divided into two NUMA
regions. For all experiments, we make sure that all memory (both
file-backed and anonymous) is allocated on a single NUMA region
and that the thread is running on the socket attached to that region.
The operating system is a 64-bit version of Debian 8.1 with Linux
kernel version 3.16. The codebase is written in C99 and compiled
using gcc 4.9.2 with optimization level 3. Throughout the follow-
ing micro benchmarks, we will use a dataset of 1 billion entries,
where each entry is of type uint64 t and has a size of 8B leading
to a total size of roughly 7.45GB, unless mentioned otherwise.

4.2 Allocation Types
Before we can start with the evaluation, we have to define what

an allocation actually means in our context. In the following, we
distinguish three different types of allocations, that will serve as the
competitors in our evaluation:

(a) Private Anonymous Memory — Allocating a memory area
of n pages means mapping a consecutive virtual memory area of
n pages to n (unfaulted) anonymous physical pages. The operating
system resolves all page faults with fresh physical pages, we can
not use a pool. We can access the memory directly.
(b) Software-Indirected Memory — Allocating a memory area of
n pages using a software-indirection means creating a directory of
n slots where each slot contains the virtual address of a page in the
pool. We realize the pool using (faulted) virtual pages. We translate
and redirect any access through the directory.
(c) Rewired Memory — Allocating a memory area of n pages
using rewiring means mapping a consecutive virtual memory area
of n pages to n (faulted) pages in the pool. We realize the pool
using a main-memory file and we access the memory directly.

When we use a page pool in (b) and (c), the way in which we
select the mapped pages can have an influence on the mapping
and access performance. In the best case, where the pool is non-
fragmented, the n requested pages can be gathered consecutively.
In the worst case of a highly fragmented pool, we have to gather
each page individually. Thus, we test both extremes in the follow-
ing where meaningful. Note that we do not count the effort to find
and maintain unused pages in the pool.

4.3 Allocation & Access
The first step in understanding the runtime costs of memory us-

age is measuring memory allocation and its implication on access
performance. To analyze the total cost and impact of allocation
using different techniques, we perform the following simple exper-
iment: Firstly, we allocate a memory area. The allocation of a
memory area highly differs depending on the used memory man-
agement, see Section 4.2. Secondly, we write random values to the
area sequentially from start to end. Finally, we repeat the sequen-
tial write pass. We compare the total time of the three steps under
the allocation types (a), (b), and (c), where for (b) and (c) using
the page pool, we test both a sequential and random assignment of
pages. Figure 5 shows the results. For the allocation type (a) using
private anonymous memory, we focus solely on huge pages as the
page fault costs for small pages are significant and render them in-
ferior over huge pages in basically all scenarios. For the types (b)
and (c) we test both small and huge pages, as the page size influ-
ences the flexibility of the memory and both sizes can come handy
in certain situations.
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Figure 5: Allocation costs (red), sequential write costs for the first
pass (green), and sequential write costs for the second pass (grey).
The graph compares the allocation types of Section 4.2 using both
small and huge pages where appropriate.

We can see that the allocation phase is basically for free in all cases,
except when randomly rewiring individual small pages. When
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rewiring on a per huge page basis (random pool), the 3815 nec-
essary calls to mmap are negligible. When mapping small pages,
the almost 2 million calls (and the generated vm area struct in-
stances) are painful. However, mapping each page individually
simulates the extreme case of the most fragmented pool that is pos-
sible. With a good pool management scheme underneath, this is
very unlikely to occur [7].

More interesting is the runtime of the first sequential write
pass. Here, rewired memory clearly outperforms the remaining two
methods as it manages to combine the reusing of pages as well as
direct access. During the first writing to the rewired memory, soft
page-faults are triggered, that are only significant for small pages.
We will inspect the different types of page faults (soft vs hard) in
Section 4.4 in detail. The software-indirected memory suffers from
the offset translation and the lookup into the directory. Overall,
rewired memory is around 1.8x faster than the software-indirected
memory for huge pages. For private anonymous memory, the first
write performs even worse than in the software-indirected case and
is 2.2x slower than rewired memory using huge pages. As the map-
ping does not rely on a pool, the first write to a virtual pages triggers
a costly hard page-fault, that is served by the operating system with
a zeroed physical page.

The second sequential write pass shows for rewired memory the
same runtime as the first pass in the case of huge pages, for small
pages it is significantly cheaper. The difference between the passes
is that the second one can already exhibit a populated page table.
For huge pages, as the number of entries is small, this difference
is negligible. For small pages however, it becomes visible, where
the second pass is 2.2x (sequential pool) to 3.1x (random pool)
faster than the first one. The software-indirected memory still suf-
fers from the translation and directory access costs. The write run-
time of the private anonymous memory is also significantly faster
than in the previous pass and equals the one of rewired memory.
The reason for this is that the second pass, in contrast to the first
one, does not suffer from page-faults anymore. Overall, we clearly
see that rewiring combines the advantages of both base-lines while
avoiding the drawbacks. Rewiring offers the flexibility of individ-
ual page re-usage while enabling direct access without a slowdown.

4.4 Costs of an Individual Page Fault
In order to understand the high costs of the first write of private

anonymous memory and the advantages of using a page pool in
more detail, we perform an experiment where we trigger a number
of page faults and compute the average costs. We use a dataset of
2GB that is either backed by 1024 huge pages or by 524, 288 small
pages. We simply loop over these pages and write to the first byte
on each. Here, we can evaluate only two out of our three alloca-
tion types of Section 4.2. Firstly, we look at (a) (Private Anony-
mous Memory), which is the two-level memory mapping where
the virtual pages are not yet backed by any anonymous physical
pages. Thus, the first access will trigger a kernel request for a ze-
roed page. Again, we focus on huge pages due to the limited us-
ability of small pages in this context. Secondly, we look at type (c)
(Rewired Memory) where the physical pages come from our pool
of initialized pages. Again, we divide between sequentially and
randomly mapped pages and test both small and huge pages. Ad-
ditionally, we look at both MAP SHARED and MAP PRIVATE options,
as it influences the costs and both can be useful in certain situations.
Note that we do not evaluate (b) (Software-Indirected Memory) in
this context, as it is not connected to page faults in any way.

Table 1 shows the results. We repeated all measurements 100
times, each run performed in a fresh process. Let us focus on the
‘per page’ results. We see that the costs of faulting a page of private
anonymous memory are significant with around 600µs. In compar-

Backing Pooled Page Mapping Amortized Time
Type Pages? Size Type for page-fault [ns]

per page per KB
Private
Anonymous no huge private 600 251 293
Memory

small shared 686 172
yes private 2 048 512
(sequential) huge shared 710 < 1

Rewired private 526 519 257
Memory small shared 1 053 263

yes private 2 727 682
(random) huge shared 810 < 1

private 528 910 258

Table 1: Cost of a single page-fault for the allocation types
(a) (Private Anonymous Memory) in comparison with (c) (Rewired
Memory) from a page pool. We trigger page-faults for a dataset of
2GB and report the average costs amortized per page and per KB.

ison with its direct counterpart, rewired memory using huge pages
with MAP SHARED option that faults in 710ns, private anonymous
memory is three orders of magnitude slower, i.e. this clearly shows
that zeroing the page is the dominant part of the page fault, not set-
ting up and inserting the page table entry, which is done by both
methods. Therefore, we have to distinct between two types of page
faults: hard and soft page faults. If the page is freshly claimed from
the kernel, we have a hard page fault. If the page exists already, for
instance in a file representing a pool, and only the page table entry
must be inserted, we face a soft page fault. The expensive page
cleaning is again confirmed when using the MAP PRIVATE option,
where a fresh anonymous page is used to resolve the COW. The
difference between mapping the pooled pages sequentially and ran-
domly is only visible for small pages, where in total 524, 288 pages
are mapped. Here, a sequential mapping is up to 1.5x faster than
mapping them individually, as only a single vm area struct is
queried in contrast to hundreds of thousands.

The major takeaway message of this experiment is: the actual
page fault costs are negligible if the physical page pointed to was
already created before (soft page fault), which is the case when we
use a user-managed page pool.

4.5 Costs of Rewiring Memory
So far, we have seen how memory allocation, access, and fault-

ing behaves for rewired memory in comparison with the traditional
approaches. Let us now see how expensive the actual rewiring of
memory is. To answer this question, we perform the following ex-
periment: we form chunks of size 2x · 4KB and randomly shuffle
the data at this granularity. The exponent x is varied2 from 0 to 19.

For the traditional approach using private anonymous memory
and memcpy shuffling implies physically copying the chunks into
a separate, fresh array. For the rewired approach, we establish a
new virtual memory area that is mapped. All shuffling can be done
through rewiring virtual memory. Figure 6 shows the results for
both small and huge pages for rewired memory. The rewired ver-
sions are additionally tested with manual population, i.e. directly
after mapping a chunk of memory, we access the first byte of each
page of the chunk to trigger the page fault.

We can see that the chunk size has a large impact on the runtime
of the shuffling for rewired memory. For very high granularities
(e.g. a chunk size of 4KB), the calls to mmap create a significant
overhead (1, 953, 125 calls for 4KB chunks). Recall that for a sin-
gle mapping of a contiguous virtual memory area to one physical
offset in the file we only require a single vm area struct which
is kept in a separate tree structure maintained by the kernel. For

2Notice that 219 · 4KB= 2GB is the largest chunk size fitting two
times into the array.
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(with and without explicit page table population). For huge pages,
the highest granularity we can test is 29 · 4KB = 2MB.

the shuffling of chunks however, we need (in the worst case) one
vm area struct per chunk. This overhead can be observed in
Figure 6. We can see that for small chunk sizes of about 4KB the
costs of rewiring are more expensive than the actual physical copy
operation of private anonymous memory. However, as soon as we
start increasing the size of the chunks, rewired memory clearly out-
performs private anonymous memory. We can also observe that the
page table population by triggering soft page faults is not for free
and observable, at least for small pages.

In summary, when using reasonable large chunks sizes, rewiring
is considerably cheaper than the actual copying of the data.

4.6 Impact of Access Pattern
Previously, we have seen that a page-wise software-indirection is

a possible alternative to rewiring when implementing a pool-based
memory allocation system. However, when it comes to accessing
the memory, overhead must be factored in due to additional index
translation and access of the auxiliary directory. In Figure 5 of Sec-
tion 4.3 we already saw that sequentially reading through indirec-
tion is considerably more expensive than scanning a flat array. The
question arises whether accessing memory through the software-
indirection is generally more expensive than direct memory access.
Thus, we now test the following access patterns on both rewired
memory and a software-indirection. For all tests, page faults are
already resolved.

We distinct the following five patterns, which we visualize in
Figure 7: for random, independent pattern (7(a)), we access the
memory at random places where the access index is generated in-
dividually. For the sequential, independent pattern (7(b)), we scan
the memory from beginning to end where the access index is the
iteration variable of the loop. For random dependent access (7(c)),
we access the memory at random places where the access index is
the result of the previous access. There is only one cycle in the
dependency chain. For sequential dependent access (7(d)), we ac-
cess the memory at sequential places where the access index is the
result of the previous access. Again, there is only one cycle in the
dependency chain. Finally, for random, mixed access (7(e)), we
access the memory at random places. However, we interleave ac-
cesses based on a random number generator and accesses based on
the result of the previous access.

For rewired memory, we work on a flat array a that can be
accessed directly at index i via a[i]. In the case of software-

indirected memory, we have a directory a where a chunk has
the size of a huge page and translate each access at index i to
to a[i / pageSize][i % pageSize]. For the patters of Fig-
ures 7(a) to 7(d), the number of accesses equals 100% of the data.
For the pattern of Figure 7(e), the number of independent accesses
equals 20% of the data, where each independent access is followed
by four dependent ones.

Table 2 shows the results for all five patterns. We can see that
as expected, the direct access offered by rewired memory is in
any case faster than going through the indirection. However, the
amount of difference depends on the type of access pattern. The
highest difference we observe in the case of sequential access with
factors of 1.88x for independent and 2.12x for dependent access.
In contrast to that, when performing any type of random access,
the difference is overall less, ranging from 1.07x for independent
access to 1.53x for mixed access. This is due to expensive cache-
misses triggered by the random accesses both for the direct and the
indirect cases, that overshadow the impact of the access pattern.
The overall message is: software-indirection might be a valid al-
ternative in terms of flexibility, however, it certainly has a negative
impact on the performance, depending on the type of access pat-
tern. Thus, a software-indirection should be used with caution and
only, if the subsequent access patterns are known. This is in general
not the case. In contrast to that, rewiring offers an equal flexibility
without any negative impact of the access performance.

Access Pattern Software-Indirected [s] Rewired [s] Speedup
7(a) random, independent 14.03 13.16 1.07x
7(b) sequential, independent 1.58 0.84 1.88x
7(c) random, dependent 113.40 106.99 1.05x
7(d) sequential, dependent 6.60 3.11 2.12x
7(e) random, mixed 58.33 38.19 1.53x

Table 2: Comparison of access patterns on both software-
indirected memory and rewired memory when using huge pages.
Both methods map sequentially into a pool of initialized pages.

5. APPLICATIONS
In Section 2 we recapped virtual memory, in Section 3 we intro-

duced rewiring, and in Section 4 we micro-benchmarked it. Now,
we are in the position to demonstrate the concept on the basis of
concrete applications. Instead of implementing the technique in a
full-fledged database management system, we want to use rewiring
inside isolated applications, that represent core components of ba-
sically every DBMS. By this, we are able to analyze the individual
impact of rewiring more carefully than plugging it in at several lay-
ers and places in a complete system at once. Of course, seeing
rewiring integrated in a full-fledged system is the final goal of this
research. However, it goes far beyond the scope of a single 12-page
paper and we leave it open for future work, see Section 6.

To showcase rewiring, we start with a rewired vector, that is a
natural candidate for our technique as it requires both high flexi-
bility and access performance. We then present the benefit of this
data structure exemplary by embedding it into our state-of-the-art
partitioning algorithm, leading to a significant improvement. After-
wards, we explore snapshotting which is used for high-frequency
indexing and realtime OLAP. Further, other promising applications
are briefly discussed in Section 6.

5.1 Rewired Vector
Let us start simple and explore a data structure that is not only

present at various layers in database systems, but widely used in
basically any kind of software: the vector, a resizable array. In
a DBMS, a vector-like structure is the fundamental component of
every storage layer, representing tables or columns that grow and
shrink under inserts and deletes. Obviously, it is crucial for the
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Figure 7: Visualization of Access Patterns on an Array. The sequence numbers show the order of access.

storage-structure to provide high access performance and low up-
date cost at the same time. Traditionally, there is a tradeoff between
the flexibility and adaptiveness of a data structure and its provided
access times. For instance, a plain array grants us direct access via
a static offset, but has a fixed size. In contrast to that, a linked list
can grow and shrink dynamically, but suffers from slower access
of individual entries. The widely used vector structure lies between
these two extremes. It offers direct access into a consecutive virtual
memory area but has the ability to grow and shrink dynamically.
Let us see how state-of-the-art vectors offer these properties.

5.1.1 Classical Vectors
The vector is easy to handle for the user as it adjusts its size

transparently based on the fillstate (similar to a linked list), but at
the same time offers a high access performance as the underlying
data is guaranteed to be stored in a consecutive memory region.
However, a price needs to be paid if the data structure runs out of
internal space and needs to grow. In that case, different resizing
policies are possible: (1) Allocate a consecutive virtual memory
area of twice the size, physically copy all data from the old to the
new region, and free the old one. This is the standard policy of
std::vector from STL of C++. (2) Increase the size of the vir-
tual memory area using the mremap system call. (3) Realize the
vector as a linked list of memory chunks that are hidden through
a software-indirection. From our current point of view, all these
techniques seem suboptimal. Policy (1) leads to performing unnec-
essary physical copies, (2) is not compatible with a pool of pages,
and (3) disallows storing all entries in a single continuous virtual
memory area. In contrast to that, our rewired vector avoids all these
problems entirely.

5.1.2 Rewired Vector
For the rewired vector, in order to double the capacity of the

structure, we do not physically copy any of the data that is already
stored in the vector, thus avoiding the issue of policy (1). Instead,
we map the first half of a fresh virtual memory area of twice the
size to the physical pages containing the old data and the second
half to unused physical pages in the pool. The old memory area
is unmapped. Of course, the same concept is applied in the op-
posite direction for shrinking the data structure. This solves both
the problems of policy (2) and (3) as we are able to reuse pooled
pages freely and provide a single consecutive virtual memory area
storing all the data at any time. The simplicity shows how natural
rewiring fits to the problem: we map and unmap physical pages on
demand without giving up the conveniences of direct memory ac-
cess. All this is possible with less than 40 lines of code to setup a
fresh rewired vector and around 20 lines for the insert function.

5.1.3 Experimental Evaluation
To evaluate the structure, we compare the rewired vector with

representatives of the resizing policies (1), (2), and (3). The
std::vector of STL3 represents policy (1), the mremap vector
represents policy (2), and the software-indirected vector represents
policy (3). We create all vectors with an initial capacity of 2MB.

3The std::vector test is written in C++, compiled using g++,
and linked against our C-codebase compiled using gcc. When in-
serting the n elements, we call the C++ library exactly once passing
a pointer to an array with the elements to insert to avoid overhead.

All tested methods are backed by huge pages. We then insert 1 bil-
lion entries of 8B each into the vectors, leading to a total dataset
size of 7.45GB. To see the detailed behavior of the vectors, we
measure the time for every batch of 100, 000 consecutive inserts.
Figure 8(a) shows the times of the individual batches over the entire
insertion sequence, alongside with a zoom-in of 5 million inserts.
Additionally, Figure 8(b) shows the accumulated insertion time
over the entire insertion sequence. All structures double their ca-
pacity as soon as they run out of space. As expected, std::vector
suffers from expensive physical copying steps every time it has to
double its internal memory. Over the entire sequence, a signifi-
cant amount of the runtime is spent purely on the reallocation pro-
cess. The last doubling to 8GB after around 536 million insertions
physically copies 4GB of data from the old to the new memory
region. The remaining three techniques avoid physical copying
and thus do not show any significant runtime spikes. Neverthe-
less, there are differences in the insertion times observable, when
we look at the zoom-in of Figure 8(a): the mremap vector as well
as std::vector suffer from hard page faults whereas the rewired
vector only from soft ones. The software-indirected vector also ex-
ploits the pool and thus offers high insertion throughput. However,
it is slightly throttled by checking if page boundaries are crossed.

Overall, rewired vector can insert the entries in the simplest pos-
sible way and thus shows the best accumulated runtime. It im-
proves throughput by 150% over std::vector and by 40% over
mremap vector. Even over the software-indirected vector, that
plays in a lower league as it does not keep the data consecutively,
the pure insertion improvement is still 20%.

Let us now see a concrete application of the vector in the
database context: the partitioning of a dataset. This algorithm re-
quires the flexibility of enlarging the partitions on the fly. Besides,
the further efficient processing of the partitions requires the data to
be stored consecutively. Both is offered by our rewired vector.

5.2 Rewired Partitioning & Sorting
Partitioning a dataset into k disjoint partitions based on a key

is a fundamental task in data processing. It is widely used to di-
vide work among threads or as an intermediate step in sorting [2],
and join processing [3]. Despite of its simplicity, several optimiza-
tions can be applied to the base radix partitioning algorithm such
as software-managed buffers [3, 14, 19], non-temporal streaming
stores [3,5,14,19], and clever placing of working variables [3,14].
In recent previous work, we already thoroughly studied partition-
ing and the impact of the different techniques [18]. In this section
we will take this as a baseline and explore how to create a rewired
version of state-of-the-art partitioning, that manages to push the
end-to-end performance even further.

5.2.1 Two-pass Partitioning
One of the most popular partitioning algorithms [3, 12, 18],

coined two-pass partitioning in the following, aims at generating
a consecutive and partitioned result area. The algorithm works as
follows: Initially, we perform a first pass over the data to build a
histogram. The histogram counts for each partition the number of
entries that belong to it. Based on that, we can compute the start of
each partition in the consecutive result area. Afterwards, we per-
form a second pass over the input data where we physically copy
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Figure 8: Insertion of 1 billion random elements into a vector with an initial size of 2MB. We compare the std::vector of the STL, that
physically copies the content into an area of twice the size when the capacity is reached with the mremap vector, that uses mremap to grow
a private anonymous memory area. Further, we test a software-indirected vector as well as the rewired vector, that both claim pages from a
page pool. All methods back their memory with huge pages.

each entry to its destination partition. Many low-level optimiza-
tions may be applied to this base algorithm, see [18]. The major
drawback of two-pass partitioning is implied by its name already:
we need two complete passes over the input to perform the parti-
tioning — costs that can be significant if the input is large and/or
the table is wide in row-layout.

5.2.2 Chunked Partitioning
The second option, coined chunked partitioning in the following,

partitions the dataset in a single pass without creating a histogram
in the first place. Notice that chunked partitioning was also used in
very recent work [12,14]. Instead of computing a histogram upfront
to determine the exact partition sizes, we organize each partition
as a list of chunks (respectively pages) that we create on demand.
Each write to a chunk is preceded by a check for sufficient space in
the current chunk. While chunked partitioning indeed partitions the
input data in a single pass, it has a severe drawback — it does not
create a consecutive result area, but only a list of chunks belonging
to that partition. That list may lead to additional costs in further
processing, as we will see in the evaluation.

5.2.3 Mremap Partitioning
A third option that is positioned between the previously men-

tioned two approaches uses the mremap system call again, thus, we
coin it mremap partitioning. Like chunked partitioning, it avoids
the generation of a histogram pass. However, instead of forming
the partitions out of manually linked chunks, we increase the size
of the partitions adaptively page-wise by calling mremap. On one
hand, this has the advantage that every partition is represented by a
consecutive virtual memory area. On the other hand, it disables the
ability of pooling. Furthermore, it is not possible to create a single
consecutive virtual memory area over all partitions.

5.2.4 Rewired Partitioning
To overcome all these limitations, in the following, we propose

an algorithm that combines the best properties of the previously
mentioned techniques, while avoiding the disadvantages. We skip
the generation of a histogram and thus of a complete pass while at
the same time generating a perfectly consecutive result area.

We use chunked partitioning as the basis and modify it in a sense
that each individual partition is represented using a rewired vec-
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Figure 9: Rewired partitioning using chunks partitions a dataset
into a consecutive array without a histogram generation pass.

tor. In the partitioning phase, visualized in Figure 9(a), we add an
entry to a partition by pushing it into the corresponding rewired
vector. Each vector is configured with an initial capacity of a sin-
gle page and increases its capacity not by doubling, as evaluated
in Section 5.1, but by appending individual pages gathered from
the pool. This ensures that the overhead in memory consumption
remains small. Subsequent to the partitioning phase, we want to es-
tablish a single consecutive memory region containing the data of
all partitions without any holes or gaps. This is done in two steps.
First we have to fill up the last page of all partitions except the one
of the very last partition. If the last page of the vector represent-
ing partition i has space left for k tuples, then we move k tuples
from the end of the vector representing partition i + 1 to vector i,
if it contains a sufficient amount of entries. Figure 9(b) demon-
strates the concept. The application of this algorithm might clear
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Figure 10: Partitioning an array of 1 billion entries out of place into 2 to 1024 partitions, which are then sorted in place. We divide the total
partitioning time into generating the histogram, partitioning, completing the pages using memcpy, and rewiring into a consecutive region.

pages entirely, as it can be seen in the example for vpagek+1. In
the second step, we are now able to rewire the remaining physical
pages backing the rewired vectors into a single consecutive virtual
memory area, as we show in Figure 9(c).

5.2.5 Experimental Evaluation
Let us now see how our new rewired partitioning performs in

comparison to the traditional counterparts. We vary the number of
requested partitions from 2 to 1024 in logarithmic steps and par-
tition 1 billion entries of 8B each. The keys are uniformly and
randomly distributed. We test two-pass partitioning generating a
histogram (Section 5.2.1) both when partitioning into fresh and
initialized memory. Furthermore, we evaluate classical chunked
partitioning using a linked list (Section 5.2.2) as well as mremap

partitioning, enlarging the partitions using the system call (Sec-
tion 5.2.3). We compare these baselines agains our rewired parti-
tioning (Section 5.2.4). In Figure 10(a), we display the end-to-end
partitioning times achieved by the different algorithms. To get a
more detailed view of the behavior, we additionally show the indi-
vidual parts of the processing. As we can see, rewired partitioning,
that outputs the result in form of a single consecutive memory area,
offers basically the same runtime as chunked partitioning, that cre-
ates only a linked list of memory chunks. Rewired partitioning is
significantly faster than two-pass partitioning due to the avoidance
of the additional histogram generation. In comparison with two-
pass partitioning into fresh memory, the improvement in through-
put ranges from 49% for 2 partitions to 37% for 1024 partitions.
Even when making the assumption of partitioning into initialized
memory, the improvement still ranges from 22% to 14% for 2 re-
spectively 1024 partitions. Interestingly, mremap partitioning is the
slowest of all methods. In comparison, rewired partitioning offers
an up to 83% higher throughput (1024 partitions). The relocation
of virtual memory regions, that is performed in case an enlarge-
ment at the current place is not possible, turns out to be surpris-
ingly expensive. For rewired partitioning, physically completing
the last pages of the vectors and the subsequent rewiring into a
consecutive area cause negligible costs. Even for 1024 partitions,
where the last page of each partition is filled around 75%, this cost
makes only 2.5% of the end-to-end time. The alerted reader might
argue now that chunked partitioning is still a valid alternative to
the rewired version. As we will see now, this depends heavily on

how the produced partitions are further processed and whether this
processing can be made aware of the list of chunks. Imaging the
very common use-case of locally sorting the individual partitions
to establish a globally sorted state using your favorite sorting algo-
rithm. It is straight-forward to apply it onto the result of rewired
partition, but it certainly has to be modified to apply it onto the
chunked partitions. This can be (1) impossible if the algorithm is
black-boxed or (2) very hard, depending on the type of algorithm.
Extending the algorithm with a chunk-wise indirection is at least
always possible if the code is accessible. However, this can have a
tremendously negative effect, as demonstrated in Figure 10(b). The
sorting time of chunked partitioning, working through the indirec-
tion, is significantly higher in all cases than the direct approach.
Overall, only rewired partitioning manages to truly combine the
best of both worlds: flexibility and processing speed.

5.3 Rewired Snapshotting
Previously, we have seen that the rewiring of memory is a very

helpful tool to improve both data structures and data processing al-
gorithms in terms of flexibility and performance. Another database
application that heavily relies on these properties is snapshotting.
A snapshot [1] is a read-only static view or copy of the database
which can be used to serve long running analytical queries. It is
transactionally consistent with the source database at snapshot cre-
ation. This technique is useful to create virtual memory snapshots
which in turn can be used to separate long running OLAP queries
and short running OLTP transactions. Researchers have proposed
several strategies [11] to efficiently execute both query types con-
currently ranging from using two different systems, to exploiting
kernel features like COW. Systems like HyPer [8] exploit COW
to snapshot transactional data lazily during query execution. While
these systems are quite efficient, they rely on the operating system’s
fresh page allocation feature which is expensive as we learned in
the previous sections. Consequently, we propose rewired snapshot-
ting that completely eliminates page allocation overhead by utilis-
ing the pooling feature of rewired memory and compare it against
the virtual memory aware snapshotting described as in HyPer [8].

5.3.1 Virtual Memory Aware Snapshotting
HyPer [8] uses the fork system call provided by the Linux ker-

nel to implicitly snapshot transactional data. The forked process
gets a copy of the parent process’s page table, thereby a virtual
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(a) Sequential-Independent Workload
# updates Update Throughput
in-between #updates per second (·108)
snapshots (·105) implicit COW rewired COW Gain [%]

1000 3.24 3.71 14.50

100 2.41 3.67 52.28

10 2.19 3.70 68.94

1 1.07 2.10 96.26

(b) Random-Independent Workload
# updates Update Throughput
in-between #updates per second (·105)
snapshots (·105) implicit COW rewired COW Gain [%]

1000 3160.00 3539.25 12.00

100 172.50 201.86 17.02

10 30.67 38.17 24.25

1 3.33 4.17 25.22

Table 4: Update throughput when snapshotting.

snapshot of the most recent transactional data. Each COW opera-
tion requests a fresh page from the kernel which is quite expensive
as shown in Section 4.3. To see the effect of page allocation on
COW, we micro-benchmark fork’s implicit COW and compare it
against the manual copying of a page. For this experiment, we allo-
cate two separate arrays initialized with zeroes of size 1GB contain-
ing 8B entries. We back the first array by private anonymous huge
pages and the second array by rewired memory. We update both ar-
rays by modifying the first entry of each allocated page sequentially
from start to end. The first array triggers an implicit COW for each
modified page by allocating a fresh page. For the second array, we
perform a so-called rewired COW (as explained in Section 5.3.2)
to a pre-allocated pool page. We measure and compare the time for
performing the implicit COW against the rewired COW.

Copy Strategy Time [µs]
Implicit 594
Manual 442

Table 3: COW cost for im-
plicit and manual page copying

Table 3 shows that implicit COW
takes 594 µs to copy and update
entry for one page. On the other
hand, rewired COW takes 442 µs
which is 25.5% less than its im-
plicit counterpart. Obviously, this

clearly motivates the need for page pooling during COW, as pre-
sented in the following.

5.3.2 Rewired Snapshotting
In this section, we present a pool-based snapshotting technique

that avoids allocation overhead by reusing pages. We implement
rewired snapshotting on top of fork, but avoid fresh page allo-
cation during COW by maintaining a pool of pre-allocated huge
pages which are file-backed as described is Section 3. To perform
a COW for page p, we claim a page q from the pool and manually
copy the content from p to q using memcpy. After this we rewire
the claimed physical page q to the OLTP view. We will use view
and snapshot interchangeably throughout this section. Figure 11
illustrates an example of how we perform rewired snapshotting step
by step. We start with an OLTP view of the transactional data that
can be updated directly without performing any COWs. When an
OLAP query arrives at the end of epoch 1, we create a fresh snap-
shot by forking a new process and write protecting the OLTP view.
Later, when the first write request arrives for a virtual page at the
end of epoch 2, it triggers a segmentation fault. We handle these
segfaults manually using signal handling API provided by the linux
kernel. In the segfault handler, we perform rewired COW manually
as explained earlier in this section. We take a fresh snapshot at the
end of epoch 5 by forking a new process from the process han-
dling the OLTP queries. We attach all arriving OLAP queries to

the most recent snapshot. At the end of epoch 6, after all OLAP
queries using an old snapshot terminate, we garbage collect the un-
used pages of this snapshot for serving future COW requests as
shown at the end of epoch 7.

The policy for rewired snapshotting is to snapshot transactional
data after every k updates. If no OLAP query arrives after k up-
dates, further snapshotting is delayed until the arrival of a next
OLAP query. All OLAP queries arriving between update nk and
(n + 1)k are attached to the existing snapshot taken after nk up-
dates. A snapshot taken at any time t can be garbage collected after
2t seconds under the assumption that the longest running OLAP
query terminates within t seconds. All write-protect permissions
on transactional data are removed after the last OLAP query fin-
ishes, allowing the OLTP process to modify transactional data di-
rectly without performing any further COWs.

5.3.3 Experimental Evaluation
We evaluate the performance of rewired snapshotting by compar-

ing its update throughput with virtual memory-aware snapshotting
as implemented in HyPer [8]. Our test setup allocates two arrays
each of size 1 GB containing 8 B entries, one backed by anonymous
and other by pooled huge pages. We measure the update through-
put for each of these arrays by varying the snapshotting frequency
which refers to the number of updates applied to array before tak-
ing a fresh snapshot. Table 4 shows the throughput for sequential-
independent and random-independent workload.

As expected, fresh page allocation cost has significant impact
on performance of virtual memory aware snapshotting. With high
snapshotting frequency which tends to perform more COWs, re-
moving the page allocation overhead improves the update through-
put by around 96% for sequential workload whereas by about 25%
for random workload which is dominated by cache misses that
overshadows the gain. Since a generic real-world workload lies
somewhere between these two extremes, rewired snapshotting pro-
vides a substantial boost to OLTP update throughput especially if
the snapshotting frequency is quite high and the OLAP workload
sees a very recent view of the transactional data.

6. FUTURE WORK
We have seen some fundamental applications of rewiring. To

demonstrate the impact of our technique, we picked the vector
structure as well as the partitioning and sorting problem. All of
these are fundamental use-cases both in database systems as well
as generally in computer science. Further, we showed the impact
on fork-based snapshotting, a naturally candidate to be enhanced
by rewiring. Of course, there are several other promising applica-
tions where we believe that rewiring could be applied successfully.
In future work, an entire DBMS can be build around or adapted to
rewiring memory from the ground. Let us discuss these compo-
nents and how they could be assembled in a single system.

On the storage layer, we can realize the managed tables and
columns purely with rewired memory, as seen in the vector ap-
plication. Thus, inserts and deletes are as cheap as possible to
handle. Updates to a memory region can be collected on separate
pages in a COW style and rewired into the base table from time to
time (differential updates). The memory is claimed and released
in a managed pool. Further, multiple different virtual views on
the same physical data are possible. For instance, a view selecting
rows on a table can directly map to only those physical pages, that
contain qualifying rows. Connected to this, classical data dupli-
cation can be applied exploiting rewiring. If data is repeated, it is
possible to store it physically only once and map to it from multiple
places. Thus, it becomes possible to realize the inverse operation of
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COW: merge-on-write (MOW)4. With respect to multi-socket ma-
chines, we can use rewiring to control the distribution of the mem-
ory across the difference memory regions for NUMA-awareness.
Rewiring could be exploited to transparently swap NUMA-remote
with NUMA-local pages, while the thread is working on the corre-
sponding virtual memory area.

On the index layer, rewiring can be exploited at two places:
firstly, there is a tremendous amount of read-optimized or even
read-only index structures as for instance the CSS-tree [15] or
FAST-tree [9]. Often, these structures are very hard to update. Mas-
sive physical copying or even a rebuild of the entire structure is
necessary. Rewiring offers the chance to cheaply swap in and out
parts of the structure in a transparent fashion. Secondly, rewiring
can be used to speed up lookups in tree-based index structures by
removing one level of indirection. It can also be used to enhance
increasingly popular hashing methods [16]. For instance, the clas-
sical extendible hashing [6] uses a directory to indirect lookups
into its buckets; this directory may be realized directly in form of
the page table which completely removes the costs for that lookup.

Besides of that, the previously seen snapshotting mechanism
can be used to enable fast concurrent processing of OLAP and
OLTP queries. The seen rewired partitioning can be applied at
many places, for instance to divide the data for join-processing [3,
17] or to split it into horizontal partitions. Obviously, rewiring
can play a role at various places of a data management systems.
Due to the enormous complexity, integrating these concepts in a
full-fledged system will be a future project.

7. CONCLUSION
We have presented the basic toolbox to bridge the gap between

the duality of flexibility and access performance. We reinterpreted
the usage of memory mapped files and shared memory to intro-
duce a convenient handle for physical memory in user-space. We
evaluated the properties of the technique in depth under micro-
benchmarks to learn the strengths and pitfalls and integrate the
technique in a set of real-world applications. We showcased how
easily rewiring improves the insertion throughput of a consecutive
vector by 40% to 150%. By integrating the technique into state-of-
the-art partitioning algorithms, we managed to improve the end-to-
end throughput by 37% to almost 50%, while still offering a con-

4https://youtu.be/sLl-kyv-DCo

secutive result. Finally, we presented a snapshotting mechanism
exploiting rewired memory, that improves the update throughput
by up to 96%.
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